Solutions4.pdf

4
Quantum Mechanics I Solutions 4. HS 2012 Prof. Ch. Anastasiou Exercise 1.  Ener gy eigenstates Let us consider an hypothetical two-state system described by the following Hamiltonian H  = a (|1 1| | 2 2| + |1 2| + |2 1|)  , where  a  is a numbe r with the dimension of energy. Find the energy eigen v alues and their corresponding energy eigenkets, in the  | 1  &  | 2  basis. Solution.  The best wa y to proceed is to wr ite  H  in matrix representation in the  |1  & |2  basis H  = 1|H |1 1|H |2 2|H |1 2|H |2 = a 1 1 1  −1 . Then the eigenvalues are the roots  λ i  of the characteristic polynomial det( H  − λ1) and the corresponding eigen- vectors are found by solving  H vi  =  λivi . We get λ ±  = ± √ 2a , v ±  = 1 ± √ 2 1 = 1 ± √ 2 |1 + |2  . Exerci se 2.  Spin eigenstates in arbitr ary dir ecti on Construct  | S ·  ˆ n, +  such that S ·  ˆ n |S ·  ˆ n, +  =   2  | S ·  ˆ n, +  ,  (1) where  S = (S x ,S y ,S z ) and  ˆ n is characterized by  α, the polar angle, and  β  the azimuthal one. Express your answer as a linear combination of  | +  and  |. Hint. The answer is:  cos( β 2 ) |+ + sin( β 2 )e iα | . Solution.  The solutio n to this exercise is atta ched on pa ge 3. Exerci se 3.  Comp atible Op era tors Consider a three-dimensional ket space, spanned by the set of orthonormal kets  | 1,  | 2  and  | 3. The operators  A a nd  B  act on them as follows ( a, b ∈  R): A |1 =  a |1 , B |1 =  b |1 , A |2 =  −a |2 , B |2 =  ib |3 ,  (2) A |3 =  −a |3 , B |3 =  −ib |2 . (a) Obv iously A  exhibits a degenerate spectrum. Does  B  also exhibit a degen erate spectrum? 1

Transcript of Solutions4.pdf

7/27/2019 Solutions4.pdf

http://slidepdf.com/reader/full/solutions4pdf 1/4

7/27/2019 Solutions4.pdf

http://slidepdf.com/reader/full/solutions4pdf 2/4

7/27/2019 Solutions4.pdf

http://slidepdf.com/reader/full/solutions4pdf 3/4

7/27/2019 Solutions4.pdf

http://slidepdf.com/reader/full/solutions4pdf 4/4