SOLPS5 modelling of ELMing H-mode on TCV

12
Barbora Gulejová SPS Annual Meeting in Lausanne, 14/2/2006 1 of 12 Centre de Recherches en Physique des Plasmas SOLPS5 modelling of ELMing H-mode on TCV Barbora Gulejová, Richard Pitts, Marco Wischmeier, Roland Behn, Jan Horáček OUTLINE * * * * * * Edge plasma – SOL - terminology Why is understanding of ELM important? SOLPS 5 code package (B2 - EIRENE) Theoretical model of simulation Comparison of experimental data with simulati Strategy for next step: simulation of ELM its

description

SOLPS5 modelling of ELMing H-mode on TCV. Barbora Gulejov á, Richard Pitts, Marco Wischmeier, Roland Behn, Jan Hor áč ek OUTLINE. *. Edge plasma – SOL - terminology Why is understanding of ELM important? SOLPS 5 code package (B2 - EIRENE) Theoretical model of simulation - PowerPoint PPT Presentation

Transcript of SOLPS5 modelling of ELMing H-mode on TCV

Barbora Gulejová SPS Annual Meeting in Lausanne, 14/2/2006 1 of 12

Centre de Recherches en Physique des Plasmas

SOLPS5 modelling of ELMing H-mode on TCV

Barbora Gulejová,

Richard Pitts, Marco Wischmeier, Roland Behn, Jan Horáček

OUTLINE

******

Edge plasma – SOL - terminology Why is understanding of ELM important? SOLPS 5 code package (B2 - EIRENE) Theoretical model of simulation Comparison of experimental data with simulation Strategy for next step: simulation of ELM itself

Barbora Gulejová SPS Annual Meeting in Lausanne, 14/2/2006 2 of 12

Centre de Recherches en Physique des Plasmas

Edge plasma - Edge plasma - terminologyterminology

Core plasma

Divertor targets

Private flux region

Separatrix

•Scrape-off layer (SOL)–Cool plasma on open field lines–SOL width ~1 cm ( B)–Length usually 10’s m (|| B)

Poloidal cross-section

Outer•ITER will be a divertor tokamak

•Divertor–Plasma guided along field

lines to targets remote from core plasma: low T and high n

Inner

Last closedflux surface

LFSHFS

Barbora Gulejová SPS Annual Meeting in Lausanne, 14/2/2006 3 of 12

Centre de Recherches en Physique des Plasmas

Edge localised mode (ELM)Edge localised mode (ELM)H-mode Edge MHD instabilities Periodic bursts of particles and energy into the SOL

- leaves edge pedestal region in the form of a helical filamentary structure localised in the outboard midplane region of the poloidal cross-section

LFSHFS

divertor targets and main walls erosion first wall power deposition

ELMing H-mode=baseline ITER scenario

Energy stored in ELMs: TCV 200 J JET 200kJ ITER 8-14 MJ => unacceptable =>

W~200J

Small ELMs on TCV – same phenomena !=> Used to study SOL transport

Barbora Gulejová SPS Annual Meeting in Lausanne, 14/2/2006 4 of 12

Centre de Recherches en Physique des Plasmas

SScrape-crape-OOff ff LLayer ayer PPlasma lasma SSimulationimulation Suite of codes to simulate transport in edge plasma of tokamaks

B2B2 - solves 2D multi-species fluid equations on a grid given from magnetic equilibrium

EIRENE EIRENE - kinetic transport code for neutrals based on

Monte - Carlo algorithm

SOLPS 5SOLPS 5 – coupled EIRENE + B2.5

Main inputs: magnetic equilibrium Psol = Pheat – Prad

core upstream separatrix density ne

Free parameters: cross-field transport coefficients (D┴, ┴, v┴)

B2 plasma background =>recycling fluxes

EIRENE

Sources and sinks due to neutrals and molecules

measured

systematicallyadjusted

Mesh

72 grid cells poloidallyalong separatrix

24 cells radially

Barbora Gulejová SPS Annual Meeting in Lausanne, 14/2/2006 5 of 12

Centre de Recherches en Physique des Plasmas

Elming H-mode at TCVElming H-mode at TCV

[kA

]

ne

Ip

Vl

Wheat[kW

][V

][a

u][1

018

m3 ]

# 26730

Type III ELMs

# 26730ELMs - too rapid (frequency ~ 200 Hz) for comparison on an individual ELM basis => Many similar events are coherently averaged inside the interval with reasonably periodic elms

Pre-ELM phase = steady state

ELM = particles and heat are thrown into SOL ( elevated cross-field transport coefficients)

Post-ELM phase

tpre ~ 2 ms

telm ~ 100 μs

tpost ~ 1 ms

Barbora Gulejová SPS Annual Meeting in Lausanne, 14/2/2006 6 of 12

Centre de Recherches en Physique des Plasmas

upstreamEdge Thomson scatteringEdge Thomson scattering

ne and Te upstream profiles

Diagnostic profiles used to constrain the codeDiagnostic profiles used to constrain the code

laser beam

Strategy:Match these experimental

profiles with data from SOLPS simulation runs by changing cross-field

transport parameters D┴,Χ┴, v┴

downstream

LangmuirLangmuir probesprobesjsat target profiles

jsat [A.m-2]

R-Rsep [m]

outer target

jsat

R-Rsep [m]

inner target

RCP – reciprocating probeRCP – reciprocating probe

ne

pedestal

Te

R-Rsep [m]

pedestal

R-Rsep [m]

Barbora Gulejová SPS Annual Meeting in Lausanne, 14/2/2006 7 of 12

Centre de Recherches en Physique des Plasmas

Theory – steady state simulationTheory – steady state simulationCross-field transport coefficientsCross-field transport coefficients

nrDeff ).(

nvdr

dnD

))(5( nvdr

dnDT

dr

dTnq

Cross-field radial transport in the main SOL - complex phenomena

Ansatz:( D┴, ┴, v┴) - variationradially – transport barrier (TB)poloidally – no TB in div.legs

outer div.leg

SOL

div.legs

sep

D┴

SOL

div.legs

sep

v┴ SOL

div.legs

sep

main SOL

diffusion (D┴) + convection (v┴)

SOL radial heat fluxheat flux:

SOL radial particle fluxparticle flux:

main SOL

Inner div.leg

x

x

Pure diffusion: v┴=0 everywhere

More appropriate: Convection

simulations with D┴= D┴class in progress

Barbora Gulejová SPS Annual Meeting in Lausanne, 14/2/2006 8 of 12

Centre de Recherches en Physique des Plasmas

Comparison of experimental data with simulationComparison of experimental data with simulationPurely Purely diffusivediffusive approach approach

1.step: Only radial variation of D┴, ┴

upstream

targets

Excellent agreement !!!Excellent agreement !!!

Code overestimates data

=>

Poloidal variation necessary

=>

Remove transport barrier from divertor legs

=>

=>

outer

Jsat [A.m-2]

LPs

SOLPS

R-Rsep [m]

innerjsat

R-Rsep

LPs

SOLPS

D┴,Χ┴ = constant in div. legs

ne

D┴

TS

RCP

SOLPS

pedestalwall

Te

Χ┴

TSRCP

SOLPS

R-Rsep

R-Rsep

Barbora Gulejová SPS Annual Meeting in Lausanne, 14/2/2006 9 of 12

Centre de Recherches en Physique des Plasmas

Removing transport barrier from divertor legsRemoving transport barrier from divertor legs

It appears that a description of cross-field transport in divertor as radially constant is more appropriate

D = = const. - same value in both divertor legs !

Outer target – better agreement obtained!

LP

Inner target

R-Rsep [mm]

LP

jsat [A.m-2]

R-Rsep [mm]

jsat [A.m-2]

Transport barrier

0.5

1

2

3

56

Transport barrier

0.5

1

2

3

5

6

outer target

inner target

LP

6 m2.s-1 in div.legs1m2.s-1 in SOL ! NO DRIFTS !

Barbora Gulejová SPS Annual Meeting in Lausanne, 14/2/2006 10 of 12

Centre de Recherches en Physique des Plasmas

Other issues to considerOther issues to consider

1.) Inner and outer divertor leg assymetry – inner is much shorter2.) Private flux region (PFR) rescaling in div.legs – different processes in PFR region and SOL region of divertor legs3.) Ballooning – (Btot/Bloc )α => poloidal variation

Inner div.leg

outer div.leg

sep

PFR

SOL

**

*Sensitivity study for the steady state Sensitivity study for the steady state simulationssimulations

=>

Very small effect

LP

α =0.5

α =1

outer target

R-Rsep [mm]

No ballooning

LP

Inner target

R-Rsep

α =0.5

α =1

inner target

No ballooning

Barbora Gulejová SPS Annual Meeting in Lausanne, 14/2/2006 11 of 12

Centre de Recherches en Physique des Plasmas

Next step : Next step : ELMELM

Instantaneous increase of the cross-field transport parameters! Strong poloidal variation - localized on outboard midplane of TCV

Requires time-dependent iteration in code - much bigger problem !

Simulations in progress…

Barbora Gulejová SPS Annual Meeting in Lausanne, 14/2/2006 12 of 12

Centre de Recherches en Physique des Plasmas

*

*

*

*

*

First attempt to simulate Scrape-Off layer in H-mode on TCVwith aim to simulate Type III ELMs

Simulations conducted using coupled fluid-Monte Carlo (B2-EIRENE) SOLPS5 code constrained by upstream profiles of ne and Te and at the targets profiles of jsat

Using exp. data as a guide to systematic adjustments of perpendicular particle and heat transport coefficients

Code experiment agreement ONLY possible if transport coefficients are varied radially AND polloidally

Excellent match obtained for inter-ELM phase good basis for simulation of ELM itself (in progress)

ConclusionsConclusions