Solution Week 1

24
SOLUTION Ex 10.1: 2, 3, 7, 9 Ex 10.2: 1, 3, 4, 20, 31 Ex 10.3: 1, 2, 4, 5, 11 Ex 10.4: 1

Transcript of Solution Week 1

SOLUTION Ex 10.1: 2, 3, 7, 9 Ex 10.2: 1, 3, 4, 20, 31 Ex 10.3: 1, 2, 4, 5, 11 Ex 10.4: 1

Ex 10.1: (2) a) π‘Žπ‘›+1 = 1.5π‘Žπ‘›,π‘Žπ‘› = 1.5 π‘›π‘Ž0,𝑛 β‰₯ 0. b) 4π‘Žπ‘› = 5π‘Žπ‘›βˆ’1,π‘Žπ‘› = 1.25 π‘›π‘Ž0,𝑛 β‰₯ 0.

c) 3π‘Žπ‘›+1 = 4π‘Žπ‘›, 3π‘Ž1 = 15 = 4π‘Ž0,π‘Ž0 = 154

,

so π‘Žπ‘› = 43

π‘›π‘Ž0 = 4

3

𝑛 154

= 5 43

π‘›βˆ’1,𝑛 β‰₯ 0.

d) π‘Žπ‘› = 32π‘Žπ‘›βˆ’1,π‘Žπ‘› = 3

2

π‘›π‘Ž0, 81 = π‘Ž4 = 3

2

4π‘Ž0,

so π‘Ž0 = 16 and π‘Žπ‘› = 16 32

𝑛, 𝑛 β‰₯ 0.

Ex 10.1: (3) β€’ π‘Žπ‘›+1 βˆ’ π‘‘π‘Žπ‘› = 0,𝑛 β‰₯ 0, so π‘Žπ‘› = π‘‘π‘›π‘Ž0. 153

49= π‘Ž3 = 𝑑3π‘Ž0,

13772401

= π‘Ž5 = 𝑑5π‘Ž0 β‡’π‘Ž5π‘Ž3

= 𝑑2 = 949

and 𝑑 = Β± 37.

Ex 10.1: (7) a) 19 + 18 + 17 + β‹―+ 10 = 145 b) 9 + 8 + 7 + β‹―+ 1 = 45

Ex 10.1: (9) a) 21345 b) 52143, 52134, 25134 c) 25134, 21534, 21354, 21345

Ex 10.2: (1.a, 1.b) a) π‘Žπ‘› = 5 π‘Žπ‘›βˆ’1 + 6 π‘Žπ‘›βˆ’2,𝑛 β‰₯ 2,π‘Ž0 = 1,π‘Ž1 = 3.

Let π‘Žπ‘› = π‘π‘Ÿπ‘›, 𝑐, π‘Ÿ β‰  0. Then the characteristic equation is π‘Ÿ2 βˆ’ 5π‘Ÿ βˆ’ 6 = 0 = π‘Ÿ βˆ’ 6 π‘Ÿ + 1 , so π‘Ÿ = βˆ’1,6 are the characteristic roots. π‘Žπ‘› = 𝐴 βˆ’1 𝑛 + 𝐡 6 𝑛. 1 = π‘Ž0 = 𝐴 + 𝐡. 3 = π‘Ž1 = βˆ’π΄ + 6𝐡, so 𝐡 = 4

7 and 𝐴 = 3

7.

π‘Žπ‘› = 37

βˆ’1 𝑛 + 47

6𝑛,𝑛 β‰₯ 0.

b) π‘Žπ‘› = 4 12

π‘›βˆ’ 2 5 𝑛,𝑛 β‰₯ 0.

Ex 10.2: (1.c) β€’ π‘Žπ‘›+2 + π‘Žπ‘› = 0,𝑛 β‰₯ 0,π‘Ž0 = 0,π‘Ž1 = 3.

With π‘Žπ‘› = π‘π‘Ÿπ‘›, 𝑐, π‘Ÿ β‰  0. The characteristic equation π‘Ÿ2 + 1 =0 yields the characteristic roots ±𝑖.

Hence π‘Žπ‘› = 𝐴 𝑖 𝑛 + 𝐡 βˆ’π‘– 𝑛 = 𝐴 cos πœ‹2

+ 𝑖𝑖𝑖𝑛 πœ‹2

𝑛+

𝐡 cos πœ‹2

+ 𝑖𝑖𝑖𝑛 βˆ’πœ‹2

𝑛= 𝐢𝑐𝐢𝑖 π‘›πœ‹

2+ 𝐷𝑖𝑖𝑛 π‘›πœ‹

2.

0 = π‘Ž0 = 𝐢, 3 = π‘Ž1 = 𝐷𝑖𝐢𝑛 πœ‹2

= 𝐷,

so π‘Žπ‘› = 3 sin π‘›πœ‹2

,𝑛 β‰₯ 0.

Ex 10.2: (1.d) β€’ π‘Žπ‘› βˆ’ 6π‘Žπ‘›βˆ’1 + 9π‘Žπ‘›βˆ’2 = 0,𝑛 β‰₯ 2,π‘Ž0 = 5,π‘Ž1 = 12.

Let π‘Žπ‘› = π‘π‘Ÿπ‘›, 𝑐, π‘Ÿ β‰  0. Then π‘Ÿ2 + 6π‘Ÿ + 9 = 0 = π‘Ÿ βˆ’ 3 2, so the characteristic roots are 3,3 and 𝐴 3𝑛 + 𝐡𝑛 3𝑛 . 5 = π‘Ž0 = 𝐴; 12π‘Ž1 = 3𝐴 + 3𝐡 = 15 + 3𝐡,𝐡 = βˆ’1. π‘Žπ‘› = 5 3𝑛 βˆ’ 𝑛 3𝑛 = 5 βˆ’ 𝑛 3𝑛 ,𝑛 β‰₯ 0.

Ex 10.2: (1.e) β€’ π‘Žπ‘› + 2π‘Žπ‘›βˆ’1 + 2π‘Žπ‘›βˆ’2 = 0,𝑛 β‰₯ 2,π‘Ž0 = 1,π‘Ž1 = 3. π‘Ÿ2 + 2π‘Ÿ + 2 = 0, π‘Ÿ = βˆ’1 Β± 𝑖. βˆ’1 + 𝑖 = 2 cos 3πœ‹

4+ 𝑖𝑖𝑖𝑛 3πœ‹

4.

βˆ’1 βˆ’ 𝑖 = 2 cos 3πœ‹4

βˆ’ 𝑖𝑖𝑖𝑛 3πœ‹4

.

π‘Žπ‘› = 2𝑛𝐴𝑐𝐢𝑖 3πœ‹

4+ 𝐡𝑖𝑖𝑛 3πœ‹

4.

1 = π‘Ž0 = 𝐴. 3 = π‘Ž1 = 2 cos 3πœ‹

4+ 𝐡𝑖𝑖𝑛 3πœ‹

4= 2 βˆ’1

2+ 𝐡 1

2, 𝑖𝐢 3 =

βˆ’ 1 + 𝐡,𝐡 = 4. π‘Žπ‘› = 2

𝑛cos 3πœ‹πœ‹

4+ 4 sin 3πœ‹πœ‹

4,𝑛 β‰₯ 0.

Ex 10.2: (3) β€’ 𝑛 = 0 : π‘Ž2 + 𝑏 π‘Ž1 + 𝑐 π‘Ž0 = 0 = 4 + 𝑏 1 + 𝑐 0 , so 𝑏 = βˆ’4. 𝑛 = 1 : π‘Ž3 βˆ’ 4 π‘Ž2 + 𝑐 π‘Ž1 = 0 = 37 βˆ’ 4 4 + 𝑐, so 𝑐 = βˆ’21. π‘Žπ‘›+2 βˆ’ 4 π‘Žπ‘›+1 βˆ’ 21 π‘Žπ‘› = 0. π‘Ÿ2 βˆ’ 4π‘Ÿ βˆ’ 21 = 0 = π‘Ÿ βˆ’ 7 π‘Ÿ + 3 , π‘Ÿ = 7,βˆ’3. π‘Žπ‘› = 𝐴 7 𝑛 + 𝐡 βˆ’3 𝑛. 0 = π‘Ž0 = 𝐴 + 𝐡 β‡’ 𝐡 = βˆ’π΄. 1 = π‘Ž1 = 7𝐴 βˆ’ 3𝐡 = 10𝐴, so 𝐴 = 1

10,𝐡 = βˆ’ 1

10 and π‘Žπ‘› = 1

107𝑛 βˆ’ βˆ’3 𝑛 ,𝑛 β‰₯ 0.

Ex 10.2: (4) β€’ π‘Žπ‘› = π‘Žπ‘›βˆ’1 + π‘Žπ‘›βˆ’2,𝑛 β‰₯ 2,π‘Ž0 = π‘Ž1 = 1. π‘Ÿ2 βˆ’ π‘Ÿ βˆ’ 1 = 0, π‘Ÿ = 1±𝑋

2,𝑋 = 5.

π‘Ž0 = 𝐴 1+𝑋2

𝑛+ 𝐡 1βˆ’π‘‹

2

𝑛.

π‘Ž0 = π‘Ž1 = 1 β‡’ 𝐴 = 1+𝑋2𝑋

,𝐡 = π‘‹βˆ’12𝑋

.

π‘Žπ‘› = 1𝑋

1+𝑋2

𝑛+1βˆ’ 1βˆ’π‘‹

2

𝑛+1

= 15

1+ 52

𝑛+1βˆ’ 1βˆ’ 5

2

𝑛+1.

Ex 10.2: (20.a)

β€’ 𝛼2 = 1+ 52

2= 1+2 5+5

4= 6+2 5

4= 3+ 5

2

= 1+ 52

+ 22

= 𝛼 + 1.

Ex 10.2: (20.b) β€’ Proof: (By Mathematical Induction) For 𝑛 = 1, we have 𝛼𝑛 = 𝛼1 = 𝛼 = 𝛼 β‹… 1 + 0 = 𝛼F1 + 𝐹0 = 𝛼F𝑛 + πΉπ‘›βˆ’1, so the result is true in this case. This establishes the basis step. Now we assume for an arbitrary (but fixed) positive integer π‘˜ that π›Όπ‘˜ = 𝛼Fπ‘˜ + πΉπ‘˜βˆ’1. This is our indutive step. Considering 𝑛 = π‘˜ + 1, at this time, we find that π›Όπ‘˜+1 = 𝛼 π›Όπ‘˜ = 𝛼 𝛼Fπ‘˜ + πΉπ‘˜+1 (Bythe inductive step) = 𝛼2πΉπ‘˜ + π›ΌπΉπ‘˜βˆ’1 = 𝛼 + 1 πΉπ‘˜ + 𝛼Fπ‘˜βˆ’1[by part (a)] = 𝛼 πΉπ‘˜ + πΉπ‘˜βˆ’1 + πΉπ‘˜ = 𝛼Fπ‘˜+1 + πΉπ‘˜. Since the given result is ture for 𝑛 = 1 and the truth for 𝑛 = π‘˜ + 1 follows from that for 𝑛 = π‘˜, it follows bt the Principle of Mathematical Induction that 𝛼𝑛 = 𝛼F𝑛 + πΉπ‘›βˆ’1for all 𝑛 ∈ 𝑍+.

Ex 10.2: (31) β€’ Let 𝑏𝑛 = π‘Žπ‘›2 , 𝑏0 = 16,𝑏1 = 169.

This yields the linear relation 𝑏𝑛+2 βˆ’ 5𝑏𝑛+1 + 4𝑏𝑛 = 0 with characteristic roots π‘Ÿ = 4,1, so 𝑏𝑛 = 𝐴 1 𝑛 + 𝐡 4 𝑛. 𝑏0 = 16,𝑏1 = 169 β‡’ 𝐴 = βˆ’35,𝐡 = 51 and 𝑏𝑛 = 51 4 𝑛 βˆ’ 35. Hence π‘Žπ‘› =, 51 4 𝑛 βˆ’ 35, 𝑛 β‰₯ 0.

Ex 10.3: (1.a, 1.b) a) π‘Žπ‘›+1 βˆ’ π‘Žπ‘› = 2𝑛 + 3,𝑛 β‰₯ 0,π‘Ž0 = 1.

π‘Ž1 = π‘Ž0 + 0 + 3. π‘Ž2 = π‘Ž1 + 2 + 3 = π‘Ž0 + 2 + 2 3 . π‘Ž3 = π‘Ž2 + 2 2 + 3 = π‘Ž0 + 2 + 2 2 + 3 3 . π‘Ž4 = π‘Ž3 + 2 3 + 3 = π‘Ž0 + 2 + 2 2 + 2 3 + 4 3 . … π‘Žπ‘› = π‘Ž0 + 2 1 + 2 + 3 + β‹―+ 𝑛 βˆ’ 1 + 𝑛 3 = 1 +2 𝑛 π‘›βˆ’1

2+ 3𝑛 = 1 + 𝑛 𝑛 βˆ’ 1 + 3𝑛 = 𝑛2 + 2𝑛 + 1 =

𝑛 + 1 2,𝑛 β‰₯ 0. b) π‘Žπ‘› = 3 + 𝑛 𝑛 βˆ’ 1 2,𝑛 β‰₯ 0.

Ex 10.3: (1.c, 1.d) c) π‘Žπ‘›+1 βˆ’ 2π‘Žπ‘› = 5,𝑛 β‰₯ 0,π‘Ž0 = 1.

π‘Ž1 = 2π‘Ž0 + 5 = 2 + 5. π‘Ž2 = 2π‘Ž1 + 5 = 22 + 2 β‹… 5 + 5. π‘Ž3 = 2π‘Ž2 + 5 = 23 + 22 + 2 + 1 5. … π‘Žπ‘› = 2𝑛 + 5 1 + 2 + 22 + β‹―+ 2π‘›βˆ’1 = 2𝑛 + 5 2𝑛 βˆ’ 1 =6 2𝑛 βˆ’ 2,𝑛 β‰₯ 0.

d) π‘Žπ‘› = 22 + 𝑛 2π‘›βˆ’1 ,𝑛 β‰₯ 0.

Ex 10.3: (2) β€’ π‘Žπ‘› = βˆ‘ 𝑖2𝑛

𝑖=0 . π‘Žπ‘›+1 = π‘Žπ‘› + 𝑛 + 1 2,𝑛 β‰₯ 0,π‘Ž0 = 0. π‘Žπ‘›+1 βˆ’ π‘Žπ‘› = 𝑛 + 1 2 = 𝑛2 + 2𝑛 + 1. π‘Žπ‘›β„Ž = 𝐴,π‘Žπ‘›

𝑝 = 𝐡𝑛 + 𝐢𝑛2 + 𝐷𝑛3. 𝐡 𝑛 + 1 + 𝐢 𝑛 + 1 2 + 𝐷 𝑛 + 1 3 = 𝐡𝑛 + 𝐢𝑛2 + 𝐷𝑛3 +𝑛2 + 2𝑛 + 1 β‡’ 𝐡𝑛 + 𝐡 + 𝐢𝑛2 + 2𝐢𝑛 + 𝐢 + 𝐷𝑛3 + 3𝐷𝑛2 +3𝐷𝑛 + 𝐷 = 𝐡𝑛 + 𝐢𝑛2 + 𝐷𝑛3 + 𝑛2 + 2𝑛 + 1. By comparing coefficients on like powers of 𝑛, we find that 𝐢 + 3𝐷 = 𝐢 + 1, so 𝐷 = 1

3. Also 𝐡 + 2𝐢 + 3𝐷 = 𝐡 + 2, so 𝐢 = 1

2. Finally,

𝐡 + 𝐢 + 𝐷 = 1 β‡’ 𝐡 = 16. So π‘Žπ‘› = 𝐴 + 1

6𝑛 + 1

2𝑛2 + 1

3𝑛3. With

π‘Ž0 = 0, it follows that 𝐴 = 0 and π‘Žπ‘› = 16𝑛 1 + 3𝑛 + 2𝑛2 =

16𝑛 𝑛 + 1 2𝑛 + 1 ,𝑛 β‰₯ 0.

Ex 10.3: (4) β€’ Let 𝑝𝑛 be the value of the account 𝑛 months after January 1 of

the year the account is started. 𝑝0 = 1000. 𝑝1 = 1000 + .005 1000 + 200 = 1.005 𝑝0 + 200. 𝑝𝑛+1 = 1.005 𝑝𝑛 + 200, 0 ≀ 𝑛 ≀ 46. 𝑝48 = 1.005 𝑝47. 𝑝𝑛+1 βˆ’ 1.005 𝑝𝑛 = 200, 0 ≀ 𝑛 ≀ 46. π‘π‘›β„Ž = 𝐴 1.005 𝑛,𝑝𝑛

𝑝 = 𝐢. 𝐢 βˆ’ 1.005𝐢 = 200 β‡’ 𝐢 = βˆ’400000. 𝑝0 = 𝐴 1.005 0 βˆ’ 40000 = 1000, 𝑖𝐢 𝐴 = 41000. 𝑝𝑛 = 41000 1.005 𝑛 βˆ’ 40000. 𝑝47 = 41000 1.005 47 βˆ’ 40000 = 11830.90. 𝑝48 = 1.005𝑝47 = 11890.05.

Ex 10.3: (5) a) π‘Žπ‘›+2 + 3π‘Žπ‘›+1 + 2π‘Žπ‘› = 3𝑛,𝑛 β‰₯ 0,π‘Ž0 = 0,π‘Ž1 = 1.

With π‘Žπ‘› = π‘π‘Ÿπ‘›, 𝑐, π‘Ÿ β‰  0, the characteristic equation π‘Ÿ2 + 3π‘Ÿ + 2 =0 = π‘Ÿ + 2 π‘Ÿ + 1 yields the characteristic roots π‘Ÿ = βˆ’1,βˆ’2. Hence π‘Žπ‘›

β„Ž = 𝐴 βˆ’1 𝑛 + 𝐡 βˆ’2 𝑛, while π‘Žπ‘›π‘ = 𝐢 3 𝑛.

𝐢 3 𝑛+2 + 3𝐢 3 𝑛+1 + 2𝐢 3 𝑛 = 3𝑛 β‡’ 9𝐢 + 9𝐢 + 2𝐢 = 1 ⇒𝐢 = 1

20.

π‘Žπ‘› = 𝐴 βˆ’1 𝑛 + 𝐡 βˆ’2 𝑛 + 120

3𝑛. 0 = π‘Ž0 = 𝐴 + 𝐡 + 1

20.

1 = π‘Ž1 = βˆ’π΄ βˆ’ 2𝐡 + 320

. Hence 1 = π‘Ž0 + π‘Ž1 = βˆ’π΅ + 4

20 and 𝐡 = βˆ’4

5. Then 𝐴 = βˆ’π΅ βˆ’ 1

20=

34

.π‘Žπ‘› = 34βˆ’1 𝑛 + βˆ’4

5βˆ’2 𝑛 + 1

203 𝑛,𝑛 β‰₯ 0.

b) π‘Žπ‘› = 29βˆ’2 𝑛 βˆ’ 5

6𝑛 βˆ’2 𝑛 + 7

9,𝑛 β‰₯ 0.

Ex 10.3: (11.a) β€’ Let π‘Žπ‘›2 = 𝑏𝑛,𝑛 β‰₯ 0. 𝑏𝑛+2 βˆ’ 5 𝑏𝑛+1 + 6 𝑏𝑛 = 7𝑛. π‘π‘›β„Ž = 𝐴 3𝑛 + 𝐡 2𝑛 , 𝑏𝑛

𝑝 = 𝐢𝑛 + 𝐷. 𝐢 𝑛 + 2 + 𝐷 βˆ’ 5 𝐢 𝑛 + 1 + 𝐷 + 6 𝐢𝑛 + 𝐷 = 7𝑛 β‡’ 𝐢 = 7

2,𝐷 = 21

4.

𝑏𝑛 = 𝐴 3𝑛 + 𝐡 2𝑛 + 7𝑛2

+ 214

. 𝑏0 = π‘Ž02 = 1, 𝑏1 = π‘Ž12 = 1. 1 = 𝑏0 = 𝐴 + 𝐡 + 21

4.

1 = 𝑏1 = 3𝐴 + 2𝐡 + 72

+ 214

. 3𝐴 + 2𝐡 = βˆ’31

3.

2𝐴 + 2𝐡 = βˆ’344

. 𝐴 = 3

4,𝐡 = βˆ’5.

π‘Žπ‘› = 34

3𝑛 βˆ’ 5 β‹… 2𝑛 + 7𝑛2

+ 214

12 ,𝑛 β‰₯ 0.

Ex 10.3: (11.b) β€’ π‘Žπ‘›2 βˆ’ 2π‘Žπ‘›βˆ’1 = 0,𝑛 β‰₯ 1,π‘Ž0 = 2. π‘Žπ‘›2 = 2π‘Žπ‘›βˆ’1. log2 π‘Žπ‘›2 = log2(2π‘Žπ‘›βˆ’1) = log2 2 + log2 π‘Žπ‘›βˆ’1. 2 log2 π‘Žπ‘› = 1 + log2 π‘Žπ‘›βˆ’1. Let 𝑏𝑛 = log2 π‘Žπ‘›. The solution of the recurrence relation 2𝑏𝑛 = 1 + π‘π‘›βˆ’1is 𝑏 = 𝐴 1

2

𝑛+ 1.𝑏0 = log2 π‘Ž0 = log22 = 1, so 1 = 𝑏0 = 𝐴 + 1

and 𝐴 = 0. Consequently, 𝑏𝑛 = 1,𝑛 β‰₯ 0, and π‘Žπ‘› = 2,𝑛 β‰₯ 0.

Ex 10.4: (1.a, 1.b) a) π‘Žπ‘›+1 βˆ’ π‘Žπ‘› = 3𝑛,𝑛 β‰₯ 0,π‘Ž0 = 1.

Let 𝑓 π‘₯ = βˆ‘ π‘Žπ‘›π‘₯π‘›βˆžπ‘›=0 .

βˆ‘ π‘Žπ‘›+1π‘₯𝑛+1βˆžπ‘›=0 βˆ’ βˆ‘ π‘Žπ‘›π‘₯𝑛+1∞

𝑛=0 = βˆ‘ 3𝑛π‘₯𝑛+1βˆžπ‘›=0 .

𝑓 π‘₯ βˆ’ π‘Ž0 βˆ’ π‘₯𝑓 π‘₯ = π‘₯ βˆ‘ 3π‘₯ π‘›βˆžπ‘›=0 = π‘₯

1βˆ’3π‘₯.

𝑓 π‘₯ βˆ’ 1 βˆ’ π‘₯𝑓 π‘₯ = π‘₯1βˆ’3π‘₯

.

𝑓 π‘₯ = 11βˆ’π‘₯

+ π‘₯1βˆ’π‘₯ 1βˆ’3π‘₯

=1

1βˆ’π‘₯+ βˆ’1

21

1βˆ’π‘₯+ 1

21

1βˆ’3π‘₯= 1

21

1βˆ’π‘₯+ 1

2( 11βˆ’3π‘₯

),

and π‘Žπ‘› = 12

1 + 3𝑛 ,𝑛 β‰₯ 0.

b) π‘Žπ‘› = 1 + 𝑛 π‘›βˆ’1 2π‘›βˆ’16

,𝑛 β‰₯ 0.

Ex 10.4: (1.c) β€’ π‘Žπ‘›+2 βˆ’ 3 π‘Žπ‘›+1 + 2 π‘Žπ‘› = 0,𝑛 β‰₯ 0,π‘Ž0 = 1,π‘Ž1 = 6. βˆ‘ π‘Žπ‘›+2π‘₯𝑛+2βˆžπ‘›=0 βˆ’ 3βˆ‘ π‘Žπ‘›+1π‘₯𝑛+2∞

𝑛=0 + 2βˆ‘ π‘Žπ‘›π‘₯𝑛+2βˆžπ‘›=0 = 0.

βˆ‘ π‘Žπ‘›+2π‘₯𝑛+2βˆžπ‘›=0 βˆ’ 3π‘₯βˆ‘ π‘Žπ‘›+1π‘₯𝑛+1∞

𝑛=0 + 2π‘₯2 βˆ‘ π‘Žπ‘›π‘₯π‘›βˆžπ‘›=0 = 0.

Let 𝑓 π‘₯ = βˆ‘ π‘Žπ‘›π‘₯π‘›βˆžπ‘›=0 . Then

𝑓 π‘₯ βˆ’ 1 βˆ’ 6π‘₯ βˆ’ 3π‘₯ 𝑓 π‘₯ βˆ’ 1 + 2π‘₯2𝑓 π‘₯ = 0, and 𝑓 π‘₯ 1 + 3π‘₯ + 2π‘₯2 = 1 + 6π‘₯ βˆ’ 3π‘₯ = 1 + 3π‘₯, Consequently, 𝑓 π‘₯ = 1+3π‘₯

1βˆ’2π‘₯ 1βˆ’π‘₯= 5

1βˆ’2π‘₯+ βˆ’4

1βˆ’π‘₯= 5βˆ‘ 2π‘₯ π‘›βˆž

𝑛=0 βˆ’ 4βˆ‘ π‘₯π‘›βˆžπ‘›=0 ,

and π‘Žπ‘› = 5 2𝑛 βˆ’ 4,𝑛 β‰₯ 0.

Ex 10.4: (1.d) β€’ π‘Žπ‘›+2 βˆ’ 2 π‘Žπ‘›+1 + π‘Žπ‘› = 2𝑛,𝑛 β‰₯ 0,π‘Ž0 = 1,π‘Ž1 = 2. βˆ‘ π‘Žπ‘›+2π‘₯𝑛+2βˆžπ‘›=0 βˆ’ 2βˆ‘ π‘Žπ‘›+1π‘₯𝑛+2∞

𝑛=0 + βˆ‘ π‘Žπ‘›π‘₯𝑛+2βˆžπ‘›=0 =

βˆ‘ 2𝑛π‘₯𝑛+2βˆžπ‘›=0 .

Let 𝑓 π‘₯ = βˆ‘ π‘Žπ‘›π‘₯π‘›βˆžπ‘›=0 . Then

𝑓 π‘₯ βˆ’ π‘Ž0 βˆ’ π‘Ž1π‘₯ βˆ’ 2π‘₯ 𝑓 π‘₯ βˆ’ π‘Ž0 + π‘₯2𝑓 π‘₯ = π‘₯2 βˆ‘ 2π‘₯ π‘›βˆžπ‘›=0 .

𝑓 π‘₯ βˆ’ 1 βˆ’ 2π‘₯ βˆ’ 2π‘₯𝑓 π‘₯ + 2π‘₯ + π‘₯2𝑓 π‘₯ = π‘₯2

1βˆ’2π‘₯.

π‘₯2 βˆ’ 2π‘₯ + 1 𝑓 π‘₯ = 1 + π‘₯2

1βˆ’2π‘₯β‡’ 𝑓 π‘₯ =

11βˆ’π‘₯ 2 + π‘₯2

1βˆ’2π‘₯ 1βˆ’π‘₯ 2 = 1βˆ’2π‘₯+π‘₯2

1βˆ’π‘₯ 2 1βˆ’2π‘₯= 1

1βˆ’2π‘₯= 1 + 2π‘₯ +

2π‘₯ 2 + β‹―, so π‘Žπ‘› = 2𝑛,𝑛 β‰₯ 0.