SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical...

420
SOLMINEQ.88: A COMPUTER PROGRAM FOR GEOCHEMICAL MODELING OF WATER-ROCK INTERACTIONS * ** By Yousif K. Kharaka, William D. Gunter, Pradeep K. Aggarwal, k Ernest H. Perkins , and Jeffrey D. DeBraal U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 88-4227 Alberta Research Council Oil Sands and Hydrocarbon Recovery Department Edmonton, Alberta, Canada Battelle Memorial Institute Columbus, Ohio Menlo Park, California 1988

Transcript of SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical...

Page 1: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

SOLMINEQ.88: A COMPUTER PROGRAM FOR GEOCHEMICAL

MODELING OF WATER-ROCK INTERACTIONS

* ** By Yousif K. Kharaka, William D. Gunter, Pradeep K. Aggarwal,

kErnest H. Perkins , and Jeffrey D. DeBraal

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 88-4227

Alberta Research Council

Oil Sands and Hydrocarbon Recovery Department

Edmonton, Alberta, Canada

Battelle Memorial Institute

Columbus, Ohio

Menlo Park, California

1988

Page 2: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

DEPARTMENT OF THE INTERIOR

DONALD PAUL HODEL, Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information

write to:

Copies of this report can

be purchased from:

U.S. Geological Survey

345 Middlefield Road MS #427

Menlo Park, CA 94025

U.S. Geological Survey

Books and Open-File Reports

Box 25425

Bldg. 810 Federal Center

Denver, CO 80225

Page 3: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PREFACE

This report describes the theoretical aspects, the modeling capabilities

and the limitations of the geochemical computer code SOLMINEQ.88. This code

is the latest version of SOLMNEQ (Kharaka and Barnes, 1973), SOLMNEQF

(Aggarwal and others, 1986), and several unpublished versions of this software

package. The computer program can be used to model speciation, saturation,

dissolution/precipitation, ion exchange/adsorption, mixing, boiling, and gas

partitioning between water, oil, and gas phases. The program is comprehensive

but it is especially useful for modeling water-rock interactions in

sedimentary basins where high temperatures, pressures, salinities, and

dissolved organic species prevail.

The user is requested to kindly notify the originating office of any

errors found in this report or in the computer program. Updates may

occasionally be made to both the report and the program. Users who wish to

receive a copy of the computer program and report may send a request to the

following addresses:

Y. K. Kharaka

U.S. Geological Survey

345 Middlefield Road, Mail Stop 427

Menlo Park, CA 94025

Telephone: (415) 329-4535

W. D. Gunter

Alberta Research Council

Oil Sands and Hydrocarbon Recovery Department

P.O. Box 8330, Postal Station F

1021 Hayter Road

Edmonton, Alberta, Canada T6H 5X2

(Alberta Research Council Open File Report #1988-14)

The use of brand or product names in this report is for identification

purposes only and does not imply endorsement by the U.S. Geological Survey.

Page 4: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

CONTENTSPage

Abstract .................................................... 7Introduction ................................................ 8

Acknowledgment .......................................... 9Method of computation ....................................... 14

Oxidation-reduction reactions ........................... 26Speciation at subsurface conditions ..................... 27Iteration techniques .................................... 29Saturation states of minerals ........................... 31

Activity and activity coefficients .......................... 44Activity coefficients for neutral species ............... 45Activity coefficients for charged species ............... 46Pitzer equations ........................................ 49

Equilibrium constants ....................................... 54Equilibrium constants at desired temperature ............ 57Equilibrium constants at desired pressure ............... 58

Correction of the solubility constants for pressure . 58Correction of dissociation constants for pressure ... 61

Modeling options ............................................ 63Calculations with a constant mass ...................... 63

Carbon option ....................................... 63High-temperature carbon option ...................... 65pH option ........................................... 65Additional anlons option ............................ 66Additional cation option ............................ 70Additional minerals option .......................... 70

Calculations involving mass transfer .................... 71Addition of lost gases .............................. 71Boiling option ...................................... 77Mixing of two solutions option ...................... 79Dissolution/precipitation option .................... 79Ion exchange and adsorption option .................. 82

Limitations of geochemical modeling ......................... 86Physical parameters ..................................... 86Chemical analysis ....................................... 89Equilibrium constants ................................... 92Limitations of modeling options ......... t ............... 93

Input for SOLMINEQ.88 ....................................... 96Output from SOLMINEQ.88 ..................................... 108References .................................................. 110

Page 5: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

APPENDIXESPage

Appendix I. Data base ..................................... 121Table IA. Physical parameters of aqueous species. ... 122Table IB. Equilibrium constants of dissociation, and

redox reactions ....................... 125Table 1C. Equilibrium constants of dissolution

reactions at 0° to 350 °C.............. 135Table ID. Parameters for calculating activity

coefficients .......................... 142Table IE. Fit parameters for calculating the

equilibrium constants ................. 143Table IF. Data for calculating the effect of pressure 147 Table IG. Pitzer coefficients ....................... 148Table IH. Table of congruent dissolution of minerals 153

Appendix II. An abbreviated version of the interactive inputroutine ..................................... 157

Appendix III. Output examples ............................... 164Appendix IV. Listing of SOLMINEQ.88 ........................ 209

ILLUSTRATIONSPage

Figure 1. Pitzer and ion pair activity coefficients .... 502. Variation of solubility with pressure. ........ 603. Flow chart for SOLMINEQ.88 .................... 644. Distribution of organic species in oil field

waters ...................................... 675. Flow chart for calculations with addition of

gases ....................................... 726. Solubility constants of selected gases ........ 747. Average concentrations of aliphatic acid anions 90

TABLESPage

Table 1. Glossary of symbols used in text. ............. 102. Dissociation reactions for aqueous complexes .. 163. Congruent dissolution of minerals ............. 32

n4. Values of the Debye-Huckel coefficients ...... 485. Index numbers of user-defined anions and

cations ..................................... 696. List of aqueous species components ............ 807. Chemical geothermometers in SOLMINEQ.88 ....... 888. Arrangement of data for input to SOLMINEQ.88. . 105

Page 6: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

CONVERSION FACTORS

Metric (International System) units £re used in this report. For

those readers who prefer to use inch-pound units, conversion factors for the

terms used in this report are listed below:

Multily metric unit by To obtain inch-pound unit

micrometer

centimeter

meter (m)

2 square centimeter (cm )

3 cubic centimeter (cm )

3 cubic meter (m )

liter (1)

microgram (/jg)

miligram (mg)

gram (g)

kilogram (kg)

miligram/liter (mg/1)

atmosphere (atm)

bar

kilopascal (kPa)

degree Celcius (°C)

degree Kelvin (K) (K

calorie (cal)

kilocalorie (kcal)

0.03937

0.3937

3.281

0.1550

0.06102

35.31

0.03531

mil

inch

foot (ft)

square inch

cubic inch

cubic feet

cubic feet

(in2

(in3 )

(ft3)

(ft3 )

1.543 x 10

1.543 x 10

2.205 x 10

2.205

-5

-2

-3

6.243 x 10" J

14.70

14.50

0.1450

1.8 °C + 32

- 273.15)1.8 + 32

3.968 x 10" 3

3.968

grain (gr)

grain (gr)

pound (Ib)

pound (Ib)

pound/cubic foot (lb/ft3 )

pounds per square inch (psi)

pounds per square inch (psi)

pounds per square inch (psi)

degree Fahrenheit (°F)

degree Fahrenheit (°F)

British thermal unit (Btu)

British thermal unit (Btu)

Page 7: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

SOLMINEQ.88: A COMPUTER PROGRAM FOR GEOCHEMICAL MODELINGOF WATER-ROCK INTERACTIONS

by ft & &

Yousif K. Kharaka, William D. Gunter , Pradeep K. Aggarwal , fc

Ernest H. Perkins , and Jeffrey D. DeBraal

ABSTRACT

Geochemical modeling based on equilibrium and irreversible thermodynamics has, in the last 20 years, become a well recognized tool for understanding the processes of water-rock interactions and predicting their consequences. SOLMINEQ.88 is the latest version of the 1973-computer program code SOLMNEQ and its various updated versions. This program is general and comprehensive, but is particularly useful for modeling geochemical interactions in sedimentary basins and petroleum reservoirs where petroleum, aqueous organic species, and subsurface pressure play an important role.

SOLMINEQ.88 is written in FORTRAN-77 and has an improved algorithm over that in previous versions for faster execution. This version has a revised thermodynamic database, more inorganic (260) and organic (80) aqueous species and minerals (220), computes the activity coefficients in brines using Pitzer equations, and computes pH and mineral solubilities at subsurface temperatures (0° to 350° C) and pressures (1 to 1,000 bars). New modeling options in SOLMINEQ.88 can be used to study the effects of boiling, mixing of solutions and partitioning of gases between water, oil and gas phases. SOLMINEQ.88 has several mass transfer options that can be used to predict the effects of ion exchange, adsorption/desorption, and dissolution/precipitation of solid phases. A user-friendly interactive code SOLINPUT is available for use to generate and update the input file for SOLMINEQ.88.

The numerous assumptions and limitations of geochemical models like SOLMINEQ.88 are described in detail because they indicate the range of conditions where the models can be used successfully. The limitations may be related to incomplete and/or unreliable chemical and mineral data as well as to uncertainties in equilibrium constants for aqueous species and minerals. The modeling capabilities and the limitations of the various options in this code are described with output from selected examples.

Alberta Research CouncilOil Sands and Hydrocarbon Recovery DepartmentEdmonton, Alberta, Canada

Battelle Memorial Institute Columbus, Ohio

Page 8: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

INTRODUCTION

Water-rock interactions in natural systems comprise a combination of

several physical and chemical processes, including (a) mineral dissolution and

precipitation; (b) ion exchange and adsorption/desorption; (c) mixing of

fluids; (d) gas separation by pressure-drawdown or boiling; and (e)

organic/inorganic interactions. In the last 20 years, geochemical modeling

based on equilibrium and irreversible thermodynamics has become a well

recognized tool for understanding the processes of water-rock interaction and

predicting their consequences. Numerous computer program codes are presently

available for geochemical modeling of water-r0ck interactions (Nordstrom and

others, 1979; Wolery, 1983; EPRI, 1984; Nordstrom andMunoz, 1985). The list

of commonly used programs is large and expanding; it includes the following

software packages:

1. PATHI and its modified versions (Helgeson and others, 1970;

Perkins, 1980).

2. SOLMNEQ and its modified versions (Kharaka and Barnes, 1973;

Aggarwal and others, 1986).

3. WATEQ and its modified versions (Truesdell and Jones, 1974;

Plummer and others, 1984; Ball and others, 1987).

4. MINEQL (Westall and others, 1976).

5. EQ3/EQ6 (Wolery, 1979; 1983; 1984).

6. PHREEQE (Parkhurst and others, 1980).

7. GEOCHEM (Sposito and Mattigod, 1980).

8. SOLVEQ (Reed, 1982).

9. MINTEQ (Felmy and others, 1984).

10. DYNAMIX (Narasimhan and others, 1986)

The computer program code SOLMNEQ (Kharaka and Barnes, 1973) was

originally written in PL/1 for the IBM 360 computers. The original program

computed the equilibrium distribution of 162 inorganic aqueous species

generally present in natural waters over the temperature range of 0° to

350 °C from the reported physical and chemical properties of the water and an

internally consistent set of thermodynamic data. The program also computed

the saturation states of 158 minerals commonly encountered in sedimentary

rocks. SOLMNEQ has undergone continuous updating, additions and

modifications. The additions and modifications were carried out to develop a

general comprehensive computer program for geochemical modeling of water-rock

interactions. This program, however, is particularly useful for modeling

Page 9: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

interactions in sedimentary basins and in thermally stimulated oil reservoirs

where petroleum and aqueous organic species play an important role.

The present version, renamed SOLMINEQ.88 (SOLution MINeral Equilibrium.

198!8.) , is written in FORTRAN-77 and has an improved algorithm for faster

execution. This version has a revised thermodynamic data base, more inorganic

(260) and organic (80) aqueous species and minerals (220), and computes pH and

mineral solubilities at subsurface temperatures and pressures. New modeling

options have been added to SOLMINEQ.88 that can be used to study the effects

of boiling, mixing of solutions, and partitioning of gases between water, oil

and gas phases. SOLMINEQ.88 has mass-transfer capabilities that can be used

to study the effects of ion exchange, adsorption/desorption, and

dissolution/precipitation of solid phases.

This report documents the modeling capabilities of the computer code

SOLMINEQ.88. It is intended as a user's guide, describing the assumptions

underlying the various options and summarizing the mathematical and numerical

techniques used. The thermochemical and other data used in the computations

are tabulated. The fixed and optional data used to create the input file are

described in detail. An interactive input program, SOLINPUT, is available to

create or modify the input file. Output from several examples has been

included to illustrate various applications of this code, and for comparison

by users on other computer systems to verify that the program is functioning

correctly.

Acknowledgments

This code has been greatly improved because of suggestions and

corrections from many users including Bob Mariner, Randy Bassett, Jim Bishoff,

Sheldon Sommer, Indu Mishri, Brian Hitchon, Gordon Bird, and several

scientists at Alberta Research Council, and many students at the U.S.

Geological Training Center in Denver, Colorado.

Dan Specht, Bob Hull, Ming Ko, and Pat Dorherty have made important

contributions to the code. We are grateful for thorough reviews of this

document by our colleagues Bob Mariner, Charly Alpers, Rich Wanty and Art

White. Special thanks are due Jackie Hamilton for the many typings of this

bulky report.

Page 10: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 1. Glossary of Symbols Used in Text

a Sum of the Goldschmidt radii

a Stands for anion when used ^s a subscript

a,b,c,W,0 Temperature-independent con$tants in eqn. 48

a. Activity of species i

a-,a2 ,a., ,a, ,6,w,Q Constants used in eqn. 55

a. Activity of species i at equilibrium

a. Ion size parameter of species i

A,B,C Fitted pressure constants see appendix 1

A,B,C Meyer-Kelley heat capacity temperature fit constants.

A Chemical affinity

A_ Total area of the exchanging surface per kg of water

ii A Debye-Huckel limiting law slope.

A^ Adjusted Debye-Huckel constant used in Pitzer eqn.

AP Ion activity productH

B Extended Debye-Huckel limiting law constant.

, £ £ B ,B ,B Activity coefficient deviation functions subscripts for

univalent and multivalent species.

^MX'^'MX Cation-anion interaction coefficients in pitzer eqns.

c Represents a cation when used as a subscript.

C.. . ,C 2 . ,w. , 0. Empirical constants in eqn. 47

C Isobaric heat capacity

AC Standard state isobaric heat capacity of reaction p,r J

C.,,. Cation-anion interaction coefficient in pitzer eqns.

C^ Cation-anion interaction parameter in pitzer eqns.

-19 e Electron charge, 1.602 x 10 coulomb

E Equivalent fraction of surface sites occupied by a specific

surface complex

E Standard state potential

10

Page 11: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Eh Oxidation potential referred to hydrogen half cell

F F 8. . (I) , 0'.. (I) Electrostatic effect of unsymmetrical unmixing used inJ J

Pitzer equations

4 -1 F Faraday constant, 9.648 x 10 coulomb mol

n F General Debye-Huckel interaction term used in Pitzer eqns.

g(x),g'(x) Fitting functions used in Pitzer equations

AG° Standard state Gibbs free energy of reaction

AG,.-- Gibbs free energy difference between the actual and

equilibrium states of a mineral

AH^ Standard state enthalpy of formation

AH° Standard state enthalpy of reaction

I Ionic strength

k Henry's Law coefficient in pure water

k Henry's Law coefficient in a solution of molality m

K. Equilibrium constant of species i

Jl Refers to a liquid when used as a subscript or superscript

L Number of ligands in eqns. 51 & 52

m. Molality of species i

m. Total analytical molality of component ii, t

M Represents positively charged species as a subscript

M. Total moles of substance ii, t

23 -1 NA Avogadro's number, 6.022 x 10 mol

NS Number of sites per unit area of the mineral surface

N ,N Total number of the subscripted species

n Number of electrons involved in redox reactions

n. . Stoichiometric coefficient of component i in species j 1 »J

p Polarizability in eqn. 51

P Pressure in bars

Q Reaction quotient

R Gas constant, 1.987 cal K mol"

11

Page 12: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

AS0 Standard state entropy of reaction

SI Saturation index

t Temperature in degrees C

T Temperature in degrees K

T Reference temperature in degrees K

v Refers to a vapor as a subscript or superscript

V. Partial molal volume of aqueous species i

_vV. Specific volume of gas i

AV Standard state volume of reaction

W Weight of a substance

x Derivative of the variation of e

X Represents negatively charged ions when used as a subscript

Y. Tolerance factor for subscripted ion

z. Charge on species i

Z Pitzer eqn. charge sum

Z Compressibility factor

a Charge fraction on surface sites

a..,. Fitting parameter used in Pitzer equations

ft Coefficient of isothermal compressibility of water

^MX '^MX '^MX Pitzer cation-anion interaction parameters

7. Activity coefficient of species i

7. p Activity coefficient of species i from Pitzer eqns. 11 *

e Dielectric constant of water

-19 -1 e Q Permittivity of the vacuum, 8.854 x 10 farad m

&.. Pitzer anion-anion/cation-cation interaction parameter

-24 -1 K Boltzman constant, 3.298 x 10 cal K

v, Number of moles of ions in component i

3 p Density (g/cm )

a ,0, Charge density at mineral surface (o) or diffuse layer (d)

12

Page 13: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

<f> Osmotic coefficient of the subscripted electrolyte

' $XX ' $MM ' $XX Pitzer cation- cation/anion-anion interaction coefficients

Fugacity coefficient

Surface potential

Pitzer cation-cation-anion/anion-anion-cation interaction

parameters

13

Page 14: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

METHOD OF COMPUTATION

The principal computations carried out by SOD1INEQ.88 are aqueous

speciation and saturation states of minerals. This program computes the

equilibrium distribution of more than 340 inorganic and organic aqueous

species of major, minor and trace elements generally present in natural

waters. The distribution of 54 organic species of acetate, oxalate, succinate

and two user- defined (additional) organic anions has been included because

organic species are important components of natural waters , especially those

present in sedimentary basins (Carothers and Kharaka, 1978; Kharaka and

others, 1986; MacGowan and Surdam, 1987; and many others). Although the total

number of possible organic species is extremel^ large, the number of important

anions in any given natural system in addition to acetate, oxalate and

succinate is generally small (Kharaka and others, 1986; MacGowan and Surdam,

1987) . Consequently, two additional user- defined organic anions together with

their complexes with H and 12 other cations usually are sufficient for

modeling purposes. A user-defined cation together, with 13 complexes with

anions, also was added to make the code of more general application.

The distribution of aqueous species for a given composition of water at

specified pH and temperature (or temperatures) is computed using the same

approach as in the original code (Kharaka and Barnes, 1973) by solving a set

of mass -act ion, oxidation- reduction and mass -balance equations based on the

ion-association aqueous model (Garrels and Christ, 1965; Helgeson, 1967). In

this model, the dissociation reaction for each of the aqueous complexes

(Table 2) has a corresponding mass-action equation. For example, the

dissociation reactions for CaHCO, and CaCO? are

CaHCO* 2 Ca** + HCO~ , (1)

and CaCO° ^ Ca++ + C0~~ , (2)

for which the respective mass -action equations are:

mCaHCO+

14

Page 15: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

mC03

KCaCO°3 mCaCO° ' 7CaCO°

where m.and 7. are, respectively, the molality and activity coefficient of the

subscripted species and K is the dissociation constant of the subscripted

aqueous complex.

The mass -balance equations take the form:

j m, - S n. m. (3)

J- » *- -^ 1 > J J

where m. , n, . and m. are, respectively, the analytical (or total) molality 1 1 1 I , j J

of the component i, the stoichiometric coefficient of component i in species

j , and the computed molality of species j . For a system of i components and j

species, i mass-balance and j-i mass-action equations can be written. With

the additional constraints of specified pH and temperature, an iterative

technique (see below) can be used to solve, simultaneously, the system of

equations for the concentration of all species (Smith and Missin, 1982) .

For aqueous species of Ca, for example, the mass -balance equation is

mCa,t " "Ca^ + mCaHCO+ + mCaCO° + ' ' ' ' (4)

The mass -action and mass -balance equations are combined and rearranged after

the activity coefficients have been computed (see below) to give the value of

m_ ++ from the following:

mCa,t(5)rCan

m__ - - . *Y. ._. C00 'CO.

J J 3where fl +

KCaCO° ' 7CaCO° jo 33

m u/-;o+ an<^ mr; CQ° are then computed from equations (1) and (2) , 3 3

respectively, after substituting the computed m_ ++.

15

Page 16: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 2. -- Dissociation reactions for aqueous complexes and sources of thermochemical data (see references at end of Table 3)

ID # and Name Reaction

1 HCO~0

2 TT f\ t*f\ \J

o3 H.SiO, 4 4/ o ++ 4 Cu5Fe+3

6 Kg"""

-, M +3 7 Mn

8 H2AsO~

9 A1F~~

0 1 f) IT o J.V tin D

11 Air"1"1"

12 A1F2o

13 A1F3

14 A1F4

15 AlCOH)*4"

16 Al(OH)^

17 A1(OH) 4

18 A1(S04) +

19 Al(S04 ) 2

20 AgCl°

21 AgCl 2

22 AgCl'"

23 AgCl^3

24 Ag(S04 )~

25 CH-COOHJo

26 BaGO.j

27 Ba(HC03 ) +

HC03 ^ H+ + C03 "

o -> +H20 * H -f OH

0 -> -fH,SiO, <- H + H.SiO. 44 34

Cu"^1" + Fe"^ ^ Cu+ + Fe+3+3 ! ! - -> ++ 1 __ 9 4-

Fe + -H0 0 -f -HS <- Fe + -SO. + -H2 Z 8 8^8

2Hg++ + 2Fe++ ^ Hg^1" + 2Fe~f3

Iur +3^_-H- -^ ^++^^+3 Mn + Fe «- Mn + Fe

H2AsO" ^ H + HAsO"

Alp,' - Al+3 +5F-

0 -» +H2 S * H + HS

++ -» 4-3 A1F -^ Al + F

4- + 4-3A1F *- Al 4- 2F

0 . . Q

A1F3 -^ Al 4- 3F"

A1F" ^ Al"1" 4- 4F"

AlCOH)"1^" ^ Al+3 4- OH"

A1(OH) 2 ^ Al+3 + 20H", o

A1(OH) 4 <- Al"1"3 + 40H"

A1(SO, ) + ^ Al+3 4- SO?" 4 4

15A1(S04 ) 2 * Al+ + 2SO'"

AgCl° ^ Ag+ 4- 01"

AgCl2 ^ Ag+ + 2C1"

AgCl 3 " ^ Ag+ + 3C1"

AgCl43 ^ Ag+ + 4C1"

Ag(S04)~ t Ag+ -f S04 "

CH Q COOH ^ H+ + CH 0 COO"j J

o , ,BaCO. *- Ba + CO""

<J «3

Ba(HCO») + ^ Ba4^" + HCo! j J

References

la, 2a

3a

4a, 24a

5b

6b

2c

2b

2a

2a

7a, 64a

2a, 8a

2a, 8a

2a

2a

9b

lOe

7a

2a

2a

lla

lla

lla

lla

2a

12a

7f

7f

16

Page 17: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 2. -- Dissociation reactions for aqueous complexes and sources of thermochemical data -- (Continued)

ID # and Name

28 Ba(OH)+0

29 BaS04

30 CaC03

31 Ca(HC03 ) +

32 Ca(OH) +

33 CaP04

34 CaHPO. 4

35 CaH0 PO~J~ 2 4

36 CaSO. 4

37 CuCl

38 CuCl"

39 CuCl""

40 CuCl+

41 CuCl2

42 CuCl"

43 CuCl" 4

44 Cu(OH)+

45 CuS04

46 FeCl+

47 FeCl2

48 FeHP040

49 H3P04

50 Fe(OH) +

51 Fe(OH)°

52 FeOOH"

53 FeSO. 4

54 FeCl++

55 FeCl+

Ba(OH) +0

BaS04 <0

CaC03 <

Ca(HC03 ;

Ca(OH) +CaPO."

4

CaHPO. 4

CaH2P040

CaSO. 40

CuCl

CuCl 2

CuCl""

CuCl+

CuCl2

CuCl"

CuCl" 4

Cu(OH) +0

CuS04

FeCl+

FeCl°

FeHP040

Fe(OH) +

Fe(OH)°

FeOOH"0

FeS04 «

FeCl++

FeCl+

Reaction

2 Ba++ + OH"

- Ba++ + S04 "

- Ca++ + C0~~

) + ^ Ca++ + HCO~

? Ca++ + OH"

* ca- + PO;'£ Ca++ + HP04 "

£ Ca++ + H2P04

2 Ca++ + S04 "

^ Cu+ + Cl"

^ Cu+ + 2C1"

2 Cu+ + 3C1"

^ Cu++ + Cl"

^ Cu++ + 2C1"

^ Cu++ + 3C1"

2 Cu++ + 4C1"

2 Cu++ + OH"

^ Cu++ + S04 "

^ Fe++ + Cl"

2 Fe^ + 2C1"

2 Fe++ + HP04 "

2 3H+ + PO." 3 4

2 Fe++ + OH"

^ Fe++ + 20H"

+ 3H+ ? Fe++ + 2H20

- Fe++ + S04 "

Z Fe+3 + cr

^ Fe+3 + 2C1"

References

9b

7f

la, 7f

la, 13a

9b

7a

7a

7a

14a

15a, 16a

7a

7a

7a

7a

7a

7a

9a

2a

17a

17a

52c

24a

9b

9b

9b

2c

7a, 8a

7a, 8a

17

Page 18: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 2. -- Dissociation reactions for aqueous complexes and sources of thermochemical data -- (Continued)

ID # and Name Reaction

56 FeCl3

57 FeCl"

58 Fe(S04 ) +

59 Fe(S04 ) 2 i

60 Fe(OH)

61 Fe(OH) 2o

62 Fe(OH) 3

63 Fe(OH>;

64 B(OH) 4

65 AlFl 30

66 H«SiO.0

67 H~AsO~

68 HAsO."4

69 H0AsOj2 H

070 H3As04

071 HF

72 H2CO°

73 HPO.""4

74 H2PO;

75 HS"

76 HSO;o

77 HN03

78 HgCl+o

79 HgCl 2

80 HgCl"

81 HgCi;~o

82 HgS04

0FeC13

FeCi;

Fe(S04 ) +

Fe(S04)" I

Fe(OH)

Fe(OH) 2o

Fe(OH) 3

Fe(OH)'

B(OH)"

A1F" 3 1

H3Si04 "0

H3As03

HAsO ." "4u A O r\~H2 4

0H-AsO.3 4

0 _+HF <-

o _ H2C03 *

HPO ." " 14

H2PO; 1

HS" ^

HSO; "0 ->

HN03 -H-

HgCl+o

HgCl2

HgCl"

HgCl4 "o

HgS04

^ Fe+3 + 3C1". i O

^- Fe + 4C1"

^ Fe+3 + SO;

-> +3<- Fe + 2S04

+ +3*- Fe + OH

^ Fe+3 + 20H"_. ,0

^- Fe + 30H". , O

<- Fe + 40H

-> o<- B(OH) 3 + OH"

: Al+3 + 6F"

. U i U C n /"» *~ li f £l_DjLVJ.2 ^

+ +*" rl "^ ri ASU~

-> 4- 3<- H + AsO."

4

^ 2H+ + AsO." 34

-* + 3* 3H + AsO."4

,H + F"

+ fr ' i VJ(*C\

' H+ + PO." 34

: 2H+ + po;3H+ + S""

H+ + so;~,

H + N03

^ Hg"^ + Cl". . .

+- Hg + 2C1"

^ Hg"^1" + 3C1"

^ Hg++ + 4C1"

-> -i-i-<- Hg + so;~

References

7a, 8a

7a, 8a

2c

18d

9b

2e

lOf, 19f

19e

20a

2b

2a

24a

21c

24a

24a

7a

la, 7a

7a

24a

7a

7a

24a

7c

7c

7c

7c

18f, 22f

18

Page 19: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 2. -- Dissociation reactions for aqueous complexes and sources of thermochemical data -- (Continued)

ID # and Name

93 MgC03

94 MgHCO^

95 MgF+96 MgOH"1"

97

98 MgP04

99 MgHP04

100

101 MnCl"1"

102 MnCl2

103 MnCl"

104 MnCl." 4

105 MnHCOH,

106 MnSO. 4

107 MnCl^

108 MnHPOz

109 MnOH"1"

110 NaCl

Reaction

o83 HgS(H2S) 2

84 Hg(HS) 30

85 Hgo

86 KC1

87 KC03o

88 KHSO.4

89 KS04

90 KHP04o

91 LiOH

92 LiSO."40

0 + -» ++HgS(H2S) 2 + H <- Hg^

Hg(HS)^ ^ Kg"*"*" + 3HS"

0 +3 -* +2 Hg + 2Fe <- Hg + 2Fe

0 v iKC1 <- K + Cl"

KCO" ^ K+ + CO" 3 «J

0 -A, _i_KHSO. -H K + HSO."4 4KSO." ^ K+ + SO."

4 4

KHPO." ^ K+ + HPO." 4 40 V 1

LiOH <H Li + OH"

LiSO." ^ Li+ + SO."4 40 -» -H-

MgHCO,

MgF+

MgOH"1"

++Mg + HCO

Mg

OH

MgHP0

MnCl

MnCl

MnHCO

MnSO.

MnCl

MnHPO,

MnOH

NaCl

MnMn"1

Mn"1

Mn++ +

Mn+3

- Mn++

Mn"""

Na+ +

Cl"

2C1"

3C1"

+ 4C1"

+ HCO^

so;-h Cl"

+ HPO;OH

HS

Cl

References

23c

17c

23d

7a, lla

31f

15c

7a

7a

25c

25

26d

26d

7a

9a

15, 27b

7a

7a

7a

28d

28d

28d

28d

29d

25d

15a

52c

9c

30a

19

Page 20: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 2. -- Dissociation reactions for aqueous complexes and sources of thermochemical data -- (Continued)

ID # and Name Reaction References

111 NaCO"

112 NaHC030

113 Na2C030

114 Na2SO,

115 NaS04

116 NaHP04

117 HgOH+

118 NH.OH 4

119 NaHSo

120 NaF

121 PbCl+Q

122 PbCl2

123 PbCl"

124 PbCl" 4o

125 PbSO.4Q

126 Zn(CH3COO) 2

127 SrOH+o

128 SrC03

129 SrHC03

130 SrS04

131 ZnCl+

132 ZnCl2

133 ZnCl"

134 ZnCl"o

135 ZnSO.4

136 As043o

137 Hg(OH) 0

NaCO"

NaHC030

0Na2S04NaSO."

4

NaHP04

HgOH+

NH4OH

NaHS0

NaF

PbCl+0

PbCl2

PbCl"

4o

PbSO.4

Zn(CH3

SrOH+o

SrC03

SrHCO*

SrS04

ZnCl+

ZnCl2

ZnCl3

£*Tiw JL /(i

0ZnSO.4

As043

Hg(OH)

t Na+ + CO""

£ Na+ + HCO"

.2 2Na+ + C0~~

,4- 2Na + SO."

4

t Na+ + SO. " 4

t Na+ + HP04 "

2 Hg++ + OH"

2 NH4 + OH"

2 Na+ + HS",

*- Na + F"

2 Pb"1"*" + Cl"

,*- Pb + 2C1"

2 Pb"*"1" + 3C1"

2 Pb++ + 4C1". .

4- Pb + SO."4

Q ,,

COO) 2 *- Zn + 2CH3COO"

2 Sr++ + OH", ,

4- Sr + COl" j

+ Sr + HCOlj

^ Sr++ + S04 "

^ Zn++ + Cl"

2 Zn++ + 2C1"

^ Zn"*"*" + 3C1"

^ Zn++ + 4C1"

£ Zn + SO,"4

+ 4H+ + 2Fe++ it H2As03 + 2Fe+3 + H200 -* -H- 4- Hg^ + 20H

31c

32, 22f

32, 33f

54a

35c

9b

7a

46a

57c

36a

36a

36a

36a

15

18c, 38a

9b

40c

40c

7a

41a

41a

41a

41a

42d

7a

9b

20

Page 21: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 2. -- Dissociation reactions for aqueous complexes and sources of thermochemical data -- (Continued)

ID # and Name

138 Fe++ to Fe+3 11

139 Cu to Cu

140 Hg2+ to Hg++

141 Mn++ to Mn+3

142 U+4 to U02

143 U02 to U02+

144 V+3 to V0++

145 V0++ to V043

146 CaCl+o

147 CaCl2

148 UOH+3

149 U(OH) 2+

150 U(OH)*o

151 U(OH) 4

152 U(OH)~

153 UF+3

154 UF2+

155 UF*

156 UF°

157 UF~

158 UF"O

159 UC1+3

160 U(HP04 ) ++

161 U(HP04 ) 2

162 U(HP04 )~~

163 U(HP04 )' 4

164 U(S04 ) ++

Fe++ Z

_ + H.Cu «-

Hg~ *

Mn^ J+4

U on £.tl

U0; *

v+3 +

V0+3 + 2

CaCl+ ^o -*

CaCl2 «-

UOH+3 ^

U(OH) 2+

U(OH)^o

U(OH) 4

U(OH)^

UF+3 2

UF^+ Z

+ -¥

0 _>

UF4 -

UP' Z

UF6 - 2uci+3 2

U(HP04 ) +

U(HP04 ) 2

U(HP04 )'

Reaction

r- +3 _, Fe + eCu++ + e"

2Hg++ + 2e~

Mn+3 + e"

20 t UO^ + 4H+ + a'

U02+ + e"

H20 ^ V0++ + 2H+ + e"

HO ^ VO" 3 + 6H+ + e"

Ca++ + Cl", ,

Ca + 2C1"

U+4 + OH"

^ U+4 + 20H"

« + -» +4 + 3H *- U + 3H20, _^ , A

+ 4H *- U + 4H20+ -* +4

+ 5H ^- U + 5H20

U+4 + F-

U+4 + 2F-

U+4 + 3F-

U+4 + 4F"

U+4 + 5F-

U+4 + 6F-

u+4 + cr+ ^ U+4 + HPO."

4-» +4 *- U + 2HPO,

, , i+ 3H <- U + 3H2PO^

U(HPO.)." 4 + 4H+ 2 U+4 + 4H0 POj x 4'4 2 4

U(S04 ) ++ 2 u+4 + so;'

References

6b

5b

7c

7c

43b

43b

44b, 2b

44c, 45c

46a

79a

5b, 43b

5b, 43b

5b, 43b

5b, 43b

47a

5b, 43b

5b, 43b

5b, 43b

5b, 43b

5b, 43b

5b, 43b

5b, 43b

2b, 43b

2b, 43b

2b, 43b

2b, 43b

5b, 43b

21

Page 22: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 2. -- Dissociation reactions for aqueous complexes and sources of thermochemical data -- (Continued)

ID # and Name Reaction References

165 U(S04 ) 2

166 U,(OH)t?D ID

167 (U02 )(OH)+o

168 (U02 )(OH) 2

169 (U02 ) 2 (OH) 2+

170 (U02 ) 3 (OH)+

171 (U02 ) 3 (OH)'o

172 U02 (S04 )

173 U02 (S04 ) 2 ~

174 U02F+0

175 U02F2

176 U02F~

177 U02F^

178 U00C1+z

179 U02H3Si04o

180 U02 (HP04 )

181 U02 (HP04 ) 2 ~

182 U02 (H2P04 ) +

183 U02 (H2P04)°

184 U02 (H2P04 )~o

185 U02 (C03 )

186 U02 (C03 )~~

-4 187 U02 (C03 ) 3

188 HVO" 2

189 HjVO? 1

190 H0VO. 3 4

U(S04 ) 2 it U+4 + 2SO''

U,(OH)t? + 12H+ 2 6U+4 4 30H" + 12H00D ID Z

(uo2 )(OH) + 2 uo^*" + OH"o ,.

(U02 )(OH) 2 4- U02 + 20H"

(U02 ) 2 .(OH)J+ - 2UO^ + 20H"

(U02 ) 3 (OH)^ + 5H+ it SUO^*" + 5H20

(U02 ) 3 (OH)" ..+ 7H+ 4t 3UO^" + 7H200 _^ ii

uo2 (so4 ) 4. uo2 + so'"

U00 (SO,)I" *- U0« + 280? " 242 2 4

U02F+ it UO^*" + F"

o _^ ,,U°2F2 *" U°2 + 2F"

U02F3 it UO^ + 3F'

U02F^ it UO^ + 4F'

uo2ci+ it uo^*" + ci"+ + -» ++ °

0 4-1-

U02 (HP04 ) it U02 + HPO''

U02 (HP04 ) 2 ' it UO^ + 2HPO''

U02 (H2P04 ) + it UO^ + H^O;- + H+

U02 (H2P04 ) 2 it UO^*" + 2HP04 " + 2H+

U02 (H2P04 ) 3 ^ UO^*" + 3HP04 " + 3H+o ,,

uo (co.) 4. uor" + col"£ *J £» O

U02 (C03 ) 2 " it UO^*" + 2C03 "

U02 (C03 ) 34 it UO^*" -I- 3C03 "

HVO." it VO." 3 + H+ 4 4

H2V04 " V043 + 2H+

0 -> -3 + H,VO. *- VO/ + 3H 34 4

5b, 43b

5b, 48b

5b, 43b

5b, 43b

5b, 43b

5b, 43b

5b, 43b

43b

5c, 45c

5b, 43b

5b, 43b

5b, 43b

5b, 43b

5b, 43b

5c, 45c

2b, 43b

2b, 43b

2b, 43b

2b, 43b

2b, 43b

5b, 43b

5b, 43b

5b, 43b

43c

43c

43c

22

Page 23: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 2. -- Dissociation reactions for aqueous complexes and sources of thermochemical data -- (Continued)

ID # and Name Reaction References

191 H.VO* 4 4

192 NaHVO^0

193 V02F

194 V02F~

195 V(OH) ++

196 V(OH) 2

197 V(OH)°

198 VOOH+o

199 VOS04

200 VOC1+

201 VOF+0

202 VOF2

203 U02CH C00+o

204 U02 (CH3COO) 2

205 U0l"

206 U+4

207 V+3

, ,208 VO

OfiQ A i pu rr\r\£\)j r\iv»n« v*ww

210 BaCH3COO+

211 CaCH3COO+

212 CuCH3COO

213 FeCH3COO+

214 Fe(CH3COO) 20

215 KCH3COO

216 MgCH3COO+o

217 NaCH3COO

H.VO* it VO," 3 + 4H+ 44 4

*3 j_

NaHVO," it Na + VO," + H 4 4

0 -» +V02F 4- V02 + F"

V02F~ it V02 + 2F"

V(OH)++ it v+3 + OH"

V(OH) 2 it v+3 + 20H~

V(OH) 3 it v+3 + 30H"

VOOH+ it V0++ + OH"o . . -

VOSO, 4- VO + SO," 4 4VOC1+ it V0++ + Cl"VOF+ it VO*"1" + F"

0 . i _ iVOF2 4- VO + 2F~

U00 CH^COO it U00 + CH~COO~0 _i 11

U02 (CH3COO) 2 4- U02 + 2CH3COO"

+ i *3 _k i i i _ i_>-i TJ ^ ___ I I __ "1 rUOO + Fe 4- UOO + Fe

+4 +3 -» + -H- + U + Fe J + 2H20 4- U02 + Fe + 4H

i*3 i *3 _k i i j _ i i _ _T J __*j - - . ^ »»*. I 1 , ** A _ J\V + Fe + H20 4- VO + Fe + 2H

, , , o .0 . . ,

VO + Fe + 3H20 4- VO^ + Fe + 6H

A1CH3COO++ it Al+3 + CH3COO"

BaCH3COO+ it fia++ + CH3COO"

CaCH3COO+ it Ca"^ + CH3COO"

CuCH3COO it Cu+ + CH3COO"

FeCH3COO+ i^ Fe++ + CH3COO"

Fe(CH3COO) 2 i^ Fe++ + 2CH3COO"0 -» +

KCH3COO 4- K + CH3COO

MgCH«COO+ it Mg"^"1" + CH-COO" j j

0 -» +NaCH^COO 4- Na + CH0 COO 3 3

43c

2g

15g

15g

43g

43g

43g

43g

2g

15g

2g

2g

15c

71c

43b, 44b

43b, 44b

2b, 44b

44c, 45c

49

49c

50c

49c

51a

51a

52c, 53c

50c

52c, 53c

23

Page 24: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 2. -- Dissociation reactions for aqueous complexes and sources of thermochemical data -- (Continued)

ID # and Name Reaction References

218 PbCH3COO"fo

219 Pb(CH3COO) 2

220 Pb(CH3COO)~

221 SrCH0 COO+ji

222 ZnCH-COOJooo ur* n ~ ZZo nL.,~U,

099A urnZZM- flrtVjrtU.

+ 225 A1C204

226 Al(C204 )~0

O O "7 O ** /^ /"^ZZ/ fiacre)/

0228 CaC00,

0229 FeC204

230 FeC 0+

mvc n~ .^o s\ \j i2 4

0232 MgC0 0,

£. 4

0233 MnC 0 0 .2. 4

234 Mn(C204 )~~

235 Mn(C204 )I 4

+O O £ **-_ /i ^% rZ j b rinvj n U .2 4

237 NaC0 0,"2 40

238 PbCoO,f. 4

0o o Q Ci-r1 r> zjy t>r°2u40

240 ZnC?04

241 H(C4H404)~

242 H2 (C4H404)°

243 A1C4H404

PbCHqCOO+ "t Pb"^ + CH.COO"J J

Q j.

Pb(CH3COO) 2 *- Pb + 2CH3COO"

Pb(CH3COO) 3 ^ Pb"^ + 3CH3COO"

SrCH.COO* ~Z- Sr"^ + CH.COO"O «-*

1 . i I

ZnCH3COO *- Zn + CH3COO"

HC20' 1 H+ + C204 ~

H2 C204 ^ 2H+ -f C204 -

Aic2o^ ^ AI+S -f c2o4 -- -* +3

Al(C204 ) 2 <- Al + 2C2040 -» ++

BaC204 *- Ba + C204 "

o .+ c ++ Q--

o ,,FeC204 " Fe + C^'

FeC204 ^ Fe+3 + C^"

i//1 /\ ^ i/ L f* r\ f\\j^\j t *^ J^. >^ ^/%v/24 240 -> -H-

24 240 -> -H-

MnC2°4 *" Mn + C2°4

Mn(C00/ ) 0 * Mn + 2C00. L M- Z Z 4

Mn(C204 ) 34 ^ Mn"^ + 30^"

MnC00. *- Mn + C00,24 24

NaC2°4 *- Na + C 204o _^ i ,

Pbc2o4 *- Pb + C2o4 '0 -> ++

0 -» ++ZnC204 - Zn + C^'

HCC.H.O,)" ~t H+ + C.H.O" 444 444

H2 (C4H4°4 )0 " 2H+ + C4H4°4"

AlC.H.O"!" ^ Al+ + C.H.O" 444 444

18c,

18c,

18c,

50c

18c,

49c,

49c,

49c,

49c,

25c.

25c,

25c,

25c,

25c,

25c f-->^ ,

49c,

49c,

49c,

49c,

25c,

25f,

25c,

49c,

49c

49c

49f,

52c

52c

52c

38a

52c

52c

59c

59c

49c

49c

49c

49c

49c

49c

52c

52c

52c

52c

49c

49f

49c

52c

59f

24

Page 25: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 2. -- Dissociation reactions for aqueous complexes and sources of thermochemical data -- (Continued)

ID # and Name Reaction References

244 A1(C4H404 ) 20

245 BaC.H.O. 4440

246 CaC.H.O. 444

247 FeC.H.O. 444,

248 FeC.H.OT 444

249 KC.H.O."444

0250 MgC4H404

o251 MnC.H.O. 444

252 NaC.H.O." 444o

253 PbC.H.O. 444

254 SrC.H.O. 444o

255 ZnC.H.O. 444 I

256 FeF

257 SiF"6

258 Pb(HS) 2

259 Pb(HS)~o

260 PbC03

261 PbOH

262 Zn(HS) 2

263 Zn(HS)~

264 ZnHCO*

265 ZnOH+

266 Zn(OH) 2

267 Zn(HS)(OH)

A1(C4H404 )o

BaC.H.O. 444

CaC.H.O. 444

FeC.H.O. 444,

FeC. H. OT 444

KG H 0"444o

MeC H 04440

MnC.H.O. 444

NaC. H. 0 ." 444o

PbC. H. 0. 444

SrC.H.O. 444o

ZnC4H4°4

FeF++ 1

2 ? A1-> ++<- Ba

^ Ca++

^ Fe++

* IT +3<- Fe

-» +

-» -4-+<- Mg

_^ i _ i., TT<- Mn

^ Na+

? Pb++

t Sr++

, ," Zn

r. +3Fe +_ x

SiF" + 40H" ^ Ho

Pb(HS) 2 ^

Pb(HS)" 1o .

PbC03 <-.

PbOH <-

Zn(HS)° ^

Zn(HS)" ^

ZnHCO* ^

ZnOH+ ^

Zn(OH) 2 ^

Zn(HS)(OH)

: Pb^-f: Pb++ +

i iPb^ +

Pb++ +

: zn++ +

Zn++ +

Zn++ +

Zn++ +

: zn++ +

+ 2C.H.O" 444

+ C. H, 0." " 444

+ C . H, 0." " 444

+ C.H.O." 444

+ C . H. 0." " 444

+ C H 0"444

+ C. H. 0." "444

+ C . H. 0." " 444

+ C . H, 0." " 444

+ C.H.O." 444

+ C. H . 0." " 444

+ C, H. 0." " 444

F0

. SiO, + 6F4 42HS"

3HS"

CO""

OH"2HS'

3HS'

HCQ-

OH'

20H"

0 -> ++<- Zn + HS + OH

49f, 59f

25c, 49c

25c, 49c

25f, 49f

25c, 49c

25c, 49c

25c, 49c

25c, 49c

25c, 49c

25c, 49c

25c, 49c

25c, 49c

57c

58c

2a, 55a, 56a

2a, 55a

56a, 57a

52a, 56a

46a, 55a, 56a

46a, 55a

46a

46a

9a, 46a

46a

25

Page 26: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Oxidation-Reduction Reactions

Oxidation-reduction reactions are used in conjunction with mass-action

reactions and mass-balance expressions to compute the distribution of the

multivalent elements Fe, Cu, Hg, Mn, U, and V where the Eh of the solution is

known. The reaction for iron is

+3 . -Fe Fe

where e represents an electron. The concentrations of Fe and Fe are

related by

(3)

,o RTEh = E" + In

nr

mFe+3

mFe(6)

where Eh is the oxidation potential referred to the hydrogen half cell, E is

the standard state potential of the reaction, n is the number of electrons

involved in the reaction, F is the Faraday constant and R is the gas constant.

Values of E°at temperatures from 0° to 350 °C, are calculated from equation

AG°

E° = r , (7) nF

where the Gibbs standard state free energies for the oxidation-reduction

reactions (AG ) are tabulated in the data files of the program (see below).

SOLMINEQ.88 will compute the Eh of a water sample at the desired

temperature, if necessary, from the Emf of the Eh cell including the Calomel

reference electrode (EHMC) or from the Emf of the Eh cell calibrated using

Zobell's solution (EMFZSC). For a more detailed discussion of the theory of

Eh, its field measurement and reduction, see Barnes and Back (1964), Barnes

and Clarke (1969), Garrels and Christ (1965), and Thorstensen (1984).

Computations based on measured Eh have been kept to a minimum in

SOLMINEQ.88 because of uncertainties in the measurement and interpretation of

oxidation potentials (Barnes and Clarke, 1969; Wolery, 1983; Nordstrom and

Munoz, 1985). However, the program can compute the distribution of species

for elements with multiple redox states by assuming redox equilibrium between

the species HS and SO, . Kharaka and others (1980) have shown that oil field

waters are strongly reducing (Eh < -200 mV) and that the sulfide-sulfate redox

reaction

26

Page 27: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

HS" + 4H20 2 SO^" + 9H+ + 8e" , (4)

is probably the best of the possible redox couples for computing the Eh of

these waters. However, in other natural systems alternative redox couples may

be better indicators of the redox state of water (Freeze and Cherry, 1979;

Kharaka and others, 198Q; Nordstrom and Munoz, 1985).

The distribution of Fe species in SOLMINEQ.88 can be computed by

+3 ++ combining HS /SO, , and Fe /Fe couples (Reactions 3 and 4) to give the

8Fe+3 + 4H0 + HS" 2 SFe"*"1"-*- S0~ + 9H+ (5)

reaction

The distribution of species for the other multivalent elements can be computed

-1-3 ++by combining them with the Fe /Fe couple in reactions that eliminate the

electron. In the case of Cu, for example, the reaction is

Fe+3 + Cu"1" 2 Fe"1"1" + Cu"1"1" . (6)

It must be emphasized in this section that the above computations assume a

state of thermodynamic equilibrium that may not be applicable to many or all

of the redox couples. For a detailed discussion of the real meaning of Eh,

the related parameter pe and the numerous pitfalls and inconsistencies in

their measurements and interpretations, the reader is referred to Barnes and

Clarke (1969), Wolery (1983) and Thorstenson, (1984).

Speciation at Subsurface Conditions

The chemical compositions of subsurface water samples collected at the

land surface may not correspond to their in-situ compositions. Volatile gases

such as CO^, H«S, and NH- may exsolve due to a pressure decrease. Loss of

these gases may drastically change (by up to 3 pH units) the pH of the

remaining fluids. Changes in temperature and pressure alone will result in pH

changes due to variations in the stabilities of hydrogen-bearing aqueous

species. Changes in pH, temperature, and pressure may result in precipitation

of solid phases such as calcium carbonate and amorphous silica, among others

Increases in the Eh of waters containing Fe** usually result in the

precipitation of amorphous iron hydroxides and coprecipitation of trace

metals.

The in situ water chemistry may be calculated for water-dominated

geothermal and oil field systems where the amount and composition of gases

27

Page 28: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

lost prior to water sampling are known. The main problem in these

computations has been the estimation of an in situ pH which is critical to

these computations. Two different approaches have been used (see Modeling

Options) to compute the in-situ pH: (1) assuming equilibrium at subsurface

conditions with a mineral (Merino, 1979) known to be present in the aquifer

(calcite is generally selected), or (2) assuming mass balance for hydronium at

surface and subsurface conditions (Truesdell and Singer, 1974; Kharaka and

others, 1985).

SOLMINEQ.88 has options to compute the subsurface pH and resulting

speciation and saturation states using eitheif approach. The distribution of

species in the mass -balance approach is carried out at surface conditions

using the measured pH. The total hydrogen (HL. ._ ) and hydroxyl (IHQU t T )

are then computed at the surface conditions from the equations

m = m + m + 2m. + m +2m +m +...,(8) H.t.T-L H HCO~ H2C03 HS ~ H2 S CH3COOH

m =m + m +m + m + 2m +....(9) OH.t.T-L OH" Ca(OH) Mg(OH) NH4OH° Fe(OH)°

For samples where known quantities of CO^ , H^S, and NH~ are lost prior to

surface pH measurement, equations (8) and (9) are modified to include the lost

gases. CO-, H^S, and NH, are included as 2m., CQ , 2m.. , and nt . QH ,£. *J £* M*

respectively, in the computed value of HL. _, and m _ (see Modelingn , t , 1 « Un , t , L n

Options) .

The distribution of species is then computed at the subsurface

temperature assuming that the subsurface pH is equal to the measured surface

pH. The total molalities of hydrogen (m.. _ ) and hydroxyl (m ) atn , t , 1 2 Un , t , 1 2

subsurface temperature (T«) are then computed. The value of the tolerance

factor (Y ) for the hydronium given by:

(mH,t,T2 " mOH,t,T2 )

is then computed. The terms (m.... , and m..., . , ) are included in Equationuti , t , i .. uti , c , i _

(10) to account for the changes in the hydrogen mass -balance from hydrolysis

28

Page 29: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

of water. Iterations are then carried out changing the pH by small increments

(see below) until the value of Y is < ± 5x10" (or another user-defined

value). The final computed pH is then used to compute the distribution of

species and the states of saturation of the solution with respect to minerals.

Iteration Techniques

The distribution of cations in SOLMINEQ.88 is carried out using equations

that, throughout all computations, meet the requirement of mass-balance

(Equation 3). In the case of anions, however, the total (analytical) molality

of each anion is initially assigned to the primary (generally the predominant)

species of that anion to compute the molalities of the other species. This

generally results in a sum of computed molalities that after the first

iteration is higher than the analytical molality. In the case of sulfate, for

example, mon is initially made equal to mcn resulting in bu^ bu^,n

mS0/ _ < mSO~~ + mCaSO° + ^aso" + " ' (11) 4,t 4 4 4

SOLMINEQ.88 uses a back - substitution iterative procedure (see code listing

in Appendix IV.) for the distribution of anions. Iterations are continued

until the tolerance factor for the anion (Y ) defined by the ratio of theA

analytical molality of the anion to the computed sum of its species and given

by

m. ^ i,tYA - 1 - , (12)

Sni,j mj,i

is < ± 5x10 . Almost all waters examined to date have met these requirements

within 10 iteration cycles. Iteration problems, however, may be encountered

especially in solutions with many ions or high pH values, incorrect or

incomplete chemical analysis, and in high salinity brines when using the

Pitzer equations to compute the activity coefficients.

The iterative algorithm for hydronium mass-balance in SOLMINEQ.88 has

been modified to utilize a polynomial interpolating technique. Initially, the

pH is adjusted (the initial adjustment is 1.0 pH unit) until either

convergence is achieved, (as defined by equation (10)), or the sign of Yu isH

reversed. Once the sign of Y has reversed, values of pH and Yu are fit to afl H

29

Page 30: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

polynomial, the order of which is one less than the number of pH and YH values

(up to a maximum of 6 points). The polynomial is then used to interpolate the

valije of pH where Yu "should be" zero. This value is checked to insure thatn

it is between the bracketing values. If it is not, a polynomial of decreased

order is re-fit to the values and a new value of pH is obtained. This is

continued until the pH is between the bracketing values. The aqueous species

are then redistributed by iteration until Y. is satisfied and a new value of

Yu obtained. This procedure continues until Yu passes the convergence test, rl n

This technique results in a much faster solution than the back-substitution

approach used in the original program, and allows imposition of a smaller

tolerance factor. The smaller tolerance factor avoids an erroneous

calculation of pH when one H - or OH - bearing species is predominant in the

solution (see Morel, 1983, p. 96-97).

All of the options which modify the solution composition and can be

treated as a function of a single variable (addition/removal of a volatile,

precipitation/dissolution of a mineral, etc.; see Modeling Options) use a

similar procedure to obtain pH convergence; the only difference is the

function for Y and the independent variable. For example, for mineral

saturation, Y is a function of the saturation index (SI) of the minerals and

it is varied as a function of the amount of material added to or removed from

the solution.

Before the polynomial interpolation is used, the sign of Y must change.

This is done by increasing or decreasing the independent variable. The choice

of step size is critical. With the exception of the pH modification

(discussed earlier), the step size is based on the difference between the

current parameters (Si's, amount in solution, etc.), and the anticipated

values of the parameter when convergence has been reached. If the first step

does not cause Y to change sign, either the step size is increased or its

direction reversed, depending on the current derivative. This process is

continued until either Y changes sign, an impossible solution is reached (for

example, negative mass of an element) or it can be demonstrated that no answer

exists.

30

Page 31: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Saturation States of Minerals

The saturation state of a mineral in a given solution determines its

interactions with that solution. In SOLMINEQ.88, two saturation indices are

used to test for possible dissolution or precipitation of minerals. The

program computes the Gibbs free energy difference (AG,.~~) between the actual

and equilibrium states of a mineral in a given subsurface water (equal to the

chemical affinity A) as well as the saturation index SI given by:

SI - ln(Q/K) . (13)

AGdiff is given by:

AGdiff " RTlnK ' (-RTlnQ) - RTln(Q/K) , (14)

where R is the gas constant, T is temperature in degrees Kelvin, Q is the

reaction quotient (equal to the ion activity product (AP)), and K is the

equilibrium constant at the specified temperature and pressure.

Mineral reactions used in SOLMINEQ.88 are for complete hydrolysis (Table

3); no incongruent reactions which require additional assumptions (e.g.,

conserving Al) are used. For anorthite, the reaction is

CaAl0 Si00Q/ N + 8H+ ^ Ca*4" + 2A1+3 + 2H.SiO? . (7) Z Z o (s; 4-4-

The reaction quotient (Q) for reaction (7) is given by:

2 2a_ ++ . a A ,+3 . a.. _.- oCa Al TLSiO,Anorthite ' -. ' < 15 >

o~+ a ti ' anorthite

where (a) is the activity of the subscripted species at the specified

temperature and pressure; a thit is t*ie activity of anorthite. With the

exception of minerals entered using the unknown mineral option, the activity

of all minerals is assumed to be equal to 1.0 at any temperature and pressure.

At equilibrium, Q - K and AG,.~- - 0. In this case, the subsurface water

is in equilibrium with the mineral and no dissolution or precipitation should

take place. Where AG,. _~ < 0, anorthite cannot precipitate from that

subsurface water because of undersaturation, but anorthite probably will

dissolve if the mineral is present in the reservoir rocks. Where AG,.-- > 0,Qltt

anorthite will not dissolve because of supersaturation, but rather will

likely precipitate if kinetic factors allow.

31

Page 32: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 3.

ID # and Name

Reactions for the congruent dissolution of minerals and sources of thermochemical data

1 Adularia

2 Akermanite

3 Albite

4 Albite, Low

5 Albite, High

6 Alunite

7 Amesite, 14A

8 Analcime

9 Andalusite

10 Andesine

11 Anhydrite

12 Annite

13 Anorthite

14 Apatite, Cl

15 Apatite, F

16 Apatite, OH

17 Aragonite

18 Augite

19 Azurite

Reaction

KAlSi Q00J O

2Ca

NaAlSi.OQJ O

NaAlSi00 0J O

NaAlSi0 00J O

4H K Al+3

6H

Mg

4H

4H

4H

Na

Na

Na

Al+3

Al+3

Al+3

KA13 (S04) 2 (OH) 6

K 3A1+3

6H

2SO,

1QH

2Mg 2A1+3

NaAlSi 00,«H00/ D /

4H

References

0i

0\

01/,

7a

5b, 61b

5b, 61b

5b, 61b

5b, 61b

5b, 6b, 62b

66a

Na + Al + 2H.SiQ.4 4

Al0 SiO t. + 6H+ £ 2A1+3 + H.SiO° + H00 25 442

Ca .4Na .6A11.4S12.6°8 "

.4CaAl0 Si 000 4- .6NaAlSi 0 00Z Z o j IS

CaSO. ^ Ca + SO.""4 4

KFe3AlSi301() (OH) 2 + 10H+ ^

K+ + SFe"^1" + Al+3 + 3H.SiO.4 4

CaAl2 Si 2Og + 8H+ ^ Ca"^1" + 2A1+3 + 2H4Si04

-> +4- _ 3Ca c.(PO,)«Cl *- 5Ca + 3PO. + Cl

Ca5 (P04 ) 3 F - 5Ca++ + SPO^3 + F"

-> 4.4. _ 3Ca (P04 ) 3OH «- 5Ca + 3p04 + OH

CaC03 ^ Ca^^ + CO""

CaAl 0 SiO, + 8H+ ^Z o

Ca4"1" + 2A1+3 + H4Si04 + 2H20

Cu (CO ) (OH) 9 ^ 3Cu++ + 2CO" + 20H~

6b, 72b

5b, 6b

2a

39b, 63b

6b, 72b

6b, 72b

7a

2b, 6b

6b, 61b

35a

6b, 72b

6b, 72b

32

Page 33: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 3. -- Congruent dissolution of minerals and sources of thermochemical data -- (Continued)

D # and Name

20 Barite

21 Boehmite

22 Brucite

23 Bytownite

24 Calcite

25 Celestite

26 Chalcedony

27 Chamosite, 7A

28 Chlorite, 7A

29 Chlorite, 14A

30 Chrysotile

31 Clinoenstatite

32 Clinoptilolite

Sodium

33 Clinoptilolite,

Potassium

34 Clinoptilolite,

Calcium

35 Clinoptilolite,

Magnesium

36 Corundum

37 Cristobalite.a

Reaction

BaSO. £ Ba++ + SO." 4 4

, , o

AIO(OH) + 3H 4- Al + 2H20

Mg(OH) 2 t Mg++ + 20H"

Ca .8Na .2Al1.8 Si2.2°8 "

. 8CaAl0 Si 000 + . 2NaAlSi 0 0 02. L o Jo

CaC03 "t Ca++ + CO"

SrSO. t Sr++ + SO." 4 4-f 0

Si00 + 2H00 4- H.SiO. 2 2 44

Fe2Al2Si05 (OH) + 10H+ ^

2Fe++ + 2A1+3 + H.SiO. + 5H0044 2+ -*

Mg (_Al 0 Si 70 1 -.(OH)^ + 16H *-

++ +3 ° 5Mg + 2A1 + 3H4Si04 + 6H20

+ -* Mg (-Al0 Si 70 1 -.(OH)^ + 16H 4-

++ +3 °5Mg + 2A1 + 3H4Si04 + 6H 0

+ + ++ °Mg»Si00,-(OH). + 6H 4- 3Mg + 2H,SiO. + H00 j / !> M. i\. 4 /

, , , oMgSi03 + 2H+ + H20 - Mg++ + H4Si04

Na2Al2Si 1()024 .8H20 + 8H+ + 8H20 ^, , o o

2Na + 2A1 + 10H. SiO. 4 4+ -t-

K^AlrtSi- f\0« , 8H«0 + 8H + 8H«0 4-o 0

2K + 2A1 + 10H. SiO. 4 44- _>.

/" 0 A1 C-J O MQUO-i-QU _i_QU/"\ ^^-* ctr\ j_ n & -L i rt^r)/ 0^*0 "^ on ~t~ orirt^-'

Ca++ + 2A1+3 + 10H. SiO. 4 4+ *

++ +3 °Mg + 2A1 + 10H. SiO, 6 44

+ -+ +3A1203 + 6H 4- 2A1 J + 3H20

0Si00 + 2H00 4- H.SiO. 2 2 44

References

6b, 63b

6b, 62b

6b, 61b

2a

35a

6b, 61b

5b, 6b

66a

5b, 6b

5b, 6b

6b, 61b

6b, 61b

76a

76a

76a

76a

5b, 6b

67a

33

Page 34: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 3. -- Congruent dissolution of mineraljs and sources of thermochemical data -- (Continued)

ID # and Name Reaction

-». o38 Cristobalite,^ Si02 + 2H20 <- H4Si04

. _^39 Dickite Al2Si205 (OH) 4 + 6H «- 2

40 Diopside CaMgSi2Og + 4H+ + 2H20 ^

Ca"*"*" + Mg"*"*" + 2H4SiO

41 Dolomite CaMg(C03 ) 2 ^ Ca + Mg

42 Dolomite CaMg(C03 ) 2 2 Ca++ + Mg+

(DSORD)

43 Enstatite MgSi03 + 2H+ + H20 ^

References

67a.0 0

Al ^ + 2H4Si04 + H20 6b, 61b

° 6b, 61b4

+ + 2C03 " 5b, 6b

+ "*" 2C03"

5b, 6b4-4- °

Me + H, SiO, 5b, 6b 44

44 Epidote Ca2FeAl2 Si 3012 (OH) + 13H+ £ . Q 0 0

2Ca++ + Fe+J + 2Al+J + 3H4Si04 + H20 6b, 72b

45 Fayalite Fe2Si04 + 4H+ ^ 2Fe++

46 Fluorite CaF2 ^ Ca"*^" + 2F"

47 Forsterite Mg2Si04 + 4H+ ^ 2Mg"*"*"

48 Gibbsite, Am Al(OH) 3 ^ Al"*"3 + 30H~

49 Gibbsite Al(OH) 3 ^ Al"*"3 + 30H"

50 Greenalite Fe3Si_O e.(OH) 4 + 6H+ *^

+ H4Si04 6b, 61b

68a

+ H.SiO, 6b, 61b

7a

6b, 62b

3Fe"*"*" + 2H4Si04 + H20 66a

51 Gypsum CaSO «2H20 ^ Ca+2 + SO" 2 + 2H20 6b, 63b

52 Halite NaCl ^ Na"*" + Cl",

53 Halloysite Al2 Si205 (OH) 4 + 6H <- 2

54 Heulandite CaA^Si-^g^^O + 8H+ -+

Ca"*"*" + 2A1"*"3 + 7H, Si 4

55 Huntite CaMg3 (C03 ) 4 ^ Ca"*"*" + 3

56 Hydromagnesite Mg5 (C03 ) 4 (OH) 2 «3H20 ^

SMg"*^ + 4CO"" + 20H"

57 Hydrophilite CaCl2 ^ Ca"1^" + 2C1"

58 Illite K 6Mg 25A12 3Si 3 5010 (OH)

6b, 61b

k +3 °1 + 2H4Si04 + H20 6b, 61b

4H20 -

0° 6b, 78b

Mg4"1" + 4CO"~ 5b, 6b

+ 3H20 6b, 69b

5b, 61b

2 + 8H+ + 2H20 ^

.6K 2.3Al+3 + 3.5H4Si04 7a

34

Page 35: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 3 . - - Congruent dissolution of minerals and sources of thermochemical data -- (Continued)

ID # and Name

59 Kaolinite

60 Kenyaite

61 K-Feldspar

62 Kyanite

63 Labradorite

64 Larnite

65 Laumontite

66 Leucite

67 Lime

68 Magadite

69 Magnesio-

ferrite

70 Magnesite

71 Chloro-

magnesite

72 Marialite

73 Merwinite

74 Microcline

Reaction

+ -» +3 °Al2Si 20 (OH) 4 + 6H <- 2A1 + 2H4Si04 +

+ -»

Na+ + llH.SiO, 4 4

KAlSi3Og + 4H+ + 4H20 ^ K+ + Al"1"3 + 3H4J+ -»> +3 °

Al2 Si05 + 6H <- 2A1 + H4Si04 + H2 (

Ca .6Na .4A11.6 Si2.4°8 "

,6CaAl0 Si000 + .4NaAlSi_00Z Z o jo

. j _ , oCa0 SiO, + 4H <- 2Ca + H.SiO. 24 44

CaAl2Si4012 -4H20 + 8H+ -

++ +3 ° Ca + 2A1 + 4H,SiO, 4 4

KAlSi00, + 4H+ + 2H00 ^Z D Z4- -4-3 °K + Al + 2H. SiO, 4 4

CaO + 2H+ 2 ca"1^" + H00 2

+ ->

Na+ + 7H,SiO, 4 4+ _). ++ 4.3

MgFe204 + 8H <- Mg + 2Fe + 4H?0

MgCO, + Mg + CO"" j jMgCl2 2 Mg"1""1" + 2C1"

(NaAlSi 0 00 ) 0 »NaCl + 12H+ + 12H00 ^j o j Z

, , o 04Na + 3A1 ° + Cl" + 9H,SiO, 4 4

Ca MgSi Og + 8H+ ^ 3Ca++ + Mg++ + 2H £

KAlSi,0Q + 4H+ + 4H00 ^JO Z

References

H20 6b, 72b

7e

>i04 6b, 72b

) 6b, 61b

2a

5b, 61b

5b, 61b

5b, 61b

5b, 61b

7e

7a

6b, 69b

7a

7a, 74a

>i04 5b, 61b

75 Meionite

+ +3 °K + Al + 3H,SiO,4 4

(CaAl 0 Si00 0 ),,»CaC00Z Z o j j

24H

4Ca++ 6A1+3 CO 6H,SiO, 44

6b, 72b

6b, 75b

35

Page 36: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 3.

ID # and Name

Congruent dissolution of minerals and sources of thermochemical data -- ^Continued)

Reaction References

76 Mirabilite «- 2Na + SO, 10H00 2.

77 Monticellite CaMgSi04 + 4H Mg

78 Mordenite, Na

79 Mordenite, K

80 Muscovite

88 Nontronite, H

4H

Na+ + Al+3 5H,SiO, 4 4

4H

+ +3 °K + Al + 5H,SiO,4 4

10H

+ +3 °K f 3A1 + 3H,SiO,4 4

81 Nahcolite NaHCO,

82 Nathermite Nart CO,

83 Natron

84 Nepheline

85 Nesquehonite

86 Nontronite, Na Na

87 Nontronite, K K

Na + HCO

2Na C0

Na2CO «10H20 «- 2Na+

3

CO] 10H20 o

NaAlSiO, + 4H+ 2 Na+ + Al+3 + JLSiO, 4 44

Mg

6701Q (OH) 2 + 7.32H"1" + 2.68H20

0.33Na+ + 2Fe+3 + 0.33A1+3 + 3.67^810.4 4

7.32H

0.33K+ + 2Fe+3 + 0.33A1+3 + 3.67^810.°4 4

H QO Fe0Al . j j Z ^ 1U

2Fe+3 + 0.33A1+3 4 3.67H.SiO4 4

+ 6.99H + 2.68H20 <- o

89 Nontronite, Ca Ca

90 Nontronite, Mg Mg

, 7.O/

+ 7.32H + 2.68H20 <-

0.165Ca 2Fe+3 + 0.33A1+3 + 3.67^810,4 4

+ 7.32H + 2.68H20

0.165Mg++ + 2Fe+3 + 0.33Al+3

91 Oldhamite

92 Oligoclase

CaS + H «- Ca + HS

Ca .2Na .8A11.2 Si2.8°8

.8NaAlSi Q0 QJ O

2b, 5b

5b, 6b

76a

76a

6b, 61b

5b, 71b

2b

5b, 71b

6b, 72L

6b, 72b

66a

66a

66a

66a

66a

7b

2a

36

Page 37: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 3.

ID # and Name

Congruent dissolution of minerals and sources of thermochemical data -- (Continued)

Reaction References

93 Paragonite

94 Pargasite

95 Periclase

96 Phillipsite

97 Phlogopite, OH

98 Fluor -

phlogopite

99 Portlandite

100 Potassium

Oxide

101 Prehnite

102 Pyrophyllite

103 Quartz

104 Sanidine,

High

105 Saponite, Na

106 Saponite, K

+ -» NaAl 3Si 30- 0 (OH) 2 + 10H «-

~Na + 3A1 + 3H4Si04 6a, 75a

NaCa2Mg4Al 3Si6022 (OH) 2 + 22H+ -

Na+ + 2Ca++ + 4Mg~H" + 3A1+3 + 6H4Si04 6b, 72b, _^ , ,

MgO + 2H <- Mg + H20 5b, 61b

Na CK £.AlSi 0 00 »H00 +4H+ + 3H00 ^ . D . j j o Z /

, , , o 0.5Na + . 5K + Al + 3H/SiO, 7a 4 4

KMg3AlSi 301Q (OH) 2 + 10H+ 2

K+ + 3Mg++ + Al+3 + 3H4Si04 6b, 72b+ -»

KMg3AlSi 301()F2 + 8H + 2H20 *-

K+ + 3Mg++ + Al+3 + 2F" + 3H4Si04 5b, 61b

Ca(OH) 2 ^ Ca++ + 20H~ 5b, 61b

K20 + 2H+ * 2K+ + H20 5b, 61b

Ca2Al 2Si 301Q (OH) 2 + 10H+ -

2Ca++ + 2A1+3 + SH.SiO,0 6b, 72b 4 4

Al 2 Si 0 Q (OH) 2 + 6H+ + 4H20 ^ 2A1+3 + 4H4Si04 6b , 72b

Si02 + 2H20 ^ H4Si04 70a, , , o 0

KAlSi 3Og + 4H + 4H20 4-, K + Al J + 3H4Si04 5b , 61b

Na 33Mg3Al 33 Si 3 6 7°10 (OH) 2 + 7 - 32H+ + 2 68H20 ^

0.33Na+ + 3Mg++ + 0.33A1+3 + 3.67H,SiO° 66a ° 44 »*««*

K 33Mg3Al 33 Si 3 6701Q (OH) 2 + 7.32H+ + 2.68^0 -I i _ i i o o

r\ ooi/-"^ i ox«_'^'^ i n o o A i '-' o f-tii n /-> / /

107 Saponite, H H 6.99H

3Mg++ + 0.33A1"1" 3 + 3.67H.SiO°44

66a

66a

37

Page 38: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 3.

ID # and Name

Congruent dissolution of minerals and sources of thermochemical data -- (Continued)

Reaction References

108 Saponite, Ca Ca 165Mg3Al 33Si 3 £-j°-\r\(°H) 2 + 7.32H 4- 2.68H20 ^

0.165Ca++ + SMg"*"1" + 0.33A1*3 + 3.67H. SiO.° 66a 6 44

109

110

111

112

113

114

115

116

117

118

119

120

Saponite, Mg Mg~ i/rcAl oo^i., fiv^in^^^

O.ieSMg** + SMg** +

Sepiolite Mg4Si,015 (OH) 2 «6H20 + 8H4-4- °

4Mg + 6H, SiO,4 4

_». 0Silica, Si02 + 2H20 <- H4Si04

Amorphous

Silica Gel Si02 + 2H20 2 H4sio4, , Q

Sillimanite Al2Si05 + 6H <- 2A1

Smectite, Ca Ca 1 ,-,A10 00 Si 0 ,_,Onr.(OH) . lo / Z.jj j . b / 1U

.167Ca++ + 2.33A1+3

Smectite, K K 33A12 33Si 3 , 701Q (OH) 2, , o.33K"1" + 2.33A1"10 +

Smectite, Mg Mg 167A12 33 Si 3 6701Q (OH)

.167Mg++ + 2.33A1+3

Smectite, Na Na ooAl« ooSio cT^in^^^?, , o

.33Na + 2.33A1 +

Sodium Monoxide Na20 4- 2H+ 2 2Na+ +

Spinel MgAl204 4- 8H+ ^ Mg++

Stilbite CaAl0 Si-.010 «7H00 + 8H+ +Z / lo Z

2 + 7.32H+ + 2.68H20 ^

0.33A1"*"3 + 3.67H, SiO. 66a 4 4

+ + H20 -

72a, 77a

70a

7ao

+ H4Si04 + H20 6b, 72b

+ 7.32H+ + 2.68H20 ^

+ 3.67H, SiO, 7a 4 4

+ 7.32H+ + 2.68H20 ^o

3.67H. SiO, 7a 4 4

+ 7.32H+ + 2.68H20 ^

+ 3.67H. SiO. 7a 4 4

+ 7.32H+ + 2.68H20 ^o

3.67H, SiO, 7a 4 4

HJD 5b, 61b

4- 2A1+3 + 4H20 5b, 61b

3H 0 ^2

Ca"1"1" + 2A1+3 + 7H. SiO, 6b, 78b 4 4

121

122

123

124

, o

Strengite FeP04 «2H20 * Fe + PO"

Strontianite SrCO^ ^ Sr++ 4- CO""

Sylvite KC1 ^ K+ + Cl"

3J + 2H20 7a

40a

6a, 61a

Talc Mg0 Si,Oir.(OH) 0 + 6H+ + 4H00 ^

3Mg + 4H,SiO, & 44 6a, 72b, 75b

38

Page 39: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 3. - - Congruent dissolution of minerals and sources of thermochemical data -- (Continued)

ID # and Name Reaction

125 Thenardite Na2S04 2 2Na+ + S04 "

126 Tremolite Ca2Mg5Sig022 (OH) 2 + 14H+ + SHJD £

2Ca++ + SMg"*"*" + 8H4Si04

127 Trona Na^jCOoNaHCO.-^H^O £ 3Na+ + COl" + HCO" + 2H,Z. j j Z j j 4

128 Vivianite Fe3 (P04)««8H20 £ SFe"1"*" + 2PO" + 8H«0

129 Wairakite CaAl2Si4012 «2H20 + 8H+ + 2H20 £

Ca++ + 2A1+3 + 4H.SiO° 4 4

130 Wither ite BaC03 2 Ba"1"*" + C0~~

131 Wollastonite CaSi03 + 2H+ + H20 2 Ca"1"*" + H4Si04

132 Zoisite Ca2Al3Si 30- 2 (OH) + 13H+ 2

2Ca++ + 3A1+3 + 3H. SiO. + H00 44 2

133 Silver Ag + Fe+3 ^ Ag+ + Fe"1^"

134 Cerargyrite AgCl 2 Ag+ + Cl"

135 Acanthite Ag2S + H+ 2 2Ag+ + HS"

+3 -* + i i 136 Copper, Native Cu + Fe «- Cu + Fe

137 Malachite Cu2C03 (OH) 2 ^ 2Cu++ + C03 " + 20H~

138 Tenor ite CuO + 2H+ ^ Cu"1^" + H20

139 Cuprite Cu20 + 2H+ 2 2Cu+ + H20

140 Covellite CuS + H+ ^ Cu"1^" + HS"

141 Chalcocite Cu2 S + H+ ^ 2Cu+ + HS"

142 Chalcopyrite CuFeS2 + 2H+ t Cu"1^" + Fe"1"1" + 2HS"

143 Bornite Cu5FeS4 + 4H+ ^ 4Cu+ + Cu"1^" + Fe"*^" + 4HS"

144 Lawrencite FeCl,, 2 Fe^^ + 2Cl"

145 Molysite FeC1 3 ^ Fe+3 + 3cl "

146 Siderite FeCO« ^ Fe"1"1" + CO"

147 Ferrous Oxide FeO + 2H+ ^ Fe"1"1" + H90

148 Hematite Feo°-a + 6H+ ^ 2Fe+3 + 3H00

References

5b, 61b

6b, 72b

20 6b, 71b

7a

6b, 72b

6b, 61b

6b, 72b

6b, 72b

5b, 61b

lla

5b, 61b

5b, 6b

6b, 61b

6b, 61b

5b, 6b

6b, 61b

6b, 61b

65a

5b, 6b

7b

7b

5b, 6b

5b, 6b

5b, 6b

39

Page 40: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 3.

ID # and Name

Congruent dissolution of minerals and sources of thermochemical data -- (Continued)

Reaction References

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Maghemite

Magnetite

Fe(OH) 3

Goethite

Pyrrotite

Troilite

Pyrite

Greigite

Mercury (L)

Mercurous

Chloride

Calomel

Montroydite

Cinnabar

Cinnabar, Meta-

Scacchite

Rhodochrosite

Manganosite

Pyrolusite

Alabandite

Cotunnite

Cerussite

Litharge

Massicot

Galena

Anglesite

Smithsonite

Fe203 + 6H4" ^ 2Fe+3 +

Fe304 + 8H4" ^ 2Fe+3 H-

Fe(OH) 3 2 Fe4"3 + 30H~, , o

FeOOH + 3H <- F& +

FeS + H+ ^ Fe4"4" + HS"

FeS + H+ ^ Fe4"4" + HS"

FeS2 + H20 2

Fe4"4" + 1.75HS" +0.2

Fe3S4 + 4H4" ^ 2Fe+3 -f

Hg + 2Fe+3 Z Hg++ +

HgCl2 2 Hg4"4" + 2C1"

Hg2Cl2 ^ Hg?,4" + 2C1"

HgO + 2H+ ^ Hg"1^" + H20

3H«0 7a

Fe"1^" + 4H20 5b, 6b

7a

2H20 5b, 6b

6b, 72b

5b, 6b

5S04 " + 0.25H4" 5b, 6b

Fe"1^" + 4HS" 7a

2Fe+4" 2b, 5b

7a

7a

6b, 61b

HgS + H+ 2 Hg4"4" + HS" 6b, 61b

HgS + H4" ^ Hg"1^" + HS" 6b, 61b

MnCl2 ^ Mn4"4" + 2C1"

MnC03 ^ Mn4"4" + CC>3 "

MnO + 2H+ ^ Mn"1^" +

5b, 61b

5b, 61b

H20 5b, 6b

Mn02 + Mn4"4" + 4H+ ^ 2Mn+3 + 2H20 5b, 6b

MnS + H+ ^ Mn4"4" +

PbCl2 ^ Pb"1^" + 2C1"

PbC03 2 Pb + COl"

PbO + 2H4" ^ Pb"1^" +

PbO + 2H+ ^ Pb4"4" +

PbS + H4" ^ Pb4"4" + HS

PbSO. £ Pb"1^" + SO." 4 4

> i 1 _ _ ZnC00 «- Zn + C00

^S" 5b, 61b

5b, 61b

5b, 6b

H20 72a

H20 5b, 61b

46a

6b, 63a

46a

40

Page 41: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Congruent dissolution of minerals and sources of thermochemical data -- (Continued)

Reaction

ZnO + 2H *- Zn +

Table 3. --

ID # and Name

175 Zincite

176 Sphalerite

177 Zincosite

178 Rutherfordine

179 Uramphite

180 Przhevalskite

181 Torbernite

182 Saleeite

183 Autunite, Sr

184 Uranocircite Ba(U02 ) 2 (P04 ) 2

185 Bassetite

186 Clarkeite

187 Gummite

188 U02 (OH) 2

189 UF,«2.5H2 (

190 U(HP04 ) 2 ^

191 Ningyoite

m u o \J *-» \S A

2H

Ba 2UOA + 2HPO]

Fe(U0 2 ) 2 (P04 ) 2 + 2H 1

.++Fe 2U0 + 2HP0

2H+

2H+

U02 (OH)

CaU(HP04 ) 2 -2H20

+ 20H"

* + 4F~ +

U+4 + 2HPO^

h 2H+ ^

2 .

Ca++ +4U + 2HP0

References

46a

ZnS + H 2 Zn

ZnS04 ^ Zn++ +

-* ++uo2co3 *- uo2 +

(NH4 ) 2 (U02 ) 2 (P04 ) 2

2NH4 + 2U02+

Pb(UO ) (PO,) +£ £ 'T ^

++ ++ Pb + 21KK

Cu(U02 ) 2 (P04 ) 2 +

Cu++ + 2U02+

Mg(U02 ) 2 (P04 ) 2 +

Mg"1^ + 2U02+

Sr(U02 ) 2 (P04 ) 2 +

Sr++ + 2Uot+

+ HS"so"

4C03~

+ 2H+ ^+ 2HPO,"

4

2H+ 1

+ 2HPO," 4

2H+ 1

+ 2HPO" 4

2H+ 1

+ 2HPO," 4

2H+ ^

+ 2HPO"

46a

5b, 61b

6b, 44b, 61b

2b, 45b, 61b

5b, 7b, 44b

5b, 45b, 61b

5b, 45b, 74b

5b, 61b, 74b

4H 2U0

5b, 45b, 61b

5b, 44b, 45b

43b

43b, 45b

5b, 45b

5b, 43b, 61b

5b, 43b, 61b

5b, 45b, 61b

43b, 61b

41

Page 42: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 3 .

ID # and Name

Congruent dissolution of minerals and sources of thermochemical data -- (Continued)

193 Uraninite,

Amorphous

194 Uraninite

195 U409

196 Coffinite

197 Autunite, H

198 Autunite, Na

199 Autunite, K

200 Autunite

201 Carnotite

202 Tyuyamunite

203 Uranophane

204 Schoepite

205 MgU04

206 CaUO. 4

207 BaUO. 4

208 UO«F9

209 US 3

210 Karelianite

211 Vanadium Tetro-

212 Vanadium Pento-

213

Reaction

4H

4H

USiO

10H

+ 4H

2U4"4

2UO

U+4 + H, SiO, 44

2HPO

2H

2Na

2K

2H

Ca(U02 ) 2 (P04 ) 2

Ca++

2HP0

2HP0

2HP0

2VQ- 3

Ca(U02 ) 2 (V04 ) 2 <

Ca(U02 ) 2 (HSi04 ) 2

Ca 2V0 3

MgUO,

CaU0

BaUO.

4H 1

4HH

V2°3 61T

4H 1

3H20

U°2

Mg

Ca

Ba

2Fuo4"

2V

2VO

2 ,+3

UO

uo;

UO,

3HS

3H20

2H20

2H20

H

2VO-3 4

+

6H

so,

214 Pb3 (V04 ) 2 Pb3 (vo4 ) 2 <- 3Pb + gVO-3

References

43b

43b

43b, 61b

44b

44b

2b, 61b

5b, 45b, 61b

5b, 45b, 61b

5b, 45b, 61b

5b, 45b, 61b

5b, 45b, 61b

43b, 61b

5b, 44b, 61b

5b, 44b, 61b

5b, 44b, 61b

5b, 44b, 61b

5b, 44b, 61b

2b, 45b

2b, 45b

2b, 45b

2b, 61b

2b, 5b, 61b

42

Page 43: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Sources of Thermochemtcal Data for Reactions in Tables 2 and 3

1) Plummer and Busenberg (1982)2) Naumov and others (1974)3) Marshall and Frank (1981)4) Busey and Mesmer (1977)5) Helgeson and others (1981)6) Helgeson (1985 Version of SUPCRT)7) Kharaka and Barnes (1973)8) Arnorsson and others (1982)9) Baes and Mesmer (1981)

10) May and others (1979)11) Seward (1976)12) Lown and others (1970)13) Jacobson and Langmuir (1974)14) Kalyanaraman and others (1973)15) Smith and Martell (1976)16) Crerar and Barnes (1976)17) Crerar and others (1978)18) Wagman and others (1968; 1969)19) Helgeson and others (1978)20) Mesmer and others (1972)21) Helgeson (1969)22) Bryzgalin and Rafelski (1982)23) Barnes and others (1967)24) Smith and others (1986)25) Sillen and Martell (1964)26) Siebert and Hostetler (1977)27) Wolley and Hepler (1977)28) Kublanovskii (1977)29) Harned and Owen (1958)30) Seward (1981)31) Drummond (1981)32) Lafon (1969)33) Reardon (1975)34) Lafon and Truesdell (1971)35) Plummer and others (1984)36) Seward (1984)37) Patterson and others (1982)38) Giordano and Drummond (1987)39) Miller (1988)40) Busenberg and others (1984)

41) Ruaya and Seward (1986)42) Katayama (1976)43) Lemire and Tremaine (1980)44) Hemingway (1982)45) Langmuir (1978)46) Bourcier and Barnes (1987)47) Tremaine and others (1981)48) Phillips (1982)49) Martell and Smith (1977)50) Nancollas (1956)51) Palmer and Drummond (1988)52) Wagman and others (1982)53) Wagman and others (1976)54) Shanks and Bischoff (1977)55) Giordano and Barnes (1981)56) Wood and others (1987)57) Hogfeldt (1982)58) Roberson and Barnes (1978)59) Bilinski and others (1986)60) Daniele and others (1981)61) Robie and others (1978)62) Tremaine (1987)63) DeKock (1986)64) Cobble and others (1982)65) Conard and others (1980)66) Wolery (1986)67) Richet and others (1982)68) Nordstrom and Jenne (1977)69) Tanger and Helgeson (1988)70) Fournier and Potter (1982)71) Vanderzee (1982)72) Tugarinov and others (1975)73) Hovey and others (1988)74) Zen (1972)75) Berman and others (1985)76) Kerrisk (1983)77) Stoessell (1988)78) Cho and others (1987)79) Williams-Jones and Seward (1988)

Letters following numerical references in Tables 2 and 3 refer to the method of computation used to calculate the equilibrium constants as described in the section, Equilibrium Constants.

43

Page 44: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ACTIVITY and ACTIVITY COEFFICIENTS

The activity of all minerals is assumed to be equal to unity, with the

possible exception of the minerals entered using the unknown mineral option

activity of water used in many

semiempirical expression given

(see the description of the input file). The

equations is computed in SOLMINEQ.88 from the

by Garrels and Christ (1965) as

aH = 1 - 0.017 S m. . (16)H2° i i

The summation covers the molalities (m.) of all the species in solution.

Alternatively, a more accurate value for the activity of water can be obtained

from the Pitzer expressions (Pitzer, 1973; 19$1) where

log (aH Q ) = 0.007823 (S nu)^ , (17)

where <j> is the osmotic coefficient of the solution. Values of <j> are

calculated by equations and parameters given by Pitzer (1973) and Pitzer

(1981). Equations (16) and (17) give approximately the same value for the

activity of water in NaCl solutions (0-6 molal) at temperatures of 25 °C to

200 °C; the activity of water is somewhat lower in CaCl,, than in NaCl

solutions (see Table 6.2 in Kharaka and Mariner, 1989). The activity of water

can be approximated for most natural waters using equation (16). Equation

(17), however, should be used for waters where the concentrations of divalent

cations comprise more than about 20 percent of the total cations.

The program uses equation (16), but the user can specify equation (17) by

selecting the appropriate input switch. Values for the osmotic coefficients

of NaCl, CaCl2 and other electrolytes as a function of temperature and

molality were obtained from Staples and Nuttall (1977), Holmes and others

(1978, 1981) and Pitzer (1981).

The activities of aqueous species are computed from

ai " miTi ' (18 ^

where y. is the activity coefficient of species i. The standard state adopted

for the aqueous species is that where the activity is equal to molality in a

hypothetical infinitely dilute solution at any pressure and temperature.

44

Page 45: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Activity Coefficients for Neutral Species

Several methods are used by geochemists to calculate the activity

coefficients of neutral species, each give different results. The activity

coefficients of all neutral species are generally assumed equal to that of

dissolved CO,., in NaCl solutions (Helgeson, 1969) . The activity coefficients

for C00 (~frr. ) maybe calculated using:Z dUrt

k7CO (T) = , (19) C02 k

where k and k are the Henry's law coefficients (atm/mole) in pure water and

sodium chloride solutions of molality m at temperature T (°K). Values for k

and k are available as a function of temperature (0°-350 °C) and molality of

NaCl (0-6 molal) from Ellis and Golding (1963) and Drummond (1981).

SOLMINEQ.88 has the option to compute 7__ and all the other neutral speciesco2

(except H^S and H,SiO,) using a modified expression from Drummond (1981):

3885.6 0.4445In k - 21.2752 - 0.0176036T - 1.0312m -

255.9m 0.001606 T+ 0.0012806 mT + - '

T (m-1)

The activity coefficient for H^S can be calculated from a similar

expression, also modified from Drummond (1981) which is:

2021.5 0.5705In k.. . - 11.1255 0.0071704T + 0.2905T = + ^ S T

46,2m 0.0001574mT , (21)

T (m-1)

In both equations (20) and (21), m is the molality of NaCl.

The expressions of Marshall (1980) and Chen and Marshall (1982) are

preferred for calculating the activity coefficient of H.SiO?. Their activity

coefficients for H.SiO, were derived from data on the solubility of amorphous

silica as a function of temperature (0° - 350 °C) , and NaCl salinity (0-6

molal). The expression is:

45

Page 46: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

log (7 siQo) - (0.00978 x 10 (280/T) ) x m . (22) 4 4

Sodium and chloride are by far the dominant aqueous species in most

formation waters from sedimentary basins (Khc.raka and others, 1985), and

equation (22) can be applied directly to these waters. However, the

concentrations of other species, especially calcium, can be high, requiring

modification of equation (22). Data in Marshall (1980) and Chen and Marshall

(1982) show that equation (22) can be generalized to:

log (7 o) = (0.00489 x i0 ( 280/T>) . s z 2 m , (23)ti, OlU, 11 14 4

where z. and m. are the charge and molality cjf species (i). The summation

includes all of the species in the formation water.

Activity Coefficients for Charged Species

In SOLMINEQ.88, the activity coefficients (7) for the charged aqueous

species are computed using B method (Lewis and Randall, 1961; Helgeson,

1969).

-Vi il/2log 7, = - 575 + B'l , (24)

1 + a? B I ' i 7o "

where a. is the ion size parameter, A and B are the molal Debye-Huckel

coefficients (described below) at temperature T, z. is the charge of the ith

ion, I is the true ionic strength, and B* is Ja deviation function. The ionic

strength (I) of a given solution is given by:

I - 1/2 S n. z. 2 . (25)

n The Debye-Huckel coefficients, A and B ,are given by:

1.8248 x 106 /j 1/2 A7 (T) = 3/2 < 26 >

and

50.29 x 10 8 /? 1/2 B-/T) = r-= , (27)

46

Page 47: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

where p and e are the density and the dielectric constant of water at

temperature T. The values of A and B in the above equations are given in

Table 4 and are from Helgeson and others (1981) . The density and dielectric

constants are corrected for pressure using functions based on data in Helgeson

and Kirkham (1974).

The a° values used (Appendix IA) are mainly from Kielland (1937), with

unpublished data for U and V species from Goodwin (1982). Arbitrary a values

of 4.0, 5.0 and 6.0 were assigned, respectively, to those monovalent, divalent

and trivalent species not reported in the literature; for U and V species,

values of 4.5, 3.5, 2.5, 5.0 and 9.0 were assigned respectively to -2, -1, +1,

+2, and +3 charged species as suggested by Goodwin (1982).

The values for the deviation function, B , used in equation (24) vary as

a function of temperature (Appendix ID) and are from Helgeson (1969). The B

values used are for NaCl solutions, a close approximation for most subsurface

waters. The presence of appreciable amounts of divalent and trivalent cations

and anions in solution with their higher degree of hydration will make the 7.

obtained lower than the true values. The B option should not be used for

waters with ionic strengths higher than about one molal. In these cases the

Pitzer equations, as discussed in the following section, should be selected in

the input file.

47

Page 48: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 4.II

Values of the Debye-Huckel coefficients

A and B along the vapor pressure curve of water

(Helgeson and others , 1981) .

t

0

10

20

30

40

50

60

70

80

90

100

125

150

200

250

300

350

A fi 7 7

,, 1/2 , -1/2. ,. 1/2 , -1 -1 ,~8. (kg ' mole ' ) (kg ' mo4e cm x 10 )

0.4913 0.3247

0.4976 0.3261

0.5050 0.3276

0.5135 0.3291

0.5231 0.3307

0.5336 0.3325

0.5450 0.3343

0.5573 0.3362

0.5706 0.3381

0.5848 0.3401

0.5998 0.3422

0.6417 0.3476

0.6898 0.3533

0.8099 0.3655

0.9785 0.3792

1.2555 0.3965

1.9252 0.4256

48

Page 49: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Pitzer Equations

SOLMINEQ.88 has an option to compute the activity coefficients of the

aqueous species using Pitzer equations (Pitzer, 1981; Harvie and others,

1984). This modification was necessary because the B* method used for

calculating the activity coefficients (Helgeson, 1969) gives results that are

much lower than the true values for solutions with salinities higher than

about one molal (Figure 1). Pitzer equations are based on an ion-interaction

or virial-coefficient model where the effects of ion association are

implicitly incorporated in stoichiometric activity coefficients calculated byit

virial expansion of the Debye-Huckel theory (Pitzer, 1973, 1981; Silvester and

Pitzer, 1978). A number of investigations (Whitfield, 1975; Harvie and Weare,

1980; Harvie and others, 1984; Gueddari and others, 1983) have shown that the

use of the Pitzer equations has resulted in accurate predictions of mineral

sequences in very concentrated brines at low temperatures.

The basic equations for the activity coefficients of positively (M) and

negatively (X) charged species in terms of second and third virial

coefficients (Pitzer, 1973; Harvie and others, 1984) are given below.

, Na Nc Naln TM - ZMF + S. ma (2BMa + ZCMa> + S. V 2*Mc + S. m

a=I c=l a 1

N n N N Na-1 a c a+ S S m m ,$ , + |z,J S S m m C , (28)n , ,1 a a'^aa'M ' M 1 n n c a ca ' x 'a=l a a+1 c=l a=l

N N NC 3. C

In 7V - z^F + S m (2B v + ZC v ) + S m (2$v + S mX X T c x cX cXy - a x Xa nc=l a=l c=l

N n N N N c-1 c c a+ S S m m ,^ , v + |zv | S S m m C , (29), , , c c >T cc'X ' X 1 - - c a ca ' v 'c=l c'=c+l c=l a=l

where mc and ZG are the molality and charge of cation c and N is the total

number of cations. Similar definitions apply for anions (subscript a). The

following terms are defined for use in the above equations:

49

Page 50: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

I ' I //

/ /

PItzer without complexes. /

m NaCI

Figure 1. -- Pitzer and Ion Pair Activity Coefficients for NaCI solutions

as a function of Ionic Strength.

50

Page 51: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

I

1 + 1

N

1/2

c-1 c

2 In (1 + 1.2I1/2 )

1.2

N T N a-1 a

Nc

+ S c-1

Na

S a-1

m m B' c a ca

+ S S m m ,$' ,+ Z S m m ,$' ,i , , c c' cc' ., , . a a' aa'c=l c'=c+l a=l a'=a+l

(30)

MX2|ZZ

1/2MX

(31)

(32)Z - 2 m.|z.|

and

2.303A0 = A , (33)

3.0 7

where A is the Debye-Huckel constant and I is the stoichiometric ionic 7

strength. The second virial coefficients (B) and ($) are given the following

ionic strength dependence:

BMX - (34)

(35)

. . + e. .(i) (36)

'y - t'^m (37)

The functions, g and g', are defined by the equations

g(x) = 2(1 - (1 + x)e" x)/x2 , (38)

2 x 9g'(x) = -2(1 - (1 + x + ~2 )e" x)/xz , (39)

where x = a JI or 12 Jl. When either cation M or anion X is univalent,

*j^ =2.0. For 2 - 2, or higher valence pairs, a =1.4. In most cases

equals zero. The functions of E and E.. account for the

51

Page 52: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

electrostatic effects of unsymmetrical unmixing (Pitzer, 1981). They are only

significant in complex 1-2 and 1-3 electrolytes at high ionic strength.

A relatively large and expanding database is now available to calculate

the activities of alkali and alkaline earth metals in concentrated chloride

and sulfate solutions at temperatures of up to at least 200 °C (Pitzer, 1981;

Holmes and Mesmer, 1983; Pabalan and Pitzer, 1987; Miller, 1988; and many

others) .

The complete set of parameters required

these species are: 0, 0, 0, and

to calculate the activities of

for each cation-anion pair. &..^ *

for each cation- cation and anion- anion pair; \j>. ., for each cation- cation- anionij K

and anion- anion- cation triplet. The interaction parameters for seven cations

and four anions were calculated from various published data and are tabulated

in the database of SOLMINEQ.88 (Appendix IG) at 25 °C intervals from 0° to 150

°C and at 50 °C intervals from 150 ° to 350 °C. The parameters are

interpolated to the specified temperature (from 0° to 350 °C) by the Lagrange

subroutine (TLUV) used to interpolate the K values (see below) .

SOLMINEQ.88 has an option to compute the activity coefficients of the

seven cations and four anions using Pitzer equations. It must be emphasized

here that these equations are based on an ion interaction model that assumes

no ion associations or complexing. The distribution of species in

SOLMINEQ.88, on the other hand, is based on an ion association model. This

inconsistency is resolved by incrementing the ion activity coefficients

obtained from the Pitzer equations for these $pecies so the final activity for

the species is equal to that computed from Pitzer equations. In the case of

Na, for example, the final value for 7N +, is given by

. mNa,t ?Na.P § (4Q)

Na+

where 7N _ is the activity coefficient for Na obtained from the Pitzer

equations. The activity coefficients for a large number of species and

complexes in SOLMINEQ.88 can not be computed using Pitzer's equations because

there are no published virial coefficients for them, especially at high

temperatures. The activity coefficients for these species (7.) are calculated

using a modified (B*) equation given by:

52

Page 53: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

log Is =

a i 7'

where B is a deviation function. The value of B used to calculate the

activity coefficients for univalent cations, anions, and complexes (B ) is

obtained from:

A I 1/2

B* = (logu I A1Q 1 + 4.0 x 10 " B L

1

where 7N + is obtained for a hypothetical minor concentration of Na equal

to 0.01 m using Pitzer equations. The value of B used to calculate the

activity coefficients for multivalent cations, anions and complexes with no

virial coefficients data to calculate their activities by Pitzer equations is

obtained from:

1 4.0 A//2Bm = T (1°S 7Ca++ + 8 1/2 > (43)

m X Ca 1 + 6.0 x 10 b B I 1/^7

where 7- ++ is again obtained using Pitzer equations for a hypothetical 0.01 m

_l_|_ 1 I I

concentrations of Ca . Hypothetical 0.01 concentrations of Na and Ca are

used because at concentrations higher than about 0.1 m, 7. is a function of

concentration (Pitzer, 1981; Tanger and Helgeson, 1988).

Using Na and Ca as the "typical minor or trace" species to calculate

the activity coefficients for the majority of the dissolved species is clearly

not thermodynamically rigorous, but is an operational approach. However,

comparison of values of activity coefficients obtained by this approach and by

Pitzer equations for a number of dissolved species shows that this approach

allows the operational B* method (Helgeson, 1969) to be extended to about 3 to

6m solutions. Research to obtain virial coefficients for carbonate, aluminum

and other important species is clearly needed.

53

Page 54: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

EQUILIBRIUM CONSTANTS

The equilibrium constants (K) for the dissociation of aqueous complexes

(Table 2) and congruent dissolution of minerals (Table 3) are the most

important part of the database in geochemical codes such as SOLMINEQ.88.

Examples of dissociation reactions (Reactions 1 and 2) and the corresponding

equations (1 and 2) are given in an earlier section; the corresponding

equation for the dissolution of anorthite reaction (7) is:

a_ +H Ca"=

an

-2 -2h . aA] +3 . a o 4 4

__ __ Q

a . au+an H

(44)

where a. is the activity of the ith species at equilibrium. The equilibrium

constants for the reactions shown in Tables 2 and 3 are in a data file labeled

DATA.TBL. The K(T) values reported (Appendix IB and 1C) at intervals of 25 °C

from 0-150 °C and at intervals of 50 °C from 150°-350 °C were computed

assuming a total pressure equal to the vapor pressure of water. (The

correction for pressure is described in a following section.)

The equilibrium constants were obtained from references listed in Table 2

and by the methods described below, which are listed in decreasing order of

reliability. The uncertainties in the computed equilibrium constants are

generally higher for the aqueous species especially at temperatures higher

than about 150 °C because their heat capacities can not be accurately

estimated. In the case of minerals, if heat capacity functions are not

available, they can be estimated from those of their oxides (Helgeson, 1969;

Berman and others, 1985).

(a) Reported experimental data (solubility, free energy, and other data)

or reported K values as a function of temperature over the temperature range

of 25° to at least 200 °C. The values were extrapolated and interpolated to

the temperature values used in this code.

(b) Computed using KELYCOB (Helgeson, 1971a) and SUPCRT (Helgeson,

1985), which computes the equilibrium constants of a given reaction (log K )

as a function of temperature and pressure. Generally the input to these

programs for solids are the coefficients A, B, and C for the Maier-Kelley heat

capacity power function (Kelly, 1960) given below

CC - A + BT + - , (45) P T^

54

Page 55: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

the standard state enthalpies of formation (Hf), and the standard state

entropies (S?) of all the components involved in the reaction. KELYCOB

computes the K(T) values from an integrated form of Van't Hoff's equation

(Helgeson, 1969),

g

2

2

298.15

1

. 303RT

1

.303R

298.

f298.

2

15

15

.303R

AC

AC

op,:

oV,'

( f(T)dT

(T)dlnT

298.15

(46)

The heat capacity of the aqueous species Na , K , Li , Ag , NH, , Cu ,

M +2 . +2 _ +2 n +2 _, +2 _ +2 . +2 +2 _ +2 M +2 _ +3 A1 +3 - Mg , Ca , Sr , Ba , Pb , Zn , Cu , Hg , Fe , Mn , Fe , Al , F ,

Cl~, OH", HS", HC03 ", S04 " 2 , NaCl°, and Si02° can be described by this

equation (Helgeson and others, 1981; Helgeson, 1985):

- wiTx (47)where C.. . , CL . , 0. and w. are empirical constants derived separately for each

aqueous species, i, and x is the derivative of the variation of the dielectric

constant of water, c, with temperature (Helgeson and others, 1981).

A program called IONK was created which performs the function of

KELYCOB, but uses the coefficients in equation (45) or those in equation (47)

as input. IONK was used when the coefficients C. . , C,. . , 6., and w. were

available .

KELYCOB and IONK were used to generate log K values at 25 °C intervals

from 0° to 350 °C for most of the solubility reactions reported on Appendix

1C. A number of log K values for the dissociation reactions of aqueous

complexes were also obtained by this method.

The heat capacity power function for many minerals reported in this

program are not known. They were approximated by summing up the heat capacity

power functions for the oxides. The expression

(7.11 + .0082 T)cal mole" 1 deg ~ l

55

Page 56: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

(structural water) was used to represent ^0 in these approximations (Helgeson

and others, 1978). For several ions (i.e., those containing U, V, or P) heat

capacity was represented by a constant. The solubility constants of minerals

containing these elements are only reliable below 200 °C (Langmuir, 1978).

(c) Computed using DQUANT (Helgeson, 1971b) . This program requires only

that AH° (T ) and AS° (T ) be known; it was used where no heat capacity data

of any kind are available for one or more of the species involved in the

reaction. This last condition covers many of the aqueous reactions reported

in Table 2. DQUANT computes K(T) values by evaluating (Helgeson, 1967)

AS° (T ) , r x r 0log K(T) - 2.303RT [Tr - -^- (1 - exp(exp(b + aT)

(T - T ) AH°(T )

- c + 0 »J - 2303RT (48)

where $, W, a, b, and c are temperature - independent constants characteristic

of the solvent, and R is the gas constant.

DQUANT assumes that AC° changes monotonically but nonlinearly with

temperature. Dissociation constants computed from this program are often much

closer approximations of actual dissociation constants at higher temperatures

than those computed assuming AC° (T) - 0 or AC° (T) - a constant (Helgeson,P » ^ P » ^

1969) . K(T) values obtained with DQUANT are reasonable approximations only to

about 150 °C.

A correction factor was applied to some of the K(T) values generated with

DQUANT at temperatures higher than 150 °C. These factors were generated

either graphically by comparison with the K(T) values of similar complexes or

by generating AC° using K(T) values from 0° to 150 °C, then using them in P > r

equation (46). Even with the application of these correction factors, the

errors involved in the values of K(T) at temperatures higher than 200 °C are

large; this introduces large uncertainties in computations carried out with

SOUMINEQ.88 at these high temperatures.

(d) Values for K are available at two or more generally low

temperatures. Values for AH and AS are derived from this data using two

equations of the form:

56

Page 57: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

log K(T) 2.303RT - AHr ' TASr (49)

and solving for AH° and AS° algebraically. This method was used only when AC

could not be derived from available data. Values for K at higher temperatures

were calculated using Equation (48).

(e) Entropy was estimated by Arnorsson and others (1982) using

correlation plots of the known entropies of ions as a function of molecular

weight. Enthalpy was then calculated from the stability constant using

Equation (49).

(f) A value for K is available only at 25 °C; it was extrapolated using

the assumption that the curve of log K as a function of temperature is

parallel to that of a similar species.

(g) A value for K is available only at 25 °C; it was extrapolated using

Bryzgalin's method (Bryzgalin and Rafal'skiy, 1982):

298 72600 Z 1 -log K(T) - -^ (-log K(298)) + ^ ( - - 0.0128) , (50)

where

P ZCL

2a3

"PZC"

3 a

2 Q

2Z - LzczA - Qz^ + ~ < 51)

and

3L2 - 5L +2(52)x 8

e is the dielectric constant of water, a is the sum of the Goldschmidt radii

of the simple ions from which the ion complex is-formed, z , and zr are theA O

charge of the anion and cation, respectively, L is the number of ligands

(PbClo has three ligands), and p is polarizability. Where p was not known it

was assumed to be zero.

Equilibrium Constants at Desired Temperature

Values of log K for aqueous complexes and minerals at the desired

temperature are interpolated from data in Appendix 1 by the subroutine TLUV.

The interpolation of the log K values uses the cubic function:

Y = a + bX + cX2 + dX3 , (53)

57

Page 58: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

where X is the independent variable (temperature at which K values are

listed), Y is the dependent variable (log K values at the listed and specified

sample temperature), and a, b, c, and d are constants. This subroutine

calculates interpolated log K values between the reported intervals (25 °C

from 0-150 °C and 50 °C from 150-350 °C) that are in good agreement with the

original values.

Equilibrium Constants at Desired Pressure

The equilibrium constants (K) tabulated tin SOLMINEQ.88 are computed at

the vapor pressure of water. SOLMINEQ.88 has an option to compute the

solubility of minerals at a specified pressure using data tabulated in

Appendix IE. The pressure dependence of the equilibrium constant is given by

) T

where AV is the volume change of the reaction in the standard state. Values

of AV at higher temperatures and pressures for the dissolution reactions of

minerals can be obtained from the data of Helgeson and others (1978, 1981) and

Robie and others (1978). However, AV° values at higher T and P for the

dissociation reactions of most of the aqueous complexes are not available and,

therefore, Equation (54) cannot be used to calculate K values at higher

pressures for these complexes .

Correction of the solubility constants for pressure

Changes in the partial molal volume of aqueous species (V) and water with

pressure are the main contributors to the volume change in dissolution

reactions (AV ) ; minerals are assumed to be incompressible (Helgeson and

others, 1981). Data on the molal volume of water were obtained from Helgeson

and Kirkham (1974) . Values for the partial molal volumes of aqueous species

V. are sparse. They are calculated for the primary species using the data and

equations reported in Helgeson and others (198|1) and given by:

V .

a4iPT

58

w.Q , (55)

Page 59: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

where a, . is the intrinsic volume of species i which is independent of

pressure and temperature; w.Q is the volume of solvation, the component of

partial molal volume related to the orientation of water dipoles around the

aqueous species. The remaining portion of Equation (55) is the volume of

collapse, that is, the component of the partial molal volume related to the

collapse of the water structure in the vicinity of the aqueous species. The

constants a-.., a,-., a,,., and a,, are empirically derived; 0. is a constant; P

is in bars and T is in degrees K.

The pressure effect on the K values for minerals was estimated at 500 and

1,000 bars and temperatures of 100°, 150°, 200°, 300°, and 350 °C. The data

were fit to a curve with the general formula

log

KP

K A + Bt + Ct6 , (56)

where t is in °C, and the constants A, B and C were calculated for each solid

phase at 500 and 1,000 bars. The term Ct reflects the extreme changes in the

partial molal volume (and therefore in K values) which occur above 300 °C.

Values for the constants A, B and C for each mineral are listed in Appendix

IE.

The subroutine PCLOGK calculates solubility constants at selected

pressure (P) below 500 bars using the following interpolation:

A log K50QP

log Kp - log K + jog , (57)

and for pressures above 500 bars using:

Kl,000 - A1°S K500> (P ' 500) log Kp - log K + AlogK500 + < 58 >

The pressure correction is significant when the pressure is several

hundred bars or more, especially at temperatures above about 150 °C. For

example, in Figure 2 it can be seen that at 1,000 bars the solubility product

of anorthite is increased relative to saturation pressure of water by factors

of about 30, 300 and 100,000,000, at 100°, 250° and 350 °C, respectively.

59

Page 60: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

^o

10

8

050

0 Anorthite, 1kbar A Calcite, 1kbar n Calcite, 0.5kbar

150 250 Temperature (°C)

350

Figure 2. -- Effects of pressure on the solubilities of calcite and

anorthite. Note that the difference between the solubilities of

minerals at higher pressure and at vapor pressure of water

(A log K) becomes very large at temperatures higher than about 200°C

(Kharaka and others, 1985).

60

Page 61: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Correction of Dissociation Constants for Pressure

Values for the partial molal volume of most aqueous complexes are not

available at high temperatures and pressures and, therefore, equation (54) can

not be used to calculate K values at higher pressures. The pressure

dependence of K for aqueous complexes in SOLMINEQ.88 is obtained by the method

of Marshall and Mesmer (1981) , in which K at pressure P is given by:

AV(T) p(P)

In K(P) = In K(S) - -- In () , (59)

where K(S) is the value of K at saturation water pressure and p is either the

density of water at pressure (P) or at saturation vapor pressure of water (S) ;

ft is the coefficient of isothermal compressibility of water at temperature T;

and AV(T) is the volume change of the dissociation reaction at temperature T

and pressure S. It has been observed that the heat capacity and, by analogy,

AV of "isocoulombic" reactions (reactions which are symmetrical with respect

to the number of ions of each charge type) is nearly independent of

temperature (Lindsay, 1980; Murray and Cobble, 1980). Thus, Equation (59) can

be used with the 25 °C value of AV if the reaction is "isocoulombic", or is

made so by the addition or subtraction of the dissociation reaction for water.

For example, the dissociation reaction of the aqueous complex H-CCL:

H2CO° = HCO^ + H+ (8)

can be written in the isocoulombic form as:

H2CO° + OH" - HCO^ + H20 (9)

by combining reaction (8) with the ionization reaction of water

H20 = H+ + OH" . (10)

The equilibrium constant at higher pressures for (8) can be obtained from

In Kg (P) = In K9 (P) + In KIQ (P) , (60)

and

n p(P) In K9 (P) T = In K9 (S) T - In ( - ) , (61)

where n = AVg (S) - AV1() (S) at 25 °C.

Values of AV^g(S) and of K-Q at higher temperatures and pressures are

well known and are incorporated in SOLMINEQ.88. Values of AV for dissociation

61

Page 62: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

reactions even at 25 °C and saturation pressure are poorly known; however,

they can be estimated from methods based on the electrostatic theory (Hemmes,

1972; Hemmes' method Is based on the Fuoss (1958) equation), or empirical

correlations (Millero, 1972; Swaddle and Mak, 1983). The AV values of

dissociation reactions for 48 complexes used in SOLMINEQ.88 have been obtained

either from available experimental data, or by estimation based on one of the

above methods. They are tabulated in Appendix IF together with the number of

water ionization reactions that must be added to convert the dissociation

reaction or the complex to an "isocoulombic" form. The specific equations

used to generate the data in Appendix IF and the original sources are detailed

by Aggarwal and others (1989).

The dissociation constants generally increase with increasing pressures

leading to an increase in the activity of the dissociated species and a

decrease in the activity of the complexes. The increases are relatively high

for the complexes of carbonate, bisulfide, ammonium and acetate species. The

increase in the activity of dissociated species when the pressure effects are

taken into account generally leads to reduced solubility products for

minerals. In the case of calcite, for example, the increase in solubility

shown in Figure 2 are reduced by more than a factor of 2 when the pressure

effects on the dissociation of carbonate and calcium complexes are taken into

account (see Aggarwal and others, 1989, for more details).

62

Page 63: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

MODELING OPTIONS

SOLMINEQ.88 uses the chemical analysis of an aqueous fluid to calculate

speciation-solubility relations at a given temperature and the vapor pressure

of water or at a higher temperature and pressure with (1) a constant mass or

with (2) a transfer of mass (Figure 3). The mass transfer options include:

(a) addition of the gases, C0« , H^S, NH~, CH,, which may have

been lost prior to pH measurement,

(b) partitioning of the gases C02 , H^S, and CH, between water,

oil and/or gas phases,

(c) mixing with a second solution,

(d) dissolution/precipitation of a given amount of a mineral;

this may be continued to saturation with this or another mineral,

(e) addition or subtraction of a given amount of one or more

components of solution; this may be continued to saturation

with a selected mineral,

(f) boiling (formation of steam coupled with loss of volatiles

into the steam), and

(e) ion exchange and adsorption.

Calculations with a Constant Mass

The calculations with a constant mass can be carried out at a given

temperature as well as at the subsurface (or experimental) temperature. These

calculations can be performed with six options: (i) carbon; (ii) high-

temperature carbon; (iii) pH; (iv) one or two additional (user defined)

anions; (v) one additional cation; and (vi) one to five additional minerals.

Carbon Option

At a given pH, the distribution of carbonate species requires a value for

any one of the following: (i) total inorganic carbon (TIC); (ii) bicarbonate

and/or carbonate alkalinity (ALK); or (iii) total alkalinity (ALKTOT).

TIC, the sum of the concentrations of all aqueous species of inorganic

carbon, is given as:

63

Page 64: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Read input data /

Interpolate log K(T)

Calculate pressure correction

Calculate molallty. Eh, cation-anion balance

Calculate activity coefficients

Print molalities, activity coeffs, etc.

Subsurface temperature

COj/lost gases option

Gas distribution option

Ion exchange/adsorbtion option

Ratios and geothermometers option

Calculate saturation indicles

/ Print saturation indicies

Dissoiution/preci pitatlon

Figure 3. -- Flow Chart for SOLMINEQ.88

64

Page 65: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

mTIC " "^CO* + S ^CO- + S mCO-- , (62)

where the summation covers the species and complexes of the summed species .

ALK, the sum of the equivalents contributed to the alkalinity titration

analysis by all the bicarbonate and carbonate species, is given as:

+ 2 2m - (63)

ALKTOT specifies that in addition to HCO.," and CO~I species, other inorganic

and organic species (e.g., Al(OH) ~ Ba(OH) + , CH-COO") were also titrated

during the alkalinity determination, and is given as:

ALKTOT - S m^- + S 2mCQ -- + S m^CM' + mBaOH+ + '" ' (64)

The carbon option in SOLMINEQ.88 is used to specify the criterion (TIC,

ALK, or ALKTOT) for the distribution of carbonate species. The choice of any

one of these criteria depends on the nature of the chemical analysis

available. The other two are calculated and all three are printed in the

output .

High -Temperature Carbon Option

When a value for TIC is available, the distribution of carbonate species

at a higher temperature is performed with a constant TIC. However, if a value

for only ALK or ALKTOT is available, two alternatives exist for the

distribution of carbonate species at high temperature: (a) constant alkalinity

(ALK or ALKTOT) or (b) constant TIC. The value of TIC used at high temperature

is calculated at the end of the low- temperature species distribution. If the

high temperature calculations are carried out with a constant alkalinity, the

resulting value of TIC in the solution may be significantly different from

that at the low temperature because of the shift in carbonate equilibria with

temperature. Similarly, a constant TIC at high temperature may result in a

change in the value of calculated alkalinity.

pH Option

This option is most useful when the pH of the solution was not determined

or may be in error, and the water is known to have been in equilibrium with a

carbonate mineral. Formation water in reservoir rocks are often in

equilibrium with calcite at depth; thus, this option can be used to calculate

65

Page 66: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

the pH of this water. If it is known that the solution was in equilibrium

with calcite, dolomite or siderite, then SOLMINEQ.88 will adjust the pH of the

solution until log(AP/K) of the specified mineral is less than or equal to

0.05 (or to a value defined by the user - FSAT).

The equilibrium pH is guessed by SOLMINEQ.88, the distribution species is

calculated, and the saturation index (SI) of the desired mineral is

calculated. The SI is calculated in terms of the most abundant species of

C0«, that is, the SI will be calculated accbrding to one of the following

reactions:

MCOa/ N + 2H+ -* M** + H0CO° , (11) 3 (s) *- L j

MCOa/ N + H+ -» M++ + HCO" , (12)3(s) «- J

MCO,, N -> M++ + CO," , (13) 3(s) <- 3

where MCO« (s) is either of the carbonate minerals, calcite or siderite, and M

11 i I

is Ca or Fe , respectively. If saturation with dolomite is specified;

reaction (11), for example, is written as

CaMg(C03 ) 2 + 4H+ 2 Ca++ + Mg++ + 2H2CO° . (14)

If the SI is not within the tolerance limit (0.05 log units or a value defined

by the user), the pH is adjusted. The initial adjustment is determined

through the use of reaction (11), (12), or (13). Subsequent adjustments

increase either the size or direction of the pH step until the SI sign

changes. Once this occurs, an interpolating polynomial in SI and pH is

repeatedly used to obtain new values until the FSAT criterion is satisfied.

Mineral saturation using the pH option is attempted within the pH limits of

0.0 and 14.0. The pH option is calculated after the initial distribution of

species, and before the "HITEMP" calculation.

Additional Anions Option

SOLMINEQ.88 is particularly useful for modeling water-rock interactions

in sedimentary basins where aqueous organic species may be present at high

concentrations (up to 10,000 mg/L) (Figure 4) and can play an important role

in these interactions. The total number of possible aqueous organic species

is extremely large and it is not possible or even useful to incorporate all of

them in this code. However, recent work (Cdrothers and Kharaka, 1978; Kharaka

and others, 1986; Lundegard and Land, 1986; MacGowan and Surdam, 1988) has

66

Page 67: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

10,000

5000

1000

500

«£ 100

50

Zone 1

JT

I + I ll

Zone 2

O

O

O

EXPLANATION

O Texas (Oligocene) California (Miocene to Cretaceous) A Alaska (Permian to Triassic) + Texas (Pleistocene)

J___I

Zone 3

60 80 100 120 140 160 200 220 Subsurface Temperature (°C)

Figure 4. -- Distribution of organic species in oil field waters from

United States of America. Note that the highest concentrations

are in waters from reservoirs at temperatures of 80 e C to 100°C.

67

Page 68: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

shown that acetate, oxalate and succinate are the dominant organic species in

oil field waters. These ligands and their complexes are incorporated in the

code.

SOLMINEQ.88 has an option to add two user-defined organic ligands to the

above three. This option is included because a total of five organic ligands

is probably adequate to examine the role of organics on inorganic interactions

in any natural-water system. The number of organic ligands examined can be

increased as desired by making several runs of the program with the same input

except for changing the list of the user-defined organic ligands in each run.

This option has also been included because ii: is anticipated that potentially

important new aqueous organics will be discovered in natural waters as better

methods of sample preservation and analysis are used (Kharaka and others,

1986) and as more systems are studied.

The equations necessary for distribution of these user-defined ligands

and their complexes with 14 inorganic cations are incorporated in SOLMINEQ.88.

These ligands and their complexes are already included in the equations that

compute titrated alkalinity and total hydronium. The ligands can have a

charge of -1 to -4. Table 5 gives the identification number and the list of

possible cations that may form complexes with these ligands. The dissociation

constant for each complex must be supplied by the user. Otherwise, the

complexes are treated as being unstable. In the case of Na-Anion #1, for

example, the dissociation reaction, assuming 2 charge for the ligand, is

Na-Anion #1 (1 ~ 2) + Na+ + Anion #12 (15)

The input subroutine to this code (see INPUT) prompts the user to provide

the dissociation constants and other data necessary to implement this option.

Additional Cation Option

This option allows the user to study speciation-saturation states of one

(during any one simulation) user-defined cation that is not in SOLMINEQ.88.

As in the case of additional anions, all the equations necessary for the

distribution of this cation and its complexes with all the anions (including

the user defined anions) in the code are incorporated in SOLMINEQ.88. Again,

the input subroutine to this code prompts the user to provide the

dissociations constants and other data necessary to implement this option.

68

Page 69: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 5 Index numbers of user-defined anions and cations

and their complexes

1)2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

Anion#l

H+ - Anion#l

2H+ - Anion#l

Al - Anion#l

Ba - Anion#l

Ca - Anion#l

Cu - Anion#li i

Fe - Anion#l

K+ - Anion#l

Mg - Anion#lII

Mn - Anion#l

Na - Anion#l

Pb - Anion#l

Sr - Anion#l, ,

Zn - Anion#l

H+

2H+

Al+3

Ba++

Ca++

Cu+

Fe++

K+

Kg4"1"

u ++Mn

Na+

Fb^

Sr++

Zn++

Anion#2

- Anion#2

- Anion#2

- Anion#2

- Anion#2

- Anion#2

- Anion#2

- Anion#2

- Anion#2

- Anion#2

- Anion#2

- Anion#2

- Anion#2

- Anion#2

- Anion#2

Cation

Cation

Cation

Cation

Cation

Cation

Cation

Cation

Cation

Cation

Cation

Cation

Cation

Cation

- Cl"

4

- HC03

- OH"

- P04 3- F"

- CH3COO"

- CO^"

- HS"

- C2°4"

- C.H.O"444

- Anion#l

- Anion#2

69

Page 70: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Additional Minerals Option

SOLMINEQ.88 has 220 minerals in its data base. This number can be

increased as this option allows the user to include up to five new minerals

during any simulation. This option also can be used to input data for

minerals present in the code in order to investigate the geochemical

implications of using solubility constants that are different from those in

the existing data base. This option should prove particularly useful in the

study of the interactions of minerals with variable chemical composition

(solid solutions). If the solubility constants for the end members are

available in Appendix 1C, the user can calculate the solubility of the impure

phase assuming ideal mixing, then use the calculated values in the input for

this option. The solubility constant for an ideal binary solid solution (K.)

is given by:

log K.^ - Xlogl^ + (l-X)logK2 + XlogX + (l-X)log(l-X) (65)

where K, and K,, are the solubility constants for the end-member minerals and X

and (1-X) are the mole fractions of these end members in the phase. Most

solid solutions, it should be noted, require a more rigorous treatment and

additional parameters to calculate their solubility constants (Navrotsky,

1987).

The reactions for the congruent dissolution of optional minerals are

completely general and may involve up to eight of the aqueous species in Table

6 together with a numerical constant. The numerical constant is included in

the solubility reaction to simulate the effects of one or more aqueous species

not present in Table 6 or in the user defined anions or cation. The input

subroutine to SOLMINEQ.88 prompts the user to provide the solubility constants

and the aqueous species and their stoichiometry to implement this option.

70

Page 71: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Calculations Involving Mass Transfer

Addition of Lost Gases

During sampling of subsurface fluids, volatiles (including CO^, H2S, NH3 ,

and CH, ) may be lost before the solution pH is measured. These gases can have

a significant impact on the calculated, in- situ pH of the solution and must be

included in the analyzed composition of the fluid. Three options are

available in SOLMINEQ.88 which can be used for titrating the lost gases back

into the solution (Figure 5): (a) gas-water option, (b) gas-water-oil option,

and (c) C0» option.

(a) Gas -Water Option: this option is used when the amount of lost gases

is known. The amount of a gas lost is added to the total concentration of its

constituent component in the water and an equivalent amount is added to the

summation of hydronium ions in the water as:

TIC - TIC + m_n (66) C02 (lost)

Lln>J

"m^

(Sm

, U flniJ i U

t " "H t ', U J , U

^ - Sm _) -

2

- »NH3

(Sm _,_ -

(lost)

(lost)

Sm

- - ,. . ,. ^ (68)3,t 3,t 3 (lost)

and

) + 2m + 2m^ - m^ (69) H OH' H OH' C02 ^2S 3

where the final (f) and initial (i) summations cover all the species with H

and OH . Methane, pf course, does not affect the hydronium balance.

(b) Gas-Water-Oil Distribution Option: samples of oil-field waters for

chemical analysis are generally collected after they have been separated from

the oil phase. During the separation process, a gas phase (commonly containing

C02 and CH, , but sometimes with H»S) is also produced which may consist of

gases derived from one or more of the three subsurface phases: oil, water, and

natural gas. Because dissolved C02 gas has a significant impact on the in

situ pH of the water, it is important to know the distribution of gas between

the three phases in the in situ environment. The Gas -Water-Oil distribution

option in SOLMINEQ.88 has been designed to perform such calculations. The

necessary equations for equilibrium distribution of gases between oil (o) ,

71

Page 72: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Speciation calculationsat the final temperature

(well-head or in-situ)

To Si - O(Calcite/Siderite/

Dolomite)

CO2 /H 2S/CH 4 into water and oil

Speciation-solubility calculations

Figure 5. - - Flow chart for calculations with addition of gases to

water and oil.

72

Page 73: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

water (w), and natural gas (g) are as follows:

P P Pr r>r\ ril U CC0 9 OH 4 H 9 b, 2 . , = 4_ . ^ = ± (70)KC09 ,w mm TT ' KCH w m ' *H«S,w m^ '2 C0 0 ,w 4 CH,,w z H Q b,w

P P P

^C00 CH. H9 S= - k = - k. = - (71)

C02'° mC02 ,o' CH4'° mCH4 '°' 2S '° V'°

- Cm + m + M ' < 72)

M = Pm + m + M (74-) n9 S,t H9 S,O n9 S,W n9 S,g

W

c - w~ > (75)w

M M M.. M,. C02' s = CH4' S _ 112 S>S = 1!20>s , (76)P P P PH

Pt = PCH + PCO + PH S + PH 0 ' ^ 77)

where k is the Henry's law coefficient for the solubility of the subscripted

gas in water or oil, m is the molality, M is total moles of a gas, C is the

weight ratio of oil (W ) to water (W ), and P is the reservoir pressure.

Note that the Henry's law coefficients are expressed in the molality

convention (moles of gas/Kg of water or oil) and not in the mole fraction

convention (moles of gas/mole of fluid) because the term mole cannot be

applied to oil which is a heterogeneous mixture of many compounds. The above

equations are derived with the assumption that all gases (C09 , CH4 , H9 S, H9 0),

and their mixtures, behave as ideal gases (i.e., fugacity coefficients = 1).

The Henry's law constants for the water phase are calculated from

Drummond's (1981) equations described in the section on the activity

coefficients of neutral species. For the oil phase, the constants must be

obtained and entered by the user. The user can calculate the Henry's law

3 constants for oil (density range of 0.63 to 0.90 g/cm ) using the data

(Figure 6) and equations summarized by ASTM (1985) and reported in Beerbower

(1980). The density of oil at 15 °C («60 °F) in kg/L or its API gravity at 15

°C must be known by the user.

73

Page 74: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

10.0p

0.0150 100 150

TEMPERATURE. 0 C

200 250

Figure 6. -- Solubility constants of selected gases in oil

(density - 0.85 g/ml at 15°C) modified from ASTM (1985)

74

Page 75: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Water samples are commonly collected from the test separator. If the

separator pressure is greater than 1 atmosphere some dissolved gas will be

lost during water sampling. To compensate for this, an additional SOLMINEQ.88

run must be made to equilibrate the water with the separator gas phase at the

separator pressure by titrating C02 , H2S and CH^ back in. The concentrations

of C02 , H2S and CH, in the water must be calculated from equations (70-77).

The C02 and H2S options are then used to equilibrate the separator water at

the separator pressure for the separator P-,A and P c . The user must thenUUrt HrjO

enter the modified m., c , nuu , TIC and pH into SOLMINEQ.88, and activatesrlrtO , w *- "/. » w

the water-oil-gas distribution option which calculates the distribution of

gases at reservoir pressure and temperature assuming that the gas phase in the

separator was derived from only two phases, water and oil. If this assumption

leads to the condition

PCH4 + PC02 + PH2S + PH20 > Pt ' < 78)

then the third phase, vapor, is included in the distribution calculations.

Once the pH and the distribution of the aqueous species are determined,

SOLMINEQ.88 calculates the concentration of the volatiles in the water, oil,

and vapor phases by simultaneously solving equations (70) to (77). At this

point a check is made on the mass balance of the volatiles (including all

their aqueous complexes). If not satisfied, the TIC, total H~S and/or total

CH, in the water are adjusted in the correct direction. A new pH and

distribution of species is calculated. This cycle is repeated until mass

balance is achieved.

(c) C02 Saturation Option: this option can be used for a variety of field

and experimental conditions. In many cases, the amount of CO^ lost from a

subsurface fluid is not correctly known. However, it may be known that the

fluid was in equilibrium with calcite, dolomite, or siderite. The CO,, option

can be used to determine the amount of C0~ required to achieve saturation with

the specified mineral and thus the subsurface pH of the solution. Another use

of the C0« option is in the case of certain experiments where the amount of

C02 exsolved between two pH measurements is not known; the C0« option can be

used to determine the amount of C0« lost. A third use of the C09 option is in

75

Page 76: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

calculating the pH and distribution of species in experimental solutions where

the experiments were carried out at a constant PCQ . In some such cases, the

pH of the solutions cannot be measured at the imposed pressure of CCU.

However, it can be calculated using the C00 -option to achieve a specified P_n2. LU2

or m,. ^ in solution.«.-

The algorithm used for the C00 option is similar to that used in the pH

option. The equilibrium test (FSAT) is formulated as one of the following

relationships :

FSAT - PH - PH (calculated) - (79)

or

FSAT - mH2Co3 (desired) " "^CC^ (calculated) (80)

orF<>AT = P - P (R"\ }

C02 (desired) C02 (calculated) ^ '

or

FSAT - Saturation Index (SI) (calcite/siderite/dolomite) . (82)

The saturation index of one of the carbonate minerals is calculated using the

most abundant species of CCU , as discussed earlier in the pH option.

CCU is incremented, species distribution is recalculated and convergence

is achieved in the aqueous model and on hydronium mass -balance. If the

absolute value of FSAT is increasing, the step size or direction is modified

such that the absolute value of FSAT decreases. Once the absolute value of

FSAT is decreasing, step size is increased until FSAT changes sign. The value

of FSAT and total CCU are then fit with a polynomial in order to interpolate

to a new value of FSAT. This process is continued until FSAT is less than the

user defined limit (default value = 0.05 log units).

76

Page 77: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Boiling Option

SOLMINEQ.88 may be used to predict the changes in solution composition

and the saturation states of minerals as a consequence of boiling. There are

two major effects of boiling:

1. Loss of steam.

2. Loss of gases such as C09 , H«S, and NH-.

The loss of steam can be simulated by subtracting pure water of neutral

pH from the solution. This is accomplished by multiplying the molality of

each of the species and (Sm -Sm ) by the factor 1/(1 - X) where X is theH OH"

fraction of water removed by boiling; and is given by

WH90,v XfO.v X = = ~ , (83)

WH20,t ^O,^ + ^O.v

where n = is the number of moles and W - the weight of water in the vapor (v) ,

liquid (/?), and total (t) system, respectively.

If the P-V-T relationships of all the gases are known, the amount of each

gas lost due to boiling can be calculated. The partitioning of volatiles CO^ ,

CH, , NH.,, and H^S is calculated following Drummond (1981) by making use of the

volatility ratio, VR. For example, VR for C09 is calculated from:

VRCO - ; Z RT (84) LU2 *C02 C02 R L

fcowhere k,. is the Henry's Law constant given by 2 .

mco2

and vX 0 is the specific volume of water vapor, and x a*id Z are the fugacity

coefficient and compressibility factor of C09 , respectively. In the

calculation, the product *Z is set equal to 1.0 which is a reasonable

assumption at relatively low pressures. The VR is defined by:

77

Page 78: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

n

VR.CO, n

CO, i£ CO,

n

v "H20 n

CO, i £ CO,

d-X)

X(85)

where n - number of moles of C02 or 1^0. Normalizing to 1000 grams of H20

(i.e., assuming that 1,000 grams of EJQ are present in each of the liquid and

vapor phases), equation (85) becomes:

mCO,VR -

mCO,

(86)

where m is molality.

The boiling calculation is based on a system containing 1000 grams of

water. Therefore the mass balance equation for CO^ becomes

mCO,= n

CO,£ _,_ vnco2+ nco2 (87)

where the superscript i refers to the molality or number of moles before any

boiling occurs. For a given fraction of water, X, removed by boiling,

equation (85) may be combined with equation (87) to give:

VRCQnCO, VRco2+ (88)

SOLMINEQ.88 solves for the partitioning of volatiles by estimating from

equation (88) the amount lost to vapor. Because the effect of a change in pH

£ £ is to increase or decrease the amount of n_Q or n~. by reactions such as:

and

H+ -

OH

(16)

(17)

SOLMINEQ.88 then utilizes an iterative scheme

total concentration of the volatile components in water (i.e. TIC);

calculating the new pH and aqueous species distribution; and repartitioning

the volatiles between vapor and liquid until

by increasing or decreasing the

the mass balance for volatiles in

both phases (including all aqueous species) is achieved.

78

Page 79: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Mixing of Two Solutions Option

SOLMINEQ.88 has an option to mix two solutions in specified proportions

(by weight) at constant or varying temperature. Mixing is performed based on

analytical molalities. The mass-balance criteria for the mixture are

formulated as follows:

2m. (mixture) - X, 2m. ., + X2 2m, « , (89)

(2m - 2m )mixture - X,(2m - 2m ).. + X«(2m - 2m )« , (90) H OH" H OH" H OH"

where m. is the analytical molality of the species of the ith element and X-

and X« are the proportion of water (by weight) in which solutions 1 and 2 are

to be mixed. The carbon mass-balance in the mixture is carried out using the

TIC option.

Dissolution/Precipitation Option

The dissolution/precipitation option in SOLMINEQ.88 can be used to carry

out the reactions listed below.

1-Dissolve/precipitate a given amount of mineral;

2-dissolve/precipitate a mineral to saturation;

3-dissolve/precipitate a mineral to saturation with an other mineral;

4-add/subtract aqueous components to saturation with a mineral; and

5-add/subtract components from a congruent, incongruent, or net

reaction. Reaction may follow a kinetic rate law.

This option allows the user to titrate in (or out) a specified amount of

aqueous components (see Table 6) (or of a titrant mineral) to (or from) the

aqueous solution. The amount to be titrated may be specified by the user in

moles of component per kilogram of solution. Alternatively, the amount may be

determined by adding or subtracting the aqueous components (see Table 6) (or

titrant mineral) until saturation is reached with any of the 214 minerals in

the database of SOLMINEQ.88.

If a mineral is specified to be dissolved/precipitated, equilibration is

achieved by dissolving (if the titrant mineral is undersaturated) or

precipitating (if the titrant mineral is supersaturated) the titrant mineral.

A series of reaction steps (i.e., moles of components or titrant mineral),

initially based on the concentration of the least abundant component of the

79

Page 80: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 6 List of aqueous species components

No.

1

4

7

10

14

18

23

27

30

33

136

246

Species

C.++

K+HCO~

HoOA1+3

FeMn"^

Z

F

n

H2S(aq)

N03

C2°r

No.

2

5

8

12

15

21

25

28

31

48

169

265

Species No.

Mg^ 3

cr 6H+ 9

SiO? (aq) 13

Ba 16

Hg"^ 22Pb"1"1" 26

H2AsO~ 29

H3B03 (aq) 32

CH3COO~ 98

U02 210

C.H.O" 285 444

Species

Na+SO''

OH"Ag+

Cu+

Li+

Sr"1^

4NH3 (aq)co"

-3 V04

CH4 (aq)

The species numbers in the input refer to the index

number of selected species in the data file which

are organized above. The species (with the excep­

tion of H and OH ) are those normally entered in

the input data file for SOLMINEQ.88, and are the only

species allowed to be used in the dissolution/

precipitation options and ion exchange/adsorption

options. For the ion exchange/adsorption options,

vacant surface site is assigned the number zero.

Presently moles of H^O is fixed in the program at 1

kilogram.

80

Page 81: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

mineral to be saturated and its degree of departure from equilibrium (eg.

saturation index, SI), are executed in order to find an interval where the SI

changes its sign. An interpolating polynomial technique is then used to find

the amount of mineral to be dissolved/precipitated for which SI is

sufficiently close to zero.

It is not always possible to achieve saturation with a mineral. Suppose

the user wished to dissolve/precipitate gibbsite to1 reach saturation with

kaolinite. If the SI of gibbsite is negative, it can only be dissolved.

Dissolving gibbsite will increase the SI of kaolinite. If the SI of kaolinite

is already positive, it will steadily increase as more gibbsite is dissolved

into the aqueous phase. Clearly the SI of the kaolinite must be negative in

order to reach a possible solution.

A mixture or solid which is not in the database can be titrated in and

out by specifying its components (listed in Table 6) . In this way a congruent

or incongruent reaction can be followed. The reaction may be a simple one

involving one or two minerals and aqueous components ; or it may be the sum of

several reactions (a net reaction) involving several minerals and aqueous

components. The simple or net reaction may follow a rate law (user defined)

which allows the knowledgeable user to compute changes in composition through

time and/or space. The mass -balance criteria are formulated as:

Smi,t" S(mi,soln +Ami,j ) (91)

(Sm - Sm ). - (Zm ^ - Zm ) .. + (Zm , - Zm ) . . . , (92) H+ OH' * H+ OH' soln H+ OH' added

where m. is the analytical molality of the species of the i element. Am. .

is the molality of the jth species of i element to be added to the solution.

To illustrate the use of this option for a congruent reaction of a mineral not

in the database, let us consider the dissolution of one mole of clinochlore

g ( .) according to the reaction:

+ 16H+ - 5Mg++ + 2Al+3 + 3HSiO° + 6H0 . (18)

For every mole of clinochlore dissolved, 5 moles of Mg, 2 moles of Al,

and 3 moles of silica will be released and 16 moles of hydronium will be

81

Page 82: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

consumed. The net hydronium balance of the solution will be decreased by only

4 moles of hydronium because H,SiO? is included in the hydronium summation.

Thus, the mixture would have the following constraints on the mass-balance

that will be different from the original solution:

mAl,t = mAl,soln + 2 ' (93)

, soln+ 5

0 . ^_ ~ m_ . n + 3 Si,t Si, soln

(94)

(95)

(2m , - 2m ). - (2m , - Sm ) , - 4 /Qfi ^ H+ OH" C H+ OH-"*11 ' (96)

Note that the hydronium balance is decreased only by 4 because 12 of the 16

moles of hydronium lost will be added back by H.SiO,.

If a mineral in the database is specified, SOLMINEQ.88 automatically

determines the component stoichiometry to be added to the solution, saving

time for the user.

Ion Exchange and Adsorption Option

Surface chemical processes can be simulated in SOLMINEQ.88 using two

models: ion exchange and a preliminary adsorption option. The ion exchange

model treats the exchange of cations or anions on a constant charge surface;

the adsorption model simulates the exchange process on a surface where the

surface charge is developed due to the ionization of surface sites at the

solution-surface interface. The major distinction between the two models is in

the treatment of the activity of aqueous species on the surface. In the ion-

exchange model, the surface activity of aqueous species is considered to be

the same as in the bulk solution. For the adsorption model, an electrical

potential term is used to calculate the surface activity from the activity of

the species in the bulk solution. Excellent discussions of the ion exchange

and adsorption processes are given in several references (Hohl and others,

1980; Westall, 1980; Westall and Hohl, 1980; polt, 1982; James and Parks,

1982; Sposito, 1982) and the user should read these articles to understand the

limitations inherent in modeling surface chemical processes and to obtain

values for the selectivity constants to be used for modeling.

The ion exchange and adsorption models in SOLMINEQ.88 are completely

general and can be used to simulate the interaction of any of the aqueous

82

Page 83: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

species in the data file (Appendix IA) through the use of the appropriate

components (Table 6) . A maximum of 10 aqueous species (components) may be

selected for each run to interact with a single surface of constant or varying

charge. It is assumed that the activity coefficients of surface functional

groups (X or SO") and surface species (e.g. NaX or SONa) are equal to one.

The ion exchange process, for example for a surface with no vacant sites and

of constant charge exchanging with Na, Ca, and K, is given by the following

reactions :

Na++ KX = K+ + NaX , (19)

2Na++ CaX - Ca++ + 2NaX , (20)

where X represents a surface site. These would be specified to SOLMINEQ.88

using the following three association reactions:

X" + Na+ = NaX , (21)

X" + K+ = KX , (22)

2X~ + Ca++ = CaX . (23)

The cation exchange capacity (CEC) is the sum given by:

CEC = NaX + KX + 2CaX2 , (97)

and is expressed in meq/kg of the solvent. The CEC is given by:

AN 1000CEC (meq/kg) = ̂ , (98)

A

where A is total area of the exchanging surface per kg of water, N is the-L O

number of sites per unit area of the surface, and N. is Avogadro's number.f\

The equilibrium constants for reactions (21), (22), and (23) must sum to the

equilibrium constants for reactions (19) and (20) . They can be combined with

equation (98) to solve for the concentration of surface and aqueous species by

using an iterative technique similar to that used for the distribution of

species .

The adsorption model in SOLMINEQ.88 is based on the Gouy-Chapman theory

following Healy and White (1978) for the distribution of charge and potential

at the solution- surf ace interface, which states that:

OQ + ad = 0 , (99)

where a is the charge density at the surface (o) or in the diffuse layer made

up of coions and counterions (d) . To illustrate the implementation of the

Gouy-Chapman model, let us consider an amphoteric surface with ionizable

83

Page 84: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

surface sites, SOH, in an NaCl solution. The intrinsic ionization of these

sites is given as:

SOH,

SOH

SOH + H

SO + H

and the specific adsorption of ions as:

SOH + Na

SOH + H

SONa H

Cl" - SOH0C1 s 2

where the subscript "s" refers to the surface ions. The relation between the

activities of ions in bulk solution and surface is given by

(24)

(25)

(26)

(27)

a exp(-z«Y ); Y aq rv o 7 ' o /cT (100)

where a is the activity of an ion in the bulk solution, z is its charge, e aq

is the electron charge, ^ is the surface potential, K is Boltzman's constant

and T is the temperature in Kelvin. The mass-action equations for (24) to

(27), with the surface concentration described by equation (100), are:

K24 "ESOH * V

ESOH+ (101)

'so' V_________S_

25 ESOH(102)

ESONa°

ESOH ' aNa+s

(103)

Now,

K

ESOH2C1°

27 V - ESOH ' acrs s

(104)

(105)

84

Page 85: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

LIMITATIONS OF GEOCHEMICAL MODELING

Geochemical models are extremely powerful and useful tools for

understanding the processes of water-rock interactions and predicting their

consequences. However, uncertainties involved in computations carried out

using SOLMINEQ.88 and similar computer codes should be recognized by all

users. Major uncertainties may be imposed by the amount and quality of

thermochemical and other data used to calculate the equilibrium constants (K)

for the dissociation of complexes and dissolution of minerals. Uncertainties

in the computed activity coefficients of aqueous species are probably less

severe except for those species (including aluminum and carbonate) that have

no published Pitzer coefficients in concentrated brines at high temperatures.

Usefulness of the results obtained is limited also by the completeness and

reliability of the reported physical and chemical parameters used as input to

the codes. It is also important to take the necessary precautions to insure

that the sample is "representative" of the water in a specified part of the

aquifer (Hull and others, 1985).

Physical Parameters

Accurate temperature and pressure values are needed to model water-rock

interactions, especially in deep sedimentary basins where these values may be

high. In these basins, oil and gas wells are the primary sources of

temperature data. Unfortunately, the accuracy of temperatures obtained from

oil wells varies widely (Meyer and McGee, 1985). Many operators do not

recognize the importance of temperatures in exploration and production of

petroleum and make no attempt to gather accurate data. Also, most

temperatures are obtained from wells during drilling when the temperature

distribution in the hole is under maximum thermal disturbance. The most

reliable temperatures are those obtained from static bottom-hole pressure and

temperature surveys generally conducted in production wells. Temperatures

obtained from drill-stem tests are of intermediate accuracy. However, the

majority of temperatures are obtained from electric log headings; these give

the least reliable data, and are generally lower than the true subsurface

values. Meyer and McGee (1985) showed that the discrepancy between log-header

and static bottom-hole test temperatures from the Wattenberg field, Colorado,

is large, ranging from 11 °C to 61 °C.

86

Page 86: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ESOH+ " ESO"a = - - | - - ~ ~ , (106)

SOH9 + SO + SONa + SOH,, Cl + SOH

where E refers to the equivalent fraction of surface sites occupied by the

species. The dominator of equation (106) thus is unity and a is the

fractional surface charge. Following Hunter (1981),

ad - {2e o e/cT Sni (exp(-Zi .YQ ) - 1)} 1/2 , (107)L

where n. is the number of ions of i per gram of the solution (n. l,OOONAm.;1. 1. A 1.

m. being the molality of each charged species inj solution), is the

permittivity of the vacuum, and e is the dielecdric constant of water.

Equations (99) and (101) to (107) are sufficient to uniquely solve for

the concentrations of the surface species in equilibrium with the solution at

a given pH, temperature and surface potential, ^». The calculation routine in

SOLMINEQ.88 satisfies equation (99) by iteratively changing the value of Y

until its sign changes. An interpolation polynomial is then used to solve for

the final value of Y .

85

Page 87: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Chemical geothermometers, based on the concentration of silica and

proportions of sodium, potassium, lithium, calcium and magnesium in water from

hot springs and geothermal wells, have been used successfully to estimate the

subsurface temperatures of the reservoir rocks (Fournier and Truesdell, 1973;

Fournier, 1981). Modified versions of these geothermometers and a new

chemical geothermometer, based on the concentrations of magnesium and lithium

(Table 7), were developed (Kharaka and others, 1985; Kharaka and Mariner,

1988) to estimate the subsurface temperatures (30 °C to 200 °C) in sedimentary

basins where water salinities and hydraulic pressures are generally much

higher than those in geothermal systems. SOLMINEQ.88 computes all the

chemical geothermometer listed in Table 7.

Quartz, Mg-Li, Mg-corrected Na-K-Ca, and Na-Li geothermometers generally

give concordant subsurface temperatures that are within 10 °C of the measured

values for reservoir temperatures higher than about 70 °C. Mg-Li, Na-Li, and

chalcedony geothermometers give the best results for reservoir temperatures

from 30 °C to 70 °C. Subsurface temperatures calculated by chemical

geothermometers are at least as reliable as those obtained by conventional

methods. Chemical and conventional methods should be used together where

reliable temperature data are required. The user then makes the selection of

the temperature to be used for the high temperature option in SOLMINEQ.88.

For more details see Kharaka and Mariner (1988).

Hydraulic pressure, as discussed earlier, is also an important parameter

that affects the equilibrium constants for the aqueous species and minerals,

especially at temperatures higher than about 150 °C. Assuming a hydrostatic

pressure gradient of 0.45 psi/ft (10.2 kPa/m) is generally reasonable for

petroleum wells immediately after drilling. However, in geopressured

geothermal systems, initial hydraulic pressure gradients may reach lithostatic

pressure gradient of 1.0 psi/ft (22.6 kPa/m). Production wells may have

hydraulic pressures that are much lower than the original (virgin) shut-in

pressure of the well. Accurate pressure readings at regular time intervals

are generally available from the operator and should be extrapolated or

interpolated to the time of sampling.

87

Page 88: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 7 Chemical Geothermometers in SOLMINEQ.88

(from Kharaka and Mariner, 1988)

Ge o the rmome t e r Equation

(Concentration^ are in mg/L; t in °C)

1. Quartz 13090.41 - log (k.pf)aH/SiO. 4 4

- 273.15 ;

pf - (1-7.862X105 e (3 - 61xl° ' t) p(bar))

2. Chalcedony 1032-0.09 - log (k^pf) - 273.15

3. Mg-Li 2200 - 273.15log (jMg/Ll) +5.47

4. Na-K 1180log (Na/K) +1.31 - 273.15

5. Na-K-Ca

6. Mg-Corrected,

Na-K-Ca

699

7. Na/Li

t

AtMg

log (Na/K) + 0 [log(JCa/Na) + 2.06] + 0.489

0 - 4/3 for t<100; - 1/3 for t>100

t c - AtM . For R values of 0.5 to 5. 5 Mg

1.03 + 59.971 log R + 145.05(log R) 2

- 36711 (logR) 2/T(K) . 1.67xl07 log (R/T2 );

- 273.15

For R values of 5 to 50

AtM - 10.66 - 47415 R + 325.87(log R) 2

- 1.032xl05 (log R) 2/T - 1.968xl07 (log R) 2/T2

+ 1.605xl07 (log R) 3/T2 ;

No correction should be attempted if R > 50.

Me_________R -

t -

Mg + 0.61 Ca + 0.31 K 1590________

log (Na/Li) + 0.779

100

- 273.15

88

Page 89: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Chemical Analysis

Chemical data may be a major source of uncertainty in the computation of

water-rock interactions. Uncertainty may result from:

1. Incomplete analyses. Chemical data collected by oil companies from

wells drilled in search of, or for production of oil and gas are plentiful but

almost always inadequate for these computations because data are available

only for a limited number of major cations and anions. There are very few

analyses of trace constituents from oil-field or geothermal waters. A major

problem of almost all chemical data is the paucity of Al determinations that

are essential for computing the states of reaction of water and

aluminosilicates. Barnes (1975) showed that Al concentrations in natural

waters at near-neutral pH values are generally less than 57 micrograms per

liter (/zg/1). Analyses of Al in oil-field and geothermal waters give values

that are generally less than 20 /zg/1 (Kharaka and others, 1985).

Concentrations of this magnitude are difficult to determine reliably and some

possibility exists that a portion of Al may have precipitated from water prior

to sampling (MacGowan and Surdam, 1988).

Another major limitation of many chemical analyses is lack of data on the

concentrations of dissolved organic species (Thurman, 1985). It is now

generally accepted that mono- and dicarboxylic acid anions may be present at

high concentrations (up to 10,000 mg/L) in waters from sedimentary basins

(Carothers and Kharaka, 1978; Kharaka and others, 1986; MacGowan and Surdam,

1988). Detailed studies of organic species in oil field waters were initiated

(Willey and others, 1975), to a large degree, because computations using

SOLMNEQ (Kharaka and Barnes, 1973) had shown that oil field waters at

Kettleman North Dome, California, were supersaturated by up to 3 kcal/mole

with respect to calcite (Willey and others, 1975; Merino, 1975). Willey and

others (1975) showed that the high supersaturation resulted because the

alkalinities of the waters were attributed only to inorganic species (mainly

HCO" CO" and HS"). They further showed that organic acid anions (C ? - C,.)

contributed up to 99 percent of the measured alkalinities. Carothers and

Kharaka (1978) and Lundegard and Land (1986) showed that up to 100 percent of

field determined alkalinities in oil field waters are contributed by organic

species (Figure 7).

2. Unreliable chemical analyses. The reliability of many chemical

analyses is uncertain because of the method of sample collection, treatment,

89

Page 90: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

VO o

OP 0>

-JC

ON

CE

NT

RA

TIO

N (

mg/

L)

Page 91: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

and analysis (Hem, 1985). Values of pH, alkalinity, H2 S, and NH3 not

determined in the field are always suspect (Presser and Barnes, 1974; Lico and

others, 1982). Field treatment of the samples should include filtration

through a 0.1 or 0.45 jum pore-size membrane filter for the major cations,

anions, and organics and, in the case of cations, acidification with

concentrated HC1 to pH of about 2. An aliquot of the filtrate is diluted with

distilled deionized water to decrease the silica concentration to less than

100 mg/L to prevent polymerization. Aluminum should be extracted in the field

after filtration through a 0.1 jum filter (Barnes, 1975). Filtration through a

0.1 jum filter and acidification to pH 1.5 with high-purity nitric acid is also

required for reliable determination of other trace metals (Kennedy and others,

1974). Mercuric chloride or sodium azide, and potassium permanganate should

be added to preserve dissolved organics and mercury, respectively, (Hull and

others, 1985).

Laboratory analyses require methodologies and instruments that give the

best results for the samples selected. Analysis of cations is generally

performed by atomic absorption (AA), flame emission spectrophotometry and

inductively-coupled plasma atomic emission spectrometry (ICP-AES). Graphite-

furnace AA with Zeeman background correction is used for the determination of

most trace metals. An increasing number of anionic species, including

sulfate, bromide, and iodide, are being determined by ion chromatographic

techniques. Dissolved organics are determined by gas and ion chromatography

and other instrumentation, such as mass spectrometry. The reader is referred

to recent reviews by Parsons and others (1983) and Hull and others (1985).

A high level of analytical skill is required to obtain reliable data from

the highly sophisticated instruments described above. Ellis (1976), in an

international laboratory-comparison program, showed that the analytical

precision for many chemical constituents was poor. The reported silica

concentration of a geothermal sample, for example, ranged from 70 to 920 ppm.

Lowest precisions were reported for geothermal and alkaline spring waters of

unusual composition. Friedman and Erdmann (1982) provide some guidance for

setting up a quality assurance program.

3. Incorrect interpretation of chemical determinations. We have already

discussed the problems associated with assuming that alkalinities are

contributed only by inorganic species. Similar problems may arise if the

iodometric titration method, which measures the concentrations of bisulfides,

sulfites, polysulfides and other oxidizable species, is assumed to titrate

only the bisulfide species. In oil field waters, H«S values obtained by

91

Page 92: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

specific sulfide electrode are more accurate and are much lower (by a factor

of up to 10) than those obtained by titration (Lico and others, 1982).

Equilibrium Constants

Reliability of equilibrium constants for the dissociation of complexes

and dissolution of minerals is highly variable, depending on the quality and

the nature of the thermochemical data used

and others, 1982; Nordstrom and Munoz, 1985

in these computations (Arnorsson

Apps and others, 1987). The

range of available thermochemical data is large. The Gibbs free energy values

reported for the same mineral may vary by more than 10 kcal/mole (Tardy and

Garrels, 1974; Berman and others, 1985). For instance reported values of the

- 8 -13 equilibrium constant at 25 °C for fluorite range from 10" to 10 (Nordstrom

and Jenne, 1977); those for the second dissociation constant of H^S range from

10 1010 to 10 (Schoonen and Barnes, 1988). Equilibrium constants computed

from solubility or free energy determinations over the temperature range of

interest are probably the most reliable. As discussed earlier, equilibrium

constants for most minerals and a few aqueous complexes used in SOLMINEQ.88

are computed from an integrated form of the Van't Hoff equation (Equation 37).

These equilibrium constants are the most reliable for the pure mineral samples

used to generate thermochemical data in laboratory experiments. However,

minerals in natural systems often show large variations in chemical

composition, surface characteristics, degree of crystallinity, order-disorder,

and lattice imperfections. Clays and zeolites are two major groups of

minerals for which large uncertainties in equilibrium constants may result

from these imperfections (Tardy and Garrels, 1974; Bassett and others, 1979;

May and others, 1986).

Heat-capacity data are not available for most aqueous complexes.

Equilibrium constants for these complexes are computed from empirical relation

using a large number of assumptions and extrapolations (see previous section).

Equilibrium constants calculated from these empirical equations, nonetheless,

more closely approximate the actual values at higher temperatures than those

computed assuming a constant or zero-heat capacity of reaction. However, very

large errors may be present in log K values calculated from these equations,

especially at temperatures above 200 °C (Apps and others, 1988). Equilibrium

constants for many minerals and aqueous complexes (especially with organic

ligands) are either not available or are available only at 25 °C.

92

Page 93: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Equilibrium constants are unquestionably the most important parameters

used in geochemical codes like SOLMINEQ.88. However, these constants are

subject to continuous refinements, modifications or major changes (Hovey and

Tremaine, 1986; Apps and and others, 1988), and the user should carry out

literature searches to select the most reliable constants for the critical

minerals and aqueous species in their study. SOLMINEQ.88 allows computations

to be carried out using a set of up to six (at low and high temperatures) user

selected equilibrium constants for minerals and aqueous complexes. The INPUT

routine prompts the user to enter the desired equilibrium constants which will

be used for any computations during that run. Permanent changes in the

equilibrium constants, of course, can be made by changing the values for the

desired complex or mineral in the permanent data file listed in Appendix IB

and 1C.

Limitations of Modeling Options

All of the modeling options in SOLMINEQ.88 have been designed to allow

modification of the analyzed chemistry of a water sample to the in situ

chemistry of the water and its mineral saturations. The options, also, can be

used to study the consequences of the various hypothetical or planned water-

rock interactions including sensitivity calculations.

The carbon option may be used to validate a chemical analysis if

independent determinations of alkalinity and TIC exist. Given a value for

one, SOLMINEQ.88 will calculate a value for the other. This can be compared

to the analytical value (see Merino 1979 for examples). For high temperature

calculations the assumption of constant TIC or constant alkalinity will affect

the predictions differently. Constant alkalinity can only be enforced by

allowing CO^ to enter or leave the water, whereas constant TIC is a closed

system. If C0~ is known to have been lost from the system, it can be titrated

back in with the gas-option. However, it is difficult to measure the ratio of

gas/water in a flowing well. If the aim is to combine the masses of gas and

water as they are in situ, large uncertainties exist because once gas

separates from liquid water the two can travel at different velocities to the

wellhead. If oil is present in the system, the gas lost from the oil must

also be titrated back using the gas-water-oil option to reconstruct the in

situ conditions. However, data on gas solubilities in oil have large

uncertainties because of differences in the physical and chemical properties

of oil. The gas-water-oil option will not run if the total pressure of the

93

Page 94: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

gas phase (at high or low temperature) is less than the vapor pressure of

water at that temperature and pressure. These calculations are carried out

assuming that Henry's law does not vary with pressure and ideal mixing of

gases. Although these assumption are good along the vapor pressure curve for

water, significant errors will be introduced when pressures exceed several

hundred bars at low temperatures; such conditions exist in deep wells in

sedimentary basins. In addition, at high pressures, a significant mass of

water vapor may exist in the natural gas phase which may condense in the well

leading to erroneously low concentrations of dissolved species (Kharaka and

others, 1985). Presently, all the water is assigned to the liquid phase in

SOLMINEQ.88 except for the boiling option. The boiling and mixing options can

handle loss or addition of water to in situ water, however, the fraction of

boiling or the composition and amount of water mixing with the in situ water

must be accurately known.

Minerals can also be used to compute the water chemistry at subsurface

conditions. If the amount of gas which is lost is unknown, for example, an

estimate can be made by assuming equilibrium with an in situ carbonate mineral

using the CO,, option; commonly equilibrium is assumed with calcite. If other

minerals are controlling the water chemistry, a user specified set of

components can be dissolved into or precipitated out of the water to reach

saturation with a specified mineral. Even if the in situ mineralogy is known

in detail, the extent to which a mineral controls the water chemistry depends

on its surface area and reactivity, which are usually unknown. In addition,

most minerals are solid solutions which are not presently included in the

database of SOLMINEQ.88.

The mineral saturation option may be used to calculate the concentrations

of unknown or suspect components. This option, for example, may be used to

calculate the concentrations of SiO- (assuming quartz saturation) and Al

(assuming equilibrium with kaolinite). This use of saturation options should

only be used as a last resort because of the large uncertainties involved. If

the pH is unknown or suspect, equilibrium with calcite is commonly assumed and

the pH changed to attain equilibrium using the pH option. This case is only

correct as long as significant amounts of the; other ions in solution have not

been added or subtracted at the same time the

SOLMINEQ.88 allows only equilibration with one mineral phase even when the

reaction is incongruent, involving several minerals.

The water chemistry can also be changed

pH changed. Presently,

by ion exchange or adsorption.

Large uncertainties exist in the values for the ion exchange constants.

94

Page 95: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Consequently, in the ion exchange option, these constants must be specified by

the user. Surface complexes are assumed to behave ideally. Smectites, the

clays which control most of the ion exchange, are poorly characterized

chemically. The double layer, one-site model chosen for adsorption

calculations is probably too simple, but even this simple a model is difficult

to use because of paucity of data. Consequently, mineral surface-water

equilibrium calculations lag far behind mineral-water equilibrium predictions

in accuracy.

The above discussion is included in this report because the uncertainties

in the predictions made by these options can be large. The user should be

cautioned to understand fully the assumptions and simplifications made in both

the data and the calculations in order to use the model successfully.

95

Page 96: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

INPUT FOR SOLMINEQ.88

The input to SOLMINEQ.88 consists of two sets of data: fixed and

variable. The fixed set contains the chemical composition of an aqueous fluid

and options for processing these data. The variable set consists of input data

required for using the modeling options. Multiple samples may be processed

during each run. The arrangement of input data is shown in Table 8. A list

of input variable names and their description is given below. An interactive

FORTRAN-77 program, SOLINPUT, is also available which can be used to generate

or modify an input file. This program prompts! the user for input data with a

brief description of the required data. The user is prompted to press the

"RETURN" key in cases where data are not available and where the default

values are preferred. An abbreviated terminal session for building a data

file using SOLINPUT is given in Appendix II. An interactive input-output

management program (shell) that can be used with personal computers (PCs) is

also available (Wiwchar and others, 1988) for SOLMINEQ.88

A. Input Data for the Fixed Set

TITLE

TEMP

HITEMP

DENS

PRESS

PH

EHM

Sample identification and description.

Temperature at which the pH of the solution was measured.

In-situ temperature, different from TEMP, at which a new pH is

to be calculated.

Measured or desired density. If cjensity is not entered,

it is calculated based on the following empirical relationship

(Kharaka, unpublished data):

Density - 1.0 + 6.88x10" 7 * Total Dissolved Solids (mg/L)

Total in-situ pressure (in bars). K values of the aqueous and

mineral reactions will be adjusted for the pressure difference

of (PRESS-PH Q). The K values are adjusted at only one

temperature, TEMP or HITEMP. If PRESS is greater than P__ _ atH,~O

TEMP and a value for HITEMP is entered, the K values are

adjusted only at HITEMP.

Measured pH of the solution.

Measured or calculated Eh relativle to the hydrogen electrode

potential in volts, otherwise a default value of 9.0 is entered

by the program.

96

Page 97: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

EHMC

EMFZSC

UNITS

TIC

ALK

Measured Eh relative to the Calomel electrode potential in volts,

otherwise a default value of 9.0 is entered by the program.

Measured Eh using Zobell's solution in volts, otherwise

a default value of 9.0 is entered in the program.

Concentration units in which the chemical composition of the

solution will be entered.

MG/L - milligrams/liter

PPM = parts per million

MOL/L - moles/liter (molar units)

MOL/K - moles/kg of solvent (molal units)

MEQ/L = milli-equivalents/liter

Total or analytical concentration of the specified component.

The concentrations must be entered for the specified formula of

the component (for example, sodium is entered as Na, silica as

SiO«, phosphorous as PO,). The components are listed in Table 6.

Concentration of total inorganic carbon in solution, if measured,

in the same units used for the rest of the components. If UNITS

is "MEQ/L", carbon concentration should not be entered as TIC;

instead it should be entered as alkalinity (ALK).

Criterion for the distribution of carbonate species.

"0" indicates that the entered concentration of HCO., and for CO.,

represent "TOTAL ALKALINITY" that includes inorganic and organic

species.

"1" indicates that the entered concentrations of HCO., and for COl

represent "CARBONATE ALKALINITY" only.

"2" indicates that the entered concentrations of HCOl and COl"

represent "TIC".

It should be noted if ALK - 2 and TIC - 0.0, the entered

concentration of HCO^ and COl" will be treated as TIC after

conversion to the molality of carbon; if TIC is greater than

0.0, ALK will be set equal to 2 and the concentrations of HCOl

and CO., , if entered, will be disregarded.

97

Page 98: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

me

NUFLAG

IPIT

FLAGS(I)

INFORM

RATIO

GEOTH

IPRIN1

IPRIN2

Criterion for the distribution of carbonate species at HITEMP

"1" if this distribution is to be done with the value of TIC

calculated at the end of low-temperature species distributioj

Note that if a value for TIC is entered, ITIC will be

automatically set equal to "1".

Sets the activity coefficients of neutral species;

"1" for setting them equal to unity;

"0" for setting them equal to the activity coefficient of

aqueous C0».

Enter "1" if activity coefficientis are to be calculated using the

Pitzer equations.

Flags for the calculation of red6x equilibria. If these flags are

set equal to "1" the distribution of redox species will be

calculated using the measured or calculated Eh and equations of

the type:

Fe++ . Fe3+ + e -

else, if equal to "0", the I VSO" and Fe++/Fe+3 , will

be used to determine redox species distribution.

FLAG(l) for Fe

FLAG(2) for Cu

FLAG(3) for Hg

FLAG(4) for Mn

FLAG(5) for U

FLAG(6) for V

Flag for printing all the log K values in Tables 2 and 3.

Set INFORM equal to "1" if you want the tables printed.

Flag for printing the analytical and calculated activity ratios of

major elements. Set RATIO equal to "1" if you want the ratios

printed.

Flag for printing the temperature estimates from the chemical

geothermometers. Set GEOTH equal to "1" if you want the

geothermometers printed.

Flag for printing the data on iteration of anions, set equal to

"1" for output.

Flag for printing the data on (nv, _ - m-.., _) whenever a new pHn, t, l On,t,1

is calculated. Set IPRIN2 equal to "1" to print data.

98

Page 99: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

CONV1

CONV2

OUTIN

Tolerance factor for convergence on distribution of anions. Enter

the desired factor if different from a default value of 0.5E-4.

Use of a lower value may result in greater accuracy but more

computer time.

Tolerance factor for pH calculation using hydronium mass-balance

equation. Enter a desired factor if different from a default

value of 0.5E-4. Use of a higher value may result in faster

execution, but a larger pH difference between calculated and

in situ.

A restart file will be generated with the file name located in

OUTIN. The restart file will contain data from the current

SOLMINEQ.88 run. Leave blank if a restart file is not to be

created.

B. Input for Gas, PH, and CCL options

DC02

DH2S

DNH3

DCH4

ICCSAT

IMC03

Concentration of C09 gas (moles/kg of water) that was lost

before pH measurement.

Concentration of H~S gas (moles/kg of water) that was lost

before pH measurement.

Concentration of NH~ gas (moles/kg of water) that was lost

before pH measurement.

Concentration of CH, gas (moles/kg of water) that was lost

before pH measurement.

Switch for the pH option (calculation of pH in equilibrium with

carbonate mineral). "1" for calcite; "2" for dolomite; "3" for

siderite. Default is "0"

Switch for the application of the C09 option.

"0" = do not use option (default).

"1" Enter for saturation with calcite.

"2" Enter for saturation with dolomite.

"3" Enter for saturation with siderite.

"4" for fixing a molality of H^CCL specified by FIXIT.

"5" for fixing a pH specified by FIXIT.

"6" for fixing a P specified by FIXIT.

99

Page 100: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

FIXIT Specify the value to be fixed using the CCL option above if

IMC03 -4, 5, or 6.

FCCSAT Tolerance factor for satisfying the equilibrium criterion in the

PH and CCL options (default = 0.05). The equilibrium is tested

in log units.

C. Input for the Gas Distribution option

TC02M

TCH4M

TH2SM

WROIL

KC020L

KCH40L

KH2SOL

DSEP

Total moles of C09 (per kg of water) to be distributed between

Oil, Water, and Vapor.

Total moles of CH, (per kg of water) to be distributed between

Oil, Water, and Vapor.

Total moles of H«S (per kg of water) to be distributed between

Oil, Water and Vapor.

Oil to water weight ratio.

Henry's law coefficient for the solubility of CO^ in oil. If

value entered is "0", which is the default value, then the value

is calculated in the program.

Henry's law coefficient for the solubility of CH, in oil. If

value entered is "0", which is the default value, then the value

is calculated in the program.

Henry's law coefficient for the solubility of H^S in oil. If

value entered is "0", which is the default value, then the value

is calculated in the program.

Density of oil at 15 °C needed to calculate Henry's law

coefficients for the solubility of gas in oil.

D. Input for the Ion Exchange or Adsorption Option

ADEX Flag for surface chemistry option:

"A" for adsorption, "E" for ion exchange.

CEC Cation exchange capacity in milliequivalents/kg of water.

Either a value for CEC or values for TAREA and SAREA must be

specified.

2 TAREA Site density per unit area (N ) in sites/cm .

100

Page 101: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

SAREA Total surface area per kilogram of solvent in cm .

INSP Total number of surface species (10 maximum)

ISCHG(I) Charge of each surface site (e.g. ISCHG - 0 for NaX; -1 for X~),

where X represents vacant surface site.

MBASE(I) Equivalent fraction of surface sites occupied by each surface

species. If vacant surface sites occupy an appreciable fraction

of total, then a dummy reaction X «- X must be specified.

SPN(I) Name of each of the surface species.

KRXN(I) Kn for the association reaction of the surface species.

ISCOMP(I) Total number of components in the association reaction of SPN(I).

COEF(I,J) Stoichiometric coefficient of each of the reacting species (only

those in Table 6) in the association reaction of SPN(I).

IDN(I,J) ID#s of the ISCOMP(I) components in the association reaction of

SPN(I). It is important that the K and coefficients for the

species be specified as for an association reaction; and that all

association reactions use only the vacant surface site X as the

reactant surface site.

E. Input for the Dissolution/Precipitation, Mixing, and Boiling Option

IBMIX

ITMIX

IDSAT

IDDP

Switch for the mixing and mass transfer option.

"1" for dissolution/precipitation.

"2" for mixing two solutions.

"3" for boiling-off or adding steam.

Total number of species to be added when IBMIX=1. If ITMIX is

zero, it is used as the switch for the mineral saturation

option. That is, if IBMIX = 1 and ITMIX - 0, then the program

would look for the ID# of the mineral to be saturated. If

ITMIX is not equal to zero, then a specified amount of mineral

will be added if ITMIX - -1. If ITMIX - n, where n is greater

than zero, then specified amounts of n aqueous components will

be added.

ID# (from 1 to 214) of the mineral to be equilibrated (i.e.

SI=0). (See Table 3.)

ID # (from 1 to 214) of the mineral to be dissolved or

precipitated. If IDDP equals "0", then a number of aqueous

species are added or subtracted from the water.

101

Page 102: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ITT

DP

IRXDP(I)

RXDP(I)

IDMIX(I)

AMOL(I)

INMIX

DFRAC1

DING

MIXFLE

FBOIL

Total number of aqueous species to be added to or subtracted from

the water.

Dissolution/precipitation switch. If DP is positive it will

dissolve minerals or add aqueous components into solution; if

negative, it will precipitate or subtract them out. The absolute

value of DP is also used to scale the amount of material being

added or subtracted. If the default value of zero is used then

the program will determine the path to acheive equilibrium.

ID# of the aqueous species to be added (only the species listed

in Table 6 can be used).

Stoichiometric coefficient of the aqueous species to be added.

ID number of the aqueous species to be added (only the species

listed in Table 6 can be used).

Molality (Moles/kg of H~0) of the aqueous or mineral species to

be added.

Total number of mixtures of the two solutions to be mixed.

Smallest fraction of solution 1 to be mixed with solution 2.

Increment of solution 1 to be added (INMIX-1) times. For example,

if INMIX - 3, DING - 0.25 and DFRAC1 - 0.10, a total of THREE

mixtures will be prepared with the following fractions of the two

solutions:

(1) solution 1 - 0.10; solution 2 - 0.90

(2) solution 1 - 0.35; solution 2 - 0.65

(3) solution 1 - 0.60; solution 2 - 0.40

Name of second data file to form the mixture. No other mass

transfer options can be executed as part of mixing.

Fraction of the solution to be boiled-off as steam.

F. Input for variable K values at TEMP and then again at HIGHTEMP

ODUM(I) Switch for data base. If KT is for an aqueous complex

dissociation reaction, enter "A"; if for a mineral dissociation

reaction enter "M".

NDUM(I) ID# of the mineral (Table 3) or aqueous complex (Table 2) whose

(KT) is to be changed.

XDUM(I) Log (KT) for the dissociation reaction specified in

Tables 2 or 3.

102

Page 103: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

G. Input for additional anions.

ANSI, ANS2 Switches for additional anion option. If ANSI or ANS2 are not

zero, the value of ANSI or ANS2 is the number of lines (one line

per complex with anion) to follow. If ANSI - 0 (default option)

and ANS2 - 0, skip option. If ANSI > 0 and ANS2 - 0, or vice

versa then add one additional anion. If ANSI > 0 and ANS2 > 0,

then add both additional anions.

PAGE1 Name of additional anions.

CUNITS Total concentration (same UNITS as other components) of

additional anions.

GFW Gram formula weight of additional anion.

Z Charge of additional anion (-1 to -4).it

DHA Debye Huckel radius of additional anion (default values are

available).

NAME(I) Name of each complex formed by association with the additional

anion.

INDEX(I) ID# of the dissociation reaction (Table 5) for the anion complex,

NAME(I).

LOWKT(I) Low temperature log (KT) for the INDEX(I) dissociation reaction.

HIGHKT(I) High temperature log (KT) for the INDEX(I) dissociation reaction.

H. Input for additional cation.

NUMCOM Number of complexes entered for the additional cation.

Z Charge of additional cation (+1 to +4).it

DHA Debye Huckel radius of additional cation (default values are

available).

GFW Gram formula weight of additional cation.

CUNITS Total concentration (same UNITS as other components) of

additional cation.

NAME(I) Name of each complex formed by association with the additional

cation.

INDEX(I) ID# of the dissociation reaction (Table 5) for the cation complex,

NAME(I).

LOWKT(I) Low temperature log K(T) for the INDEX(I) dissociation reaction.

HIGHKT(I) High temperature log K(T) for the INDEX(I) dissociation reaction.

103

Page 104: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

J. Input for additional minerals.

NUMINS Number of minerals to be added (up to 5 allowed)

LOWKT Low temperature log K(T) for the congruent dissolution of

the mineral

HIGHKT High temperature log K(T) for the congruent dissolution of

the mineral

ADDACT An additional activity parameter which can be added to the

dissolution reaction of mineral

NAME Name of the mineral

COEFF(I) Coefficient of aqueous species (I) in the dissolution reaction of

the mineral.

INDEX(I) Index number of aqueous species (I) in the dissolution reaction

of the mineral

104

Page 105: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 8 Arrangement of data for input to SOLMINEQ.88.

Line Variable Format

10

11

12

13

14

TITLE

TEMP, HITEMP, DENS, PRESS

PH, EHM, EHMC, EMFZSC, UNITS

Total aqueous concentration of

[Na, K, Li, Ca, Mg, Fe, Al]

Total aqueous concentration of

[Si02 , Cl, S04 , H2 S, HC03 , C03 , TIC]

Total aqueous concentration of

[F, P04 , N03 , NH3 , B, Sr, Ba]

Total aqueous concentration of

[Pb, Zn, Cu, Mn, Hg, Ag]

Total aqueous concentration of

[As, U, V]

Total aqueous concentration of

[Acetate, Oxalate, Succinate, CH4 ]

Carbon, High Temperature Carbon Option

ALK, ITIC

Gas Addition Option

DC02, DH2S, DNH3, DCH4

pH and C02 Saturation Option

ICCSAT, IMC03, FIXIT, FCCSAT

Gas-Water-Oil Option

TC02M, TCH4M, TH2SM, WROIL,

KC020L, KCH40L, KH2SOL, DSEP

Ion Exchange Option

ADEX

if ADEX is "E" or "A", then

A. CEC, TAREA, SAREA, INSP

followed by INSP lines of

B. ISCHG(I), MBASE(I), SPN(I)

C. KRXN(I), ISCOMP(I),(COEF(I,J),IDN(I,J))

A80

4E10.4

4E10.4, A5

7E10.4

7E10.4

7E10.4

6E10.4

3E10.4

4E10.4

212

4E10.4

212, 2E10.4

8E10.4

Al

3E10.4, 13

14, E10.4, A10

11(E10.4, 13)

105

Page 106: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

15 Precipitation/Mixing/Boiling Options

IBMIX, ITMIX

Dissolution/Precipitation Option:

If IBMIX - 1, then

(Dsl/Ppt a specific mineral amount)

If IBMIX - 1 and ITMIX < 0, then

A. IDDP, AMOL(l)

(Dsl/Ppt a mineral to saturation^

then

to saturation

Else If IBMIX - 1 and ITMIX - 0,

A. IDSAT, IDDP, DP

(Add/Subtract aqueous species

with a mineral)

If IDDP - 0, then

A. ITT

followed by ITT lines of

B. IRXDP(I), RXDP(I)

(Add/Subtract a specific amount of aqueous

species)

Else If IBMIX - 1 and ITMIX > 0, then

followed by ITMIX lines of

A. IDMIX(I), AMOL(I)

212

14, E10.4

214, E10.4

14

14, E10.4

14, E10.4

16

17

Mixing Option:

Else If IBMIX - 2, then

A. INMIX, DFRAC1, DING, MIXFLE

Boiling Option:

Else If IBMIX = 3, then

A. FBOIL

Optional User Defined Log K at TEMP

A. ODUM(I), NDUM(I), XDUM(I)

Optional User Defined Log K at HITEMP

B. ODUM(I), NDUM(I), XDUM(I)

14, 2E10.4, A80

E10.4

6(A1, 14, E10.4)

6(A1, 14, E10.4)

106

Page 107: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

18 Additional Anions Option

ANSI, ANS2

Skip if both ANSI - 0 and ANS2 - 0.

If ANSI > 0 or ANS2 > 0, then

A. CUNITS, GFW, Z, DHA, PAGEl

followed by ANSI lines of

B. INDEX(I), DHA, LOWKT, HIGHKT, NAME(I)

212

2E10.4, 12,

E10.4, A8

12, 3E10.4, A8

19

If ANSI > 0 and ANS2 > 0, then

A. CUNITS, GFW, Z, DHA, PAGEl

followed by ANS2 lines of

B. INDEX, DHA, LOWKT, HIGHKT, NAME

Additional Cation Option

A. NUMCOM, Z, DHA, GFW, CUNITS, NAME

followed by NUMCOM lines of

B. INDEX, DHA, LOWKT, HIGHKT, NAME

2E10.4, 12,

E10.4, A8

12, 3E10.4, A8

212, 3E10.4, A8

12, 3E10.4, A8

20

21

22

23

Additional Minerals Option

NUMINS

followed by NUMINS lines of

B. LOWKT, HIGHKT, ADDACT, NAME

C. (COEFF(I), INDEX(I), 1=1, 8)

NUFLAG, IPIT, (FLAGS(I), I - 1, 6)

INFORM, RATIO, GEOTH, IPRIN1, IPRIN2, OUTIN

CONV1, CONV2

12

5E10.4, A8

8(E10.4, 13)

812

512, A80

2E10.4

107

Page 108: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

OUTPUT FROM SOLMINEQ.88

The results of the computations carried out by SOLMINEQ.88 and appearing

in the printout (Appendix III) consist of a standard output which is similar

to that from the original code and additional output which will depend on the

options selected. The standard output consists of items listed below:

1. An input data echo that shows the values and options selected for

each sample.

2. A table listing the calculated tolerance factor (1 - Y.) for

successive iterations on the anions. Each set of iterations is completed at a

fixed pH. At the end of each set or when the tolerance criteria are met, the

current hydronium/hydroxyl summation (IIL. _ - m-... T ) is printed out along

with the correct (desired) value. The printout of these numbers may be

enabled by inputting IPRIN1 - IPRIN2 - 1. These data are used to verify the

timely execution of the program and are not normally needed.

3. A list of input to SOLMINEQ.88, including sample description, pH, Eh

(measured or computed, a dummy value of 9.0000 is printed when no Eh data are

available) temperature, total milliequivalent of cations (MEQ/L CAT) and

anions (MEQ/L AN) computed from the analytical data (ANAL...) and from the

calculated molalities (CALC...), the true ionic strength of solution (I), the

total pressure and the partial pressures, in atmospheres, of H^O, CO-, H^S,

CH, , and NflL in the gas phase that is in equilibrium with the solution, the

density of the solution, dissolved solids concentration and activity of water.

The total hydronium and hydroxyl and their difference; the total alkalinity

calculated as HCO~ , C0~ and CaCO~; and the dissolved inorganic carbon (split

up into HCO~ - alkalinity, H^CO^, sum of all HCOl species and the sum of all

CO,, species) and total inorganic carbon are also printed out.

4. A table showing the distribution of species in solution. This

consists of the index number (1 to 340) and name of the species which are

present, reported and computed ppm, reported and computed mg/1, reported and

computed molality, activity, activity coefficient, and -log activity. This

table can be used to calculate the degree of cqmplexing in the solution under

study.

5. Ratios of a number of cations and anidns of importance in geochemical

processes. These consist of the mole ratios of cations and anions which may

108

Page 109: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

aid in deciphering the origin of the water samples (White, 1965; Kharaka,

1985) and logs of the activity ratios of a number of cations used to study the

stability fields of minerals. The subsurface temperature of a reservoir is

computed by 12 different chemical geothermometers (see Table 7 for details of

computations). A number of criteria for selecting the most probable

temperature are also printed. (Fournier and Truesdell, 1973; Kharaka and

Mariner, 1988). The computation and printout of these ratios and temperatures

may be suppressed by inputting "RATIO - 0" and "GEOTH = 0" in the INPUT

routine.

6. A table showing the states of reactions for minerals considered. The

"DELG" column gives the (AG,. ff), in kcal/mole. A positive (DELG) value

indicates that the solution is supersaturated with respect to the given

mineral; a negative (DELG) value indicates undersaturation with respect to it.

This table also shows the mineral name and its ID numbers, log (AP), log (KT),

and log (AP/KT). A mineral that contains a species not reported in the

chemical analyses of the water sample will not appear in this table. The log

(KT) of a number of minerals (for example, kenyaite, magadiite) is known only

at 25 °C; it is assumed constant at other temperatures. The "DELG" values

obtained for these minerals will not be significant if the temperature of the

sample is outside the range of 15°-35 °C.

It is important to repeat here that (DELG) indicates that the reaction

can proceed but does not mean that it will proceed in the specified direction.

It is possible for a given solution to be supersaturated (unstable but

persistent condition) with respect to a mineral by a number of kilocalories

without precipitation. It is also important to note here that large

uncertainties are involved in the computed log (KT) values for most aqueous

complexes at temperatures higher than 200 °C.

Beside the standard output described above, implementation of various

options will create additional output. This output is self-explanatory once*

the standard output format is understood. Selected examples are contained in

Appendix III. The total number of possible options is large and could not be

illustrated in this report. However, we have input/output from 20 different

options that will be mailed, together with the source code, to those willing

to implement this program.

109

Page 110: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

REFERENCES

Aggarwal, P. K., Gunter W. D., and Kharaka, Y. K., 1989, The effect of pressure on a aqueous equilibria: American Chemical Society Symposium, Series on Ground Water Modeling, R. L. Bassett and D. C. Melchior, eds., in press.

Aggarwal, P. K. , Hull, R. W. , Gunter, W. D. , an^d Kharaka, Y. K. , 1986,SOLMNEQF: A computer code for geochemicalinteractions in sedimentary basins: Proceedings Third Canadian-American Conference on Hydrogeology-Hydrogeology of Sedimentary Basins. Application to Exploration and Exploitation, B. Hitchon, S. Bachu, and C. M. Sauveplane (editors), National Water Well Association v. 3, p. 196-203.

American Society of Testing and Materials, 1985

modeling of water-rock

Standard method forestimation of solubility of gases in petroleum liquids: Annual Bookof ASTM Standards, 05.02, p. 669-673.

Apps, J. A., Neil, J. M., and Chi-Hyuck, J., 1^88, Thermochemical propertiesof gibbsite, boehmite, diaspore and the ailuminate ion between 0 and350°C: Lawrence Berkeley Laboratory Report No. LBL-21482, 98 pp.

Arnorsson, S., Sigurdsson, S., and Svavarsson, H., 1982, The chemistryof geothermal waters in Iceland. I. Calculation of aqueous speciationfrom 0-370°C: Geochimica et Cosmochimica Acta, v. 46, p. 1513-1532.

Baes, C. F., and Mesmer, R. E., 1981, The thermodynamics of cation hydrolysis:American Journal of Science, v. 281, p. 935-962.

Ball, J. W., Nordstrom, D. K., and Zachmann, D. W., 1987, WATEQ4--A personalcomputer FORTRAN translation of the geochemical model WATEQ2 withrevised data base. U. S. Geological Survey Open-File Report 87-50,108 p.

Barnes, H. L., Romberger, S. B., and Stemprok, M., 1967, Ore solutionchemistry II. Solubility of HgS in sulfide solutions: Economic Geology,v. 62, p. 957-982.

Barnes, I., and Back, W., 1964, Geochemistry of iron-rich ground water ofsouthern Maryland: Journal of Geology, v

Barnes, I., and Clarke, F. E., 1969, Chemical properties of ground water andtheir encrustation effects on wells: U.

72, p. 435-447.

S. Geological SurveyProfessional Paper 498-D, 58 p.

Barnes, R. B., 1975, The determination of specific forms of aluminum innatural water: Chemical Geology, v. 15, p. 177-191.

Bassett, R. L., Kharaka, Y. K., and Langmuir, D., 1979, Critical reviewof the equilibrium constants for kaolinite and sepiolite, inChemical Modeling in Aqueous Systems, Jenne, E. A., ed., ACSSymposium Series v. 93, p. 389-400.

Beerbower, A., 1980, Estimating the solubility of gases in petroleum andsynthetic lubricants: American Society Tfesting and Materials,Transaction 23, p. 335-342.

Berman, R. G., Brown, T. H., and Greenwood, H. J., 1985, An internallyconsistent thermodynamic data base for minerals in the systemNa20-K20-CaO-MgO-FeO-Fe203 -Al203 -Si02Ti02 -H20-C02 : Atomic Energy of

Canada Ltd., Technical Record TR-377, 62 p.ii

Bilinski, H. B., Horvath, L., Ingri, N., and Sj^berg S., 1986, Equilibrium aluminum hydroxo- oxalate phases during initial clay formation;

H -Al -oxalic acid-Na system: Geochimic.i et Cosmochimica Acta, v. 50, p. 1911-1922.

Bolt, G. H., 1982, Soil Chemistry, B. Physicoctusmical models: Elsevier Science Publishing Company, New York, 527 p.

110

Page 111: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Bourcier, W. L., and Barnes, H. L., 1987, Ore solution chemistry--VII.Stabilities of chloride and bisulfide complexes of zinc to 350°C:Economic Geology, v. 82, p. 1839-1863.

Bradley, D. J., and Pitzer, K. S., 1979, Thermodynamics of Electrolytes.n

12. Dielectric Properties of Water and Debye-Huckel Parameters to350 °C and 1 kbar: Journal of Physical Chemistry, v. 83, p. 1599-1603.

Bryzgalin, 0. V., and Rafal'ski, R. P., 1982, Estimation of instabilityconstants for ore-element complexes at elevated temperatures: Geochemi.International, v. 19, p. 158-169

Busenberg, E., Plummer, N. L., and Parker, V. B., 1984, The solubility ofstrontianite (SrC03 ) in CO^-H-O solutions between 2 and 91°C, the

association constant of SrHCO? (aq) between 5 and 80°C, and an

evaluation of the thermodynamic properties of Sr (aq) and SrCO^(cr)

at 25°C and 1 atm total pressure: Geochimica et Cosmochimica Acta,v. 48, p.2021-2036.

Busey, R. H., and Mesmer, R. E., 1977, lonization equilibria of silicic acidand polysilicate formation in aqueous chloride solutions to 300°C:Inorganic Chemistry, v. 16, p. 2444-2450.

Carothers, W. W. , and Kharaka, Y. K. , 1978, Aliphatic acid anions in oilfield waters-Implications for origin of natural gas: AmericanAssociation Petroleum Geology Bulletin v. 62, p. 2441-2453.

Carothers, W. W. , and Kharaka, Y. K., 1980, Stable Carbon Isotopes inOil Field Waters and the Origin of CO: Geochimica et Cosmochimica Acta,v. 44, p. 323-333.

Chen, C. A., and Marshall, W. M., 1982, Amorphous silica solubility, IV.Behaviour in pure water and aqueous sodium chloride, sodium sulfate,magnesium chloride, and magnesium sulfate solutions up to 350°C:Geochimica et Cosmochimica Acta, v. 46, p. 279-287.

Cho, M. , Marayama, S., and Liou, J. G., 1987, An experimental investigationof heulandite-laumontite equilibrium at 1000 to 2000 bar P fluid.Contribution Mineral Petroleum, v. 97, p. 43-50.

Cobble, J. W. , Murray, R. C. Jr., Turner, P. J., and Chen, K., 1982, Hightemperature thermodynamic data for species in aqueous solution: ElectricPower Research Institute, EPRI report NP-2400, 165 p.

Conard, B. R. , Sridhar, R. , and Warner, J. S., 1980, High temperaturethermodynamic properties of chalcopyrite: Journal ChemicalThermodynamics, v. 12, p. 817-833.

Crerar, D., E., and Barnes, H. L., 1976, Ore solution chemistry V.Solubilities of chalcopyrite and chalcocite assemblages in hydro- thermal solution at 200° to 350°C. Economic Geology 71, 772-794.

Crerar, D. E. , Suzak, N. J., Borszik, M., and Schwartz, S., 1978, Solubilityof the buffer assemblage pyrite + phrrhotite + magnetite in NaClsolutions from 200 to 350°C: Geochimica et Cosmochimica Acta, v. 42,p. 1427-1437.

Daniele, P. G., Rigano, C., and Smmartano, S., 1981, The formation of protonand alkali-metal complexes with ligands of biological interest in

aqueous solutions. Thermodynamics of H , Na and K oxalate complexes:Thermochimica Acta, v. 46, p. 103-116

DeKock, C. W., 1986, Thermodynamic properties of selected metal sulfates andtheir hydrates. Bureau of Mines Information Circular IC9081, 59 p.

Drummond, S. E. Jr., 1981, Boiling and mixing of hydrothermal fluids:Chemical effects on mineral precipitation: Pennsylvania StateUniversity, unpublished Ph.D. thesis.

Ill

Page 112: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Ellis, A. J., 1976, The IAGC interlaboratory water analysis comparisonprogramme: Geochimica et Cosmochimica Acta, v. 40, p. 1359-1374.

Ellis, A. J., and Golding, R. M., 1963, The solubility of carbon dioxide above100 C in water and in sodium chloride solutions: American Journal ofScience, v. 261, p. 47-60.

EPRI (Electric Power Research Institute), 1984L Geohydrochemical modelsfor solute migration. Volumes I and II, EPRI Report EA-3417, Palo Alto,California, 120 p.

Felmy, A.R., Girvin, D., and Jenne, E.A., 19841 MINTEQ: a computerprogram for calculating aqueous geochemical equilibria: U.S.Environmental Protection Agency, Athens, Georgia.

Fournier, R. 0., 1981, Application of water chemistry to geothermalexploration and reservoir engineering, iji Rybach, Ladislaus, andMuffler, L. J. P., eds., Geothermal Systems: Principles and CaseHistories: New York, Wiley, p. 109-143.

Fournier, R. 0., and. Potter, R. W., 1982, An equation correlating thesolubility of quartz in water from 25° to 900°C at pressures up to10,000 bars: Geochimica et Cosmochimica Acta, v. 46, p. 1969-1974.

Fournier, R. 0., and Truesdell, A. H., 1973, An empirical Na-K-Cageothermometer for natural water: Geochimica et Cosmochimica Acta,v. 37, p. 1255-1276.

Freeze, R. A., and Cherry, J. A., 1979, Ground Water: Englewood Cliffs,New Jersey, Prentice Hall Incorporated, 604 p.

Friedman, L. C., and Erdmann, D. E., 1982, Quality assurance practices for thechemical and biological analyses of water and fluvial sediments: U. S.Geological Survey Professional Paper 750-C, p. cl51-c!55.

Fuoss, R. M., 1958, Ionic association. III. The equilibrium between ion pairsand free ions: Journal of the American Chemical Society, v. 80,p. 5059-5061.

Garrels, R. M., and Christ, C.L., 1965, Solutions, minerals, and equilibria:Freeman-Cooper, San Francisco, California, 450 p.

Giordano, T. H., and Barnes, H. L., 1981, Lead transport in MississippiValley-type ore solutions: Economic Geology, v. 76, p. 2200-2211.

Giordano, T. H., and Drummond, S. E., 1987, Zinc acetate complexing inhydrothermal solutions: (Abs.) Geological Society of American Program,v. 19, p. 677.

Goodwin, B., 1982, Calculated uranium solubility in groundwater: implicationsfor nuclear fuel waste disposal: Canadian Journal of Chemistry, v. 60,p. 1759-1766.

Gueddari, M., Mannin, C., Perret, D., Fritz, B., and Tardy, Y., 1983,Geochemistry of brines of the Chottel Jerid in southern Tunesia --application of Pitzer's equations: Chemical Geology, v. 39,pp. 165-178.

Harned, H. S., and Owen, B. B., 1958, The physical chemistry of electrolytesolutions: Reinhold, New York, 803 p.

Harvie, C. E., and Weare, J. H., 1980, The prediction of mineral solubilitiesin natural waters: the Na-K-Mg-Ca-Cl-SO,-H,,0 system from zero to high

concentration at 25°C: Geochimica et Cosmochimica Acta., v. 44, p. 981-997.

Harvie, C. E., Miller, N., and Weare, J. H., 1934, The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO.-OH-HCCyCC^-

HgO system to high ionic strengths at 25°<b: Geochimica et Cosmochimica

Acta, v. 48, p. 723-751.Healy, T. W. , White, L. R., 1978, lonizable surface group models of aqueous

interfaces: Advances in Colloid and Interface Science, v. 9, p. 303-345.

112

Page 113: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Helgeson, H. C., 1967, Thermodynamics of complex dissociation in aqueous solutions at elevated temperatures: Journal of Physical Chemistry, v. 71, p. 3121-3136

1969, Thermodynamics of hydrothermal systems at elevatedtemperatures: American Journal of Science, v. 267, p. 729-804.

1971a, KELYCOB, Theoretical geochemistry computer program: Library No. 0802D/E, University of California, Berkeley, California.

1971b, Kinetics of mass transfer among silicates and aqueous solutions: Geochimica et Cosmochimica Acta, v. 34, p. 569-592.

1985, SUPCRT-unpublished thermodynamic data base for minerals, aqueousspecies and gases. University of California, Berkeley, California.

Helgeson, H. C., Kirkham, D. H., 1974, Theoretical prediction of thethermodynamic behavior of aqueous electrolytes at high pressures and

ittemperatures: II. Debye-Huckel parameters for activity coefficientsand relative partial-molal properties: American Journal of Science,v. 274, p. 1199-1261.

Helgeson, H. C., Brown, T. H., Nigrini, A., and Jones, T. A., 1970,Calculations of mass transfer in geochemical processes involvingaqueous solutions. Geochimica et Cosmochimica Acta, v. 34, p. 569-592.

Helgeson, H. C., Delany, J. M., Nesbitt, H. W., and Bird, D. K., 1978,Summary and critique of the thermodynamic properties of rock-formingminerals: American Journal of Science, v. 278A, 229 p.

Helgeson, H. C., Kirkham, D. H., and Flowers, G. C., 1981, Theoreticalprediction of the thermodynamic behavior of aqueous electrolytes athigh temperatures and pressures: IV. Calculation of activitycoefficients, osmotic coefficients, and apparent molal properties to600°C and 5 kb: American Journal of Science, v. 281, p. 1249-1516.

Hem, J. D., 1985, Study and Interpretation of the Chemical Characteristicsof Natural Water: U.S. Geological Survey Water-Supply Paper 2254, 253 p.

Hemingway, B. S., 1982, Thermodynamic properties of selected uraniumcompounds and aqueous species at 298.15 K and at higher temperatures:Preliminary nodels for the origin of coffinite deposits: U.S.Geological Survey Open-File Report 82-619, 90 p.

Hemmes, P., 1972, The volume change of ionic association reactions: Journal ofPhysical Chemistry, v. 76, p. 895-900.

Hogfeldt, E., 1982, Stability constants of metal-ion complexes. Part A:Inorganic Ligands: Int. Un. of Pure and Appl. Chemical IUPAC ChemicalData Series, No. 21, 310 pp.

Hohl, H., Sigg, L., and Stumm, W., 1980, Characterization of surfacechemical properties of oxides in natural waters: in Advances inChemistry series, Leckie, J., and Kavanaugh, M., eds., American ChemicalSociety, p. 1-31.

Holmes, H. F., and Mesmer, R. E., 1983, Thermodynamic properties of aqueoussolutions of alkali metal chlorides to 250°C. Journal of PhysicalChemistry, v. 87, p. 1242-1255.

Holmes, H. F., Bais, C. F., Jr., and Mesmer, R. E., 1978, Isopiestic studiesof aqueous solutions at elevated temperatures I. KC1, CaCl^, and MgCl^:

Journal of Chemical Thermodynamics, v. 10, p. 983-996. Holmes, H. F., Bais, C. F., JR., and Mesmer, R. E., 1981, Isopiestic studies

of aqueous solutions at elevated temperatures. III. (1-7) NaCl + 7CaCl2 :

Journal of Chemical Thermodynamics, v. 13, p. 101-113. Hovey, J. K., and Tremaine, P. R., 1986, Thermodynamics of aqueous aluminum

standard partial molar heat capacities of Al+ from 10 to 55°C: Geochimica et Cosmochimica Acta, v. 50, p. 453-460.

113

Page 114: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Hovey, J. K., Hepler, L. G., and Tremaine, P. R., 1988, Thermodynamics of aqueous aluminate ion: standard partial molar heat capacities and

volumes of Al(OH)T(aq) from 10 to 55°C: Journal of Physical Chemistry,

v. 92, p. 1323-1332. Hull, R. W., Kharaka, Y. K., Maest, A. S., and Fries, T. L., 1985, Sampling

and analysis of subsurface waters. A sumniary of current methodology:Proceedings Canadian-American Conference on Practical Applications ofGroundwater Geo-chemistry, ARC, National Water Well Association, Banff,Canada, p. 117-126.

Hunter, R. J., 1981, Zeta potential in colloid science principles andapplications. Academic Press, New York, 386 p.

Jacobson, P. L., and Langmuir, D., 1974, Dissociation constants ofcalcite and CaHCO for 0° to 50°C: Geochlmica et Cosmochimica Acta,v. 38, p. 301-318.

James, R. 0., and Parks, G. A., 1982, Characterization of Aqueous Colloidsby their electrical double-layer and intrinsic surface chemicalproperties, in Surface and Colloid Science, Matijevic, E., ed., PlenumPress, New York, v. 12, p. 119-216.

Kalyanaraman, R., Yeatts, L. B., and Marshal, W. L., 1973, Solubility ofcalcium sulfate and association equilibrium in CaSO, and NaSO, and

NaClO., and H20 at 273 to 623 K: Journal of Chemical Thermodynamics,

v. 5, p. 899-909. Katayama, S., 1976, Conductimetric determination of ion-association

constants for calcium, cobalt, zinc, and cadmium sulfates in aqueoussolutions at various temperatures between 0° to 45°C: Journal ofSolution Chemistry, v. 5, p. 241-248.

Keenan, J. H., Keyes, F. G., Hill, P. G., and Moore, J. G., 1969,Steam Tables: Wiley, New York, p. 162.

Kelly, K. K., 1960, Contributions to the data on theoretical metallurgy.XIII. High temperature heat content, heat capacity and entropy datafor the elements and inorganic compounds: U. S. Bureau of MinesBulletin No. 584, 232 p.

Kennedy, V. C., Zellweger, G. W., and Jones, B. F., 1974, Filter pore-sizeeffects on the analysis of Al, Fe, Mn, and Ti in water: Water ResourcesResearch, v. 10, p. 785-790.

Kerrisk, J. F., 1983, Reaction-path calculation!? of groundwater chemistry andmineral formation at Rainier Mesa, Nevada: Los Alamos NationalLaboratory Report #LA.9912-MS, 41 pp.

Kharaka, Y. K., andBarnes, I., 1973, SOLMNEQ: Solution-mineral equilibriumcomputations: U. S. Geological Survey Computer Contributions, NationalTechnical Information Service, #PB215- 899, 81 p.

Kharaka, Y. K, and Mariner, R. H., 1989, Chemical geothermometers andtheir application to formation waters from sedimentary basins, inThermal History of Sedimentary Basins. Naeser, N. D. and McCulloh, T.,eds., Springer Verlag, New York, p. 99-117.

Kharaka, Y. K., Lico, M. S., and Carothers, W. W., 1980, Predicted corrosionand scale-formation properties of geopressured-geothermal watersfrom the Northern Gulf of Mexico Basin: Journal of Petroleum Technology,v. 32, p. 319-324.

Kharaka, Y. K., Hull, R. W., and Carothers, W. W., 1985, Water-rockinteractions in sedimentary basins. Chap. 2., in Relationship of OrganicMatter and Mineral Diagenesis. SEPM Short Course no. 17, p. 79-176.

Kharaka, Y. K., Law, L. M., Carothers, W. W., and Goerlitz, D. F., 1986,Role of organic species dissolved in formation waters in mineraldiagenesis, in Special Vol. on Relationship of Organic Matter andMineral Diagenesis, (ed D. Gautier), SEPM Special Vol. No. 38, 111-122.

114

Page 115: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Kielland, J., 1937, Individual activity coefficients of ions in aqueoussolutions: American Chemical Society Journal, v. 59, p. 1675-1678.

Kublanovskii, V. S., 1977, Manganese(II) chloride complexes in themanganese(II) chloride-ammonia chloride-water system: Russian Journalof Inorganic Chemistry, v. 22, p. 405-408.

Lafon, G. M., 1969, Some quantitative aspects of the chemical evolution of theoceans: Ph.D. thesis, Northwestern University., Evanston, Illinois.

Lafon, G. M., and Truesdell, A. H., 1971, Temperature dependence of sodiumsulfate complexing in aqueous solutions (abs.): American GeophysicalUnion Transactions, v. 52, p 362.

Langmuir, D., 1978, Uranium solution-mineral equilibria at low temperatureswith applications to sedimentary ore deposits: Geochimica etCosmochimica Acta, v. 42, p. 547-569.

Lemire., R. J., and Tremaine, P. R., 1980, Uranium and plutonium equilibria inaqueous solutions to 200°C: Journal of Chemical Engineering Data,v. 25, p. 361-370.

Lewis, G. N. , andRandall, M., 1961, Thermodynamics: McGraw-Hill, New York,723 p.

Lico, M. S., Kharaka, Y. K., Carothers, W. W., and Wright, V. A., 1982,Methods for collection and analysis of geopressured geothermal and oil­ field waters: U. S. Geological Water-Supply Paper 2194, 21 p.

Lindsay, W. T., 1980, Estimation of concentration quotients for ionicequilibria in high temperature water: the model substance approach.Proceedings 41st International Water Conference, Engineering Societyof Western Pennsylvania, pp. 284-294.

Lown, D. A., Thirsk, M. R., and Wynn-Jones, L., 1970, Temperature and pressuredependence of the ionization of acetic acid in water from 25° to 225°Cand 1 to 3000 bars: Faraday Society Transactions, v. 66, p. 51-73.

Lundegard, P. D., and Land, L. S., 1986, Carbon dioxide and organic acids:Their origin and role in diagenesis, the Texas Gulf Coast Tertiary,in Relationship of Organic Matter and Mineral Diagenesis, Gautier, D.L.,ed., SEPM Special Publication No. 38, p. 129-146.

MacGowan, D. B., and Surdam, R. C., 1988, Difunctional carboxylic acids inoilfield waters: Organic Geochemistry, v. 12, pp 245-259.

Marshall, W. M., 1980, Amorphous silica solubility, III. Activitycoefficient relationships and prediction of solubility behavior insalt solutions, 0-350°C. Geochimica et Cosmochimica Acta, v. 44,p. 925-931.

Marshall, W. L., and Frank, E. V., 1981, Ion product of water substance,0-1000°C, 1-10,000 bars, new international formulation and itsbackground: Journal of Physical Chemical Reference Data, v. 10,p. 295-304.

Marshall, W. L., and Mesmer, R. E., 1981, On the pressure effects ofionization constants in aqueous solutions: Journal of SolutionChemistry, v. 10, p. 121-127.

Martell, A. E., and Smith, R. M., 1977, Critical stability constants: NewYork, Plenum, v. 3, 495 p.

May, H. M., Helmke, P.A., and Jackson, M. L., 1979, gibbsite solubilityand thermodynamic properties of hydroxyaluminum ion in aqueous solutionat 25°C: Geochimica et Cosmochimica Acta, v. 75, p. 351-361.

May, H. M., Kinniburgh, D. G., Helmke, P. A., and Jackson, M. L., 1986,Aqueous dissolution solubilities and thermodynamic stabilities ofcommon alumino silicate clay minerals: Kaolinite and smectites:Geochimica et Cosmochimica Acta, v. 50, p. 1667-1678.

Merino, E., 1975, Diagenesis in Tertiary Sandstones From KettlemanNorth Dome, California--!. Diagenetic Mineralogy. Journal of SedimentaryPetrology, v. 45, p. 320-336.

115

Page 116: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

, 1979, Internal consistency of a water analysis and uncertaintyof the calculated distribution of aqueous species at 25 C: Geochimicaet Cosmochimica Acta, v. 43, p. 1533-1542.

Mesmer, R. E., Bates, C. F., and Seeton, F. H., 1972, Acidity measurementsat elevated temperatures: VI. Boric acid equilibrium: InorganicChemistry, v. 11, p. 536-543.

Meyer, H. J., and McGee, H. W., 1985, Oil and gas fields accompanied bygeothermal anomalies in Rocky Mountain Region. American Association of Petroleum Geologists Bulletin, v. 69, p. 933-945.

Millero, F. J., 1972, The partial molal volumes of electrolytes inaqueous solutions, in Water and Aqueous Solutions, Horne, R. A., ed.John Wiley, New York, p. 519-593.

Miller, N. , 1988, The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-iCa-Cl-SO,-H~0 system, to high

temperature and concentration: Geochimica et Cosmochimica Acta, v. 52p. 821-837.

Morel, F. M. , 1983, Principles of aqueous geochemistry. Wiley-Interscience,New York, 446 p.

Murray, R. C., and Cobble, J. W., 1980, Chemical equilibria in aqueoussystems at high temperatures. Proceedings 41st International WaterConference, Engineering Society of Western Pennsylvania, pp 295-310.

Nancollas, G. H., 1956, Thermodynamics of ion association. II. Alkalineearth acetates and formates: Journal of Chemistry Society, p. 744-749.

Narasimhan, T. N., White, A. F., and Tokunaga, T, 1986, Groundwatercontamination from an active uranium mill tailings piles, 2.Application of dynamic mixing model. Water Resources Research, v. 22,p. 1820-1834.

Naumov. G. B., Ryzhenko, B. N., and Khodakouskii, I. L., 1974, Handbook ofthermodynamic data: U. S. Geological Survey Water Resources Publication74-001, 239 p. (translated from Spravochnik TermodinamichesnikhVelichmin, Atomizdat, Moscow).

Navrotsky, A., 1987, Models of crystalline solutions, in ThermodynamicModeling of Geological Materials: Minerals, Fluids, and Melts,Carmichael, I. S. E., and Eugster, H. P., Mineral Society of America,17, p. 35-39.

Nordstrom, D. K., and Jenne, E. A., 1977, Fluorite solubility equilibriain selected geothermal waters: Geochimica et Cosmochimica Acta, v. 41,p. 175-188.

Nordstrom, D. K., and Munoz, J. L., 1985, Geochemical thermodynamics. TheBenjamin/Cummings Publishing Company, Incorporated, Menlo Park,California, 477 p.

Nordstrom, D. K., Plummer, L. N., Wigley, T. M. L., Wolery, T. J., Ball,J. W., Jenne, E. A., Basset, R. L., Crerar, D. A., Floremce, T. M.,Fritz, B., Hoffman, M., Holdren, G. R., Lafon, G. M., Mattigod, S. V.,McDuff, R. E., Morel, F., Reddu, M. M., Sposito, G., and Thrailkill,J., (1979), A comparison of computerized chemical models forequilibrium calculations in aqueous systems. In Chemical Modeling inAqueous Systems, Jenne, E. A., ed., American Chemical Society,Symposium Series 93, p. 857-892.

Pabalan, R. T. and Pitzer, K. S., 1987, Thermodynamics of NaOH(aq) inhydrothermal solutions: Geochimica et Cosmochimica Acta, v. 51,p. 829-838.

Palmer, D. A., and Drummond, S. E., 1988, A po^entiometric determination ofthe molal formation constants of ferrous acetate complexes in aqueoussolutions to high temperatures: Journal of Physical Chemistry, v. 92,p. 6795-6800.

116

Page 117: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Parkhurst, S. L., Thorstenson, C., and Plummer, L.N., 1980, PHREEQE: acomputer program for geochemical calculations. U. S. GeologicalSurvey, Report No. PB81-167801.

Parsons, M. L., Major, S., and Forster, A. R., 1983, Trace elementdetermination by atomic spectroscopic methods-state of the art:Applied Spectroscopy, v. 37, no. 5, p. 411-418.

Patterson, C. S., Slocum, G. H., Busey, R. H., and Mesmer, R. E., 1982,Carbonate equilibria in hydrothermal systems: first ionization ofcarbonic acid in NaCl media to 300°C: Geochimica et Cosmochimica Acta,v. 46, p. 1653-1663.

Perkins, E. H., 1980, A reinvestigation of the theoretical basis ofPATHI. University of British Columbia, Unpublished M.Sc. thesis.

Phillips, S. L., 1982, Hydrolysis and formation constants at 25°C:University of California Publication, LBL-14313.

Pitzer, K. S., 1973, Thermodynamics of electrolytes. I. Theoreticalbasis and general equations: Journal of Physical Chemistry, v. 77,p. 268-277.

, 1981, Characteristics of very concentrated aqueous solutions,in Chemistry and geochemistry of solutions of high temperatures and pressures. Physics and Chemistry of the Earth, 13-14, p. 249-272.

Plummer, L. N. , and Busenberg, Eurybiades, 1982, The solubilities of calcite aragonite and vaterite in C0« - H~0 solutions between 0° and 90°C, and

an evaluation of the aqueous model for the system CaGO^-CO^-H^O:

Geochimica et Cosmochimica Acta, v. 46, p. 1011-1040. Plummer, L. N., Jones, B. F., and Truesdell, A. H., 1976, WATEQF a FORTRAN IV

version of WATEQ, a computer program for calculating chemical equilibrium of natural waters: U. S. Geological Survey Water ResourceInvestigation 76-13, 61 p.

Plummer, L. N., and Busenberg, E., 1984, WATEQF a FORTRAN IV version of WATEQ,a computer program for calculating chemical equilibrium of naturalwaters. U. S. Geological Survey Water Resources Investigation 76-13,70 p.

Presser, T. S., and Barnes, I., 1974, Special techniques for determiningchemical properties of geothermal waters: U.S. Geological Survey WaterResources Investigation 22-74, 11 p.

Reardon, E. J., 1975, Dissociation constants of some monovalent sulfateion pairs at 25 form stoichiometric activity coefficients: Journal ofPhysical Chemistry, v. 79. p. 422-425.

Reed, M, H., 1982, Calculation of multicomponent chemical equilibria andreaction processes involving minerals, gases and an aqueous phase:Geochimica et Cosmochimica Acta, v. 46, p. 513-528.

Richet, P., Bottinga, Y., Denielou, L., Petit, J. P., and Tequi, C., 1982,Thermodynamic properties of quartz, cristobalite and amorphous silicondioxide: Drop Calorimetry measurements between 1000 and 1800 K anda review from 0 to 2000 K: Geochimica et Cosmochimica Acta, v. 46,p. 2639-2658.

Roberson, C. E., and Barnes, R. B., 1978, Stability of fluoride complexwith silica and its distribution in natural water systems: ChemicalGeology, v. 21, p. 239-256.

Robie, R. A., Hemingway, B. S., and Fisher, J. R., 1978, Thermodynamicproperties of minerals and related substances at 298.15 K and 1 barpressure and at higher pressures: U. S. Geological Survey Bulletin 1452,456 p.

Ruaya, J. R., and Seward, T. M., 1986, The stability of chlorozinc (II)complexes of hydrothermal solutions up to 350°C: Geochimica etCosmochimica Acta, v. 50, p. 651-662.

117

Page 118: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Schoonen, M. A. A., and Barnes, H. L., 1988, An approximation of the second dissociation constant for H? S: Geochimica et Cosmochimlca Acta, v. 92,

p. 649-654. Seward, T. M., 1976, The stability of chloride complexes of silver in

hydrothermal solutions up to 350°C: Geochimica et Cosmochimica Acta, v. 40, p. 1329-1342.

-, 1981, Metal complex formation in aqueous elevated temperatures and pressures: Physics 13-14, p. 113-128.

solutions atand Chemistry of the Earth,

, 1984, The formation of lead(II) chloride complexes to 300°C.A spectrophotometric study: Geochimica 4t Cosmochimica Acta, v. 48,p. 121-134.

Shanks, W. C., and Bischoff, J. L., 1977, Ore transport and deposition in theRed Sea geothermal system: a geochemical model: Geochimica etCosmochimica Acta, v. 41, p. 1507-1519.

Siebert, R. M., and Hostetler, P. B., 1977, Stability constants of metal-ioncomplexes: Chemical Society [London], 745 p.

Sillen, L. G., and Martell, A. E., 1964, Stability constants of metal-ioncomplexes: Chemical Society [London], 754 p.

Silvester, K. S., and Pitzer, K. S., 1978, Thermodynamics of electrolytes.X. Enthalpy and the effect of temperature on the activity coefficients:Journal of Solution Chemistry, v. 7, p. 327-337.

Smith, R. M., and Martell, A. E., 1976, Critical stability constants:Plenum Press, New York, 4 vols.

Smith, R. W., Popp, C. J., and Norman, D. I., 1986, The dissociation ofoxy-acids at elevated temperatures: Geochimica et Cosmochimica Acta,v. 50, p. 137-142.

Smith, W. R., and Missin, R. W., 1982, Chemical reaction equilibriumanalysis. Wiley-Interscience, New York.

Sposito, G., 1982, The thermodynamic theory of ion exchange, inThermodynamics of Ion Exchange, Sposito, G., ed., Wiley, New York,pp. 126-153.

Sposito, G., and Mattigod, S.V., 1980, GEOCHEM: A computer program forthe calculation of chemical equilibria in soil solutions and othernatural water systems. Report, Kearney Foundation of Soil Science,University of California.

Staples, B. R., and Nuttall, R. L., 1977, The activity and osmoticcoefficients of aqueous calcium chloride at 298.15°: Journal ofPhysical Chemistry Reference Data, v. 6, p. 385-407.

Stoessell, R. K., 1988, 25°C and 1 atm dissolution experiments of sepioliteand kerolite: Geochimica et Cosmochimica Acta, v. 52, p. 365-374.

Swaddle, T. W., and Mak, M. K. S., 1983, The partial molar volumes ofaqueous metal cations: their prediction and relation to volumes ofactivation for water exchange: Canadian Journal of Chemistry, v. 61,p. 473-480.

Tanger, J. C., and Helgeson, H. C., 1988, Calculation of the thermodynamicand transport properties of aqueous species at high pressure andtemperatures: Revised equations of state for the standard partial molalproperties of ions and electrolytes: American Journal of Science,v. 287, p. 1025-1049.

Tardy, Y., and Garrels, R. M., 1974, A method of estimating the Gibbs energiesof formation of layer silicates: Geochimica et Cosmochimica Acta, v.38, p. 1101-1116.

Thorstenson, D. C., 1984, The concept of election activity and its relationto redox potentials in aqueous geochemical systems. U.S. GeologicalSurvey Open-File Report 84-072, 45 p.

118

Page 119: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Thurman, E. M. , 1984, Humic Substances I. Geochemistry, Characterization and Isolation. New York, John Wiley and Sons, 380 p.

, 1985, Organic geochemistry natural waters: Boston MartinusNijhoff, DRW Junk Publishers, 479 p.

Tremaine, P., 1987, Solubility and hydrolysis of aluminum oxides andhydroxides at elevated temperatures from apparent molar heat capacityand volume measurements near 25°C: Proceedings of Symposium on Chemistryin High Temperature Aqueous Solutions, Prove, Utah, Electric PowerResearch Institute Report, p. 18.

Tremaine, P. R. , Chen, J. D. , Wallace, G. J., and Boivin, W. A., 1981,Solubility of Uranium (IV) oxide in alkaline aqueous solutions to 300°C:Journal of Solution Chemistry, v. 10, No. 3, pp. 221-230.

Truesdell, A. H. , and Jones, B. F. , 1974, WATEQ, a computer program forcalculating chemical equilibria of natural waters. Journal ofResearch, U.S. Geological Survey, v. 2, p. 233-248.

Truesdell, A. H. , and Singer W. , 1974, The calculation of aquifer chemistryin hot-water geothermal systems: U.S. Geological Survey Journal ofResearch v. 2, pp. 271-278.

Tugarinov, I. A., Ganeyev, I. G. , and Khodakovskiy , I. L. , 1975, Experimentaldeterminations of hydrolysis constants of lead ions in aqueous solutionsat temperatures up to 300°C: Geochemistry International, v. 12,p. 47- 55.

Vanderzee, C. E. , 1982, Thermodynamic relations and equilibria in (NaCOo,

H20) : Standard Gibbs energies of formation and other properties

of sodium hydrogen carbonate, sodium carbonate heptahydrate, sodium carbonate decahydrate, trona: (Na^COo-NaHCOo* 2H,,0) , and wegscheiders

salt: (Na2CO * SNaHCO-) : Journal Chemical Termo., v. 14, pp 219-238.

Wagman, D. D. , Evans, W. H. , Parker, V. B. , and Schumm, R. H. , 1976,Chemical thermodynamic properties of compounds of sodium, potassium and rubidium: An interm tabulation of selected values: National Technical Information Service (NTIS) report, PB 254-460, 73 pp.

Wagman, D. D. , Evans, W. H. , Parker, V. B., Schumm, R. H. , Harlow, I.,Bailey, S. M. , Churney, K. L. , and Nuttall, R. L. , 1982, The NBS tables of chemical thermodynamic properties. Journal of Chemical and Reference Data, vol 11, supplement 2.

Wagman, D. D. and others, 1968 and 1969, Selected values of chemicalthermodynamic properties: NBS Technical Note No. 270-3; No. 270-4.

Westall, J., 1980, Chemical equilibrium including adsorption on chargedsurfaces, in Advances in Chemistry series, Leckie, J., and Kavanaugh, M. , eds., American Chemical Society, p. 33-44.

Westall, J., and Hohl, H. , 1980, A comparison of electrostatic models for the oxide/solution interface. Advances in Colloid and Interface Science, vol 12, p. 265-294.

Westall, J., Zachary, J. L. , and Morel, F. M. M. , 1976, MINEQL, a computer program for the calculation of chemical equilibrium composition of aqueous systems. Massachusetts Institute Technical Department of Civil Engineering Technical Note 18, 91 p.

Whitfield, M. , 1975, An improved specific interaction model for seawater at 25 C and 1 atmosphere pressure: Mar. Chemical, v. 3, p. 197-205.

Willey, L. M. , Kharaka, Y. K. , Presser, T. S., Rapp, J. B. andBarmes, I., 1975, Short-chain aliphatic acids in oil field waters of Kettleman Dome oil field, California: Geochimica et Cosmochimica Acta, v. 39, p. 1707-1710.

119

Page 120: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Williams-Jones, A. E., and Seward, T. M., 1988, The stability of calciumchloro-complexes in aqueous solutions at temperatures between 100° and 360°C: Abstract in proceedings of Experimental investigations of hydrothermal processes: Applications to ore deposit genesis, Montreal, Quebec, Canada.

Wiwchar, B. W., Perkins, E. H., Gunter, W. D., in press, SOLMINEQ.88 PC/SHELL, Alberta Research Council Report, 130 p.

Wolery, T. J., 1979, Calculation of chemical Equilibrium between aqueous solution and mineral: the EQ3/EQ6 software package: Lawrence Livermore Laboratory (UCRL-52658), 41 pj

, 1983, EQ3NR, a computer program for g4ochemical aqueousspeciation-solubility calculations, user's guide and documentation: Lawrence Livermore Laboratory (UCRL-534]i4) , 191 p.

, 1984, EQ36, a computer program for reaction-path modeling of aqueousgeochemical systems: User's guide and documentation, Lawrence Livermore Laboratory UCRL-51 (draft), 251 pp.

, 1986, unpublished EQ3 data base.Wolley, E. M., and Hepler, L. G., 1977, Heat capacities of weak electrolytes

and ion association reactions: Method and application to aqueous MgSO, and HIO., at 298 K: Canadian Journal of Chemistry, v. 55,

p. 158-163. Wood, S. A., Crerar, D. A., and Borcsik, M. P., 1987, Solubility of the

assemblage pyrite-pyrrotite-magnetite-sphalerite-galena-gold-stibnite- dismuthinite-argentite-molybdenite in H«0-Nacl-C0« solutions from 200°

to 350°C: Economic Geology, v. 82, p. 1864-1887.Zen, E-an, 1972, Gibbs free energy, enthalpy and entropy of ten rock-

forming minerals: Calculations, discrepancies, implications: American Mineralogist, v. 57, p. 524-553.

120

Page 121: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

APPENDIX I. DATABASE

The database for SOLMINEQ.88 consists of physical parameters of the

aqueous species, equilibrium constants (K) of the dissociation, redox, and

dissolution reactions, constants for calculating the activity coefficients,

and data for the extrapolation of the K values to higher pressures. The

physical parameters are listed in Table IA. In this table, the name of the

species is followed by its charge, hydrated radius (a ), and molecular weight.

Tables IB and 1C list the equilibrium constants at eleven temperatures

from 0° to 350°C for the dissociation of aqueous complexes and redox reactions

(IB), and dissolution reactions for the minerals (1C). The eleven constants

are arranged in two lines for each of the species; the first line contains

data for the temperatures (°C) 0, 25, 50, 75, 100, 125, and 150, and the

second line for 200, 250, 300, and 350. The corresponding reactions together

with the sources of thermochemical data are listed in Tables 2 and 3 of the

main text.

Parameters and equations used for calculating the activity coefficients

are given in the main text and Table ID. Table ID contains the B* values for

the specific temperatures used to calculate the activity coefficients of

charged species by the equation (24).

Data for the pressure effects on K values are given in Tables IE and IF.

Table IE contains the fit parameters for adjusting the K values of dissolution

reactions of 158 minerals. These parameters have been obtained (see text for

details) mainly by the regression of high temperature-high pressure values of

K reported by Helgeson and others (1978).

Entries in Table IF consist of three parameters. The first refers to the

number of the aqueous dissociation reaction from Table IB, the second to the

AV of this reaction at 25°C, and the third to the number of water ionization

reactions that must be added to convert the dissociation reaction to an

"ISOCOULOMBIC" form. Table IG contains the Pitzer Coefficients used to

calculate the activity of water and the activity coefficients of charged

species. Table IH gives the aqueous species number and stoichiometry involved

in the congruent dissolution of minerals. This table is used in the

calculation of saturation states of minerals and reactions involving mass

transfer between minerals and water.

121

Page 122: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table IA. Physical Parameters of Aqueous Species.

Charge

1 Ca ++2 Mg ++3 Na +4 K +5 Cl -6 S04 --7 HC03 -8 H +9 OH -

10 H2011 H4Si0412 Si0213 Ag +14 Al +315 Ba ++16 Cu +17 Cu ++18 Fe ++19 Fe +320 Hg2 ++21 Hg ++22 Li +23 Mn ++24 Mn +325 Pb ++26 Sr ++27 Zn ++28 H2As03-29 P04 -330 F -31 B(OH)332 NH333 H2S34 A1F ++35 A1F2 +36 A1F337 A1F4 -38 A1(OH)++39 A1(OH)2+40 A1(OH)4-41 A1(S04)+42 A1S04)2-43 AgCl44 AgC12 -45 AgC13 --46 AgC14 -347 Ag(S04)-48 CH3COO -49 H3As0350 As04 -351 BaC0352 BaHC03 +

2211

-1-2-11

-1000132122322123222

-1-3-1000210

-121

-11

-10

-1-2-3-1-10

-301

\j a

6.08.04.03.03.04.04.59.03.50.00.00.02.59.05.02.56.06.09.04.05.06.06.09.04.55.06.04.05.03.50.00.00.05.45.40.04.55.45.44.54.54.50.04.05.06.04.04.50.06.00.04.0

MolecularWeight

40.08024.31222.99039.10235.45396.06261.0171.008

17.00718.01596.11560.085

107.87026.982

137.34063.54063.54055.84755.847

401.180200.590

6.93954.93854.938

207.19087.62065.370

130.93694.97118.99861.83317.03134.08045.98064.97883.977102.97543.98960.99695.011

123.043219.105143.323178.776214.229249.682203.93259.045

125.944138.921197.349198.357

53 Ba(OH) +54 BaS0455 CaC0356 CaHC03 +57 Ca(OH) +58 CaP04 -59 CaHP0460 CaH2P04+61 CaS0462 CuCl63 CuC1264 CuC1365 CuCl +66 CuC1267 CuC13 -68 CuC14 --69 Cu(OH) +70 CuS0471 FeCl +72 FeCl273 FeHP0474 H3P0475 Fe(OH) +76 Fe(OH)277 FeOOH -78 FeS0479 FeCl ++80 FeCl2 +81 FeCl382 FeC14 -83 FeS04 +84 FeS04)2-85 Fe(OH)++86 Fe(OH)2+87 Fe(OH)388 Fe(OH)4-89 B(OH)4 -90 H2Si04--91 H3Si04 -92 HAs03 --93 HAs04 --94 H2As04 -95 H3As0496 HF97 H2C0398 C03 --99 HP04 --

100 H2P04 -101 HS -102 S --103 HS04 -104 HN03

arge

10011

-10100

-1-210

-1-210100010

-10210

-11

-1210

-1-1-2-1-2-2-1000

-2-2-1-1-2-10

o a

5.00.00.06.06.05.40.05.40.00.04.05.04.00.04.05.04.00.04.00.00.00.05.00.05.00.05.05.00.04.05.04.05.05.40.05.42.65.44.05.05.04.00.00.00.04.55.05.43.55.04.50.0

MolecularWeight

154.347233.402100.089101.09757.087

135.051136.059137.067136.14298.993

134.446169.89998.993

134.446169.899205.35280.547

159.60291.300

126.753151.82697.99572.85489.86288.854

151.90991.300

126.753162.206197.659151.909247.97072.85489.862

106.869123.87778.84094.10095.108

129.928139.929140.936141.94420.00662.02560.00995.97996.98733.07232.06497.07063.013

122

Page 123: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Charge

105 HgCl +106 HgC12107 HgC13 -108 HgC14 --109 HgS04110 HgSH2S)2111 Hg(HS)3-112 Hg113 KC1114 KC03 -115 KHS04116 KS04 -117 KHP04 -118 LiOH119 L1S04 -120 MgC03121 MgHC03 +122 MgF +123 MgOH +124 MgS04125 MgP04 -126 MgHP04127 MgH2P04+128 MnCl +129 MnC12130 MnC13 -131 MnC14 --132 MnHC03 +133 MnS04134 MnHP04135 MnOH +136 N03 -137 NaCl138 NaC03 -139 NaHC03140 Na2C03141 Na2S04142 NaS04 -143 NaHP04 -144 NaF145 NaHS146 NH4 +147 NH40H148 PbCl +149 PbC12150 PbC13 -151 PbC14 --152 PbS04153 MnCl ++154 Sr(OH) +155 SrC03156 SrHC03 +157 SrS04158 ZnCl +

10

-1-200

-100

-10

-1-10

-101110

-10110

-1-21001

-10

-1000-1-1001010

-1-20210101

oa

4.00.04.05.00.00.04.00.00.03.80.05.45.40.05.00.04.04.56.50.05.40.05.44.00.04.05.04.00.00.04.03.00.05.40.00.00.05.45.40.00.02.50.04.00.04.05.00.05.05.00.04.00.04.0

MolecularWeight

236.043271.496306.949342.402296.652300.814299.806200.59074.55599.111

136.172135.164135.08123.946

103.00184.32185.32943.31041.319120.374119.283120.291121.29990.391

125.844161.297196.750115.955151.000150.91771.94562.00558.44382.99984.007

105.989142.041119.051118.96941.98856.06218.03935.046

242.643278.096313.549349.002303.25290.391

104.627147.629148.637183.682100.823

159 ZnC12160 ZnC13 -161 ZnC14 --162 ZnS04163 A1F5 --164 A1F6 -3165 HgOH +166 Hg(OH)2167 U +4168 U02 +169 U02 ++170 UOH +3171 U(OH)2++172 U(OH)3 +173 U(OH)4174 U(OH)5 -175 UF +3176 UF2 ++177 UF3 +178 UF4179 UF5 -180 UF6 --181 UC1 +3182 UHP04 ++183 U(HP04)2184 U(HP04)3185 U(HP04)4186 US04 ++187 U(S04)2188 U6(OH)15189 U020H +190 U02(OH)2191 U02)20H2192 U02)30H5193 U02)30H7194 U02S04195 U02S04)2196 U02F +197 U02F2198 U02F3 -199 U02F4 --200 U02C1 +201 UH3S104+202 U02HP04203 U02HP042204 U02H2P04205 UH2P04)2206 UH2P04)3207 U02C03208 U02C03)2209 U02C03)3210 V04 -3211 VO ++212 V +3

arge

0-1-20

-2-3104123210

-13210

-1-2320

-2-42091021

-10

-210

-1-2110

-210

-10

-2-4-323

oa

0.04.05.00.05.06.04.00.09.92.56.09.06.02.50.03.59.06.02.50.03.54.59.06.00.04.56.06.00.09.92.50.06.02.53.50.04.52.50.03.54.52.52.50.04.52.50.03.50.04.56.05.25.09.0

MolecularWeight

136.276171.729207.182161.432121.974140.972217.597234.605238.030270.030270.030255.040272.050289.060306.070323.080257.030276.030295.030314.030333.030352.030273.480334.010429.990525.970621.960334.090430.1501683.330287.040304.050574.080895.140929.160366.090462.150289.030308.030327.030346.030305.480265.140366.010461.990367.080464.130561.180330.040390.050450.060114.94066.94050.940

123

Page 124: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

213 HV04 --214 H2V04 -215 H3V04216 H4V04 +217 NaHV04 -218 V02F219 V02F2 -220 VOH ++221 V(OH)2 +222 V(OH)3223 VOOH +224 VOS04225 VOC1 +226 VOF +227 VOF2228 CH3COOH229 AlAce ++230 BaAce +231 CaAce +232 CuAce +233 FeAce +234 Fe(Ace)2235 KAce236 MgAce +237 NaAce238 PbAce +239 Pb(Ace)2240 Pb(Ace)3241 SrAce +242 U02Ace +243 U02Ace2244 ZnAce +245 Zn(Ace)2246 C204 --247 HC204 -248 H2C204249 AlOxy +250 AlOxy)2-251 BaOxy252 CaOxy253 FeOxy254 FeOxy +255 KOxy -256 MgOxy257 MnOxy258 MnOxy)2259 MnOxy)3260 MnOxy +261 NaOxy -262 PbOxy263 SrOxy264 ZnOxy265 C4H404--266 HC4H404-

arge

-2-101

-10

-121010110021111001010

-111010

-2-101

-10001

-100

-2-41

-1000

-2-1

oa

5.25.60.04.04.00.04.05.05.40.02.50.02.52.50.00.04.54.54.54.54.50.00.04.50.04.50.04.54.53.50.04.50.05.44.50.04.54.50.00.00.04.54.50.00.05.45.44.54.50.00.00.05.44.5

MolecularWeight

115.950116.960117.970118.980138.940101.940120.94067.95084.960

101.97083.950

163.000102.39085.940

104.94060.05386.027196.38599.125

122.585114.892173.93798.14783.35782.035

266.235325.280384.325146.665329.075338.120124.415183.46088.01889.02690.034

115.000203.018225.358128.098143.865143.865127.120112.330142.956197.894252.832142.956111.008295.208175.638153.388116.072117.080

267 H2C4H404 0 0.0268 AlSuc + 1 4.5269 AlSuc)2- -1 4.5270 BaSufc 0 0.0271 CaSu<k 0 0.0272 FeSu£ 0 0.0273 FeSufc + 1 4.5274 KSucj- -1 4.5275 MgSuc 0 0.0276 MnSue 0 0.0277 NaSuc - -1 4.5278 PbSuc 0 0.0279 SrSut 0 0.0280 ZnSuc 0 0.0281 CaCl + 1 4.0282 CaCl2 0 0.0283 FeF ++ 2 5.0284 SiF6 -- -2 5.0285 CH4 Gas 0 0.0286 Pb(HS)2 0 0.0287 Pb(HS)3- -1 4.0288 PbC03 0 0.0289 PbOH + 1 4.0290 Zn(HS)2 0 0.0291 Zn(HS)3- -1 4.0292 ZnHC03 + 1 4.0293 ZnOH + 1 4.0294 Zn(OH)2 0 0.0295 ZnHSOH 0 0.0

Molecular Weight

118.088143.054143.054253.412156.152171.919171.919155.174140.384171.010139.062323.262203.692181.44275.533

110.98674.845

142.07616.043

273.334306.416267.199224.197131.514164.596126.38782.37799.385

115.449

124

Page 125: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table IB. Equilibrium Constants of Dissociation, and Redox Reactions at 0°to 350°C.

1 HC03 -

2 H20

3 H4Si04

4 Cu ++

5 Fe +3

6 Hg ++

7 Mn +3

8 H2As03 -

9 A1F5 --

10 H2S

11 A1F ++

12 A1F2 +

13 A1F3

14 A1F4 -

15 A1(OH)++

16 A1(OH)2+

17 A1(OH)4-

18 A1(S04)+

19 A1S04)2-

20 AgCl

21 AgC12 -

22 AgC13 --

23 AgC14 -3

24 Ag(S04)-

25 CH3COOH

26 BaC03

0/200

-10.63-10.78-14.94-11.31-10.28-8.87

-11.09-7.218.967.926.11-0.9713.236.80

-12.68-11.35-20.39-25.20-7.40-7.17-6.94-8.78

-12.52-15.88-16.61-20.82-19.00-23.89-9.17-9.32

-18.08-22.19-33.72-31.88-2.88-4.55-4.72-7.13-3.70-2.90-5.80-4.58-6.30-3.66-5.80-1.40-1.22-2.23-4.77-5.58-2.40-3.60

25/250

-10.33-11.29-13.99-11.20-9.83-8.96

-10.35-6.668.807.844.67-1.8511.955.98

-12.13-11.70-20.40-27 .77-7.00-7.72-6.97-9.69

-12.57-17.53-16.65-22.94-19.04-26.08-9.04-9.54

-18.06-24.38-32.77-32.40-3.00-5.18-4.89-8.06-3.32-3.07-5.32-4.86-5.10-3.70-3.90-1.50-1.31-2.69-4.76-6.10-2.50-4.10

50/300

-10.17-11.88-13.27-11.33-9.49-9.20-9.72-6.208.647.853.46-2.5610.865.31

-11.74-12.10-20.61-30.86-6.75-8.43-7.07

-10.94-12.76-19.64-16.86-25.42-19.26-28.87-8.96-9.86

-18.22-26.92-32.20-33.10-3.16-5.88-5.10-9.01-3.07-3.54-4.74-5.42-4.40-3.85-3.10-1.70-1.41-3.44-4.78-6.80-2.60-4.70

75/350

-10.13-12.53-12.71-11.88-9.26-9.36-9.16-5.808.487.942.44-3.149.944.74

-11.47-12.60-20.99-34.72-6.63-9.23-7.22

-11.93-13.05-21.60-17.22-28.21-19.64-32.02-8.97

-10.49-18.57-29.81-31.84-34.20-3.34-6.65-5.35

-10.27-2.94-4.22-4.52-6.52-4.00-4.10-2.40-2.10-1.51-5.02-4.85-7.68-2.70-5.30

100

-10.16

-12.26

-9.09

-8.68

8.33

1.56

9.14

-11.30

-21.54

-6.61

-7.43

-13.45

-17.72

-20.18

-9.00

-19.05

-31.67

-3.54

-5.64

-2.88

-4.46

-3.85

-1.94

-1.62

-4.79

-2.85

125

-10.25

-11.91

-8.97

-8.25

8.20

0.80

8.44

-11.23

-22.26

-6.61

-7.71

-13.93

-18.34

-20.88

-9.05

-19.66

-31.58

-3.76

-5.96

-2.88

-4.46

-3.77

-1.70

-1.75

-5.12

-3.00

150

-10.39

-11.64

-8.90

-7.86

8.09

0.13

7.83

-11.20

-23.16

-6.75

-8.04

-14.51

-19.06

-21.75

-9.13

-20.40

-31.59

-4.01

-6.32

-2.88

-4.45

-3.73

-1.60

-1.89

-5.31

-3.20

125

Page 126: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

27 BaHC03)+

28 Ba(OH)+

29 BaS04

30 CaC03

31 CaHC03)+

32 Ca(OH)+

33 CaP04 -

34 CaHP04

35 CaH2P04+

36 CaS04

37 CuCl

38 CuCl2 -

39 CuCl3 --

40 CuCl +

41 CuCl2

42 CuCl3 -

43 CuC14 --

44 Cu(OH)+

45 CuS04

46 FeCl +

47 FeCl2

48 FeHP04

49 H3P04

50 Fe(OH) +

51 Fe(OH)2

52 FeOOH -

53 FeS04

54 FeCl ++

0/200

-1.18-3.62-0.43-1.86-2.39-2.38-3.14-5.44-0.82-2.33-1.03-2.51-6.31-9.19-2.41-4.58-1.23-3.21-2.30-3.60-2.80-2.25-4.99-5.82-5.15-6.36-0.53-3.731.38-3.673.18-3.085.75-2.04-6.19-6.57-2.19-3.261.06-1.589.191.35-3.49-5.00

-21.97-23.71-4.54-5.19-7.28-9.7331.2221.36-2.41-3.19-0.98-5.06

25/250

-1.44-4.60-0.53-2.30-2.31-2.59-3.22-6.30-1.11-2.64-1.14-2.91-6.47

-10.77-2.61-5.56-1.44-4.01-2.30-4.10-2.70-2.20-4.94-6.57-5.14-7.25-0.02-4.800.71-4.902.30-4.604.60-3.90-6.06-6.89-2.25-3.840.53-2.348.21-0.61-3.60-5.60

-21.69-24.97-4.50-5.49-7.39

-10.5429.0020.41-2.43-3.69-1.47-6.20

50/300 11

-1.70

>/350

2.00

100

-2.27

125

-2.60

150

-2.88-5.60 -6.80-0.65 -0.83-2.83 3.68-2.26 -2.23-3.01-3.51-7.24-1.28-2.90-1.28-3.44-6.69

-13.41 -:-2.82

3.603.868.28 1.47 3.10 1.47 4.24 6.95L9.ll 3.05

-1.03

-2.23

-4.17

-1.66

-1.67

-7.23

-3.29

-1.22

-2.24

-4.32

-1.83

-1.87

-7.65

-3.57

-1.43

-2.26

-4.67

-2.00

-2.08

-8.09

-3.87-7.13 -10.46-1.65-5.27-2.40-4.50-2.65-2.40

-1.87-7.90 2.55-5.00-2.60-2.70

-4.94 -4.98-7.40-5.18

-8.80-5.27

-2.10

-2.70

-2.50

-5.06

-5.39

-2.34

-2.90

-2.45

-5.19

-5.56

-2.60

-3.10

-2.35

-5.35

-5.78-8.30 -10.50-0.54-6.000.08-6.501.49-6.503.56-6.10-6.06-7.32-2.34

-1.04-7.30-0.53-8.500.72-9.002.58

8.70 6.02-8.06-2.44

-1.54

-1.13

-0.02

1.65

-6.08

-2.56

-2.05

-1.73

-0.76

0.74

-6.18

-2.70

-2.58

-2.34

-1.50

-0.16

-6.30

-2.86-4.79 -6.840.08 -0.31-2.337.23

-2.006.25

-0.66

5.27

-0.69

4.29

-1.23

3.31-2.57 -4.53-3.72-6.30

-3.89-7.10

-21.63 -21.80

-4.09

-22.02

-4.30

-22.34

-4.56

-22.73-26.60 -29.15-4.50 -4.57 -4.66 -4.77 -4.90-5.87 -6.54-7.57 -7.87 -8.20 -8.55 -8.94

-11.50 -13.0427.22 25.76 24.55 23.54 22.6819.77 19.36-2.48 -2.54 -2.63 -2.73 -2.86-4.53 -6.37-1.96-7.50

^2.45-8.80

-2.94 -3.45 -3.97

126

Page 127: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

55 FeC12 +

56 FeC13

57 FeC14 -

58 FeS04 +

59 FeS04)2-

60 Fe(OH)++

61 Fe(OH)2+

62 Fe(OH)3

63 Fe(OH)4-

64 H4(B04)-

65 A1F6 -3

66 H3S104)-

67 H3As03

68 HAs04 --

69 H2As04 -

70 H3As04

71 HF

72 H2C03

73 HP04 --

74 H2P04 -

75 HS -

76 HS04 -

77 HN03

78 HgCl +

79 HgC12

80 HgC13 -

81 HgC14 --

82 HgS04

0/200

-1.64-5.87-0.48-5.641.67-4.83-3.77-7.545.168.61

-12.10-11.68-21.14-23.71-30.28-23.31-34.92-36.95-5.45-2.27

-20.97-25.14-12.20-11.00-9.70-8.22

-11.85-11.50-18.79-19.19-20.95-22.60-2.99-4.86-6.58-7.23

-12.62-12.45-19.93-20.35-17.50-15.10-1.63-4.511.67-0.49-6.59-5.54

-14.18-10.36-16.40-12.09-15.85-12.34-1.20-3.20

25/250

-2.13-7.11-1.13-7.060.79-6.49-4.14-8.795.42

10.40-11.86-11.82-20.88-25.66-28.50-23.60-34.06-39.47-4.77-1.98

-20.88-27.54-11.70-11.50-9.29-8.29

-11.52-11.90-18.46-20.01-20.70-23.57-3.18-5.40-6.35-7.79

-12.34-12.80-19.54-21.16-17.00-14.80-1.95-5.291.43-1.04-6.25-5.78

-13.26-10.34-15.35-12.10-14.92-12.58-1.40-4.00

50/300

-2.62-8.46-1.75-8.59-0.04-8.24-4.54

-10.1.65.72

13.40-11.69-12.08-20.75-28.01-27.01-25.06-33.70-42.68-4.20-1.80

-21.00-30.39-11.30-12.00-8.94-8.51

-11.30-12.40-1.8.24-21.12-20.60-25.49-3.38-5.95-6.29-8.40

-12.18-13.30-19.36-22.26-16.70-14.60-2.29-6.081.13-1.66-5.99-6.39

-12.51-10.84-14.50-12.73-14.18-13.53-1.60-5.10

75/350

-3.12-9.89-2.37

-10.19-0.84

-10.05-4.96

-11.646.07

20.89-11.60-12.66-20.89-30.70-25.90-30.05-33.64-46.43-3.72-1.70

-21.30-33.81-11.10-13.00-8.67-8.59

-11.20-12.90-18.20-22.40-20.71-27.40-3.61-6.50-6.32-8.26

-12.14-13.80-19.38-24.20-16.30-14.40-2.64-6.880.85-2.25-5.80-8.00

-11.91-12.63-13.81-14.91-13.59-16.35-1.90-6.05

100

-3.62

-2.99

-1.63

-5.42

6.45

-11.55

-21.17

-24.97

-33.83

-3.32

-21.18

-11.00

-8.49

-11.15

-18.24

-20.90

-3.84

-6.43

-12.10

-19.43

-16.10

-3.00

0.59

-5.65

-11.42

-13.26

-13.13

-2.10

125

-4.16

-3.63

-2.42

-5.91

6.89

-11.56

-21.61

-24.28

-34.28

-2.99

-22.42

-11.00

-8.35

-11.20

-18.40

-21.23

-4.09

-6.58

-12.14

-19.58

-15.80

-3.37

0.30

-5.56

-11.03

-12.82

-12.79

-2.30

150

-4.72

-4.30

-3.23

-6 .'-2

7.38

-11.58

-22.19

-23.79

-34.95

-2.71

-23.25

-11.00

-8.27

-11.25

-18.61

-21.63

-4.33

-6.77

-12.20

-19.77

-15.40

-3.74

0.05

-5.51

-10.73

-12.48

-12.54

-2.60

127

Page 128: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

83 HgSH2S)2

84 Hg(HS)3-

85 Hg

86 KC1

87 KC03 -

88 KHS04

89 KS04 -

90 KHP04 -

91 LiOH

92 Li(S04)-

93 MgC03

94 MgHC03)+

95 MgF +

96 Mg(OH) +

97 MgS04

98 MgP04 -

99 MgHP04

100 MgH2P04+

101 MnCl +

102 MnC12

103 MnC13 -

104 MnCU --

105 MnHC03 +

106 MnS04

107 MnCl ++

108 MnHP04

109 MnOH +

110 NaCl

0/200

38.5025.1524.41-9.79-3.2810.301.00-0.06-1.04-2.10-0.65-1.80-0.87-1.74-0.11-3.01-0.26-0.68-0.64-0.64-2.87-4.40-1.00-1.77-1.54-3.70-2.55-4.04-2.34-3.32-6.31-9.19-2.91-5.08-1.23-3.216.506.003.152.251.800.401.05-1.00-1.25-2.54-2.03-3.70-2.12-6.20-3.47-4.98-3.41-4.641.000.15

25/250

-35.65-24.04-22.03-7.15-4.06

-13.040.88-0.34-1.07-2.67-0.85-2.20-0.89-2.21-0.29-4.59-0.18-0.87-0.64-0.64-2.98-4.98-1.07-2.04-1.82-4.40-2.60-4.59-2.40-3.64-6.47

-10.77-3.11-6.06-1.44-4.016.505.703.101.801.70-0.200.80-1.80-1.27-3.02-2.26-4.49-2.61-7.34-3.58-5.60-3.44-5.170.85-0.25

50/300

-33.25-23.83-19.90-5.31-5.61

-17.310.77-0.95-1.14-3.64-1.05-2.60-0.95-3.00-0.51-7.23-0.20-1.07-0.64-0.64-3.11-5.65-1.14-2.34-2.11-5.29-2.71-5.03-2.49-3.96-6.69

-13.41-3.32-7.63-1.65-5.276.455.203.001.001.60-1.200.60-3.10-1.36-3.51-2.40-5.85-3.10-8.64-3.70-6.30-3.52-5.910.80-0.95

75/350

-31.26-25.50-18.13-6.16-i6.42

-26.180.67-1.90-1.24-5.80-1.15-3.20-1.04-4.78-0.77

-12.42-0.26-1.30-0.64-0.64-3.27-6.37-1.23-2.67-2.41-6.27-2.89-5.82-2.60-4.27-6.95

-19.11-3.55

-11.00-1.87-7.906.404.002.95-0.701.50-3.400.40-5.80-1.50-4.00-2.56-9.10-3.59-9.94-3.87-7.10-3.66-7.244.70-2.00

100

-29.58

-16.13

-7.28

0.57

-1.37

-1.29

-1.14

-1.05

-0.34

-0.64

-3.46

-1.32

-2.72

-3.09

-2.73

-7.23

-3.79

-2.10

6.35

2.90

1.30

0.15

-1.68

-2.74

-4.08

-4.07

-3.82

0.65

125

-28.16

-14.43

-8.20

0.46

-1.52

-1.39

-1.27

-1.47

-0.42

-0.64

-3.66

-1.42

-3.00

-3.32

-2.87

-7.65

-4.07

-2.34

6.30

2.80

1.15

-0.15

-1.87

-2.93

-4.59

-4.28

-4.00

0.55

150

-26.97

-12.79

-9.19

0.34

-1.96

-1.41

-1.41

-1.91

-0.50

-0.64

-3.89

-1.53

-3.20

-3.56

-3.02

-8.09

-4.37

-2.60

6.20

2.65

0.95

-0.40

-2.08

-3.15

-5.11

-4.55

-4.20

0.45

128

Page 129: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

111 NaC03 -

112 NaHC03

113 Na2C03

114 Na2S04

115 NaS04 -

116 NaHP04 -

117 Hg(OH) +

118 NH40H

119 NaHS

120 NaF

121 PbCl +

122 PbC12

123 PbC13 -

124 PbC14 --

125 PbS04

126 Zn(AC)2

127 Sr(OH) +

128 SrC03

129 SrHC03 +

130 SrS04

131 ZnCl +

132 ZnC12

133 ZnCl3 -

134 ZnC14 --

135 ZnS04

136 As04 -3

137 Hg(OH)2

138 Fe2-Fe3

0/200

-0.71-5.100.39-0.681.00-1.40

999.99999.99-1.00-2.20-0.11-3.01

-10.90-10.08-4.87-5.530.90-0.061.06-0.22-1.39-2.55-1.80-4.00-1.64-3.81-1.40-2.14-2.75-2.75-1.02-3.96-0.57-2.07-2.48-5.90-0.82-4.14-2.12-3.250.07-4.01-0.13-3.98-0.11-3.001.07-4.23-2.10-3.606.056.33

-22.99-19.7717.1022.33

25/250

-1.27-6.150.25-0.960.68-2.20

999.99999.99-1.20-2.60-0.29-4.59

-10.46-10.79-4.75-6.000.83-0.340.88-0.55-1.41-3.18-1.97-4.98-1.66-5.03-1.46-2.14-2.75-2.75-1.35-5.07-0.69-2.52-2.82-7.40-1.19-5.35-2.20-3.84-0.42-5.21-0.62-5.70-0.34-3.89-0.18-6.24-2.21-4.365.217.75

-21.87-20.7717.7523.92

50/300

-1.81-7.200.12-1.400.40-3.20

999.99999.99-1.30-3.00-0.51-7.23

-10.14-12.29-4.70-6.750.77-0.950.70-0.93-1.47-3.89-2.17-6.26-1.70-6.76-1.56-2.14-2.75-2.75-1.72-7.02-0.83-3.06-3.13-9.24-1.56-6.88-2.29-4.81-0.88-6.55-1.04-7.51-0.62-4.86-1.03-9.00-2.35-5.684.629.80

-21.02-23.1418.3826.01

75/350

-2.35-8.30-0.01-1.800.20-4.30

999.99999.99-1.50-3.80-0.77

-12.42-9.92

-15.93-4.75-8.000.69-1.900.54-1.45-1.55-4.80-2.39-8.20-1.91-9.50-1.73-2.14-2.75-2.75-2.04

-11.55-0.99-3.92-3.45

-11.65-1.93-8.86-2.40-6.30-1.35-8.00-1.45-9.54-0.94-5.85-1.63

-12.70-2.50-6.854.5312.60-20.38-29.1319.0129.87

100

-2.89

-0.13

-0.05

999.99

-1.64

-1.05

-9.79

-4.85

0.57

0.38

-1.67

-2.62

-2.21

-1.93

-2.75

-2.33

-1.22

-3.77

-2.31

-2.52

-1.80

-1.92

-1.36

-2.04

-2.67

4.73

-19.94

19.64

125

-3.45

-0.25

-0.40

999.99

-1.80

-1.47

-9.74

-4.95

0.47

0.23

-1.85

-2.89

-2.50

-2.14

-2.75

-2.70

-1.42

-4.18

-2.70

-2.67

-2.34

-2.37

-1.69

-2.57

-2.86

5.00

-19.66

20.29

150

-4.04

-0.38

-0.70

999.99

-1.90

-1.91

-9.77

-5.10

0.34

0.08

-2.09

-3.18

-2.84

-2.36

-2.75

-3.07

-1.63

-4.72

-3.12

-2.84

-2.89

-2.96

-2.02

-3.21

-3.07

5.30

-19.54

20.94

129

Page 130: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

139 Cu+-Cu2

140 Hg2-2Hg2

141 Mn2-Mn3

142 U4-U02+

143 U02+-++

144 V - VO

145 VO - V04

146 CaCl +

147 CaC12

148 UOH +3

149 U(OH)2++

150 U(OH)3 +

151 U(OH)4

152 U(OH)5 -

153 UF +3

154 UF2 ++

155 UF3 +

156 UF4

157 UF5 -

158 UF6 --

159 UC1 +3

160 UHP04 ++

161 U(HP04)2

162 U(HP04)3

163 U(HP04)4

164 US04 -H-

165 U(S04)2

166 U6(OH)15

0/200

3.776.41

20.9021.5634.0028.8010.62-4.35-3.76-5.01-6.72-1.7448.3736.21-0.12-1.880.30-1.8213.4113.4126.2924.785.54-0.7410.252.94

17.287.44-8.3510.5714.0817.8318.8623.0723.5628.2325.1930.0927.6432.34-2.58-5.2811.3916.6621.5327.44-8.8111.9910.56-9.76-5.56-8.00-9.6114.2231.5216.47

25/250

4.256.93

20.9521.9034.4828.608.74-8.07-3.77-5.66-5.71-1.12

-45.34-36.58-0.42-2.040.15-2.58

-13.27-13.69-25.65-25.235.00-1.608.572.27

15.096.57-8.66

-11.16-14.49-19.01-19.10-24.92-23.72-30.57-25.35-32.68-27.68-34.88-2.59-6.45

-12.06-17.86-21.99-29.18-9.06

-12.67-9.86

-10.05-5.54-9.21-9.84

-16.17-24.8027.80

50/300 75/350

4.657.52

21.0122.4734.9728.506.87

-11.79-3.83-6.42-4.87-0.61

5.008.49

21.0723.7835.4728.304.9915.51-3.94-7.27-4.15-0.19

-42.90 -40.92

100

5.32

21.15

36.49

3.12

-4.08

-3.53

-39.45

125

5.61

21.23

37.00

1.25

-4.26

-3.00

-38.12

150

5.89

21.32

38.06

-0.61

-4.48

-2.53

-37.19-39.28 -48.59-0.65-2.59-0.02-3.44

-13.21-14.10-25.24-25.99

3.69-2.017.131.17

13.306.14-9.24

-11.96-14.94

-0.87-2.91-0.25-4.8113.1914.6624.9627.072.64-0.936.054.0311.8610.06-9.5113.5515.40

-1.08

-0.51

-13.19

-24.78

1.77

5.18

10.65

-9.78

-15.86

-1.25

-0.83

-13.21

-24.67

1.01

4.47

9.63

-10.03

-16.33

-1.49

-1.15

-13.25

-24.64

0.37

3.88

8.77

-10.57

-16.81-20.62 -23.85-19.48-27.71

19.9433.83

-24.07 -24.54

-20.45

-25.11

-21.01

-25.72

-21.63

-26.48-34.17 -42.23-25.72 -26.21 -26.78 -27.45 -28.21-36.85 -46.59-27.99 -28.45 -29.02 -29.69 -30.46-38.84 -47.78-2.76-7.73

-12.73-19.00-22.59-30.90-9.43

-13.27-9.50

-3.03-9.1213.4120.0823.2932.57-9.7913.63-9.24

-3.38

-14.09

-24.06

-10.33

-9.33

-3.79

-14.75

-24.88

-10.74

-9.34

-4.25

-15.40

-25.72

-11.23

-9.52-10.55 -10.54-5.68

-10.65-5.9212.34

-10.25 -10.76-18.55-18.4238.00

£1.39i.2.0638.00

-6.23

-11.32

-5.90

-6.59

-11.95

-0.09

-7.01

-12.63

5.55

130

Page 131: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

167 U020H +

168 U02(OH)2

169 U02)20H2

170 U02)30H5

171 U02)30H7

172 U02S04

173 U02S04)2

174 U02F +

175 U02F2

176 U02F3 -

177 U02F4 --

178 U02C1 +

179 UH3S106+

180 U02HP04

181 U02HP042

182 U02H2P04

183 UH4P2010

184 UH6P3014

185 U02C03

186 U02C03)2

187 U02C03)3

188 HV04 -3

189 H2V04 --

190 H3V04 -

191 H4V04

192 NaHV04 --

193 V02F

194 V02F2 -

0/200

-8.42-7.8616.7113.7623.4219.5617.3510.5133.9715.81-2.72-7.34-3.81-7.75-5.27-6.01-9.04-9.8611.5311.7212.7114.36-1.71-6.832.621.51-8.3710.1918.7321.6210.2211.7020.6820.1730.1828.4510.4113.114.312.369.427.54

13.6214.1421.9222.4726.5522.9329.7626.16-0.20-0.9027.1716.2522.7815.13

25/250

-8.23-7.98

-16.05-13.65-22.43-19.5515.6410.0930.8012.82-2.93-9.10-4.18-9.57-5.19-6.54-8.92

-10.58-11.43-12.29-12.54-15.73-2.10-8.452.401.37-8.41

-10.86-18.25-23.41-10.15-12.39-19.92-20.99-28.80-29.62-10.04-14.84

3.602.359.556.36

-13.27-15.53-21.33-24.58-25.16-25.94-28.38-27.54-0.30-1.10

-24.96-14.94-21.10-14.55

50/300

-8.10-8.24

-15.54-13.84-21.68-19.8914.1810.3327.8410.00-3.33

-11.09-4.57

-12.69-5.19-7.32-8.91

-11.80-11.39-13.57-12.55-18.07-2.62

-10.142.211.25-8.53

-11.55-18.16-25.30-10.20-13.10-19.48-21.92-27.94-30.99-10.00-16.87

3.112.109.514.62

-13.02-17.60-20.94-27.76-24.11-28.85-27.33-29.94-0.40-1.40

-23.10-13.99-19.73-14.48

75/350

-8.01-8.65

-15.11-14.37-21.08-20.5813.1412.9825.3612.22-3.84

-13.29-4.99

-20.01-5.24-8.94-8.96

-14.68-11.38-17.36-12.66-23.75-3.22

-11.912.061.15-8.73

-12.23-18.36-27.23-10.44-13.82-19.27-22.92-27.48-32.48-10.20-19.592.770.679.361.03

-12.98-20.48-20.73-32.22-23.25-32.85-26.57-33.48-0.40-1.70

-21.51-13.55-18.56-15.70

100

-7.94

-14.74

-20.60

12.35

23.14

-4.43

-5.43

-5.33

-9.06

-11.38

-12.85

-3.88

1.92

-8.97

-18.77

-10.54

-19.24

-27.32

-10.55

2.56

9.12

-12.95

-20.74

-22.83

-26.06

-0.50

-20.16

-17.63

125

-7.89

-14.41

-20.21

11.73

21.10

-5.08

-5.92

-5.46

-9.19

-11.40

-13.11

-4.57

1.80

-9.24

-19.34

-10.79

-19.34

-27.37

-11.04

2.43

8.81

-13.21

-20.86

-22.55

-25.77

-0.60

-18.98

-16.82

150

-7.85

-14.14

-19.91

11.20

19.24

-5.78

-6.46

-5.62

-9.37

-11.46

-13.45

-5.30

1.69

-9.54

-20.02

-11.07

-19.54

-27.61

-11.65

2.37

8.45

-13.32

-21.24

-22.47

-25.69

-0.70

-17.95

-16.15

131

Page 132: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

0/200

195 V(OH) ++

196 V(OH)2 +

197 V(OH)3

198 VOOH +

199 VOS04

200 VOC1 +

201 VOF +

202 VOF2

203 U02 Ace+

204 U02(Ace2

205 U02 +

206 U +4

207 VO ++

208 V04 -3

209 AlAce +

210 BaAce +

211 CaAce +

212 CuAce +

213 FeAce +

214 FeAce)2

215 KAce

216 MgAce +

217 NaAce

218 PbAce +

219 PbAce)2

220 PbAce)3-

221 SrAce +

222 ZnAce +

-11.88-11.52-23.48-18.62-32.69-26.76-8.52-8.87 2.72 0.24 0.13-1.25-3.39-4.25-5.61-5.82-2.23-4.09-4.41-6.3310.668.335.19

12.68-7.11-9.00 34.98 22.51-2.86-2.86-1.08-1.80-1.18-1.90-1.84-2.74-0.60-2.40-1.70-4.00 0.31 0.13-1.35-0.86 0.33 0.11-2.28-2.71-3.67-4.36-3.82-4.02-1.12-1.70-5.40-5.10

10 50

11.7311.8322.1319.0030.9227.61-8.32-9.312.48-0.69-0.04-1.69-3.30-4.85-5.46-6.35-2.39-4.99-4.51-7.4710.248.106.62

13.86-7.44-9.4232.3321.43-2.86-2.86-1.13-2.20-1.23-2.30-1.89-3.25-0.87-3.00-1.89-5.270.390.13-1.25-0.820.230.11-2.26-3.10-3.64-4.98-3.72-4.48-1.16-2.10-4.91-5.53

/300 75>

-11.48-12.03-21.07-20.00-29.55-29.60-8.29-9.822.18-2.00-0.21-2.34-3.28-6.40-5.37-7.10-2.57-6.55-4.64-9.519.878.007.84

14.96-7.73-9.9130.1321.21-2.86-2.86-1.19-2.85-1.29-2.92-1.96-4.17-1.10-3.70-2.10-6.820.130.13-1.16-0.800.110.11-2.26-3.83-3.65-6.14-3.67-5.38-1.21-2.64-4.83-6.53

132

'350

-11.40-12.60-20.18-21.67-2:8.40-23.30-8.23

-10.571.88-3.10^0.36^3.74-3.43-6.95-5.30-8.10-2.76

-10.24-4.81

-14.448.538.048.89

16.04-7.94

-10.4628.2722.99-2.86-2.86-1.26-3.60-1.36-3.73-2.04-6.36-1.38-4.80-2.34-8.900.130.13-1.09-0.810.110.11-2.29-5.63-3.68-9.02-3.65-7.69-1.27-3.37-4.76-9.19

100

-11.32

-19.62

-27.73

-8.28

1.57

-0.54

-3.56

-5.34

-2.96

-5.03

9.22

9.81

-8.20

26.71

-2.86

-1.40

-1.44

-2.14

-1.60

-2.60

0.13

-1.03

0.11

-2.33

-3.75

-3.66

-1.34

-4.75

125

-11.32

-19.15

-27.18

-8.38

1.23

-0.70

-3.68

-5.40

-3.20

-5.28

8.95

10.62

-8.40

25.38

-2.86

-1.40

-1.54

-2.26

-1.79

-2.90

0.13

-0.97

0.11

-2.39

-3.85

-3.70

-1.42

-4.78

150

-11.38

-18.83

-26.85

-8.50

0.92

-0.87

-3.86

-5.50

-3.46

-5.57

8.71

11.37

-8.60

24.25

-2.86

-1.53

-1.64

-2.40

-2.00

-3.20

0.13

-0.93

0.11

-2.47

-3.98

-3.77

-1.51

-4.84

Page 133: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

223 HC204 -

224 H2C204

225 AlOxy +

226 A10xy)2-

227 BaOxy

228 CaOxy

229 FeOxy

230 FeOxy +

231 KOxy -

232 MgOxy

233 MnOxy

234 MnOxy)2

235 MnOxy)3

236 MnOxy +

237 NaOxy -

238 PbOxy

239 SrOxy

240 ZnOxy

241 HC4H404-

242 H2C4H404

243 AlSuc +

244 AlSi^c)2-

245 BaSuc

246 CaSuc

247 FeSuc

248 FeSuc +

249 KSuc -

250 MgSuc

0/200

-1.32-1.13-4.23-5.90-6.00-6.0011.0011.00-1.57-1.57-3.00-3.00-4.30-5.80-7.74-7.74-0.70-0.70-3.47-3.47-3.93-5.4917.7018.7019.5020.5011.0012.10-0.90-0.90-4.90-4.90-2.54-2.54-4.78-5.90-4.27-4.80-5.67-6.89-5.30-5.3010.0010.00-2.02-2.02-2.00-2.00-2.00-3.90-7.00-7.00-0.30-0.30-2.05-2.05

25/250

-1.25-1.18-4.31-6.82-6.00-6.00

-11.00-11.00-1.57-1.57-3.00-3.00-4.40-6.70-7.74-7.74-0.70-0.70-3.47-3.47-4.00-6.45

-17.70-19.20-19.50-21.00-11.10-12.60-0.90-0.90-4.74-5.31-2.54-2.54-4.90-6.40-4.21-5.33-5.64-7.77-5.30-5.30

-10.00-10.00-2.02-2.02-2.00-2.00-2.20-4.70-7.00-7.00-0.30-0.30-2.05-2.05

50/300

-1.20-1.27-4.43-7.96-6.00-6.00

-11.00-11.00-1.57-1.57-3.00-3.00-4.50-7.70-7.74-7.74-0.70-0.70-3.47-3.47-4.10-8.18

-17.70-20.20-19.50-22.00-11.10-13.60-0.90-0.90-4.65-5.89-2.54-2.54-4.90-7.40-4.18-6.04-5.68-8.91-5.30-5.30

-10.00-10.00-2.02-2.02-2.00-2.00-2.40-5.70-7.00-7.00-0.30-0.30-2.05-2.05

75/350

-1.17-1.39-4.58-9.35-6.00-6.00

-11.00-11.00-1.57-1.57-3.00-3.00-4.60-9.00-7.74-7.74-0.70-0.70-3.47-3.47-4.29

-12.37-17.80-22.70-19.60-24.50-11.20-16.10-0.90-0.90-4.59-6.62-2.54-2.54-5.00-9.90-4.20-6.92-5.76

-10.31-5.30-5.30

-10.00-10.00-2.02-2.02-2.00-2.00-2.60-6.80-7.00-7.00-0.30-0.30-2.05-2.05

100

-1.14

-4.77

-6.00

-11.00

-1.57

-3.00

-4.90

-7.74

-0.70

-3.47

-4.41

-17.90

-19.70

-11.30

-0.90

-4.58

-2.54

-5.10

-4.25

-5.89

-5.30

-10.00

-2.02

-2.00

-2.80

-7.00

-0.30

-2.05

125

-1.13

-4.99

-6.00

-11.00

-1.57

-3.00

-5.00

-7.74

-0.70

-3.47

-4.61

-18.00

-19.80

-11.40

-0.90

-4.61

-2.54

-5.20

-4.34

-6.07

-5.30

-10.00

-2.02

-2.00

-3.00

-7.00

-0.30

-2.05

150

-1.12

-5.26

-6.00

-11.00

-1.57

-3.00

-5.20

-7.74

-0.70

-3.47

-4.86

-18.20

-20.00

-11.60

-0.90

-4.66

-2.54

-5.40

-4.44

-6.26

-5.30

-10.00

-2.02

-2.00

-3.30

-7.00

-0.30

-2.05

133

Page 134: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

251 MnSuc

252 NaSuc +

253 PbSuc

254 SrSuc

255 ZnSuc

256 FeF ++

257 SiF6 --

258 Pb(HS)2

259 Pb(HS)3-

260 PbC03

261 PbOH +

262 Zn(HS)2

263 Zn(HS)3-

264 ZnHC03 +

265 ZnOH +

266 Zn(OH)2

267 ZnHSOH

0/200

-1.99-3.91-0.30-0.30-3.20-5.90-2.00-2,00-2.19-4.85-5.82-8.5028.3015.4116.8013.0018.5812.66-6.0011.70-8.00-7.5114.1412.9017.0114.60-1.35-2.71-5.14-5.9610.50-8.2519.2016.00

25/250

-2.17-4.71-0.30-0.30-3.50-6.90-2.00-2.00-2.46-5.92-6.00-9.6025.7212.92-15.90-13.40-16.66-13.11-7.00

-12.40-7.82-7.79

-13.78-13.80-15.95-15.30-1.42-3.41-5.04-6.45-9.58-8.71

-18.40-16.40

50/300

-2.36-5.69-0.30-0.30-3.70-8.20-2.00-2.00-2.73-7.20-6.20

-10.7023.6010.75-15.10-14.20-15.23-13.93-8.00

-13.00-7.68-8.33

-12.75-15.00-15.10-16.20-1.55-4.55-5.06-7.16-8.96-9.70

-17.80-17.00

Z5/

-2-6-0-0-4-9-2-2-3-8-6

-122110-14-15-14-15-8

-13-7-9

-12-16-14-17-1-6-5-8-8

-11-17-17

350

.57

.84

.30

.30

.00

.70

.00

.00r 02i72.48.00.90,33.50,30,19,03.80.51.57.49.20.30.50.10.68.03.12.46.54.91.30.80

100

-2.79

-0.30

-4.30

-2.00

-3.33

-6.81

20.42

-14.00

-13.46

-9.60

-7.48

-12.30

-14.20

-1.82

-5.27

-8.32

-16.80

125

-3.03

-0.30

-4.70

-2.00

-3.67

-7.18

19.06

-13.50

-12.98

-10.30

-7.44

-12.30

-14.20

-1.98

-5.41

-8.20

-16.30

150

-3.28

-0.30

-5.00

-2.00

-4.02

-7.60

17.92

-13.30

-12.71

-10.80

-7.42

-12.30

-14.20

-2.20

-5.58

-8.13

-16.00

134

Page 135: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table 1C. Equilibrium Constants of Dissolution Reactions at 0° to 350°C

0/200 25/250 50/300 75/350 100 125 150

1 ADULARIA

2 AKERMANITE

3 ALBITE

4 ALBITE LOW

5 ALBITE HIGH

6 ALUNITE

7 AMESI14A

8 ANALCIME

9 ANDALUSITE

10 ANDESITE

11 ANHYDRITE

12 ANNITE

13 ANORTHITE

14 APATCHLR

15 APATFLUR

16 APATHYDX

17 ARAGONITE

18 AUGITE

19 AZURITE

20 BARITE

21 BOEHMITE

22 BRUCITE

23 BYTOWNITE

24 CALCITE

25 CELESTITE

26 CHALCEDONY

27 CHAM, 7A

IB^«____M«i

2.16-1.7650.1326.353.63

-1.163.93

-0.765.42

-0.150.11

-17.1144.8714.557.330.83

20.162.42

15.122.91

-4.14-7.2633.2212.1630.546.93

-64.90-74.90-68.56-76.13-59.89-71.03-8.22

-11.2337.9111.51

-39.86-40.68-10.50-10.31

8.700.23

-11.54-12.8922.184.20

-8.38-11.29-6.51-8.35-4.21-2.2634.607.23

^^ ^^ M««

1.26-2.1445.4623.282.50

-1.753.11

-1.394.43

-0.90-2.79

-20.9938.6310.466.05

-0.0316.57-0.0912.731.28

-4.33-8.4829.149.22

25.833.63

-66.15-77.40-68.34-79.82-60.39-75.13-8.34

-12.5932.567.88

-39.46-41.89-9.96

-10.806.95

-0.96-11.47-13.8318.602.96

-8.48-12.64-6.43-9.41-3.73-2.0529.033.43

HM*MB^^^^^

0.54-2.4341.4120.581.75

-3.452.30

-2.113.47

-1.72-5.53

-26.5433.506.004.91

-1.1513.53-2.8910.64-0.37-4.64-9.2625.485.88

21.810.02

-67.40-79.80-68.74-84.61-61.41-80.22-8.54

-14.1428.044.00

-39.36-44.14-9.69

-11.575.50

-2.33-11.53-15.1215.51-0.60-8.66

-14.18-6.53

-10.30-3.38-1.8824.50-0.80

^ ^ ^^ M

-0.35-2.6537.9319.031.02

-4.901.58

-2.582.62

-2.27-7.84

-40.0829.003.003.93

-3.6510.97-6.798.85

-1.61-5.00

-12.0622.39-0.6018.38-6.45

-68.65-82.40-69.50-93.10-62.70-88.93-8.81

-15.8424.22-2.66

-39.38-50.00-9.58

-13.004.27

-4.85-11.65-16.7912.89-2.44-8.93

-15.84-6.71

-12.15-3.10-1.8020.05-3.50

-0.51

34.94

0.46

0.96

1.89

-9.89

25.20

3.11

8.78

7.30

-5.40

19.74

15.44

-69.90

-70.50

-64.15

-9.17

20.96

-39.50

-9.59

3.24

-11.85

10.62

-9.27

-6.95

-2.88

17.00

-0.91

32.35

-0.05

0.43

1.27

-11.80

22.30

2.41

6.90

5.97

-5.82

17.47

12.91

-71.15

-71.70

-65.73

-9.59

18.14

-39.68

-9.69

2.35

-12.00

8.69

-9.68

-7.23

-2.69

14.00

-1.24

30.10

-0.48

-0.02

0.73

-13.59

19.24

1.81

5.23

4.82

-6.26

15.49

10.69

-72.40

-73.04

-67.41

-10.08

15.68

-39.94

-9.88

1.56

-12.24

6.97

-10.16

-7.56

-2.53

11.54

135

Page 136: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

28 CHLOR, 7A

29 CHLOR, 14A

30 CRYSOTIL

31 C-ENSTATIT

32 C-PTIL.Na

33 C-PTIL,K

34 C-PTIL.Ca

35 C-PTIL.Mg

36 CORUNDUM

37 CRISTOBA

38 CRISTOBB

39 DICKITE

40 DIOPSIDE

41 DOLOMITE

42 DSORD

43 ENSTATITE

44 EPIDOTE

45 FAYALITE

46 FLUORITE

47 FORSTERITE

48 GIBBS AM

49 GIBBSITE

50 GREENALITE

51 GYPSUM

52 HALITE

53 HALLOYSITE

54 HEULANDITE

55 HUNTITE

0/200

81.8632.9678.3030.3935.6517.6812.635.67

-8.1010.2016.0013.80-9.2013.10-4.2011.5025.605.37

-3.80-2.13-3.13-2.098.34

-2.0721.6910.8817.7525.1916.0124.4412.825.77

38.047.74

21.919.28

11.3210.7132.4915.3034.2930.7034.9531.1125.2811.34-4.65-5.881.501.24

11.35-0.463.00

-6.2628.7939.91

25/250

71.9426.4368.5723.9732.0315.5311.294.75

-7.90-10.70-15.00-14.00-9.30

-14.40-5.00

-13.0021.402.58

-3.54-1.91-2.94-1.906.17

-3.3519.639.47

-18.06-28.36-16.52-27.7411.474.85

31.993.45

19.437.61

-10.96-10.9529.0713.08

-34.42-31.29-34.92-31.7522.589.42

-4.60-6.501.590.898.91

-1.931.41

-7.61-30.62-42.13

50/300

63.4719.4160.2817.0428.8913.7410.103.91

-8.10-11.90-14.55-15.00-9.60

-15.50-5.80

-15.3017.91-0.45-3.27-1.77-2.76-1.794.32

-4.6117.798.16

-18.68-32.77-17.30-32.2610.274.00

26.79-1.4717.276.10

-10.73-11.2426.1311.07

-32.41-32.60-32.70-33.2220.217.30

-4.70-7.671.62

-0.416.83

-3.33-0.20-9.57

-32.33-44.85

15/350

56.309.99

53.707.70

26.2314.509.083.32

-8.55-13.80-14.25-16.90-10.10-16.80-7.00

-18.0015.00-4.47-3.01-1.76-2.59-1.782.78

-3.9816.197.45

-19.50-39.61-18.26-39.18

9.233.40

22.37-10.9915.425.19

-10.59-11.5723.639.69

-31.80-36.22-32.09-37.0018.164.36

-4.85-8.481.62

-0.205.08

-2.84-1.63

-14.80-33.88-50.13

100

50.24

47.32

23.97

8.20

-9.00

-14.10

-10.60

-8.10

12.53

-2.80

-2.54

1.48

14.81

-20.42

-19.31

8.34

18.61

13.84

-10.53

21.48

-31.23

-31.64

16.41

-4.98

1.57

3.61

-2.86

-35.26

125

45.06

42.25

22.04

7.44

-9.35

-13.95

-11.10

-9.10

10.40

-2.61

-2.34

0.38

13.63

-21.45

-20.45

7.57

15.37

12.47

-10.52

19.62

-30.89

-31.31

14.89

-5.16

1.52

2.36

-3.91

-36.53

150

40.53

37.80

20.39

6.77

-9.70

-13.90

-11.70

-10.00

8.53

-2.43

-2.23

-0.54

12.59

-22.60

-21.69

6.90

12.54

11.27

-10.55

18.00

-30.60

-31.13

13.56

-5.37

1.44

1.29

-4.80

-37.08

136

Page 137: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

56 HYDRMAGN

57 HYPHILIT

58 ILLITE

59 KAOLINITE

60 KENYAITE

61 K-SPAR

62 KYANITE

63 LABRADOR

64 LARNITE

65 LAUMONTITE

66 LEUCITE

67 LIME

68 MAGADITE

69 MgFe204

70 MAGNESITE

71 MgCl2

72 MARIALITE

73 MERWINITE

74-MICROCLN

75 MIEONITE

76 MIRABILT

77 MONTICEL

78 MORD, Na

79 MORD, K

80 MUSCOVITE

81 NACHOLIT

82 NATRTHRM

83 NATRON

0/200

36.7248.7913.034.9213.52-1.038.55-2.8225.0025.00-0.18-2.8217.851.36

19.293.92

42.5823.9417.052.667.751.31

35.7620.3414.34 14.3425.603.48-7.5810.4324.5710.704.05-8.0475.0540.31-0.18-2.8483.98-0.78-2.364.5233.2816.81-4.00-5.10-8.00-6.9016.51-1.34-0.711.230.08-2.39-1.933.70

25/250

-38.53-51.6511.803.09

10.34-2.596.23-4.44

-25.00-25.00-0.55-3.3114.48-0.8716.252.26

38.8821.5614.170.996.520.4432.6618.38-14.34-14.3421.100.46-8.05

-11.0022.158.441.71-9.5768.1735.86-0.55-3.3369.95-16.72-1.095.73

30.1514.51-3.90-5.50-7.60-7.0012.88-3.68-0.431.53-0.01-3.26-0.884.74

50/300

-40.34-55.6810.640.867.75-3.794.25-6.50

-25.00-25.00-0.99-4.1211.64-3.1314.28-0.1835.7119.5111.63-0.395.42-0.4630.0416.72-14.34-14.3417.31-2.51-8.50

-11.7120.006.44-0.45

-11.2862.2431.97-0.99-4.1357.12-34.00-0.027.33

27.4012.42-4.04-6.00-7.30-7.309.76-6.10-0.161.60-0.21-4.140.016.38

75/350

-41.99-64.64

9.56-3.185.61-4.742.58

-11.08-25.00-25.00-1.40-6.429.24-5.1211.31-1.8932.9918.389.46-2.204.46-0.9727.8115.65-14.34-14.3414.12-4.75-8.89

-13.0718.094.65-2.25

-13.8057.1729.75-1.41-6.4145.48-60.600.9215.9525.0211.07-4.22-6.60-7.13-7.807.12-7.070.100.87-0.48-5.020.7615.88

100

-43.49

8.55

3.82

1.17

-25.00

-1.76

7.21

9.43

30.66

7.63

3.64

25.89

-14.34

11.39

-9.25

16.34

-3.63

52.82

-1.77

34.86

1.76

22.96

-4.40

-7.10

4.89

0.35

-0.80

1.47

125

-44.89

7.60

2.31

-0.03

-25.00

-2.07

5.46

7.77

28.64

6.08

2.93

24.23

-14.34

9.04

-9.57

14.76

-5.15

49.05

-2.09

25.08

2.53

21.14

-4.60

-7.03

3.00

0.59

-1.17

2.10

150

-45.21

6.69

1.03

-1.07

-25.00

-2.34

3.93

6.32

26.87

4.76

2.32

22.78

-14.34

6.97

-9.87

13.30

-6.37

45.77

-2.36

15.99

3.24

19.54

-4.80

-7.00

1.37

0.82

-1.56

2.66

137

Page 138: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

84 NEPHALINE

85 NESQUHON

86 NONT, Na

87 NONT, K

88 NONT, H

89 NONT, Ca

90 NONT, Mg

91 OLDHAMIT

92 OLIGOCLA

93 PARAGONI

94 PARAGASI

95 PERICLAS

96 PHILLIPS

97 PHLOGPITE

98 PHLOGPTF

99 PORTLAN

100 POTASSI

101 PREHNITE

102 PYROPHYL

103 QUARTZ

104 SANIDINE

105 SAPO, Na

106 SAPO, K

107 SAPO, H

108 SAPO, Ca

109 SAPO, Mg

110 SEPIOLITE

111 SILICAAM

0/200

15.635.28

-4.14-4.86

-10.88-14.59-11.30-14.66-11.94-15.95-10.84-15.13-10.81-15.3513.195.66

10.401.63

18.42-1.41

114.7144.8223.9212.003.303.30

42.1017.2520.52-0.91-5.25-7.9090.9656.6936.8712.411.42

-7.27-4.24-2.361.74

-1.8230.1912.8729.7812.8028.1611.8430.2312.3330.2612.1234.5620.10-2.88-1.81

25/250

13.523.89

-5.35-4.86

-11.48-15.35-11.81-15.40-12.50-16.90-11.54-16.00-11.56-16.2511.904.408.730.47

14.39-4.20

100.7935.3521.5110.483.303.30

37.2213.7516.73-4.59-5.42-8.9284.1252.3232.029.00

-0.10-8.65-3.93-2.111.18

-2.3626.8810.5026.5510.4525.859.43

26.829.85

26.809.61

31.5218.36-2.70-1.67

50/300 75/350

11.73 10.21

100

8.92

125

7.82

150

6.872.37 -0.47

-5.32 5.22 -5.04 -4.96 -4.90-5.07 -6.01

-11.90 -:L-16.83 -:.-12.17 -:.

3.179.903.38

-13.18

-13.35

-13.58

-13.72

-13.95

-14.06-16.85 -19.90-12.92 -14.21 -14.26 -14.73 -15.16-18.54 -21.76-12.05 -13.40 -13.48 -13.96 -14.38-17.58 -20.77-12.12 -13.49 -13.61 -14.11 -14.56-17.87 -21.1010.753.277.220.44

10.95

9.712.265.911.468.03

8.77

4.79

5.57

7.90

3.82

3.47

7.10

2.99

1.65-7.61 -14.8988.81 78.6125.38 8.3419.46 17.74'9.143.303.30

8.193.303.30

32.91 29.2110.11 3.2013.25 10.19

69.89

16.26

3.30

26.09

7.49

62.38

14.98

3.30

23.41

5.10

55.83

13.86

3.30

21.06

2.94-8.84 -14.53-5.71 6.04 -6.38 -6.73 -7.09

-10.51 -14.2578.33 73.39 69.13 65.41 62.1548.79 46.5827.82 24.24 21.19 18.56 16.275.16 -2.13

-1.61 2.90 -4.02 -4.98 -5.82-10.54 -15.09-3.63 3.35 -3.10 -2.88 -2.68-1.94 -1.900.58

-3.000.033.35

23.91 21.327.85 4.07

23.65 21.117.82 4.08

22.91 20.336.75 2.97

23.76 21.097.09 3.20

23.71 21.006.82 2.89

28.70 26.6017.10 1-2.52-1.59

6.402.37L.54

-0.45

19.14

18.97

18.15

18.84

18.72

25.00

-2.23

-0.86

17.26

17.12

16.26

16.89

16.74

23.60

-2.10

-1.22

15.61

15.50

14.61

15.18

15.01

22.20

-1.99

138

Page 139: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

112 SILICGEL

113 SILLIMAN

114 SMEC Ca

115 SMEC K

116 SMEC Mg

117 SMEC Na

118 Na20

119 SPINEL

120 STILBITE

121 STRENGIT

122 SrC03

123 SYLVITE

124 TALC

125 THENARDI

126 TREMOLITE

127 TRONA

128 VIVIANIT

129 WAIRAKITE

130 WITHERITE

131 WOLLASTO

132 ZOISITE

133 SILVER

134 AgCl

135 Ag2S

136 COPPER

137 MALACHITE

138 CuO

139 Cu20

0/200

-2.94-1.7419.391.319.14-4.608.67-4.129.08-4.839.01-4.1373.0945.2742.4913.583.00-6.2627.3130.66-9.3411.640.601.29

23.5910.16-0.33-1.8467.5332.06-0.65-3.2936.0036.0021.051.80-8.9611.7014.828.34

49.2113.76-1.532.75

10.82-6.3339.9021.303.786.41

33.5532.718.703.66

-2.350.65

25/250

-2.71-1.5315.73-1.246.14-6.075.86-5.476.04-6.326.12-5.5167.4341.8636.469.881.41-7.61

-27.20-32.03-9.27

-12.650.911.02

21.138.27-0.29-2.7160.8927.15-0.63-2.92

-36.00-36.0017.33-0.92-8.63

-13.3112.607.79

42.108.83-0.504.58-9.73-6.10

-36.26-18.894.256.93

-33.58-34.16

7.672.98-1.901.25

50/300

-2.52-1.3012.63-4.093.70-7.203.57-6.513.57-7.473.77-6.5762.6939.1231.446.36-0.20-9.57

-27.41-33.43-9.37

-13.701.120.61

18.836.14-0.37-4.0954.8721.83-1.56-2.16

-36.00-36.0014.05-4.04-8.78

-15.2512.506.58

36.033.370.355.43-8.86-6.43

-33.18-16.994.657.52

-32.03-36.776.802.23-1.501.72

75/350

-2.36-0.9510.02-9.281.68-8.101.69-7.321.51-8.361.83-7.3958.6537.4727.243.56-1.63

-14.80-27.76-34.84-9.59

-14.721.260.0416.841.98-0.52-7.2549.6212.15-2.21-1.32

-36.00-36.0011.22-10.17-9.05

-17.5511.555.21

30.89-6.691.096.69-8.15-6.97

-30.52-15.535.008.49

-31.76-43.08

6.070.90-1.111.86

100

-2.20

7.79

-0.01

0.12

-0.02

0.22

55.20

23.68

-2.86

-28.22

-9.90

1.35

15.11

-0.71

45.10

-2.70

-36.00

8.79

-9.42

10.73

26.46

1.73

-7.65

-28.20

5.31

-31.65

5.44

-0.73

125

-2.06

5.86

-1.44

-1.21

-1.64

-1.14

52.25

20.63

-3.91

-28.69

-10.28

1.39

13.62

-0.94

41.19

-3.04

-36.00

6.70

-9.88

10.01

22.66

2.31

-7.19

-26.16

5.61

-31.70

4.91

-0.36

150

-1.93

4.18

-2.65

-2.33

-2.87

-2.29

49.59

17.99

-4.80

-29.36

-10.70

1.40

12.32

-1.19

37.78

-3.23

-36.00

4.87

-10.41

9.39

19.39

2.83

-6.81

-24.35

5.89

-31.90

4.44

-0.01

139

Page 140: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

140 CuS

141 Cu2S

142 CuFeS2

143 BORNITE

144 FeC12

145 FeC13

146 FeC03

147 FeO

148 Fe203HEM

149 Fe203MGH

150 Fe304

151 Fe(OH)3

152 GOETHITE

153 FeSPYRHO

154 FeSTROLT

155 FeS2PYR

156 GREIGITE

157 Hg(L)

158 HgC12(C)

159 Hg2C12(C

160 HgO

161 CINNABAR

162 CINABMET

163 MnC12

164 MnC03

165 MnO

166 Mn02

167 MnS

0/200

-24.48-17.16-38.29-21.82-36.32-27.09111.09-70.88

9.121.24

14.650.42

-10.34-13.2715.196.792.14-7.856.406.40

14.28-2.64

-38.67-33.92

1.49-3.20-3.69-5.19-3.78-5.33

-26.54-19.88-45.00-45.00-4.252.98

-15.11-10.88-19.49-11.08

2.831.31

-43.32-27.14-41.84-26.60

9.892.54

-10.52-12.8119.6210.28-7.79

-10.23-0.13-2.87

25/250

-22.83-16.64-34.95-19.86-34.07-26.77

-102.51-67.017.90-0.2412.34-2.13

-10.54-14.2813.505.660.04-9.366.406.40

10.75-4.92

-37.20-34.040.48-3.83-3.76-5.86-3.87-5.99

-24.71-20.00-45.00-45.00-2.844.16

-14.11-10.79-17.84-9.952.441.25

-39.86-25.53-38.58-25.11

8.790.84

-10.54-13.9117.709.13-8.33

-10.36-0.47-3.70

50/300

-21.50-16.70-32.17-18.40-32.32-27.45-95.49-65.436.76-1.6010.23-4.45

-10.84-15.4812.074.55-1.69

-11.306.406.407.82-7.26

-36.10-34.35-0.33-4.47-3.90-6.89-4.02-7.01

-23.34-21.05-45.00-45.00-1.695.38

-13.30-11.25-16.43-8.972.111.19

-37.02-24.94-35.89-25.26

7.75-1.30

-10.70-15.4316.088.13-8.75

-10.06-0.82-4.67

75/350

-20.41-18.15-29.79-17.38-30.90-30.99-89.60-69.175.70-2.558.30-6.57

-11.21-1>.3210.15£.93-3.13

-15.556.406.405.36-8.92

-35.30-34.79-1.00-4.50-4.06-9.24-4.20-9.36

-22.28-25.35-45.00-45.00-0.707.11

-12.64-12.99-15.23-8.041.861.53

-34.64-23.94-33.64-23.25

6.77-5.35

-10.94-18.2614.727.56-9.11-7.29-1.16-5.82

100

-19.50

-27.74

-29.76

-84.60

4.70

6.51

-11.57

9.81

-4.34

6.40

3.28

-34.73

-1.60

-4.24

-4.38

-21.46

-45.00

0.18

-12.10

-14.19

1.67

-32.62

-31.74

5.85

-11.21

13.56

-9.42

-1.50

125

-18.75

-25.96

-28.83

-80.33

3.76

4.84

-11.96

8.91

-5.37

6.40

1.51

-34.34

-2.08

-4.44

-4.59

-20.82

-45.00

0.96

-11.66

-14.27

1.53

-30.90

-30.12

4.99

-11.54

12.56

-9.68

-1.82

150

-18.10

-24.39

-28.08

-76.67

2.88

3.28

-12.38

8.91

-6.28

6.40

-0.04

-34.10

-2.50

-4.66

-4.81

-20.36

-45.00

1.68

-11.32

-12.46

1.43

-29.44

-28.75

4.16

-11.92

11.70

-9.90

-2.16

140

Page 141: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

168 PbC12

169 PbC03

170 PbOLITHR

171 PbOMASIC

172 PbS GALN

173 PbS04

174 ZnC03

175 ZnO

176 ZnS

177 ZnS04

178 RUTHERFO

179 URAMPHIT

180 PRZHEVAL

181 TOBERNIT

182 SALEEITE

183 SR AUTUN

184 URANOCIR

185 BASSEXIT

186 U03 (C)

187 U03 (AM)

188 U02(OH)2

189 UF4*2.5W

190 UHP)2*4W

191 NINGYOIT

192 U308

193 U02(AM)

194 U02(C)

195 U409

0/200

-5.31-4.3513.3712.8813.608.62

13.768.98

16.3010.93-8.07-8.43-9.2013.3412.904.4212.4210.604.71-3.3617.1118.3327.4430.2618.4927.4219.0231.0416.9226.3618.3128.0618.7729.2917.9431.309.052.41

10.994.0923.0620.3827.6629.9626.6931.4028.7335.390.30-5.932.81-6.66-3.40-9.6413.6125.79

25/250

-4.82-4.86

-12.89-13.5212.558.33

12.698.53

-14.78-10.72-7.80-9.15-9.87

-13.8311.204.02

-11.79-10.833.54-5.23

-16.88-19.31-27 .07-31.89-19.52-29.65-20.37-34.09-18.73-27.81-19.52-30.38-19.70-32.27-19.55-34.53

7.761.50

10.453.02

-22.12-20.78-27.61-31.41-26.74-33.09-29.19-37.49-1.00-6.670.92-7.87-4.66

-10.42-16.33-26.95

50/300

-4.51-5.94

-12.62-14.5811.677.64

11.808.19

-13.59-10.82-7.70

-10.45-10.50-14.229.704.02

-11.32-11.052.38-7.57

-16.81-20.54-27.04-33.62-20.62-31.86-21.82-37.11-20.28-29.16-20.77-32.69-20.84-35.27-21.23-37.72

6.660.759.142.13

-21.47-21.54-27.70-33.29-27.06-34.41-29.85-39.66-2.08-7.26-0.68-8.85-5.72

-11.07-18.54-27.78

75/350

-4.31-8.92

-12.48-16.8510.908.97

11.078.34

-12.90-11.10-7.69

-13.74-10.15-14.638.304.23

-11.00-10.951.30

-11.95-16.89-22.47-27.25-35.39-21.75-34.06-23.33-40.13-21.62-30.47-22.02-34.99-22.12-38.28-22.94-40.87

5.710.118.011.38

21.00-22.64-27.89-35.61-27.56-32.18-30.63-41.89-2.99-7.73-2.05-9.68-6.61

-11.60-20.36-28.37

100

-4.19

-12.40

10.25

10.48

-12.34

-7.74

-11.72

7.17

-10.82

0.30

-17.03

-27.64

-22.89

-24.87

-22.80

-23.26

-23.49

-24.64

4.88

7.02

-20.68

-28.15

-28.19

-31.50

-3.76

-3.22

-7.39

-21.86

125

-4.14

-12.42

9.66

9.99

-11.83

-7.84

-12.22

6.10

-10.65

-0.66

-17.26

-28.17

-24.03

-26.41

-23.83

-24.48

-24.90

-26.33

4.16

6.16

-20.47

-28.48

-28.92

-32.42

-4.42

-4.25

-8.06

-23.11

150

-4.15

-12.51

9.18

9.59

-11.42

-7.98

-12.66

5.38

-10.54

-1.58

-17.57

-28.80

-25.17

-27.96

-24.76

-25.69

-26.34

-28.00

3.51

5.39

-20.36

-28.89

-29.71

-33.38

-5.00

-5.15

-8.65

-24.16

141

Page 142: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

196 USI04

197 H AUTUNI

198 NA AUTUN

199 K AUTUNI

200 AUTUNITE

201 K2U2V20x

202 CAU2V20X

203 URANOPHA

204 SCHOEPIT

205 MGU04

206 CAU04

207 BAU04

208 U02F2

209 US3

210 V203

211 V204

212 V205

213 VOS04*6W

214 PB3V04)2

0/200

-7.4411.9622.7827.5222.0425.5123.2724.9418.3026.6957.9851.8753.2854.0317.3817.3824.4620.9126.4210.5117.016.9419.759.71-6.7910.7819.3318.3212.50-0.3010.472.19

33.2625.98-5.10-8.1452.4944.41

25/250

-8.30-12.51-23.40-28.58-22.49-26.29-23.28-25.58-19.62-28.31-56.45-51.51-53.02-54.7217.3817.38-23.38-21.0723.228.49

14.895.8217.648.60-7.30

-12.05-18.41-19.51

9.83-1.808.531.51

-31.82-25.03-4.68

-10.13-50.84-43.47

50/300

-9.06-12.95-24.01-29.57-22.95-27.06-23.40-26.25-20.85-29.86-55.26-51.39-52.94-55.6217.3817.38-22.60-21.7220.516.85

13.125.00

15.887.83-7.82

-13.66-17.83-21.59

7.61-2.996.981.06

-30.60-24.24-4.64

-12.14-49.52-43.11

75/350

-9.72-13.33-24.64-30.51-23.41-27.83-23.58-26.95-22.00-31.40-54.32-51.58-52.97-b7.1117.3817.38-22.02-23.1718.216.56

11.635.58

14.418.56-8.33

-16.88-17.53-27.485.74-3.945.730.78

-29.55-23.58*4.85

-15.01-48.39-44.37

100

-10.31

-25.24

-23.85

-23.81

-23.05

-53.58

-53.08

17.38

-21.59

16.23

10.38

13.16

-8.83

-17.41

4.16

4.71

-28.64

-5.26

-47.39

122

-10.81

-25.83

-24.29

-24.07

-24.03

-52.99

-53.25

17.38

-21.28

14.51

9.32

12.09

-9.33

-17.45

2.80

3.88

-27.85

-5.81

-46.51

J^o-11.05

-26.41

-24.71

-24.35

-24.96

-52.51

-53.47

17.38

-21.07

13.01

8.41

11.18

-10.87

-17.63

1.62

3.20

-27.15

-6.49

-45.72

Table ID. Parameters for Calculating Activity Coefficients

by the B* Method (Helgeson, 1969).

Temperature

0.025.050.0

100.0150.0

B

0.0380.0410.0430.0460.047

Temperature

200.0250.0270.0300.0350.0

B

0.0470.0340.0150.0000.000

142

Page 143: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table IE. Fit Parameters for Calculating the Equilibrium Constants of Dissolution Reactions at Higher Pressures.

500 bars

BxlO CxlO16

1000 bars

BxlO CxlO16

123456789

1011121314151617181920212223242526272829303132333435363738394041424344454647484950

0.6230.0380.5840.7050.7091.8471.6030.4910.5370.7690.4230.8710.8651.3801.3801.3800.4730.0001.7010.3940.1930.4840.8330.5140.4170.1110.9130.0000.0000.4320.1880.0000.0000.0000.0000.4130.1350.1500.1620.4220.9820.9210.1881.2210.3490.3990.3020.7730.7730.645

-5.38017.930-4.260

-10.557-10.69632.520

-20.100-2.578-0.576-7.714-1.000-3.512-3.4490.0000.0000.000

-1.5750.000

-28.676-1.119-0.145-1.633-4.871-1.970-1.015-0.963

-13.2660.0000.0001.1860.0840.0000.0000.0000.0000.634

-1.345-1.60028.640-0.558-3.101

-15.6530.084

-12.484-1.967-0.0470.224

-2.712-2.712-7.980

12.26010.05011.17015.70215.14475.36059.01612.68321.45020.01016.17628.66826.4800.0000.000ci.ooo

17.1900.000

27.07615.30510.25018.29724.32017.09615.8190.435

29.1510.0000.000

17.6136.0010.0000.0000.0000.000

20.9400.5840.480

16,79021.13035.3609.4256.001

36.87611.19017.58011.63029.53029.53014.829

2.2750.0591.0571.3881.3903.7172.8100.8690.9301.4410.7291.5061.5202.7502.7502.7500.8460.0003.2060.6740.2880.8401.4940.9280.7200.2101.6460.0000.0000.6610.3130.0000.0000.0000.0000.6900.2680.2880.9000.6381.7491.7470.3132.1800.6100.6820.4761.3731.3731.156

-22.60028.706-1.960

-24.487-24.37142.296

-14.920-1.7193.320

-14.9381.5760.512

-0.6140.0000.0000.0000.1080.000

-44.7371.2293.7320.681

-5.389-0.7901.324

-1.617-14.039

0.0000.0007.2871.5200.0000.0000.0000.0005.624

-2.402-2.9405.8261.8320.756

-26.1931.520

-8.362-0.9433.6023.6870.4530.453

-7.986

16.49012.71014.98624.04324.00596.76380.25315.85526.92927.29020.30235.88732.1600.0000.0000.000

21.6500.000

38.13819.20213.10823.00430.54021.48519.8760.575

39.7870.0000.000

21.9547.5300.0000.0000.0000.000

26.2900.5830.621

27.26013.70044.43013.4807.530

50.10814.06022.02014.51037.14037.14020.008

143

Page 144: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

500 bars 1000 bars

BxlO CxlO16 BxlO CxlO16

51525354555657585960616263646566676869707172737475767778798081flOozQQ 0 J

840 coD

86fl7 0 /ftfl ooflo07909192939495Q£7O

97QQ7O

99100

0.3280.1200.5401.2821.9422.2180.3011.1950.5400.0000.5720.4940.8010.3130.8480.5060.1220.0001.1750.4640.2430.0000.6650.6003.2980.0100.3400.0000.0000.8970.2701.7901.7900.3810.6900.0000.0000.0000.0000.0000.2560.7370.9941.9630.2320.9330.8461.5700.5281.659

0.589-2.3330.126

-10.518-5.41410.0180.321-3.1200.1390.000-3.745-0.082-6.292-0.730-2.231-2.701-0.3480.000

-10.520-0.6841.7830.000-1.940-3.402

-40.5704.441-0.9100.0000.000-0.8530.000-6.960-6.960-1.777-4.5490.0000.0000.0000.0000.000-3.080-9.135

-10.189-17.122-1.814-7.970-6.644

-10.500-2.789

-86.100

16.1206.703

21.85023.93571.81073.15015.16827.43021.8400.000

10.64021.50022.1709.450

27.36012.1354.5190.000

25.75018.16016.1820.000

20.07112.61075.13113.90010.5830.0000.00033.4900.000

15.30015.31012.25118.3300.0000.0000.0000.0000.0009.658

17.86030.42959.2405.702

13.70025.84042.43017.22411.590

0.5530.1920.8972.3433.4473.9600.5142.1670.9020.0001.0370.8391.4670.5211.5450.9070.1960.0002.165-0.1980.4050.0002.0131.0806.054-0.1180.5590.0000.0001.5320.5403.4703.4700.6600.4760.0000.0000.0000.0000.0000.4191.4141.7863.4160.4042.0971.4493.9030.935-0.030

4.785-2.3725.936-7.2833.294-5.1143.7450.4925.8340.000-1.2364.588

-10.163-0.9852.523-2.3960.5480.000

-15.47079.6006.1000.000

-42.620-3.414

-46.60012.7401.3290.0000.000-0.8530.000-9.280-9.280-0.20354.3300.0000.0000.0000.0000.0001.628

-19.712-6.568-5.334-1.879

-23.500-10.942-25.200-1.8211.101

20.18010.02027.29031.72990.21092.04019.00733.51027.2900.000

14.24627.00028.91011.84334.23012.2305.6950.000

32.59010.34520.3500.000

29.84015.770

102.88817.31013.2100.0000.000

33.4900.000

22.52022 520fc- A. -J &-\j

15.32712.4900.0000.0000.0000.0000.000

12.01025.67041.28980.0877.131

20.25034.78354.21021.7101.788

144

Page 145: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

500 bars 1000 bars

BxlO CxlO16 BxlO CxlO16

101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150

1.4350.7830.1110.6320.0000.0000.0000.0000.0000.1640.1180.0000.5371.6871.4301.4201.4200.1110.5402.5910.5600.5280.9190.6820.3131.6440.7700.0001.5220.5230.2371.0900.0000.0550.075-0.0560.8660.4130.4810.2130.1830.4220.8100.2470.4290.4950.1230.4720.4270.610

-32.900-1.869-0.936-5.3820.0000.0000.0000.0000.000-1.848-0.9360.000-0.576-2.84011.45011.69010.620-5.3300.599

-24.6620.000-2.590

-42.710-1.479-0.813-4.3700.0000.000

32.050-3.039-1.350-1.0000.0000.658-0.017-1.2202.034-6.360

-23.710-0.334-1.730-0.588-3.6890.1300.547-2.141-0.665-0.912-0.912-1.692

38.06022.7500.45312.2650.0000.0000.0000.0000.0000.4950.4530.00021.45026.97025.79025.69025.5002.757

26.58058.5760.00016.82011.12018.61014 . 14040.5300.0000.000

33.18016.3104.990

41.8500.0006.1246.804-3.22435.4205.4238.307

10.5907.770

21.13036.97116.07025.87018.0005.394

19.79019.79025.150

1.9321.3740.2082.2750.0000.0000.0000.0000.0000.3130.2160.0000.9263.1601.7001.6001.600-0.0660.8844.6971.1300.9510.1441.1250.5242.7901.5500.0000.7930.9360.3171.8150.0000.0810.108-0.0951.8870.7540.6000.3310.3160.7371.4230.3400.7340.8970.2020.8130.8131.054

-7.1501.858-1.530

-22.6300.0000.0000.0000.0000.0003.366-1.5300.0003.4470.9158.2301.216-5.920-7.9407.127

-18.0250.000-1.6712.1493.3501.9882.6280.0000.000

82.000-2.3434.9208.8500.0002.6131.843-2.810-4.074-9.060

-25.9203.695-1.1133.2130.869-2.8406.011-7.3800.3302.4302.4302.029

39.75028.4200.55916.4900.0000.0000.0000.0000.0000.6340.5590.00026.88033.39034.04034.26034.2106.72833.33078.1890.00021.1407.550

23.11017.69050.6800.0000.000

19.15020.5007.330

52.3000.0007.6898.524-4.00045.7007.200-9.94213.0609.756

26.53046.52519.79032.39022.6406.734

24.84024.84031.620

145

Page 146: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

500 bars 1000 bars

BxlO CxlO16 BxlO CxlO16

151152153154155156157158159160161162163164165166167168169170171172173174175176177

0.0000.2660.2000.2000.2570.000-0.1740.0000.0000.1340.2100.2180.2170.4820.0820.0000.1500.2260.5070.1370.1230.2020.3980.4680.3390.1980.409

0.000-0.456-0.500-0.5000.3760.0004.5800.0000.000-1.463-0.849-1.1141.652-2.9910.1530.0000.9540.812-2.940-1.400-0.828-0.663-1.417-1.760-2.9300.094-1.110

0.0009.895

10.44010.44016.9200.000-7.0100.0000.0004.3179.4329.478

15.73018.3505.1480.000

10.25514.58016.6604.0394.0909.142

15.66018.0104.95010.49017.050

0.0000.4680.5700.5700.3900.000-0.2630.0000.0000.2820.3720.3820.3540.8530.1220.0000.2240.4170.9240.0340.0150.3590.6990.8330.6630.3400.699

0.0001.215

-13.900-13.9006.8900.0004.2950.0000.000-4.1430.1730.0266.450-1.3911.8050.0004.0542.367-2.37014.20014.8700.5480.4964.472-4.2402.3502.090

0.00012.42016.15016.15021.5800.000-8.8000.0000.0005.732

11.89711.92019.66023.1006.4070.00012.83017.99020.9702 259<t» t~ J *

2.08311.49719.70022.6205.850

13.17021.330

146

Page 147: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table IF. Data for Calculating the Effect of Pressureon Aqueous Dissociation Reactions.

AV 025°C # Water lonization Reactions

1.01.01.01.02.03.01.02.01.01.02.02.01.01.02.01.02.01.02.02.01.01.02.03.04.00.01.01.01.01.01.02.01.01.02.01.02.01.01.01.02.01.01.01.02.01.02.02.0

13

101516172526272829303132364445505153546061626364727374768793949697

105106110111112114115118127128129130135

-28.7-37.9-13.0-22.4-43.2-64.3-11.2-7.5

-34.3-19.74-7.1

-10.6-31.6-19.74-25.0-19.74-7.1

-19.74-5.7-7.1-4.6

-22.4-43.5-64.6-85.7-35.5-27.2-35.96-25.85-14.81-19.8-9.8

-31.5-19.74-7.4

-34.0-7.1

-13.7-23.1-13.8-7.1

-15.8-28.8-19.74-9.12

-31.5-7.1-7.6

147

Page 148: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table IG. Pitzer Coefficients

MX ft(0) MX ft

(0)ft(1)

Na Cl 0

25

50

75

100

125

150

200

250

300

350

Na S04 0

25

50

75

100

125

150

200

250

300

350

0

0

0

0

0

0

0

0

0

0

0

-0

0

0

0

0

0

0

0

0

0

0

.0532

.0765

.0903

.0978

.1012

.1017

.1003

.0938

.0838

.0708

.0546

.08601

.01864

.06264

.0888

.1057

.1175

.1266

.1415

.1546

.1656

.1723

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

3

12

.2496

.2664

.2846

.3041

.3250

.3472

.3707

.4218

.4738

.5401

.6073

.892

.096

.213

.285

.330

.357

.374

.444

.856

.730

.550

0

0-0

-0

-0

-0

-0

-0

-0

-0

-0

0

0-0

-0

-0

-0

-0

-0

-0

-0

-0

. 00441

.00127

.00095

.00250

.00354

.00420

.00457

.00469

.00429

.00357

.00268

.0353

.00555

.00303

.00839

.0123

.0153

.0178

.0213

.0235

.0249

.0256

K Cl 0

25

50

75

100

125

150

200

250

300

350

K S04 0

25

50

75

100

125

150

200

250

300

350

0

0

0

0

0

0

0

0

0

0

0

-0

0

0

0

0

0

0

0

0

0

0

.0296

.0485

.0596

.0662

.0698

.0715

.0721

.0710

.0677

.0621

.0534

.04138

.00000

.02771

.04888

.06819

.0887

.1124

.1743

.2596

.3701

.5058

0.1621

0.2122

0.2429

0.2705

0.2977

0.3250

0.3527

0.4084

0.4640

0.5188

0.5724

0.7830

1.1023

1.2578

0.3704

0.4637

1.5510

1.6415

1.8578

2.1511

2.5460

3.0590

0.00119

-0.00084

-0.00205

-0.00277

-0.00318

-0.00340

-0.00350

-0.00349

-0.00322

-0.00264

-0.00162

0.0172

0.0188

0.0174

0.0137

0.00811

0.00098

-0.00741

-0.0271

-0.0499

-0.0749

-0.1015

Na HC03 25 0.0277 0.0411 0.0000 K HC03 25 0.0296 -0.013 -0.0080

Na C03 25 0.0399 1.389 0.0044 K C03 25 0.1488 1.430 -0.0015

Ca S04 25 0.200 3.1973 0.0000 H Cl 25 0.1775 0.2945 0.0008

Ca HC03 25 0.400 2.977 0.0000 H S04 25 0.0298 0.000 0.0438

Zn Cl 25 0.2602 1.6425 -0.08798 Al Cl 25 0.6993 5.845 0.00273

148

Page 149: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

M X,(0) ,(1) M X ,(0)

ft(1)

Ca Cl 0

25

50

75

100

125

150

200

250

300

350

Ba Cl 0

25

50

75

100

125

150

200

250

300

350

Sr Cl 0

25

50

75

100

125

150

200

250

300

350

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.318

.3159

.313

.310

.305

.299

.291

.272

.230

.244

.369

.385

.350

.314

.292

.276

.263

.252

.235

.219

.210

.206

.460

.381

.344

.320

.302

.290

.278

.264

.258

.256

.2555

1

1

1

1

2

2

2

3

3

5

8

2

2

1

1

1

2

2

2

3

5

8

2

2

2

2

2

2

2

2

3

5

8

.500

.6140

.800

.980

.170

.400

.600

.100

.830

.250

.300

.10

.00

.92

.90

.92

.00

.22

.87

.83

.25

.30

.35

.22

.20

.13

.10

.16

.30

.90

.83

.25

.30

0-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

0-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

.00155

.00034

.0033

.0058

.0080

.0098

.0113

.0138

.0133

.0143

.0232

.0154

.0193

.0222

.247

.261

.263

.258

.229

.0168

.0122

.0067

.0100

.0013

.0080

.0115

.0139

.0156

.0167

.0180

.0191

.0198

.0203

Mg Cl 0

25

50

75

100

125

150

200

250

300

350

Mg S04 0

25

50

75

100

125

150

200

250

300

350

Mg HC03 25

Mn S04 25

0.368

0.3524

0.338

0.324

0.311

0.300

0.289

0.269

0.230

0.244

0.369

0.1866

0.2150

0.2275

0.2372

0.2489

0.2640

0.2856

0.3785

0.6489

1.334

2.806

0.329

0.201

1

1

1

2

2

2

2

3

3

5

8

3

3

3

3

4

4

5

9

7

9

12

0

2

.55

.682

.85

.03

.23

.45

.65

.15

.88

.30

.35

.039

.365

.163

.843

.410

.805

.912

.736

.532

.736

.57

.6072

.98

0.00700

0.00519

0.00325

0.00125

-0.00025

-0.00138

-0.00238

-0.00388

-0.00513

-0.00613

-0.00700

0.00979

0.00699

0.00494

0.00290

0.00079

-0.00130

-0.00353

-0.0115

-0.0364

-0.1046

-0.2575

0.0000

0.0182

149

Page 150: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

k 1

Na Ca

Na K

Na Mg

Na H

K Ca

K H

Ca Mg

Ca H

Mg H

0

25

50

75

100

125

150

200

250

300

350

25

25

25

25

25

25

25

25

-0.0085 Cl S04 25 0.02

-0.0078

-0.00726 Cl HC03 25 0.03

-0.00696

-0.0068 Cl C03 25 -0.02

-0.0069

-0.0074 Cl C

-0.0099

>H 25 -0.05

-0.0128 SO. HCCL 25 0.014-0.0155

J

-0.0180 S04 C03 25 0.02

-0.012 S04 OH 25 -0.01

0.070 HC03 C03 25 -0.04

0.036 C03 OH 25 0.01

0.032

0.005

0.007

0.092

0.100

150

Page 151: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

i j k k 1 i t

Na Ca Cl

Na K Cl

Na K S04

Na K HC03

Na K C03

Na Ca SO. 4

Na Mg Cl

Na Mg S04

Na H Cl

Na H S04

K Ca Cl

K Mg Cl

K Mg S04

0 0.0044

25 0.0029

50 0.0015

75 0.00066

100 0.00042

125 0.00035

150 0.00035

200 0.00035

250 0.00035

300 0.00035

350 0.00035

25 -0.0018

25 -0.01

25 -0.003

25 0.003

25 -0.055

25 -0.012

25 -0.015

25 -0.004

25 -0.012

25 -0.025

25 -0.022

25 -0.048

Cl S04 Na 25 0.0014

Cl S04 Ca 25 -0.018

Cl S04 Mg 25 -0.004

Cl HC03 Na 25 -0.015

Cl HC03 Mg 25 -0.096

Cl C03 Na 25 0.0085

Cl C03 K 25 0.004

Cl OH Na 25 -0.006

Cl OH K 25 -0.006

Cl OH Ca 25 -0.025

SO, HC00 Na 25 -0.005 4 3

SO, HCO« Mg 25 -0.161

S04 C03 Na 25 -0.005

S04 C03 K 25 -0.009

S04 OH Na 25 -0.009

S04 OH K 25 -0.05

HC03 C03 Na 25 0.002

HC03 C03 K 25 0.0129

151

Page 152: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

i j fc

K H Cl

K H S04

Ca Mg Cl

Ca Mg S04

Ca H Cl

25 -0.011

25

25

25

25

0.197

-0.012

0.024

-0.015

k 1 i t

C03 OH Na 25 -0.017

C03 OH K 25 -0.01

Mg H Cl 25 -0.011

152

Page 153: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Table IH. Table of congruent dissolution of minerals listing the aqueous species number and stoichiometry.

1. 1.0,4,1.0,14,3.0,11,-4.0,8,-4.0,10,2. 2.0,1,1.0,2,2.0,11,-6.0,8,-1.0,10,3. 1.0,3,1.0,14,3.0,11,-4.0,8,-4.0,10,4. 1.0,3,1.0,14,3.0,11,-4.0,8,-4.0,10,5. 1.0,3,1.0,14,3.0,11,-4.0,8,-4.0,10,6. 1.0,4,3.0,14,2.0,6,-6.0,8,6.0,10,7. 2.0,2,2.0,14,1.0,11,-10.0,8,5.0,10,8. 1.0,3,1.0,14,2.0,11,-4.0,8,-1.0,10,9. 2.0,14,1.0,11,-6.0,8,1.0,10,10. 0.4,1,0.6,3,1.4,14,2.6,11,-5.6,8,-2.4,10,11. 1.0,1,1.0,6,12. 1.0,4,3.0,18,1.0,14,3.0,11,-10.0,8,13. 1.0,1,2.0,14,2.0,11,-8.0,8,14. 5.0,1,3.0,29,1.0,5,15. 5.0,1,3.0,29,1.0,30,16. 5.0,1,3.0,29,1.0,9,17. 1.0,1,1.0,98,18. 1.0,1,2.0,14,1.0,11,-8.0,8,2.0,10,19. 3.0,17,2.0,98,2.0,9,20. 1.0,15,1.0,6,21. 1.0,14,2.0,10,-3.0,8,22. 1.0,2,2.0,9,23. 0.8,1,0.2,3,1.8,14,2.2,11,-7.2,8,-0.8,10,24. 1.0,1,1.0,98,25. 1.0,26,1.0,6,26. 1.0,11,-2.0,10,27. 2.0,18,2.0,14,1.0,11,-10.0,8,5.0,10,28. 5.0,2,2.0,14,3.0,11,6.0,10,-16.0,8,29. 5.0,2,2.0,14,3.0,11,6.0,10,-16.0,8,30. 3.0,2,2.0,11,-6.0,8,1.0,10,31. 1.0,2,1.0,11,-2.0,8,-1.0,10,32. 2.0,3,2.0,14,10.0,11,-8.0,8,-8.0,10,33. 2.0,4,2.0,14,10.0,11,-8.0,8,-8.0,10,34. 1.0,1,2.0,14,10.0,11,-8.0,8,- 8.0,10,35. 1.0,2,2.0,14,10.0,11,-8.0,8,-8.0,10,36. 2.0,14,3.0,10,-6.0,8,37. 1.0,11,-2.0,10,38. 1.0,11,-2.0,10,39. 2.0,14,2.0,11,-6.0,8,1.0,10,40. 1.0,1,1.0,2,2.0,11,-4.0,8,-2.0,10,41. 1.0,1,1.0,2,2.0,98,42. 1.0,1,1.0,2,2.0,98,43. 1.0,2,1.0,11,-2.0,8,-1.0,10,44. 2.0,1,1.0,19,2.0,14,3.0,11,-13.0,8,1.0,10,45. 2.0,18,1.0,11,-4.0,8,46. 1.0,1,2.0,30,47. 2.0,2,1.0,11,-4.0,8,48. 1.0,14,3.0,9,49. 1.0,14,3.0,9,50. 3.0,18,2.0,11,-6.0,8,1.0,10,51. 1.0,1,1.0,6,2.0,10,52. 1.0,3,1.0,5,53. 2.0,14,2.0,11,-6.0,8,1.0,10,'54, 1.0,1,2.0,14,7.0,11,-8.0,8,-4.0,10,55, 1.0,1,3.0,2,4.0,98,

153

Page 154: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

56.57.58.59.60.61.62.63.64.65.66.67.68.69.70.71.72.73.74.75.76.77.78.79.80.81.82.83.84.85.86.87.88.89.90.91.92.93.94.95.96.97.98.99.100.101.102.103.104.105.106.107.108.109.110.111.112.113.

5.0,2,4.0,98,2.0,9,3.0,10,1.0,1,2.0,5,0.6,4,0.25,2,2.3,14,3.5,11,-8.0,8,-2.0,10,2.0,14,2.0,11,-6.0,8,1.0,10,1.0,3,11.0,11,-1.0,8,-16.5,10,1.0,4,1.0,14,3.0,11,-4.0,8,-4.0,10,2.0,14,1.0,11,-6.0,8,1.0,10,0.6,1,0.4,3,1.6,14,2.4,11,-6.6,8,-1.6,10,2.0,1,1.0,11,-4.0,8,1.0,1,2.0,14,4.0,11,-8.0,8,1.0,4,1.0,14,2.0,11,-4.0,8,-2.0,10,1.0,1,1.0,10,-2.0,8,1.0,3,7.0,11,-1.0,8,-9.0,10,1.0,2,2.0,19,4.0,10,-8.0,8,1.0,2,1.0,98,1.0,2,2.0,5,4.0,3,3.0,14,9.0,11,1.0,5,-12.0,8,-12.0,10,3.0,1,1.0,2,2.0,11,-8.0,8,1.0,4,1.0,14,3.0,11,-4.0,8,-4.0,10,4.0,1,6.0,14,6.0,11,1.0,98,-24.0,8,2.0,3,1.0,6,10.0,10,

0,1,1.0,2,1.0,11,-4.0,8,0,3,1.0,14,5.0,11,-4.0,8,-5.0,10,0,4,1.0,14,5.0,11,-4.0,8,-5.0,10,0,4,3.0,14,3.0,11,-10.0,8,0,3,1.0,7,

3,1.0,98,1.0,10, 3,1.0,98,10.0,10,

1.0,3,1.0,14,1.0,11,-4.0,8, 1.0,2,1.0,98,3.0,10,0.33,3,2.0,19,0.33,14,3.67,11,-7.32,8,-2,68,10, 0.33,4,2.0,19,0.33,14,3.67,11,-7.32,8,-2.68,10, 2.0,19,0.33,14,3.67,11,-6.99,8,-2.68,10, 0.165,1,2.0,19,0.33,14,3.67,11,-7.32,8,-2.68,10, 0.165,2,2.0,19,0.33,14,3.67,11,-7.32,8,-2-68,10, 1.0,1,1.0,101,-1.0,8,0.2,1,0.8,3,1.2,14,2.8,11,-4.8,8,-3.2,10, 1.0,3,3.0,14,3.0,11,-10.0,8, 1.0,3,2.0,1,4.0,2,3.0,14,6.0,11,-22.0,8,

111112.02.0

1.0,2,-2.0,8,1.0,10,0.5,3,0.5,4,1.0,14,3.0,11,-4.0,8,-3.0,10,1.0,4,3.0,2,1.0,14,3.0,11,-10.0,8,1.0,4,3.0,2,1.0,14,3.0,11,2.0,30,-8.0,8,-2.0,10,1.0,1,2.0,9,2.0,4,-2.0,8,1.0,10,2.0,1,2.0,14,3.0,11,-10.0,8,2.0,14,4.0,11,-6.0,8,-4.0,10,1.0,11,-2.0,10,1.0,4,1.0,14,3.0,11,-4.0,8,-4.0,10,0.33,3,3.0,2,0.33,14,3.67,11,-7.32,8,-2.68,10,0.33,4,3.0,2,0.33,14,3.67,11,-7.32,8,-2.68,10,3.0,2,0.33,14,3.67,11,-6.99,8,-2.68,10,0.165,1,3.0,2,0.33,14,3.67,11,-7.32,8,-2.68,10,0.165,2,3.0,2,0.33,14,3.67,11,-7.32,8,-2.68,10,4.0,2,6.0,11,-8.0,8,-1.0,10,1.0,11,-2.0,10,1.0,11,-2.0,10,2.0,14,1.0,11,-6.0,8,1.0,10,

154

Page 155: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

114. 0.167,1,2.33,14,3.67,11,-7.32,8,-2.68,10,115. 0.33,4,2.33,14,3.67,11,-7.32,8,-2.68,10,116. 0.167,2,2.33,14,3.67,11,-7.32,8,-2.68,10,117. 0.33,3,2.33,14,3.67,11,-7.32,8,-2.68,10,118. 2.0,3,-2.0,8,1.0,10,119. 1.0,2,2.0,14,4.0,10,-8.0,8,120. 1.0,1,2.0,14,7.0,11,-8.0,8,-3.0,10,121. 1.0,19,1.0,29,2.0,10,122. 1.0,26,1.0,98,123. 1.0,4,1.0,5,124. 3.0,2,4.0,11,-6.0,8,-4.0,10,125. 2.0,3,1.0,6,126. 2.0,1,5.0,2,8.0,11,-14.0,8,-8.0,10,127. 3.0,3,1.0,7,1.0,98,2.0,10,128. 3.0,18,2.0,29,8.0,10,129. 1.0,1,2.0,14,4.0,11,-8.0,8,-2.0,10,130. 1.0,15,1.0,98,131. 1.0,1,1.0,11,-2.0,8,-1.0,10,132. 2.0,1,3.0,14,3.0,11,-13.0,8,1.0,10,133. 1.0,13,1.0,18,-1.0,19,134. 1.0,13,1.0,5,135. 2.0,13,1.0,101,-1.0,8,136. 1.0,16,1.0,18,-1.0,19,137. 2.0,17,1.0,98,2.0,9,138. 1.0,17,-2.0,8,1.0,10,139. 2.0,16,-2.0,8,1.0,10,140. 1.0,17,1.0,101,-1.0,8,141. 2.0,16,1.0,101,-1.0,8,142. 1.0,17,1.0,18,2.0,101,-2.0,8,143. 4.0,16,1.0,17,1.0,18,4.0,101,-4.0,8,144. 1.0,18,2.0,5,145. 1.0,19,3.0,5,146. 1.0,18,1.0,98,147. 1.0,18,-2.0,8,1.0,10,148. 2.0,19,3.0,10,-6.0,8,149. 2.0,19,3.0,10,-6.0,8,150. 2.0,19,1.0,18,4.0,10,-8.0,8,151. 1.0,19,3.0,9,152. 1.0,19,2.0,10,-3.0,8,153. 1.0,18,1.0,101,-1.0,8,154. 1.0,18,1.0,101,-1.0,8,155. 1.0,18,1.75,101,0.25,6,0.25,8,-1.0,10,156. 2.0,19,1.0,18,4.0,101,-4.0,8,157. 1.0,21,2.0,18,-2.0,19,158. 1.0,21,2.0,5,159. 1.0,20,2.0,5,160. 1.0,21,-2.0,8,1.0,10,161. 1.0,21,1.0,101,-1.0,8,162. 1.0,21,1.0,101,-1.0,8,163. 1.0,23,2.0,5,164. 1.0,23,1.0,98,165. 1.0,23,-2.0,8,1.0,10,166. 2.0,24,2.0,10,-1.0,23,-4.0,8,167. 1.0,23,1.0,101,-1.0,8,168. 1.0,25,2.0,5,169. 1.0,25,1.0,98,170. 1.0,25,-2.0,8,1.0,10,171. 1.0,25,-2.0,8,1.0,10,

155

Page 156: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

roN

>ro

roro

roK

>N

>K

>K

>ro

K>

K>

roK

>i »

i-» r

o r

o ro

o o

o <

o ro

ro

ro

roI-

1 M

M

M

i-1 o

»-«

ro

M O

N

i C

J.

. 4>

.O

O

O

- -

o-

ON O

O-

|->-

- 00

OO

N

I -

- i*j

ro

iO

ON

- O

O

M-

- O

O

I-

1 l-»-

- O

O

00

O O

O

O

O

O

ON

ON O

N ON

ON

ON

ON

vo

vO v

O

vo

vo v

O

c»j

ro i

> i

' i

' r

o

o o

o o

o o

* ro

vo

o-

- I-

00

-

o-

N>

O

O O

<-n

-l >

- -

i i

i »i

4>

4>

l-i

J>

O.

O O

- O

O

- -

I-1

- oo

oo

o

oo

oo

- -

- ro

ro

I 1

ON

- vo

o

- o

I '-

ON

K>

vo I

1-

o

i i

ro r

o

o o

oo

oo

ro r

o

O O

P*

IjO

ro r

o ro

o

o o

Q

V.

V.

V.

oi

r**» ^

-

00

O

-

O

ON

ro

i-

4>

o

- o

h-1-

ON

00

VO

--

I 1

ro -

- o

o-

- i

1vo

ON

VO

~

vj

O O

O

OO

OO

O-

OO

OO

OO

O

- - o ----- O O O O O O O -------

K>

ON

l_i

vo

O-

ON

ON

vo

vo

ro o o o

o-

-MOO

o-

-

ro ro

o b

vo

VOvo

vO

vo

vO

O M

- o

I-1

t-> O 00

Ul oON ON

ON O

N oo

vo

ON O

N ON O

N oo o

o oo o

o 00 o

o oo

ON

^j ^

j ^j ^

j en e

n ^^j

v^j

v^j vo

^J v

O vO vo --

vo

^

^ ^

i_

»i_»

- »

^ -

roro

roro

roro

ro-

i »i »i

i » i

» i

»

roi

iro-

ro

roi

i

i >

ro

-

-

4>4>

- o

o-

roroooooooo-

oo

- ooo

O

O -

-

(J1

O

.-»

-----

Q -

-

o -

-

--

OO

-

I 'I 1

- -

OO

h-'I

'I 'I 'I 'I 'I '-

ON

I-J-

vO

O

N

l »

l-i-

-

I '

ON

ON

l »

vo

- -

ON

ON

ON

ON

ON

ON

ON

VO

- O

OO

OO

- O

O

NO

OO

OO

N^vJ^

vJO

- O

OO

OvO

vovovovO

VO

vO

OO

I

»-

- I

» O

o-

- O

O- --

-.-»

--»

--,

-I »

-ro

ro-r

o4

>4

>

i 'i 'ro

roro

roro

roro

i

i

i .

. i

. .

. .........

MO

I-

1O

O4

>O

OO

O

OO

OO

OO

OO

-

«^*<

«<

«<

«

> .«

< <

^^

! -!

f^

I »

i »

O

vo

I »

IjO

i »

| »

vo

vo

vo

vo

vo

vo

vo

-

OO

O-V

OO

O

OO

vo

vo

vo

vo

vO

vo

vo

O

O-

OO

-O

O---

^-^^-^^-^

ro -

o

o-

- i

1M

O

O

-

OO

OO

OO

O

I > |-

i K

> K

> I

> ro

I

» oo

un

O

N -

~vj

Ln

4>

Cn

ON

Page 157: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

APPENDIX II. An abbreviated version of the interactive input routine SOLINPUT

SOLMINEQ_88 Input Data File Creation Program

Sample 1

MAIN MENU

1) Create/Edit Current Sample Data

2) Read an Existing Input File

3) Go to Next Sample

4) Go to Previous Sample

5) Write All Samples to an Input File

6) Exit Program

Enter Choice (1-6)

OPTIONS MENU

1) Enter Basic Parameters

2) Enter Program Option Flags

3) Enter Gas, pH, and C02 Options

4) Enter Gas Distribution Option

5) Enter Ion Exchange or Adsorption Option

6) Enter Precipitation/Mixing/Boiling Option

7) Enter User Log K Option

8) Enter Additional Anions/Cation/Minerals Option

9) Return to Main Menu

Enter Choice (1-9)

BASIC PARAMETERS MENU

1) Enter Title and Units

2) Enter Temperatures, Density, and Pressure

3) Enter pH, and Eh

4) Enter Concentrations for Major Species

5) Enter Concentrations for Minor Species

6) Enter Concentrations for Organic Species

7) Return to Options Menu

Enter Choice (1-7)

157

Page 158: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Enter the title of this sample

[SAMPLE # 1]

Test Sample #1 for SOLMINEQ.88 - Modified Seawater at 25 C

Enter Concentration Units (Mg/1, PPM, Mol/1, Mol/K, Meq/1)

[MG/L ]

ppm

Enter the pH [Current - 7.0000]

8.2

Enter Eh in Volts [Current - 9.0000]

0.5

1) ENTER: Na, K, Li, Ca, Mg, Fe, Al

2) ENTER: Si02, Cl, S04, H2S, HC03, C03, TIC

3) Return to Basic Parameters Menu

Enter Choice (1-3)

Enter Concentration of Na [Current - O.OOOOE-01]

10770

Enter Concentration of K [Current - O.OOOOE-01]

399.1

Enter Concentration of Li [Current - O.OOOOE-01]

0.181

Enter Concentration of Ca [Current - O.OOOOE-01]

412.3

Enter Concentration of Mg [Current - O.OOOOE-01]

1292

Enter Concentration of Fe [Current - O.OOOOE-01]

0.002

Enter Concentration of Al [Current - O.OOOOE-01]

0.002

Enter Concentration of Si02 [Current - O.OOOOE^Ol]

4.28

Enter Concentration of Cl [Current - O.OOOOE-01]

0.1935E+05

Enter Concentration of S04 [Current - O.OOOOE-01]

2712

158

Page 159: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Enter Concentration of H2S [Current = O.OOOOE-01]

Enter Alkalinity as HC03 [Current = O.OOOOE-01]

123.4

Enter Alkalinity as COS [Current = O.OOOOE-01]

Enter TIC [Current = O.OOOOE-01]

1) ENTER: F, P04, N03, NH3, B, Sr, Ba

2) ENTER: Pb, Zn, Cu, Mn, Hg, Ag

3) ENTER: As, U, V

4) Return to Basic Parameters Menu

Enter Choice (1-4)

Enter Concentration of F [Current = O.OOOOE-01]

1.39

Enter Concentration of P04 [Current = O.OOOOE-01]

0.06

Enter Concentration of N03 [Current - O.OOOOE-01]

.29

Enter Concentration of NH3 [Current = O.OOOOE-01]

.03

Enter Concentration of B [Current - O.OOOOE-01]

4.45

Enter Concentration of Sr [Current = O.OOOOE-01]

8.14

Enter Concentration of Ba [Current = O.OOOOE-01]

.02

Enter Concentration of Pb [Current = O.OOOOE-01]

0.5E-4

Enter Concentration of Zn [Current = O.OOOOE-01]

0.0049

Enter Concentration of Cu [Current = O.OOOOE-01]

0.0007

Enter Concentration of Mn [Current = O.OOOOE-01]

0.0002

159

Page 160: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Enter Concentration of Hg [Current - O.OOOOE-01]

Enter Concentration of Ag [Current - O.OOOOE-01]

0.004

OPTIONS MENU

1) Enter Basic Parameters

2) Enter Program Option Flags

3) Enter Gas, pH, and C02 Options

4) Enter Gas Distribution Option

5) Enter Ion Exchange or Adsorption Option

6) Enter Precipitation/Mixing/Boiling Option

7) Enter User Log K Option

8) Enter Additional Anions/Cation/Minerals Option

9) Return to Main Menu

Enter Choice (1-9)

FLAGS MENU

1) Enter Carbonate Distribution

2) Enter Activity Coefficient Control

3) Enter Redox Equilibria

4) Enter Printout Control

5) Enter Tolerance Control

6) Return to Options Menu

Enter Choice (1-6)

What does the concentration of bicarbonate/carbonate

refer to:

0 - Total Alkalinity as HC03/C03?

1 - Carbonate Alkalinity as HC03/C03?

2 - Total Inorganic Carbon (TIC)?

[Current - 0]

Do you wish to use TIC for the distribution of

carbonate species at high temperature? (Y/N)

[Current - N]

160

Page 161: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Do you want to distribute Fe using Eh? (Y/N)

[Current - N]

yDo you want to distribute Cu using Eh? (Y/N)

[Current - N]

yDo you want to distribute Hg using Eh? (Y/N)

[Current - N]

yDo you want to distribute Mn using Eh? (Y/N)

[Current - N]

yDo you want to distribute U using Eh? (Y/N)

[Current - N]

Do you want to distribute V using Eh? (Y/N)

[Current - N]

Do you want to print the aqueous log K values in the

data base at the temperatures of interest ? (Y/N)

[Current - N]

Do you want to print out the analytical and calculated

activity ratios of the major elements? (Y/N)

[Current - N]

yDo you want to print out the temperature estimates

from the chemical geothermometers? (Y/N)

[Current - N]

yDo you want to print out the data on the iteration

of the anions? (Y/N)

[Current - N]

Do you want to print out the data on the mass balance

on Hydrogen whenever a new pH is calculated? (Y/N)

[Current - N]

161

Page 162: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Name of a new input file to be created based upon

the output of this sample.

[Current - ]

Sample 1

MAIN MENU

1) Create/Edit Current Sample Data

2) Read an Existing Input File

3) Go to Next Sample

4) Go to Previous Sample

5) Write All Samples to an Input Pile

6) Exit Program :

Enter Choice (1-6)

What do you want to call this file?

[Current - SOLMINEQ.IN]

SOLMINEQ.IN

already exists. Do you wish to overwrite?

yWill write out 1 sample(s).

Enter a <CR> for ok or a number indicating how many

samples you want written out.

Writing file ...

Sample 1

MAIN MENU

1) Create/Edit Current Sample Data

2) Read an Existing Input File

3) Go to Next Sample

4) Go to Previous Sample

5) Write All Samples to an Input File

6) Exit Program

Enter Choice (1-6)

6

**** STOP

162

Page 163: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Input File Created

Test Sample #1 for SOLMINEQ.88 - Modified Seawater at 25 C

0.2500E+020.OOOOE+000.OOOOE+000.OOOOE+00

0.8200E+010.5000E+000.9000E+010.9000E+01PPM

0.1077E+050.3991E+030.1810E+000.4123E+030.1292E+040.2000E-020.2000E-02

0.4280E+010.1935E+050.2712E+040.OOOOE+000.1234E+030.OOOOE+000.OOOOE+00

0.1390E+010.6000E-010.2900E+000.3000E-010.4450E+010.8140E+010.2000E-01

0.5000E-040.4900E-020.7000E-030.2000E-030.3000E-040.4000E-04

0.4000E-020.OOOOE+000.OOOOE+00

0.OOOOE+000.OOOOE+000.OOOOE+000.OOOOE+00

2 0

0.OOOOE+000.OOOOE+000.OOOOE+000.OOOOE+00

0 00.OOOOE+000.5000E-01

0.OOOOE+000.OOOOE+000.OOOOE+000.OOOOE+000.OOOOE+000.OOOOE+000.OOOOE+000.OOOOE+00

0 0

00.OOOOE+00 00.OOOOE+00

00.OOOOE+00

00.OOOOE+00 00.OOOOE+00

00.OOOOE+00

0 0

0

0

10111100

01100

0.5000E-040.5000E-04

00.OOOOE+00 00.OOOOE+00 00.OOOOE+00

00.OOOOE+00 00.OOOOE+00 00.OOOOE+00

163

Page 164: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

APPENDIX III. Output Examples

The output from four test cases are given below. These cases were selected

to illustrate several of the main options in this code and to be used for

comparison of results by those who acquire and implement this program. The

number of possible options in this code is extremely large and can not be

adequately illustrated in this report.

Test sample #1 gives the chemical composition of modified sea water

(Nordstrom and others, 1979) to which has been added 0.1 ppm acetate, oxalate,

and succinate. The output gives the distribution of all the inorganic and

organic species and the saturation states of all the minerals in the database

with the exception of those for U and V. The activity coefficients for the

charged species are calculated using the B method and those for neutral species

are made equal to the activity coefficient of dissolved CO^. The printing

options selected display the iterations for anions (total = 6), the ratios for

cations and anions, and the chemical geothermometers.

The mixing option in SOLMINEQ.88 is illustrated with the test sample #2.

This case is a real world test involving the mixing of formation water from the

McMurray formation, Alberta, Canada, and high pH flood water. The mixing

proportions specified in this case are 50/50%, but the number of the mixtures

and the mixing proportions can be varied by the user for any one run.

Speciation and saturation computations are carried out and results are listed

for each end member as well as for the specified mixture or mixtures.

Test sample #3 illustrates one of the dissolution/precipitation options in

SOLMINEQ.88. In this case the mineral anorthite (index number =13) is to be

dissolved/precipitated until the sea water of test sample #1 is at equilibrium

with the mineral gibbsite (index number = 49). The program initially carries

out speciation and saturation computations for sea water (printout not shown,

but is similar to that shown on pages 2-10 of test sample #1). Results of

speciation and saturation computations after equilibration with gibbsite are

then printed.

The amount of anorthite precipitated to achieve equilibrium with gibbsiteo

(SI < 0.05) is -3.076 x 10" moles. The "thinking" geochemist should realize

that the program (which obeys all commands!) Is performing an impossible task.

The saturation states of anorthite and gibbsite in sea water are -6.782 and

0.917 kcal/mole, respectively. Thus, in order to equilibrate with gibbsite,

anorthite must precipitate form this sea water sample. Precipitation of

164

Page 165: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

anorthite from a solution that is undersaturated with respect to it is, of

course, thermodynamically impossible. This example illustrates the fact that

the user (not the code) is responsible for all the results of computations

carried out by this program.

The ion exchange option is illustrated with the test sample #4. In this

case 100 g of smectite, with cation exchange capacity (CEC) of 100 meq per 100 g

and with its sites filled with an equal amount of Ca and Mg, is added to one

liter of sea water. We assume that the selectivity constant of smectite for

divalent cations relative to monovalent cations is so high that we can neglect

any exchange with monovalent cations in sea water. We assume, also, that the

selectivity of smectite for Ca and Mg is equal to one.

The program initially computes the distribution of species and the

saturation states of minerals (printout deleted as it is similar to that of test

sample #1). The program then computes the final distribution of Ca and Mg on

the smectite surface and the new distribution of species and saturation state of

minerals in the resulting sea water sample. The output shows that 424 ppm Ca

has been transferred from the smectite surface to the sea water and 257 ppm Mg

from sea water to the smectite surface. The saturation states of all the Ca and

Mg minerals, of course, are changed from the initial conditions.

165

Page 166: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-

1 -

****

** IN

PUT

DATA

EC

HO ******

TITL

E : Te

st Sample #1

for

SOLM

INEQ

.88

- Modified Se

awat

er at

25

C

TEMP

HI TEMP

DENS

PR

ESS

0.25

00E+

02

O.OO

OOE+

00

0.1023E+01

O.OO

OOE+

00PH

EHM

EHMC

EMFZSC

0.8200E+

01

0.50

00E+

00

0.9000E+01

0.9000E+01

CONCENTRATION

UNIT

S :

PPM

Na

K Li

Ca0.

1077

E+05

0.39

91E+

03

0.18

10E+

00

0.41

23E+

03Si

02

Cl

S04

H2S

0.4280E+

01

0.1935E+05

0.2712E+04

O.OO

OOE+

00F

P04

N03

NH3

0.1390E+01

0.6000E-01

0.29

00E+

00

0.30

00E-

01Pb

Zn

Cu

Mn0.

5000

E-04

0.

4900

E-02

0.

7000

E-03

0.

2000

E-03

As

U V

0.4000E-02

O.OO

OOE+

00

O.OOOOE+00

Acet

ate

Oxal

ate

Succinate

CH4

0.10

00E+

00

0.10

00E+

00

0.10

00E+

00

0.10

00E+

00AL

K IT

IC2

0DC

02

DH2S

DNH3

DCH4

O.OO

OOE+

00

O.OO

OOE+

00

O.OO

OOE+

00

O.OO

OOE+

00IC

CSAT

IMC03

FIXI

T FCCSAT

0 0

O.OO

OOOE

+00

0.05

00TC02M

TCH4H

TH2S

H WR

OIL

O.OO

OOE+

00

O.OO

OOE+

00

O.OO

OOE+

00

O.OO

OOE+

00Adsorption/Exchange

option (N

=no)

=

N1BMIX

ITMIX

0 0

LOG

KT TO BE CH

ANGE

D AT TEMP =

25.0

00

O.OO

OOE+

00

0 O.

OOOO

E+00

0

LOG

KT TO

BE

CHAN

GED

AT TE

MP =

0.00

0 O.

OOOO

E+00

0

O.OO

OOE+

00

0

Mg0.1292E+04

HC03

0.1234E+03

B0.4450E+01

Hg0.3000E-04

KC02

0LO.OOOOE+00

O.OOOOE+00

O.OOOOE+00

Fe

Al0.

2000

E-02

0.

2000

E-02

C03

TIC

O.OOOOE+00

O.OOOOE+00

Sr

Ba0.

8140

E+01

0.2000E-01

Ag0.

40 00 E-

04

KCH4

0L

KH2S

OLO.

OOOO

E+00

O.OOOOE+00

0 O.

OOOO

E+00

0 O.OOOOE+00

DSEP

O.OOOOE+00

0 O.

OOOO

E+00

0 O.

OOOO

E+00

AN

SI

AN

S2

0 0

Num

ber

of

Additio

nal

Min

era

ls

= 0

FLAG

FO

R A

CT

IVIT

Y

CO

EFF

OF

NE

UTR

AL

SP

EC

IES

: 1

FLA

G

FOR

A

CT

IVIT

Y

CO

EFF

B

Y

PIT

ZE

RS

E

QU

AT

ION

S:

0 FL

AG

S

FOR

CA

LCU

LATI

NG

R

EDO

X S

PE

CIE

S:

Fe

Cu

Hg

Mn

U V

11

11

00

P

RIN

TIN

G

OP

TIO

NS

:IN

FOR

M

RA

TIO

G

EOTH

IP

RIN

1 IP

RIN

20

11

11

TO

LER

AN

CE

FA

CTO

RS

: C

ON

V1

= 0

.50

00

E-0

4

CO

NV2

=

0.5

000E

-04

0 O.OOOOE+00

0 O.OOOOE+00

Page 167: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-2

-

SOLMINEQ.87 (VERSION:

USGS-ARC-88-8

) - SOLUTION-MINERAL-EQUILIBRIUM COMPUTATIONS

SAMP

LE ID

ENT:

- Test S

ample

#1 for

SOLM

INEQ.88

- Modified S

eawa

ter

at 2

5 C

ITERATIVE

CONVERGENCE

TEST

AT

TEMPERATURE

= 25.00

ITER CARBONATE

~T

6

SULFATE

FLUO

RIDE

PHOSPHATE

CHLORIDE

ACETATE

SULF

IDE

OXYLATE

SUCC

INAT

E US

R-DE

F #1 USR-DEF

#2

3.442E-01

5.388E-06

1.13

1E+0

0 1.

801E

-05

6.964E-01

1.24

5E-0

53.

761E

+00

2.84

3E-0

53.

108E

-02

2.75

2E-0

73.447E-01

5.39

8E-0

6O.

OOOE

+00

O.OO

OE+0

08.063E+00

3.134E-05

4.936E-01

9.37

4E-0

6O.

OOOE

+00

O.OO

OE+0

0O.OOOE+00

O.OOOE+00

Total

number o

f it

erat

ions

=

6 at pH =

8.20

Page 168: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-

SAMP

LE IDEN

T:-

Test

Sample #

1 for

SOLMIN

EQ.8

8 - Mo

difi

ed S

eawater

at 25 C

KM

CM

icnr

uni luno

8.20

0.5000

25.0

0

DENS

ITY

AT

TOTAL

DISSOLVED

INPUT

T SOLIDS (MG/L)

t I. 023

035

906.

34

ANAL=

CALC=

IONIC

STRENGTH

0.64

945

619.

6747

577.6364

ACTI

VITY

OF W

ATER

0.9809

Tota

l Al

kali

nity

as

HC03

- C0

3=

CaC03

(MG/L)=0.1423E+03

0.6999E+02 0

.116

7E+0

3 (P

PM)=

0.13

91E+

03 0.

6842

E+02

0.1

141E

+03

(MOLALITY)=0.2363E-02

0.11

82E-

02 0

.118

2E-0

2

1 2 3 4 5 6 7 8 9"H

-12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29 30 31 32 34 35 36 37

SPECIES

Ca +

+Mg +

+Na +

K +

Cl

-S0

4 --

HC03

-H

+OH

-tt

4Si0

4Si 02

Ag +

Al +3

Ba +

+Cu

+Cu

++

Fe +

+Fe

+3

Hg

++Li

+

Mn +

+Mn

+3

Pb +

+Sr +

+Zn

++

H2As03

-P0

4 -3

F -

B(OH

)3NH

3Al

F ++

ALF2

+

AIF3

AIF4

-

PPM

412.3000

1292.0000

1077

0.00

00399.1000

1935

0.00

0027

12.0

000

123.

4000

4.28

000.

0000

0.00

200.

0200

0.0007

0.00

20

0.0000

0.18

100.0002

0.00

018.

1400

0.00

490.0067

0.06

001.

3900

25.4540

0.03

00

MG/L

MOLA

LITY

421.

7829

1321

.716

011017.7100

408.

2793

19795.0500

2774.3760

126.

2382

4.37

840.

0000

0.00

200.

0205

0.00

07

0.00

20

0.00

000.

1852

0.00

02

0.0001

8.32

720.

0050

0.00

680.

0614

1.4220

26.0

394

0.03

07

0.1066E-01

0.5508E-01

0.48

55E+

000.1058E-01

0.56

56E+

000.2926E-01

0.20

96E-

02

0.7382E-04

0.38

43E-

090.7682E-07

0.15

09E-

060.1142E-07

0.3711E-07

0.1550E-09

0.27

03E-

040.3773E-08

0.25

01E-

090.9628E-04

0.7768E-07

0.52

81E-

070.6548E-06

0.7583E-04

0.4266E-03

0.18

26E-

05

nniuno

uirrcKCNic in

cw/u

.;

618.2648

569.

7726

P TOTAL

(BARS)

1 .0000

as

1.40

99

7.86

38

--- M

" Urt BMLMNLt (HULtd; -------

HTOT

OH

TOT

DIFF

EREN

CE

0.2198

E-02

0.1351E-02

0.84

77E-

03

_ _

r*nc

e»e»

i tnc

PH20

PC02

PH2S

PC

H4

PNH3

(B

ARS)

(B

ARS)

(B

ARS)

(BARS)

(BAR

S)0.3169E-01 0.4782E-03 O.OOOOE+00 0.5252E-02 0

.1644E-08

Dissolved

Inorganic

Carbon

HC03

- H2C03

Sum

of

Sum

ofTI

C Al

kali

nity

sp

ecie

s HC

03-

C03=

0.2485E+02 0.1373E+03 0.8648E+00 0.

1130

E+03

0.

1216

E+02

0.2429E+02 0.

1343

E+03

0.

8454

E+00

0.1105E+03 0.1188E+02

0.20

96E-

02 0.

2287

E-02

0.1413E-04 0.1877E-02 0.2052E-03

PPM

0.2844E+03

0.1121E+04

0.10

24E+

050.

3825

E+03

0.18

74E+

050.

1203

E+04

0.8534E+02

0.76

38E-

050.4016E-01

0.6615E+01

0.1039E-08

0.4280E-11

0.1815E-01

0.23

95E-

090.3648E-03

0.12

68E-

080.1009E-12

0.74

74E-

180.1792E+00

0.58

64E-

060.

8887

E-23

0.99

66E-

060.7551E+01

0.28

86E-

020.7209E-03

0.5919E-05

0.76

72E+

000.

2205

E+02

0.7083E-09

0.3364E-08

0.1024E-08

0.1215E-10

-

- - OHLUULH ICU -----------

MG/L

MOLA

LITY

0.2909E+03

0.11

47E+

040.1048E+05

0.3913E+03

0.1917E+05

0.1231E+04

0.8730E+02

0.7814E-05

0.4108E-01

0.6767E+01

0.10

63E-

080.

4379

E-11

0.1857E-01

0.24

50E-

090.3732E-03

0.12

97E-

080.1032E-12

0.76

46E-

180.1833E+00

0.59

99E-

060.9092E-23

0.1020E-05

0.7725E+01

0.29

52E-

020.7375E-03

0.6055E-05

0.7848E+00

0.22

56E+

02

0.72

46E-

090.3442E-08

0.10

47E-

080.

1243

E '0

0.7353E-02

0.4779E-01

0.4618E+00

0.1014E-01

0.5478E+00

0.12

98E-

010.1449E-02

0.78

53E-

080.

2447

E-05

0.71

33E-

04

0.9982E-14

0.16

44E-

150.

1370

E-06

0.39

06E-

140.5950E-08

0.23

53E-

130.

1872

E-17

0.3861E-23

0.2677E-04

0.1106E-10

0.16

77E-

270.4985E-11

0.89

31E-

040.

4575

E-07

0.5706E-08

0.6459E-10

0.4185E-04

0.3696E-03

0.1597E-13

0.53

66E-

130.

1263

E-13

0.12

23E-

15

ACTI

VITY

0.18

07E-

020.1261E-01

0.30

99E+

000.63

57E-02

0.34

34E+

000.21

89E-02

0.10

00E-02

0.63

10E-08

0.1591E-05

0.7133E-04

0.6000E-14

0.1404E-16

0.28

49E-

070.2348E-14

0.1462E-08

0.57

84E-

140.1599E-18

0.80

33E-

240.19

73E-

040.2719E-11

0.14

32E-

280.9397E-12

0.1858E-04

0.11

24E-

070.3829E-08

0.1748E-11

0.2721

E-04

0.36

96E-

03

0.3566E-14

0.38

63E-

130.1263E-13

0.8438E-16

HOI 1

VI 1

1

COEF

F.0.

2458

0.26

400.

6710

0.62

690.

6269

0.1687

0.68

990.

8034

0.6501

1.0000

0.6011

0.08

540.

2080

0.6011

0.24

580.

2458

0.0854

0.20

800.

7373

0.24

580.

0854

0.18

850.

2080

0.24

580.

6710

0.0271

0.6501

1.0000

0.22

340.

7198

1.0000

0.68

99

-LOG10

ACTI

VITY

2.74

291.

8992

0.5088

2.19

680.4641

2.65

983.

0000

8.20

005.

7984

4.1467

14.2219

16.8525

7.54

5314

.629

48.8349

14.2378

18.7

962

24.0951

4.7048

11.5656

28.8440

12.0

270

4.73

107.

9490

8.4169

11.7573

4.56

533.

4323

14.4

478

13.4131

13.8

984

16.0

737

Page 169: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

38 39 40 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

SPECIES

Al(O

H)++

Al(O

H)2+

Al(O

H)4-

AIS0

4 +

AIS0

4)2-

AgCl

AgCl

2 -

AgCl

3 --

AgCU -3

AgS0

4 -

CH3COO

H3As03

BaC0

3BaHC03 +

BaOH +

BaS0

4CaC0

3CaHC03 +

CaOH +

CaP0

4 -

CaHP04

CaH2P04+

CaS04

CuCl

CuCl

2 -

CuCl

3 --

CuCl

+

CuCl

2Cu

Cl3

-CuCU --

CuOH +

CuS0

4Fe

Cl +

FeCl

2Fe

HP04

H3P0

4Fe

OH +

Fe(OH)2

FeOOH

-Fe

S04

FeCl

++

FeCl

2 +

FeCl

3Fe

Cl4

-Fe

S04

+Fe

S04)

2-Fe

OH ++

Fe(O

H)2+

Fe(O

H)3

Fe(O

H)4-

B(OH)4

-H2Si04--

H3Si

04

-

................. AN

AL T ̂

tu ...........

....

....

...

PPM

MG/L

MO

LALI

TY

PPM

0.4655E-08

0.3336E-05

0.70

37E-

020.5289E-11

0.1600E-11

0.5954E-06

0.3801E-04

0.3041E-04

0.4054E-05

0.7863E-10

0.1000

0.1023

0.17

55E-

05

0.72

25E-

010.

5724

E-02

0.1272E-04

0.22

38E-

030.

3234

E-07

0.2867E-02

0.21

47E+

010.

3081

E+01

0.29

65E-

020.1688E-02

0.23

33E-

020.2207E-04

0.1037E+03

0.38

60E-

070.4663E-05

0.1035E-04

0.7487E-04

0.4364E-05

0.72

55E-

070.4869E-09

0.3094E-03

0.8766E-04

0.7697E-10

0.5145E-18

0.81

41E-

130.2034E-09

0.2892E-10

0.31

15E-

130.2686E-13

0.4994E-09

0.68

63E-

120.

4400

E-12

0.1368E-13

0.1026E-15

0.1001E-11

0.1038E-23

0.6227E-07

0.3697E-04

0.20

99E-

020.1952E-02

0.43

42E+

010.

2150

E-03

0.2287E+00

- -

- -LMLUULAI Cl

MG/L

0.47

62E-

080.

3413

E-05

0.7199E-02

0.54

11E-

110.

1637

E-11

0. 609

1 E- 06

0.3889E-04

0.31

11E-

040.

4148

E-05

0.80

44E-

100.

7391

E-01

0.5856E-02

0.1301E-04

0.2290E-03

0.3309E-07

0.29

33E-

020.2197E+01

0.3152E+01

0.30

34E-

020.

1727

E-02

0.2387E-02

0.2258E-04

0.10

61E+

030.

3949

E-07

0.4770E-05

0.1058E-04

0.7659E-04

0.4464E-05

0.7422E-07

0.4981E-09

0.3165E-03

0.8967E-04

0.7874E-10

0.5263E-18

0.8329E-13

0.20

81E-

090.2959E-10

0.3187E-13

0.27

48E-

130.5109E-09

0.70

21E-

120.

4501

E-12

0.1399E-13

0.1049E-15

0.1024E-11

0.10

62E-

230.

6370

E-07

0.3782E-04

0.2147E-02

0.1997E-02

0.4442E+01

0.21

99E-

030.2340E+00

j- ---

----

---

MOLA

LITY

0.10

97E-

120.

5669

E-10

0.76

76E-

070.4455E-16

0.75

69E-

170.4305E-11

0.2204E-09

0.1471E-09

0.16

83E-

100.

3996

E-15

0.12

68E-

050.4710E-07

0.66

79E-

100.1169E-08

0.2172E-12

0.1273E-07

0.22

24E-

040.

3158

E-04

0.53

83E-

070.

1296

E-07

0.1777E-07

0.1669E-09

0.7893E-03

0.4041E-12

0.35

94E-

100.

6311

E-10

0.7839E-09

0.33

64E-

100.4425E-12

0.2457E-14

0.3981E-08

0.5692E-09

0.87

37E-

150.

4207

E-23

0.5557E-18

0.21

51E-

140.

4115

E-15

0.3593E-18

0.3133E-18

0.34

07E-

140.

7791

E-17

0.35

98E-

170.8738E-19

0.5377E-21

0.6831E-17

0.4340E-29

0.8858E-12

0.4264E-09

0.2035E-07

0.16

33E-

070.

5708

E-04

0.2367E-08

0.24

92E-

05

ACTI

VITY

0.2450

E-13

0.4081

E-10

0.52

96E-

070.3074E-16

0.52

22E-

170.

4305

E-11

0.14

79E-

090.

3060

E-10

0.6631

E-12

0.26

81E-

150.8749E-06

0.4710

E-07

0.6679

E-10

0.7847E-09

0.15

36E-

126.

1273

E-07

0.2224

E-04

0.2328E-04

0.3969

E-07

0.93

26E-

080.1777E-07

0.12

01E-

090.

7893

E-03

0.4041

E-12

0.2412E-10

0.1313E-10

0.52

60E-

090.3364E-10

0.2969

E-12

0.5111

E-15

0.26

71E-

080.5692E-09

0.5862E-15

0.4207

E-23

0.55

57E-

180.2151E-14

0.2910E-15

0.3593E-18

0.2215E-18

0.3407

E-14

0.1621E-17

0.2544E-17

0.87

38E-

190.

3608

E-21

0.4831E-17

0.29

12E-

290.

1843

E-12

0.30

69E-

090.

2035

E-07

0.11

76E-

070.3462E-04

0.52

88E-

090.

1672

E-05

AL 1

1 V

1 1 I

COEF

F.0.2234

0.7198

0.6899

0.6899

0.6899

1.00

000.6710

0.2080

0.0394

0.6710

0.6899

1.00

001.

0000

0.6710

0.70

711.0000

1.00

000.7373

0.7373

0.7198

1.00

000.7198

1.0000

1.00

000.6710

0.2080

0.6710

1.00

000.6710

0.2080

0.6710

1.00

000.6710

1.00

001.

0000

1.00

000.

7071

1.00

000.

7071

1.00

000.2080

0.70

711.0000

0.6710

0.70

710.6710

0.2080

0.7198

1.00

000.7198

0.6065

0.2234

0.6710

-LUblU

ACTIVITY

13.6109

10.3893

7.27

6116.5123

17.2822

11.3

660

9.83

0110.5143

12.1784

15.5717

6.0580

7.3269

10.1753

9.1053

12.8137

7.89

514.6529

4.6329

7.4013

8.0303

7.7503

9.9203

3.10

2812

.393

510.6177

10.8818

9.2790

10.4732

12.5

273

15.2915

8.5733

9.24

4715.2319

23.3

761

18.2

551

14.6673

15.5362

18.4446

18.6546

14.4676

17.7903

17.5945

19.0586

21.4427

17.3160

29.5358

12.7346

9.5130

7.6913

7.92

974.

4607

9.27

675.

7767

Page 170: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-5

-

SPE

CIES

92

HA

S03

--96

HF97

H2C03

98

C03

--99

HP

04 --

100

H2P04

-103

HS04

-104

HN03

105

HgCl +

106

HgCl2

107

HgCl3

-108

HgCK --

109

HgS04

113

KCl

114

KC03

-115

KHS0

4116

KS04

-

117

KHP04

-118

LiOH

119

LiS04

-120

MgC03

121

MgHC03 +

122

MgF

+123

MgOH +

124

MgS0

4125

MgP0

4 -

PPM

MG/L

127

MgH2

P04+

128

MnCl

+

129

MnCl

2130

MnCl

3 -

131

MnCU --

132

MnHC03 +

133

MnS0

4134

MnHP04

135

MnOH

+

136

N03

-13

7 NaCl

138

NaC0

3 -

139

NaHC

03140

Na2C

03141

Na2S

04142

NaS0

4 -

143

NaHP04

-14

4 Na

F146

NH4

+147

NH40H

148

PbCl +

149

PbCl2

150

PbCl3

-151

PbCl4

--152

PbS04

153

MnCl

-n-

0.29

000.2967

MOLALITY

PPM

0.1173E-07

0.5016E-05

0.8454E+00

0.1922E+01

0.1074E-01

0.3138E-03

0.16

71E-

030.4331E-10

0.16

65E-

120.

4517

E-06

0.32

16E-

040.

1476

E-04

0.12

64E-

190.

2070

E+02

0.79

87E-

010.7277E-05

0.19

57E+

020.

5417

E-04

0.1098E-05

0.2650E-01

0.7265E+01

0.18

18E+

020.

1373

E+01

0.42

44E+

000.8054E+03

0.1041E-01

(X.4552E-01

0.1363E-03

0.3839E-13

0.3094E-10

0.50

98E-

090.5472E-08

0.84

43E-

080.

1578

E-06

0.36

33E-

100.

1233

E-08

0.48

47E-

05

0.2900E+00

0.8478E+03

0.4759E+01

0.14

13E+

020.1521E-01

0.9321E+03

0.1838E+03

0.23

26E-

020.4503E-01

0.30

15E-

010.

3150

E-02

0.2894E-05

0.2776E-05

0.78

45E-

060.

6104

E-06

0.33

84E-

060.

8401

E-21

- -LMLLULMI

ciMG/L

0.12

00E-

070.5131E-05

0.8648E+00

0.1966E+01

0.1099E-01

0.3210E-03

0.1709E-03

0.44

31E-

100.1704E-12

0.4621E-06

0.3290E-04

0.15

10E-

040.1293E-19

0.21

18E+

020.8171E-01

0.7445E-05

0.2002E+02

0.5541E-04

0.1123E-05

0.2711E-01

0.7432E+01

0.1860E+02

0.1405E+01

0.4341E+00

0.82

40E+

030.1065E-01

0.4657E-01

0.13

95E-

030.3927E-13

0.3165E-10

0.5215E-09

0.5598E-08

0.86

37E-

080.1614E-06

0.37

17E-

100.1261E-08

0.29

67E+

000.

8673

E+03

0.4869E+01

0.14

45E+

020.1556E-01

0.9536E+03

0.1880E+03

0.23

79E-

020.

4607

E-01

0.3085E-01

0.3223E-02

0.2961E-05

0.2840E-05

0.8026E-06

0.62

44E-

060.3462E-06

0.85

95E-

21

j.. .........

MOLALITY

0.9358E-13

0.25

98E-

090.1413E-04

0.3319E-04

0.1160E-06

0.3353E-08

0.17

84E-

080.

7124

E-15

0.7311E-18

0.17

24E-

110.

1086

E-09

0.4469E-10

0.44

16E-

250.2878E-03

0.8352E-06

0.5539E-10

0.1500E-03

0.41

56E-

090.4751E-10

0.2666E-06

0.8930E-04

0.2209E-03

0.3286E-04

0.10

64E-

040.6934E-02

0.90

42E-

070.

3922

E-06

0.1165E-08

0.4401E-18

0.25

48E-

150.3276E-14

0.28

82E-

130.7546E-13

0.10

83E-

110.

2495

E-15

0.1776E-13

0.48

47E-

050.1503E-01

0.5943E-04

0.1743E-03

0.14

87E-

060.6801E-02

0.1600E-02

0.2026E-07

0.1111E-05

0.1732E-05

0.93

15E-

070.1236E-10

0.1034E-10

0.2593E-11

0.18

13E-

110.

1157

E-11

0.96

33E-

26

ACTI

VITY

0.19

47E-

130.

2598

E-09

0.1413E-04

0.7413

E-05

0.24

14E-

070.

2414

E-08

0.12

31E-

080.

7124

E-15

0.4906E-18

0.1724E-11

0.7285E-10

0.92

96E-

110.

4416

E-25

0.2878E-03

0.5536E-06

0.55

39E-

100.

1080

E-03

0.29

91E-

090.4751E-10

0.1885E-06

0.8930E-04

0.1482E-03

0.2267E-04

0.7988E-05

0.6934E-02

0.6509E-07

0.39

22T-

060.

8385

E-09

0.29

53E-

180.

2548

E-15

0.2198E-14

0.59

96E-

140.5063E-13

0.10

83E-

110.

2495

E-15

0.11

91E-

130.3039E-05

0.1503E-01

0.42

78E-

040.1743E-03

0.1487E-06

0.68

01E-

020.

1152

E-02

0.1458E-07

0.1111E-05

0.10

41E-

050.9315E-07

0.8295E-11

0.10

34E-

100.1740E-11

0.3771E-12

0.11

57E-

110.2004E-26

ML 1

1 VI 1

I

COEFF.

0.20

801.

0000

1.00

000.2234

0.2080

0.71

980.6899

1.00

000.

6710

1.00

000.

6710

0.2080

1.00

001.

0000

0.6629

1.00

000.7198

0.7198

1.00

000.7071

1.00

000.6710

0.6899

0.75

051.

0000

0.7198

1.00

000.7198

0.67

101.

0000

0.6710

0.20

800.6710

1.00

001.

0000

0.67

100.6269

1.00

000.7198

1.00

001.

0000

1.00

000.7198

0.7198

1.00

000.6011

1.00

000.6710

1.00

000.6710

0.2080

1.00

000.2080

- LUd 1

U

ACTIVITY

13.7

107

9.5853

4.8500

5.13

007.

6173

8.6173

8.9098

15.1

473

18.3

093

11.7634

10.1376

11.0

317

25.3

550

3.5409

6.2568

10.2566

3.9666

9.5241

10.3

232

6.7246

4.0492

3.8292

4.64

455.0976

2.1590

7.18

656.

4065

9.07

6518.5297

15.5938

14.6

580

14.2221

13.2956

11.9654

15.6029

13.9239

5.51

731.

8229

4.3688

3.7588

6.8276

2.16

742.

9386

7.8361

5.9541

5.98

247.

0308

11.0

812

10.9

853

11.7

594

12.4

236

11.9368

26.6981

Page 171: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

154

155

156

157

158

159

160

161

162

163

164

165

166

228

229

230

231

232

233

234

235

236

237

238

239

240

241

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

SPEC

IES

SrOH

-

SrC03

SrHC

03 +

SrS04

ZnCl +

ZnCl

2Zn

Cl3

-ZnCU --

ZnS0

4AI

F5

--AI

F6 -3

HgOH

+Hg

(OH)

2CH

3COO

HA

I Ace +

+Ba

Ace

+Ca

Ace

+Cu

Ace

+FeAce

+Fe(Ace)2

KAce

MgAce

+NaAce

PbAc

e +

Pb(Ace)2

Pb(A

ce)3

SrAc

e +

ZnAc

e +

Zn(Ace)2

C204

--

HC204

-H2

C204

AlOx

y +

AlOxy)2-

BaOx

yCa

Oxy

FeOxy

FeOx

y +

KOxy

-MgOx

yMnOxy

MnOx

y)2

MnOx

y)3

MnOxy

NaOx

y

PbOx

ySr

Oxy

ZnOx

yC4H404--

HC4H404-

H2C4H404

AlSu

c +

AlSuc)2-

.............. ---ftN/iLT£tU---- .......

...........

PPM

MG/L

MO

LALI

TY

PPM

0.20

67E-

040.1296E-01

0.61

51E-

010.1142E+01

0.14

73E-

020.

7271

E-03

0.2461E-03

0.22

76E-

030.6217E-03

0.2976E-13

0.1492E-16

0.1153E-13

0.3411E-08

0.1841E-04

0.3920E-14

0.9235E-07

0.37

23E-

020.2733E-13

0.16

22E-

120.

9354

E-20

0.2146E-03

0.2288E-01

0.1264E-01

0.5570E-10

0.98

55E-

150.

1775

E-20

0.4820E-04

0.1391E-03

0.3411E-13

0.10

00

0.10

23

0.11

77E-

05

0.94

39E-

020.

3468

E-09

0.3117E-13

0.5607E-13

0.24

57E-

150.

5714

E-08

0.55

46E-

020.

5006

E-12

0.3028E-13

0.1406E-03

0.10

02E+

000.9311E-10

0.7180E-03

0.15

50E-

060.

2764

E-19

0.9487E-02

0.36

51E-

090.

2710

E-04

0.32

82E-

050.

1000

0.

1023

0.8929E-06

0.6405E-01

0.21

40E-

050.

4102

E-08

0.7162E-13

0.45

85E-

15

-

-lALlULHICI

MG/L

0.21

14E-

040.1326E-01

0.6292E-01

0.1169E+01

0.15

07E-

020.7438E-03

0.2518E-03

0.23

28E-

030.6360E-03

0.30

44E-

130.1526E-16

0.1180E-13

0.3490E-08

0.1883E-04

0.40

10E-

140.9447E-07

0.38

09E-

020.2796E-13

0.16

60E-

120.

9569

E-20

0.2195E-03

0.2340E-01

0.1293E-01

0.56

99E-

100.1008E-14

0.18

16E-

200.

4930

E-04

0.14

23E-

030.3490E-13

0.96

56E-

020.

3548

E-09

0.3189E-13

0.5736E-13

0.25

14E-

150.

5845

E-08

0.56

73E-

020.

5122

E-12

0.3097E-13

0.1438E-03

0.10

25E+

000.

9525

E-10

0.73

45E-

030.

1585

E-06

0.28

28E-

190.

9705

E-02

0.37

35E-

090.

2773

E-04

0.3357E-05

0.6553E-01

0.2190E-05

0.41

97E-

080.

7326

E-13

0.4690E-15

j- ---

----

---

MOLA

LITY

0.20

47E-

090.

9100

E-07

0.42

89E-

060.

6445

E-05

0.15

14E-

070.

5529

E-08

0.1485E-08

0.1138E-08

0.39

91E-

080.

2528

E-18

0.1097E-21

0.5492E-19

0.15

07E-

130.3177E-09

0.4722E-19

0.4874E-12

0.38

92E-

070.

2311

E-18

0.1463E-17

0.55

74E-

250.

2266

E-08

0.28

44E-

060.

1596

E-06

0.21

68E-

150.3140E-20

0.47

87E-

260.3406E-09

0.11

59E-

080.

1927

E-18

0.11

11E-

060.

4037

E-14

0.35

88E-

180.

5053

E-18

0.1254E-20

0.26

28E-

130.

4487

E-07

0.3606E-17

0.21

81E-

180.

1146

E-08

0.92

41E-

060.

6750

E-15

0.37

60E-

080.

6353

E-12

0.20

04E-

240.

8857

E-07

0.1282E-14

0.15

99E-

090.2217E-10

0.57

19E-

060.1895E-10

0.3600E-13

0.51

88E-

180.

3322

E-20

ACTIVITY

0.14

48E-

090.

9100

E-07

0.2878E-06

0.6445E-05

0.10

16E-

070.

5529

E-08

0.99

66E-

090.

2368

E-09

0.39

91E-

080.

5260

E-19

0.4322

E-23

0.36

85E-

190.

1507

E-13

0.31

77E-

090.

8901

E-20

0.33

62E-

120.2685E-07

0.1594E-18

0.1010E-17

0.5574E-25

0.2266E-08

0.19

62E-

060.

1596

E-06

0.1496

E-15

0.31

40E-

200.

3303

E-26

0.23

50E-

090.

7997

E-09

0.1927E-18

0.2482E-07

0.27

85E-

140.3588E-18

0.34

86E-

180.8654E-21

0.26

28E-

130.4487E-07

0.3606E-17

0.1505E-18

0.79

08E-

090.

9241

E-06

0.6750E-15

0.83

98E-

090.

1315

E-14

0.13

82E-

240.6110E-07

0.12

82E-

140.

1599

E-09

0.22

17E-

100.

1277

E-06

0.13

07E-

100.

3600

E-13

0.3579E-18

0.22

92E-

20

All 1V1 1

T

COEFF.

0.7071

1.00

000.

6710

1.00

000.

6710

1.00

000.

6710

0.20

801.

0000

0.20

800.

0394

0.67

101.

0000

1.00

000.

1885

0.6899

0.6899

0.6899

0.6899

1.00

001.

0000

0.6899

1.00

000.6899

1.00

000.6899

0.6899

0.6899

1.00

000.

2234

0.6899

1.00

000.6899

0.6899

1.00

001.

0000

1.00

000.6899

0.68

991.

0000

1.0000

0.22

340.0021

0.68

990.

6899

1.0000

1.0000

1.0000

0.22

340.6899

1.00

000.

6899

0.68

99

LUU1U

ACTI

VITY

9.83

947.

0410

6.5410

5.19

087.

9932

8.2573

9.00

159.6256

8.3989

19.2

791

23.3644

19.4335

13.8219

9.4980

20.0

506

12.4

734

7.57

1018

.797

417.9958

25.2

539

8.6448

6.7072

6.7968

15.8251

20.5031

26.4811

9.6290

9.0971

18.7

151

7.6051

14.5

551

18.4451

18.4576

21.0

628

13.5

804

7.3481

17.4429

18.8225

9.1019

6.0343

15.1707

9.0758

14.8809

24.8

593

7.21

3914

.892

29.7961

10.6

542

6.8937

10.8837

13.4437

18.4

462

20.6

399

Page 172: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-7

-

SPE

CIES

270

BaSu

c27

1 Ca

Suc

272

FeSuc

273

FeSuc

+27

4 KS

uc

-27

5 Mg

Suc

276

MnSu

c27

7 Na

Suc

-27

8 Pb

Suc

279

SrSu

c28

0 ZnSu

c28

1 CaCl +

282

CaCl

228

3 Fe

F ++

284

SiF6 --

285

CH4

Gas

288

PbC0

328

9 Pb

OH +

292

ZnHC

03 *

293

ZnOH

+29

4 Zn

(OH)

2

.-..---........ --HNMLT£tU---- -------

............

PPM

MG/L

MOLA

LITY

PP

M0.9318E-07

0.3479E-02

0.1942E-13

0.4911E-13

0.3516E-03

0.24

49E-

010.

8478

E-11

0.15

36E-

010.1184E-09

0.46

65E-

040.7253E-07

0.17

73E+

030.

3377

E+01

0.15

10E-

110.1180E-28

0.10

00

0.1023

0.64

60E-

05

0.10

00E+

000.

1796

E-04

0.31

84E-

040.

5376

E-04

0.23

23E-

030.

1037

E-04

-

- -IHLIULMICI

MG/L

0.95

32E-

070.

3559

E-02

0.19

87E-

130.

5024

E-13

0.35

97E-

030.2505E-01

0.8673E-11

0.1571E-01

0.12

11E-

090.

4772

E-04

0.7420E-07

0.18

14E+

030.3455E+01

0.15

45E-

110.

1207

E-28

0.1023E+00

0.18

37E-

040.

3257

E-04

0.54

99E-

040.

2377

E-03

0.10

61E-

04

,,- -

- ...

....

.MO

LALI

TY0.

3811

E-12

0.2309E-07

0.11

71E-

180.

2960

E-18

0.23

48E-

080.1808E-06

0.5138E-16

0.1145E-06

0.37

96E-

150.

2373

E-09

0.41

43E-

120.

2433

E-02

0.31

53E-

040.2091E-16

0.86

09E-

340.6460E-05

0.69

66E-

100.1472E-09

0.44

08E-

090.

2923

E-08

0.10

82E-

09

ACTIVITY

0.38

11E-

120.2309E-07

0.11

71E-

180.2042E-18

0.16

20E-

080.1808E-06

0.51

38E-

160.7898E-07

0.37

96E-

150.

2373

E-09

0.41

43E-

120.

1633

E-02

0.3153E-04

0.4350E-17

0.1791E-34

O.OOOOE+00

0.69

66E-

100.9876E-10

0.29

58E-

090.

1961

E-08

0.1082E-09

Ml,

1 1 V 1 I

T

COEFF.

1.0000

1.0000

1.00

000.6899

0.6899

1.00

001.0000

0.6899

1.00

001.0000

1.0000

0.67

101.

0000

0.2080

0.2080

1.00

001.

0000

0.6710

0.67

100.6710

1.00

00

-LUlilU

ACTI

VITY

12.4

190

7.6366

18.9

315

18.6898

8.7904

6.7428

16.2892

7.10

2515

.420

79.6246

12.3

827

2.7871

4.5012

17.3615

34.7

469

0.00

0010

.157

010.0054

9.52

908.7074

9.9658

N>

Page 173: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-

8 -

SAMP

LE ID

ENT

- Te

st S

ample

#1 fo

r SOLNINEQ.88

- Modified S

eawa

ter

at 2

5 C

TEMPERATURE

=25.00

MOLE RA

TIOS

(USING AN

ALYT

ICAL

MO

LALI

TY)

CL/CA

CL/M

GCL

/NA

CL/K

CL/A

LCL/FE

CL/S04

CL/H

C03

CA/MG

SQRT(CA)/NA

0.53

06E+

02

0.10

27E+

02

0.11

65E+

01

0.5347E+02

0.7363E+07

0.1524E+08

0.1933E+02

0.2699E+03

0.19

36E+

00

0.2127E+00

NH3/NA

LI/N

AK/

NAHG/CA

SR/CA

BA/CA

S04/CL

HC03

/CL

F/CL

B/CL

0.3760E-05

0.55

68E-

04

0.21

79E-

01

0.5166E+01

0.90

31E-

02

0.14

16E-

04

0.51

73E-

01

0.37

05E-

02

0.1341E-03

0.75

42E-

03

LOG

OF A

CTIVITY

RATIOS

CA/H

2MG

/H2

MA/H

K/H

AL/H

3FE/H2

CA/M

GNA/K

0.13

66E+

02

0.1450E+02

0.7691E+01

0.6003E+01

0.77

47E+

01

0.21

62E+

01

-0.8

438E

+00

0.1688E+01

LOG(

NA/K

)-H/

3(LO

G(SQ

RT(C

A)/M

A))

= 0.144E+01

LOG(

NA/K

)+4/

3(LO

G(SQ

RT(C

A)/N

A))

= 0.

765E

+00

CHEM

ICAL

GE

OTHE

RMOM

ETER

TEMPERATURES (I

N DE

GREE

S CENTIGRADE)

("99

9.0"

IN

DICA

TES

THAT A VALUE GR

EATE

R TH

AN 0.0

WAS

NOT

CALC

ULAT

ED)

TEHP.

WITH

PR

ESSU

RE

TEMP

ERAT

URE

AND/OR ACTIVITY

CORRECTION

14.0

24

.2

999.

0

999.

0

999.

0

144.

5 17

4.7

274.9

194.0

999.

0

10.2

13.1

QUAR

TZ (CONDUCTIVE)

: QUARTZ (A

DIAB

ATIC

) :

CHALCEDONY WI

TH SI

02

:

ALFA

CR

ISTO

BALI

TE WI

TH SI02

:

Amorphous

Sili

ca W

ith

Si02

:

LOG

(NA/

K)

LOG

(NA/

K) +

1/3

LOG(SQRT(CA)/NA)

LOG

(NA/

K)

* 4/

3 LO

G(SQ

RT(C

A)/N

A)

LOG

(NA/

K) +

4/3

LOG(SQRT(CA)/NA)

+ 1 -36+0.253*LOG(

PC02

)

MG CO

RREC

TED

1/3

(NA-K-CA)

LOG

(SQR

T(MG

)/LI

) LOG

(NA/

LI)

15.2

25.3

999.0

999.

0

999.

0

IF THE

WATER

IS BO

ILIN

G OR ST

EAM

IS LO

ST DU

RING

THE

SAMP

LING

OF GROUNDWATERS TH

EN USE

THE

QUARTZ

ADIA

BATI

C TEMPERATURE.

IF THERE

IS NO ST

EAM

LOSS TH

EN USE

THE

QUARTZ

COND

UCTI

VE TEMPERATURE.

The Am

orph

ous

Sili

ca T

emperature S

hould

Be C

onsi

dere

dWhen T

he S

ample

Is S

aturated Wit

h Amorphous

Silica

(THE

DELTA

G OF MINERAL

NO.

275

IS POSITIVE).

IF THE

IN SI

TU TE

MPER

ATUR

E EXCEEDS

150

DEGREES

THEN

THE

NA/K TEMPERATURE

MAY

BE USED.

ALTHOUGH THE

4/3

LOG

TEMP

ERAT

URE

IS GENERALLY

USED

WHEN

THE

TEMPERATURE

IS LE

SS TH

AN 100

DEGREES

IT IS

CONS

IDER

ED LE

SS RELIABLE TH

AN TH

E 1/

3 LO

G TE

MPER

ATUR

E.THE

ACTIVITIES OF H4SI04 AND

WATER

WILL BE

COMPUTED

AT THE

SURF

ACE

TEMP

ERAT

URE

ONLY

IF TH

E HI TEMP

OPTION IS SELECTED.

THE

ORDE

R OF RE

LIAB

ILIT

Y OF TH

E CATION GEOTHERMOMETERS:

MG-L

I>MG

-COR

RECT

ED NA-K-CA>NA-LI>OTHERS

DETAILS

OF THE

EQUATIONS

AND

PARAMETERS CAN

BE

IFO

UND

IN KHARAKA

AND

MARINER,19

88).

\

Page 174: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

»-ONt»-

«-*-in^*-*-o^

oooooooooooooooooooooooo o o oooooooooooooooo ooooo

o o fo m «-CM CM CM CM CM t>o

*-ruT-T-M

ro ro ro ro ro

i 2S2ac z _j aeI- O < 3 »

<D O) < - i-i GO GO I U.

ggg(^(^.t.^^^

OC3O_JC3C3<<--,_joo

_JCOZQ-I Q

tO CD I X I Z31 O Z « 2 LU <

-I 2 C3 Z

< « O > 3 3 3

"8 oo»-O'O>*ioro»-co»-rOCMLOiOCMCMN.CMOCM«-

O O O O <- 00 CM

o»-oo»-iO»-»-ir>cM»-«->*iO>*Lnois.cooocM»-ooororO'>ot*1»ocM»-CMiOLr>o»-»-ot*1»»-»->*Oo>*oo>*o

_ _ _ _>*>*N.rO'OCMN.C>rOiON-CMCMCO (orooNj-Lno^-iOOLn^a-o^^a-oo - - »-LncMro^cMco^^cM^c>Ln>ocoococM^c>^»-coco<>»')C>»-cgcMT-N.Lnc>>Ln»-rocM'OC>cO'«o»-»-c>oc>>*>*CM>* >* iro <r-«-iCMCM^^5'Oiroroi «-«- CM N. ^o ro «- «- -CMI T-T-»-«-ro»-»-cMrorocMi

>* O CM CM CM >* COsf ro ro ro ro CM o ro in o o o o ro « \O in in fM M uS OD

N.r«.«*Lr>ininLnoorocM«-Lr>>*>a-N.O>*>*OiOO«-. I . T-S-R-r«-)T-T-T-T-T-T-. T- T- T- <T- ff> «- ICM>»LOLOiCM»*T- T-T-

- LU - O N- CO CO LU Q I fiLU Z LU

i_«i_ z 3 oo o »a:a:ooo««'-'«zt i « oo z o < o -IQSI oo oo z '0: '3ZtJOUUJ-JZOOOOZt I H- I UOOOO^^OOCt- Q < O 00 00 00 LU

OQOQUOOOOOOUOUOU

174

Page 175: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-

10

-

SAMP

LE ID

ENT

- Te

st Sa

mple

#1

for

SOLMINEQ.88

- Mo

difi

ed S

eawa

ter

at 25 C

(TEMPERATURE =

25.0

0)

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

PHASE

HALI

TEHALLOYSI

HEUL

ANDI

HUNTITE

HYDRMAGN

HYPHILIT

ILLITE

KAOLINIT

KENY

AITE

K-SPAR

KYANITE

LABRADOR

LARN

ITE

LAUM

ONTI

LEUC

ITE

LIME

MAGA

DITE

MgFe204

MAGNESIT

MgCl2

MARIALIT

MERU

INIT

MICR

OCLN

MIEO

NITE

MIRA

BILT

MONT

ICEL

MORD,

NaMORD

, K

MUSC

OVIT

NACHOLIT

LOG

(AP)

-0.9

737.

193

0.15

8-2

8.96

0-3

6.50

8-3.671

10.5

507.193

-37.

785

1.344

11.3

4015

.368

23.167

12.565

5.47

4-1

9.15

1-2

1.26

026.075

-7.0

29-2

.827

8.12

347.179

1.344

54.7

03-3.761

24.0

11-5

.253

-6.941

16.8

05-3

.509

LOG

(KT)

1.59

08.910

1.41

0-3

0.62

0-3

8.53

011

.800

10.3

406.

230

-25.

000

-0.5

5014

.480

16.250

38.880

14.1

706.

520

32.6

60-1

4.34

021.100

-8.0

5022.150

1.71

068.170

-0.5

5069

.950

-1.0

9030

.150

-3.9

00-7

.600

12.8

80-0

.430

LOG

(AP/KT)

-2.563

-1.7

17-1.252

1.660

2.022

-15.471

0.210

0.963

-12.785

1.89

4-3.140

-0.882

-15.713

-1.605

-1.046

-51.811

-6.920

4.97

51.021

-24.977

6.413

-20.

991

1.89

4-1

5.24

7-2

.671

-6.139

-1.3

530.

659

3.925

-3.079

DELG

-3.4

96-2

.342

-1.7

072.

264

2.75

9-2

1.10

60.

286

1.314

-17.

441

2.58

4-4

.284

-1.203

-21.

436

-2.1

89-1.427

-70.683

-9.441

6.78

71.393

-34.075

8.749

-28.637

2.58

4-2

0.80

1 3.644

-8.375

-1.8

460.

899

5.35

5-4.200

134

136

137

138

139

144

145

146

147

148

149

150

151

152

157

158

160

163

164

165

166

168

169

170

171

173

174

175

177

PHAS

EAgCl

COPP

ERMA

LACH

ITCuO

Cu20

FeC

1 2FeC 13

FeC03

FeO

Fe20

3HEM

Fe20

3MGH

Fe304

Fe(O

H)3

GOET

HITE

Hg(L

)Hg

Cl2(

C)Hg

OMnCl2

MnC0

3MnO

Mn02

PbCl

2Pb

C03

PbOL

ITHR

PbOM

ASIC

PbS04

ZnC0

3Zn

OZnS04

LOG

(AP)

-14.

686

-10.071

-34.

397

7.557

-12.867

-15.166

-20.189

-19.

368

2.15

411

.582

11.5

8213

.736

-36.191

5.78

7-1

4.97

8-2

5.02

3-7.704

-12.

494

-16.

696

4.826

-13.

339

-12.955

-17.157

4.36

54.

365

-14.687

-13.

079

8.44

3-10.609

LOG

(KT)

-9.7

304.250

-33.

580

7.67

0-1.900

7.900

12.340

-10.540

13.500

0.04

06.

400

10.750

-37.200

0.48

0-2.840

-14.110

2.440

8.790

-10.540

17.7

00-8.330

4.820

-12.890

12.550

12.6

90-7.800

-9.870

11.200

3.54

0

LOG

(AP/

KT)

-4.956

-14.321

-0.8

17-0.113

-10.

967

-23.

066

-32.

529

-8.828

-11.346

11.542

5.18

22.

986

1.00

95.

307

-12.

138

-10.913

-10.144

-21.

284

-6.156

-12.

874

-5.0

09-8.135

-4.2

67-8.185

-8.325

-6.887

-3.2

09-2

.757

-14.149

DELG

-6.761

-19.537

-1.1

14-0.155

-14.

962

-31.468

-44.377

-12.

043

-15.479

15.7

477.070

4.07

41.376

7.240

-16.

560

-14.

888

-13.838

-29.036

-8.398

-17.

563

-6.834

-11.

098

5.821

-11.167

-11.358

-9.395

-4.3

78-3.762

19.302

Page 176: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-1

-

****

** IN

PUT

DATA ECHO *

*****

cr*

TITL

E : Test

TEMP

0.25

00E+02

0 PH

0.10

92E+

02

0CO

NCEN

TRAT

ION

0 0 0

Na .4000E-0

1Si

02

.OOOOE+00

F .OOOOE+00

Pb0. OOO

OE+0

0

0 0 0

As .OOOOE+00

Acet

ate

.OOOOE+00

ALK

2DC

02.OOOOE+00

ICCS

AT0

TC02M

0. OOO

OE+0

0

0 0 0 0

Sample #

2 HI TEMP

.OOOOE+00

EHM

.9000E+01

UNIT

S :

K .OOO

OE+0

0Ct .200

0E-0

1P04

.OOOOE+00

Zn .OOOOE+00

U0.

OOO

OE+0

0

0 0 0

Oxal

ate

.OOOOE+00

ITIC 0 DH2S

.OOO

OE+0

0IMC03

0 0.

TCH4

M.OOOOE+00

- Mi

x ca

usti

c flood

with

fo

rmat

ion

wate

r DE

NS

PRESS

0.1000E+01

0. OOO

OE+0

0 EHMC

EMFZ

SC

0.9000E+01

0.9000E+01

MOL/L

0 0

Li .OOO

OE+0

0S04

.OOO

OE+0

0N0

30. OOO

OE+0

0

0 0 0 0

Cu .OOO

OE+0

0V .OOO

OE+0

0Su

ccin

ate

.OOOOE+00

DNH3

.OOO

OE+0

0FI

XIT

0 0 0 0 0 0

OOOO

OE+0

0

0TH2SM

.OOO

OE+0

00

Ca .OOO

OE+0

0H2

S.O

OOOE

+00

NH3

.OOO

OE+0

0Mn .OOO

OE+0

0

CH4

.OOO

OE+0

0

DCH4

.OOO

OE+0

0FC

CSAT

0.05

00UROIL

.OOO

OE+0

0

Mg0.

OOO

OE+0

0HC03

0.2000E-01

B0. OOO

OE+0

0Hg

0. OOO

OE+0

0

KC020L

0. OOO

OE+0

0

Fe0.

OOO

OE+0

0C03

0. OOO

OE+0

0Sr

0. OOO

OE+0

0Ag

0. OOO

OE+0

0

KCH40L

0. OOO

OE+0

0

Al0.

OOO

OE+0

0TIC

0. OOO

OE+0

0Ba

0. OOO

OE+0

0

KH2SOL

DSEP

0. OOO

OE+0

0 0.

OOO

OE+0

0Ad

sorp

tion

/Exc

hang

e op

tion

(N

=no)

=

N ^BMfX

ITMI

X 2

0Nu

mber

of mi

xtur

es =

1 st

arti

ng at

fr

acti

on o

f so

luti

on o

ne =

and

read

ing

the

seco

nd water

composition

from

the

data set

foll

owin

g th

is on

e.

LOG

KT TO B

E CH

ANGE

D AT

TEMP =

25.00

0 0.

OOOOE+00

0 0.

OOOO

E+00

0

0.OOOOE+00

LOG

KT TO BE

CH

ANGE

D AT TEMP =

0.00

0 0.

OOOOE+00

0 0.OOOOE+00

0 0.OOOOE+00

ANSI

ANS2

0 0

Num

ber

of

Ad

ditio

na

l M

ine

rals

=

0 FL

AG

FOR

AC

TIV

ITY

C

OEF

F O

F N

EUTR

AL

SP

EC

IES

: 1

FLAG

FO

R A

CT

IVIT

Y

CO

EFF

BY

PIT

ZE

RS

E

QU

ATI

ON

S:

0 FL

AG

S

FOR

CA

LCU

LATI

NG

R

EDO

X S

PE

CIE

S:

Fe

Cu

Hg

Mn

U V

11

11

00

P

RIN

TIN

G

OP

TIO

NS

:IN

FOR

M

RA

TIO

G

EOTH

IP

RIN

10000

TOLE

RA

NC

E

FAC

TOR

S:

CO

NV1

0.5

000 u

sin

g

a ste

p

incre

ment

of:

0 0.

OO

OO

E+0

0

0 0.

OO

OO

E+0

0

0 0.

OO

OO

E+0

0

0 0.

OO

OO

E+0

0

0.0

000

0 0.

OO

OO

E+0

0

0 0.

OO

OO

E+0

0

0.5

00

0E

-04

C

ON

V2

=

IPR

IN2

0 0.5

000E

-04

Page 177: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-

2 -

SAMPLE ID

ENT:

- Te

st Sample #2

- Mi

x ca

usti

c flood

with

fo

rmat

ion

water

i cnr

ufti

lUNa

HNlUNb

Ull

10.9

2 9.0000

25.0

0 ANAL=

40.0

000

40.0

000

CALC=

35.7

888

54.8

365

DENS

ITY

AT

TOTAL

DISS

OLVE

D IO

NIC

ACTI

VITY

P

INPUT

T SO

LIDS

(M

G/L)

STRENGTH

OF WA

TER

1.0000

2840

.91

0.05935

0.9987

Tota

l Al

kali

nity

as

HC03

- C03=

CaC03

(MG/L)=0.2383E+04

0.1172E+04 0.1954E+04

0.

(PPM)=0.2383E+04 0.1172E+04 0.

1954

E+04

0.

(MOLALITY)=0.3916E-01

0.1958E-01 0.1958E-01

0.

SPEC

IES

3 5 7 8 9 97

98

137

138

139

140

Na +

Cl

-

HC03

-

H +

OH

- H2

C03

C03

--

NaCl

NaC0

3 -

NaHC03

Na2C03

PPM

MG/L

MO

LALI

TY91

9.60

00

919.

6000

0.4011E-01

0 70

9.06

00

709.0600

0.2006E-01

0 1220.3400

1220

.340

0 0.

2006

E-01

0 0 0 0 0 0 0 0 0

TOTA

L (B

ARS)

1.00

00

rrtKtNLt ^ntU;

0.00

00

-19.

0477

i\-)

---

n - un BH

LHNU

C ^H

ULCO

; -------

HTOT

OHTO

T DI

FFER

ENCE

0.2010E-02

0.1057E-02

0.9526E-03

PH20

PC

02

PH2S

PCH4

(BAR

S)

(BAR

S)

(BARS)

(BAR

S)0.3169E-01 0.

1287

E-05

O.OOOOE+00 O.OOOOE+00

Dissolved

Inor

gani

c Ca

rbon

as

HC03-

H2C03

Sum

of

Sum

of

TIC

Alkalinity

spec

ies

HC03-

C03=

2402

E+03

0.

2282

E+04

0.2690E-02 0.1223E+03

0.

1080

E+0

2402E+03 0.

2282

E+04

0.2690E-02 0.

1223

E+03

0.

1080

E+0

2006

E-01

0.3810E-01 0.

4349

E-07

0.2010E-02 0.

1805

E-0

PPM

.8228E+03

.7067E+03

.1207E+03

.141

9E-0

7 .1793E+02

.2690E-02

.832

7E+0

3 .3816E+01

.3418E+03

.2211E+01

.1171E+00

-

- -UrtLUULHi CU -----------

MG/L

MOLA

LITY

0.82

28E+

03

0.70

67E+

03

0.1207E+03

0.1419E-07

0.1793E+02

0.26

90E-

02

0.8327E+03

0.3816E+01

0.3418E+03

0.2211E+01

0.1171E+00

0.3589E-01

0.19

99E-

01

0.19

83E-

02

0.14

12E-

10

0.10

57E-

02

0.4349E-07

0.1392E-01

0.65

48E-

04

0.4130E-02

0.2639E-04

0.1108E-05

ACTIVITY

0.2905E-01

0.1596E-01

0.16

16E-

02

0.12

02E-

10

0.85

00E-

03

0.43

49E-

07

0.6286E-02

0.6548E-04

0.3400E-02

0.2639E-04

0.11

08E-

05

PNH3

(BAR

S)O.

OOOO

E+00

4 4 1 ACTI

VITY

CO

EFF.

0 0 0 0 0 1 0 1 0 1 1

.809

4 .7981

.814

6 .8

513

.8039

.0000

.4517

.0000

.823

3 .0

000

.0000

-LOG

10

ACTIVITY

1 1 2 10 3 7 2 4 2 4 5

.5368

.7971

.791

6 .9

200

.070

6 .3

616

.2016

.183

9 .4685

.578

5 .9

553

Page 178: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

3 -

SAMPLE IDEN

T - Te

st S

ample

#2

Mix

caus

tic

flood

with

fo

rmat

ion

wate

r(TEMPERATURE =

25.00)

PHAS

E52

HALI

TE

81

NACH

OLIT

82

NATR

THRM

LOG

(AP)

-3.334

-4.3

28

-5.2

76

LOG

(KT)

1.590

-0.4

30

-0.0

10

LOG

(AP/

KT)

4.9

24

3.8

98

-5.2

66

DELG

-6.7

17-5

.318

-7.184

PHAS

E83

NATR

ON

118

Na20

127

TRON

A

LOG

(AP)

-5.281

18.7

66

-9.605

LOG

(KT)

-0.880

67.430

-0.630

LOG

(AP/

KT)

-4.401

-48.664

-8.975

DELG

-6.004

-66.

390

-12.244

****

*Thi

s so

luti

on i

s to

be mi

xed

with t

he n

ext

solution.....

CO

Page 179: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-4

-

****** IN

PUT

DATA

ECHO **

****

TITL

E : Mc

Murr

ay Fo

rmat

ion

Wate

r TE

MP

HITEMP

DENS

0.2500E+02

O.

OOOO

E+00

0.

1000

E+01

PH

EH

M EH

MC

0.7100E+01

0.90

00E+

01

0.9000E+01

CONC

ENTR

ATIO

N UNITS

: MG

/L

0 0 0 0 0

Na .157

2E+0

5Si

02

.OOO

OE+0

0F .OOOOE+00

Pb .OOO

OE+0

0As .OOO

OE+0

0Acetate

O.OOOOE+

00ALK

2 DC02

O.OOOOE+

00

0

ICCS

AT0

TC02

M.OOOOE+00

0K .OOOOE+00

Cl0.

2670

E+05

0 0 0 0 0 0

P04

.OOO

OE+0

0Zn .OOOOE+00

U .OOOOE+00

Oxal

ate

.OOOOE+00

ITIC

0 DH2S

.OOO

OE+0

0IM

C03

0 0.

TCH4M

.OOOOE+00

0 0 0 0 0 0 0

Li .OOOOE+00

S04

.120

0E+0

2N03

.OOO

OE+0

0Cu .OOO

OE+0

0V .OOO

OE+0

0Su

ccin

ate

.OOO

OE+0

0

DNH3

.OOO

OE+0

0FI

XIT

0 0 0 0 0 0 0 0

OOOOOE+00

0TH

2SM

.OOO

OE+0

00

PRES

S .OOOOE+00

EMFZSC

.900

0E+0

1

Ca .8010E+03

H2S

.OOOOE+00

NH3

.OOOOE+00

Mn .OOOOE+00

CH4

.OOOOE+00

DCH4

.OOOOE+00

FCCS

AT0.0500

UROIL

.OOOOE+00

Mg0.4430E+03

HC03

0.4000E+03

BO.OOOOE+00

HgO.OOOOE+00

KC02

0LO.

OOOO

E+00

FeO.

OOOO

E+00

C03

O.OOOOE+00

SrO.OOOOE+00

AgO.OOOOE+00

KCH40L

O.OO

OOE+

00

AlO.OOOOE+00

TIC

O.OOOOE+00

BaO.OOOOE+00

KH2SOL

O.OOOOE+00

DSEP

O.OO

OOE+

00Adsorption/Exchange

option (N=no) =

NIB

MIX

ITMI

X 2

0Because

the Mi

xing

option w

as chosen in

the

prev

ious

data set,

the MIXING in

form

atio

n wi

ll no

t be

re

ad fr

om th

is data set.

LOG

KT TO

BE CHANGED

AT TE

MP =

25.00

0 O.

OOOO

E+00

0 O.OOOOE+00

0 O.

OOOO

E+00

LOG

KT TO BE CHANGED

AT TEMP =

0.00

0 O.

OOOO

E+00

0

O.OO

OOE+

00

0 O.

OOOO

E+00

ANSI

AN

S2

0 0

Numb

er of

Ad

diti

onal

Minerals =

0 FLAG FO

R ACTIVITY CO

EFF

OF NE

UTRA

L SPECIES:

1 FLAG FO

R ACTIVITY CO

EFF

BY PITZERS

EQUATIONS:

0 FLAGS

FOR

CALC

ULAT

ING

REDO

X SPECIES:

Fe

Cu

Hg

Mn

U V

111100

PRIN

TING

OP

TION

S:IN

FORM

RATIO

0 0

TOLE

RANCE

FACT

ORS:

CONV1

0 O.OOOOE+00

0 O.OOOOE+00

0 O.

OOOO

E+00

0 O.OOOOE+00

0 O.

OOOO

E+00

0 O.OOOOE+00

GEOTH

0IPRIN1

00.5000E-04

CONV2

=

IPRI

N2 0 0.5000E-04

Page 180: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAG

E -

5 -

SAM

PLE

IDE

NT

:-

McM

urra

y Fo

rmat

ion

Wat

er

00 o

rntn

1 tnr

UHI 1UN&

HNlUNd

Ul

7.10

9.0000

25.00

ANAL=

760.

1885

759.9151

CALC

= 72

4.09

43

723.2526

DENSITY

AT

TOTA

L DISSOLVED

IONIC

ACTI

VITY

P

TOTAL

INPUT

T SOLIDS (M

G/L)

STRENGTH

OF W

ATER

(BAR

S)1 .

0000

4407

6.00

0.79028

0.9743

1.0000

Tota

l Al

kali

nity

as

as

rrcKcmc incw/uj

0.2734

0.84

17

--

n - un

BH

LANL

C in

uLca

j --

----

-

HTOT

OH

TOT

DIFFERENCE

0.74

00E-02

0.52

10E-

06

0.73

99E-

02

- -

- -ODCCfl miT- -

-----

----

PH20

PC02

PH2S

PCH4

(BAR

S)

(BAR

S)

(BAR

S)

(BAR

S)PNH3

(BAR

S)0.3169E-01 0.2089E-01 O.OOOOE+00 O.OOOOE+00 O

.OOOOE+00

Diss

olve

d Inorganic

Carbon

HC03

- H2

C03

Sum

of

Sum

ofHC03-

C03=

CaCO

3 TI

C Al

kali

nity

species

HC03-

C03=

(MG/

L)=0.3684E+03

0.18

12E+

03 0

.302

1E+0

3 0.7874E+02 0

.3683E+03

0.3525E+02 0

.3623E+03

0.30

19E+

01

(PPM

)=0.

3684

E+03

0.

1812

E+03

0.3

021E

+03

0.7874E+02 0

.368

3E+0

3 0.3525E+02 0

.3623E+03

0.3019E+01

(MOLALITY)=0.6317E-02

0.31

58E-

02 0

.3158E-02

0.6858E-02 0

.6316E-02

0.5945E-03 0.6211E-02 0.

5263

E-04

1 2 3 5 6 7 8 9 55

56 57 61 97 98 103

120

121

123

124

137

138

139

140

141

142

281

282

SPECIES

Ca ++

Mg +

+Na +

Cl

S04

--HC

03

-H

+OH

-

acuj

CaHC03 +

CaOH

+

CaS0

4H2

C03

C03

--HS

04

-MgC03

MgHC03 +

MgOH +

MgS0

4Nad

NaC0

3 -

NaHC03

Na2C03

Na2S04

NaS0

4 -

Cad +

CaCl

2

PPM

MG/L

MO

LALI

TY

PPM

801.

0000

801.0000

0.

209

1 E- 01

0.55

06E+

0344

3.00

00

443.

0000

0.

1906

E-01

0.

4360

E+03

1572

0.00

00

15720.0000

0.71

53E+

00

0.15

04E+

0526

700.

0000

26

700.

0000

0.

7878

E+00

0.

2547

E+05

12.0000

12.0000

0.13

07E-

03

0.4775E+01

400.

0000

40

0.00

00

0.68

58E-

02

0.28

43E+

030.

9476

E-04

0.31

76E-

020.1059E+01

0.19

14E+

020.

4347

E-03

0.71

64E+

000.

3525

E+02

0.53

10E+

000.7800E-05

0.72

37E+

000.

2300

E+02

0.12

55E-

010.

1124

E+01

0.16

67E+

040.1844E+01

0.68

75E+

020.8641E-02

0.74

19E+

010.

9979

E+00

0.44

87E+

030.

1144

E+02

MG/L

MOLALITY

0.5506E+03

0.43

60E+

030.

1504

E+05

0.25

47E+

050.4775E+01

0.2843E+03

0.94

76E-

040.3176E-02

0.10

59E+

01

0.1914E+02

0.43

47E-

030.

7164

E+00

0.35

25E+

020.

5310

E+00

0.78

00E-

050.

7237

E+00

0.23

00E+

020.

1255

E-01

0.1124E+01

0.16

67E+

040.1844E+01

0.68

75E+

020.8641E-02

0.7419E+01

0.99

79E+

000.

4487

E+03

0.1144E+02

0.1437E-01

0.18

76E-

010.

6845

E+00

0.75

16E+

000.

5200

E-04

0.48

75E-

020.

9834

E-07

0.1954E-06

0.1WE-04

0.19

80E-

030.7966E-08

0.55

05E-

050.

5945

E-03

0.92

57E-

050.

8406

E-10

0.89

78E-

050.

2820

E-03

0.31

77E-

060.

9768

E-05

0.2984E-01

0.2324E-04

0.85

61E-

030.8529E-07

0.54

64E-

040.

8769

E-05

0.62

14E-

020.1078E-03

ACTI

VITY

0.33

88E-

020.4776E-02

0.45

54E+

000.4638E+00

0.8143

E-05

0.33

43E-02

0.79

43E-07

0.12

55E-

060.

1107

E-04

0.

1459

E-03

0.58

71E-08

0.5505

E-05

0.59

45E-

030.1969

E-05

0.57

65E-

100.

8978

E-05

0.18

76E-

030.2386E-06

0.9768

E-05

0.29

84E-

010.1669E-04

0.85

61E-

030.

8529

E-07

0.54

64E-

040.6297

E-05

0.41

34E-

020.

1078

E-03

COEFF.

0.2358

0.2546

0.66

530.

6171

0.1566

0.6858

0.8077

0.64

251.

0000

0.7369

0.7369

1.00

001.

0000

0.2126

0.6858

1.00

000.

6653

0.75

121.

0000

1.00

000.

7182

1.00

001.

0000

1.00

000.

7182

0.6653

1.00

00

-LOG10

ACTI

VITY

2.4700

2.3210

0.34

160.3336

5.0892

2.47

597.1000

6.9013

4.95

59

3.83

598.

2313

5.2592

3.22

595.7059

10.2392

5.04

683.

7268

6.6223

5.0102

1.5253

4.7775

3.0675

7.06

914.2625

5.2009

2.38

363.9673

Page 181: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-

6 -

SAMPLE IDENT

- McMurray Fo

rmat

ion Water

(TEMPERATURE =

25.0

0)

11 17 22 24 41 42 51 52 55 56 57 67

PHASE

ANHY

DRIT

ARAG

ONIT

BRUC

ITE

CALC

ITE

DOLO

MITE

DSORD

GYPS

UMHALITE

HUNT

ITE

HYDRMAGN

HYPHILIT

LIME

LOG

(AP)

-7.559

-8.1

76-1

6.12

4-8

.176

-16.

203

-16.

203

-7.582

-0.6

75-3

2.25

6-4

2.55

9-3

.137

-16.

681

LOG

(KT)

-4.330

-8.3

40-1

1.47

0-8.480

-18.

060

-16.

520

-4.600

1.590

-30.

620

-38.

530

11.8

0032.660

LOG

(AP/

KT)

-3.229

0.164

-4.654

0.30

41.

857

0.317

-2.982

-2.265

-1.6

36-4.029

-14.

937

-49.

341

OELG

-4.4

05"

0.22

4-6

.349

0.41

52.534

0.433

-4.0

68-3

.090

-2.2

32-5.496

-20.

378

-67.

313

70 71 76 81 82 83 85 95 99 118

125

127

PHASE

MAGN

ESIT

MgCl2

MIRA

BILT

NACH

OLIT

NATR

THRM

NATRON

NESQ

UHON

PERI

CLAS

PORT

LAN

Na20

THENARDI

TRONA

LOG

(AP)

-8.027

-2.988

-5.8

86-2.817

-6.4

00-6

.502

-8.061

11.8

68-1

6.27

313

.505

-5.7

72-9

.229

LOG

(KT)

-8.050

22.150

-1.090

-0.430

-0.010

-0.880

-5.350

21.510

-5.420

67.430

-0.290

-0.630

LOG

(AP/

KT)

0.023

-25.

138

-4.7

96-2.387

-6.3

90-5

.622

-2.7

11-9

.642

-10.

853

-53.

925

-5.4

82-8

.599

DELG

0.032

-34.

295

-6.5

42-3

.257

-8.7

18-7

.670

-3.6

98-1

3.15

4-1

4.80

6-7

3.56

6-7

.479

-11.

731

oo

Page 182: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

- 7

-

****

Mixing

of the

two

prev

ious

so

luti

ons

in t

he fo

llow

ing

prop

orti

ons:

Initial

fraction o

f solution

1 =

0.50

00Number o

f mixtures =

1

and

the

incr

emen

t be

twee

n so

luti

ons

= 0.

5000

00 10

Page 183: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-8

-

SAMP

LE ID

ENT:

- MI

XTUR

E OF Te

st Sa

mple

#2

- Mi

x caustic

flo

AND

McMurray F

orma

tion

Wat

er

(PROPORTIONS:

1= 0.

50 2

= 0.

50)

rn

en

i tnr

LA

I luro

ANIUNU

Ull-l-tKtNLt ^HcU/LJ

9.67

9.00

00

25.0

0 ANAL=

407.

6953

40

7.55

57

CALC

= 386.6610

395.5575

DENS

ITY

AT

TOTAL

DISSOLVED

IONI

C AC

TIVI

TY

P IN

PUT

T SO

LIDS

(M

G/L)

ST

RENG

TH

OF WATER

1.0

000

23897.61

0.41

785

0.9865

Total

Alka

lini

ty a

s

TOTAL

(BAR

S)1.0000

as

0.13

96

-8.8

965

- - n

- un

BA

LANU

L ^n

uLta

j ..

....

.

HTOT

OHTO

T DI

FFER

ENCE

0.

4307

E-02

0.

1313

E-03

0.4176E-02

PH20

PC02

PH2S

PCH4

(BAR

S)

(BAR

S)

(BAR

S)

(BAR

S)0.3169E-01 0.4037E-04 O.OOOOE+00 O.OOOOE+00

Diss

olve

d Inorganic

Carbon

HC03

- H2C03

Sum

ofSu

m of

PNH3

(BAR

S)O.OOOOE+00

HC03-

C03=

CaC0

3 TIC

Alkalinity

spec

ies

HC03-

C03=

(MG/L)=0.1354E+04

0.6659E+03 0.1111E+04

0.1578E+03 0.1328E+04 0.7566E-01 0.2564E+03 0.5360E+03

(PPM

)=0.1354E+04 0.6659E+03 0.1111E+04

0.1578E+03 0.1328E+04 0.7566E-01 0.2564E+03 0.5360E+03

(MOLALITY)

=0.2274E-01

0.1137E-01 0.1137E-01

0.1346E-01 0.

2261

E-01

0.

1250

E-05

0.4305E-02 0.

9151

E-02

1 2 3 5 6 7 8 9 55 56 57 61 97 98 103

120

121

123

124

137

138

139

140

141

142

281

282

SPEC

IES

Ca ++

Mg ++

Na +

Cl

-S0

4 --

HC03

-

H +

OH

-CaC03

CaHC

03 +

CaOH

+

CaS04

H2C0

3C03

--HS

04

-Mg

C03

MgHC03 +

MgOH +

MgS04

NaCl

NaC03

-Na

HC03

Na2C

03Na

2S04

NaS04

-CaCl +

CaCl2

PPM

MG/L

MOLA

LITY

PPM

408.9541

408.9541

0.1045E-01

0.2642E+03

226.

1756

22

6.17

56

0.9531E-02

084

76.0

056

8476.0056

0.3777E+00

013978.8458

1397

8.84

58

0.4039E+00

06.1267

6.1267

0.6534E-04

080

1.50

70

801.

5070

0.1346E-01

0 0 0 0 0 0 0

.1913E+03

.817

8E+0

4.1360E+05

.356

2E+0

1.2

229E

+03

.2598E-06

.1178E+01

.174

5E+0

3.8310E+01

.9093E-01

.373

3E+0

00.7566E-01

0 0 0 0 0 0 0 0 0 0 0 0 0 0

.135

5E+0

3.1933E-07

.107

2E+0

3.8

752E

+01

.2369E+01

.526

5E+0

0.5

203E

+03

.303

1E+0

3.3

059E

+02

.796

8E+0

0.2163E+01

.518

6E+0

0.1333E+03

.1951E+01

MG/L

MOLA

LITY

0.26

42E+

030.1913E+03

0.8178E+04

0.1360E+05

0.3562E+01

0.2229E+03

0.2598E-06

0.1178E+01

0.17

45E+

030.

8310

E+01

0.9093E-01

0.3733E+00

0.7566E-01

0.13

55E+

030.1933E-07

0.10

72E+

030.8752E+01

0.23

69E+

010.

5265

E+00

0.52

03E+

030.3031E+03

0.3059E+02

0.79

68E+

000.

2163

E+01

0.5186E+00

0.1333E+03

0.1951E+01

0.6752E-02

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.8060E-02

.3644E+00

.393

0E+0

0.3

799E

-04

.374

2E-0

2.2640E-09

.709

6E-0

4.1

787E

-02

.842

2E-0

4.1

632E

-05

.280

9E-0

5.1250E-05

.231

3E-0

2.2

040E

-12

.130

3E-0

2.1051E-03

.587

4E-0

4.4

481E

-05

.912

1E-0

2.3

741E

-02

.373

0E-0

3.7702E-05

.156

0E-0

4.4462E-05

.1808E-02

. 180

1 E- 04

ACTI

VITY

0 0 0 0

.184

5E-0

2.2

337E

-02

.251

3E+0

0.2

569E

+00

0.76

33E-

050.2

639E

-02

0.2115E-09

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.477

2E-0

4.1

787E

-02

. 6271 E-

04

.1215E-05

.2809E-05

.1250E-05

.583

6E-0

3.1

439E

-12

.130

3E-0

2.7

246E

-04

.4440E-04

.4481E-05

.912

1E-0

2.2

731E

-02

.373

0E-0

3.7702E-05

.156

0E-0

4.3258E-05

.124

7E-0

2. 1

801 E- 04

nu i

i v

i i

i

COEF

F.0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1

.273

2.2

900

.6896

.653

8.2

009

.705

2.8

012

.6726

.000

0.7447

.744

7.0

000

.000

0.2

523

.705

2.0

000

.689

6.7

558

.000

0.0

000

.730

0.0

000

.000

0.0

000

.730

0.6

896

.000

0

-LOG10

ACTI

VITY

2.73

412.

6313

0.5998

0.59

025.1173

2.57

859.6747

4.3213

2.74

804.2027

5.91

545.

5514

5.9032

3.2339

12.8

420

2.88

524.1399

4.3526

5.3487

2.0399

2.5636

3.4283

5.11

344.8069

5.4871

2.90

434.

7445

Page 184: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-

9 -

SAMP

LE ID

ENT

- MI

XTUR

E OF

Tes

t Sample #2

- Mix

caus

tic

flo AN

D Mc

Murr

ay F

ormation Water

(PROPORTIONS:

1= 0

.50

2= 0

.50)

(TEM

PERA

TURE

=

25.00)

11 17 22 24 41 42 51 52 55 56 57 67

PHASE

ANHY

DRIT

ARAGONIT

BRUCITE

CALCITE

DOLOMITE

DSORD

GYPSUM

HALITE

HUNTITE

HYDRMAGN

HYPH

ILIT

LIME

LOG

(AP)

-7.851

-5.9

68-1

1.27

4-5

.968

-11.

833

-11.

833

-7.8

63 1

.190

-23.

564

-31.

519

-3.9

14 2

2.08

9

LOG

(KT)

-4.3

30-8

.340

-11.470

-8.4

80 18.060

-16.

520

4.6

001.

590

-30.620

-38.

530

11.8

0032.660

LOG

(AP/KT)

-3.521

2.37

20.

196

2.51

26.227

4.687

-3.263

-2.7

807.

056

7.01

1-1

5.71

4-54.749

DELG

-4.804

3.23

60.

268

3.427

8.495

6.394

-4.452

-3.793

9.627

9.56

5-21.438

-74.

691

70 71 76 81 82 83 85 95 99 118

125

127

PHAS

EMAGNESIT

MgCl

2MI

RABI

LTNACHOLIT

NATRTHRM

NATRON

NESQUHON

PERI

CLAS

PORT LAN

Na20

THENARDI

TRONA

LOG

(AP)

-5.8

65-3

.812

-6.376

-3.1

78-4.439

-4.493

-5.883

16.712

-11.377

18.144

-6.3

17-7

.624

LOG

(KT)

-8.050

22.1

50-1.090

-0.430

0.010

-0.880

5.350

21.5

10-5.420

67.430

-0.290

-0.6

30

LOG

(AP/KT)

2.185

-25.962

-5.286

-2.748

-4.4

29-3.613

-0.533

-4.7

98-5

.957

-49.286

-6.0

27-6.994

DELG

2.981

-35.

418

-7.211

-3.7

49-6.043

-4.928

-0.7

27-6

.546

-8.1

26-67.238

-8.222

-9.541

00 p-

Page 185: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-

1 -

****** IN

PUT

DATA

EC

HO *

*****

TITL

E : Te

st Sa

mple

#3

TEMP

HI TEM

P 0.2500E+02

O.OOOOE+00

PH

EHM

0.8200E+01

0.50

00E+

00CONCENTRATION

UNIT

S :

Na0.1077E+05

Si 02

0.42

80E+

01F

0.1390E+01

Pb0.5000E-04

As0.

4000

E-02

Acetate

0.1000E+00

ALK

2 DC02

O.OOOOE+00

ICCS

AT0

TC02

MO.OOOOE+00

K0.3991E+03

Cl0.

1935

E+05

P04

0.60

00E-

01Zn

0.4900E-02

UO.

OOOO

E+00

Oxalate

0.10

00E+

00me 0 DH2S

O.OOOOE+00

IMC0

30

0.TCH4M

O.OO

OOE+

00

- Di

ssol

ve A

northite to

DENS

PRESS

0.1023E+01

O.OO

OOE+

00

EHMC

EMFZSC

0.9000E+01

0.9000

E+01

PPMLi

0.18

10E+

00S0

40.

2712

E+04

N03

0.2900E+00

Cu0.

7000

E-03

VO.

OOOO

E+00

Succ

inat

e0.

1000

E+00

DNH3

O.OO

OOE+

00FI

XIT

OOOO

OE+0

0TH

2SM

O.OO

OOE+

00

0 0 0 0 0 0 0

Ca .412

3E+0

3H2

S.OOOOE+00

NH3

.3000E-01

Mn .2000E-03

CH4

.1000E+00

DCH4

.OOOOE+00

FCCSAT

0.0500

UROI

L.OOOOE+00

saturate w

ith

Gibbsite in

sea

wate

r

Mg0.1292E+04

HC03

0.1234E+03

B0.

4450

E+01

Hg0.

3000

E-04

KC020L

O.OO

OOE+

00

Fe0.2000E-02

C03

O.OOOOE+00

Sr0.

8140

E+01

Ag0.4000E-04

KCH40L

O.OOOOE+00

Al0.2000E-02

TIC

O.OOOOE+00

Ba0.2000E-01

KH2SOL

DSEP

O.OOOOE+00

O.OOOOE+00

Adsorption/Exchange

option (N

=no)

=

NIB

MIX

ITMIX

1 0

MINERAL

TO B

E DI

SSOL

VED/

PREC

IPIT

ATED

TO S

ATUR

ATIO

N: GI

BBSI

TEMINERAL

TO BE D

ISSOLVED/PRECIPITATED:

LOG

KT TO

BE

CHANGED

AT TEMP =

25.0

00

O.OO

OOE+

00

0 O.

OOOO

E+00

LOG

KT TO

BE CH

ANGE

D AT TEMP =

0.00

0 O.

OOOOE+00

0 O.

OOOO

E+00

ANSI

ANS2

0

0Nu

mber

of Ad

diti

onal

Mi

nera

ls =

0 FL

AG FOR

ACTI

VITY

CO

EFF

OF NE

UTRA

L SP

ECIES:

FLAG

FO

R AC

TIVI

TY COEFF

BY PI

TZER

S EQ

UATI

ONS

FLAG

S FO

R CALCULATING

REDO

X SP

ECIE

S:

Fe

Cu

Hg

Mn

U V

111100

PRIN

TING

OPTIONS:

INFORM

RATIO

0 0

TOLERANCE

FACT

ORS:

CO

NV1

ANOR

THIT

0 O.OOOOE+00

0 O.OOOOE+00

Inde

x nu

mber

: In

dex

numb

er:

0 O.OOOOE+00

0 O.OOOOE+00

49 13

0 O.OOOOE+00

0 O.

OOOO

E+00

0 O.OOOOE+00

0 O.

OOOO

E+00

GEOT

H IPRIN1

0 0

0.5000E-04

CO

NV2

=

IPRIN2 0

0.50

00E-

04

Tota

l mo

les

of AN

ORTH

IT PP

T/DI

SS

(See pages

2-10 of

Test Sample #

1)

to ac

hiev

e sa

tura

tion

: -.3076E-07

Page 186: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-

SAMP

LE ID

ENT:

- Te

st Sample #

3 - Dissolve A

northite to s

aturate

with

Gibbsite in

se

awat

er

ANOR

THIT

PPT/DISS

rn

en

i enr

8.20

9.0000

25.00

DENSITY

AT

TOTA

L DISSOLVED

INPU

T T

SOLIDS (M

G/L)

1.0

230

35906.27

ANAL

= CA

LC=

IONIC

STRE

NGTH

0.64945

UH 1

lUNd

619.6745

577.6363

ACTI

VITY

OF WA

TER

0.9809

Total

Alkalinity as

HC03

-

(MG/L)

=0.1

423E

+03

(PPM

)=0.

1391

E+03

(M

OLAL

ITY)=0.2363E-02

1 2 3 4 5 6 7 8 9 rr 12 13 14 15 16 18 21 22 23 25 26 27 28 29 30 31 32 34 35 36 37 38 39 40

SPECIES

Ca ++

Mg +

+Na

+

K +

Cl

-S04

- HC03

-H

+OH

-H4ST04

Si 02

Ag +

Al +3

Ba +

+Cu

+Fe

++

Hg

++Li +

Mn +

+Pb

++

Sr +

+Zn +

+H2

As03

-P04

-3F

-B(

OH)3

NH3

AlF

++AI

F2 +

AIF3

AIF4

-Al(OH)++

Al(OH)2+

Al(O

H)4-

C03=

CaC03

0.6998E+02 0.

1167

E+03

0.6841E+02 0.

1141

E+03

0.1181E-02 0.

1181

E-02

A LI A 1

V7Crri

PPM

412.

1292.

10770.

399.

19350.

2712

.12

3.

2988

0001

0007

1000

0013

0002

4007

4.27

640. 0. 0. 0. 0. 0. 0. 0. 0. 8. 0. 0. 0. 1. 25. 0.

0000

0004

0200

0007

0020

0000

1810

0002

0001

1400

0049

0067

0600

3900

4540

0300

MWHLI I

.C.U ----------

MG/L

MOLALITY

421.

7817

1321.7160

1101

7.71

02408.2793

1979

5.05

042774.3761

126.

2389

4.3748

0.0000

0.00

040.

0205

0.0007

0.00

200.

0000

0.18

520.0002

0.0001

8.3272

0.00

500.0068

0.06

141.

4220

26.0394

0.0307

0.1066E-01

0.55

08E-

010.4855E+00

0.10

58E-

010.

5656

E+00

0.29

26E-

010.2096E-02

0.73

76E-

040.3843E-09

0.1529E-07

0.1509E-06

0.1142E-07

0.3711E-07

0.15

50E-

090.

2703

E-04

0.3773E-08

0.25

01E-

090.

9628

E-04

0.7768E-07

0.5281E-07

0.6548E-06

0.75

83E-

040.4266E-03

0.1826E-05

MNIUNO

D 1

I

618.2648

569.7726

P TO

TAL

(BARS)

1.00

00

as

rrcK

CNOt

^n

cu,

1.4097

7.8638

f\-)

---

n -

un b«

LANL

t <.

nuLc

a; -------

HTOT

OHTOT

DIFFERENCE

0.2198E-

02

0.1350E-02

0.84

77E-

03

....

....

....

. -.

--rKC

-)-)UKC

- ...............

PH20

PC02

PH2S

PCH4

(BAR

S)

(BARS)

(BARS)

(BARS)

PNH3

;'BARS)

0.3169E-01 0.4780E-03 O.OOOOE+00 0.5252E-02 0.

1644

E-08

Diss

olve

d In

orga

nic

Carbon

HC03

- H2

C03

Sum

of

Sum

ofTIC

Alkalinity

species

HC03

- C03=

0.24

85E+

02 0.

1374

E+03

0.

8644

E+00

0.

1130

E+03

0.

1216

E+02

0.

2429

E+02

0.1343E+03 0.8450E+00 0.

1105

E+03

0.

1189

E+02

0.2096E-02 0.

2287

E-02

0.

1412

E-04

0.1877E-02 0.2053E-03

.

/* A 1 fl II

A Tff\

* r*T T \

H f\f

PPM

0.28

44E+

030.

1121

E+04

0.1024E+05

0.3825E+03

0.1874E+05

0.1203E+04

0.8534E+02

0.7635E-05

0.4017E-01

0.66

10E-

--01

0.1039E-08

0.8504E-12

0.18

15E-

010.2749E-07

0.16

67E-

020.7474E-18

0.17

92E+

000.5864E-06

0.99

62E-

060.7551E+01

0.28

85E-

020.

7212

E-03

0.59

21E-

050.

7672

E+00

0.22

05E+

02

0.14

07E-

090.6684E-09

0.20

34E-

090.2415E-11

0.92

53E-

090.6635E-06

0.14

01E-

02

OHLUULH IC.U -----------

MG/L

MOLALITY

0.2909E-»-03

0.11

47E+

040.

1048

E+05

0.3913E-t-03

0.1917E+05

0.12

31E+

040.

873C

E-t-

020.7810E-05

0.41

10E-

010.6762E+01

0.1063E-08

0.86

99E-

120.

1857

E-01

0.2812E-07

0.17

05E-

020.7646E-18

0.1833E-t-00

0.5999E-06

0.1019E-05

0.77

25E+

010.

2952

E-02

0.73

78E-

030.

6058

E-05

0.7848E-fOO

0.2255E+02

0.1440E-09

0.6838E-09

0.20

81E-

090.

2470

E-11

0.9466E-09

0.6787E-06

0.1433E-02

0.73

53E-

020.

4779

E-01

0.4618E+00

0.1014E-01

0.54

78E+

000.1298E-01

0.14

49E-

020.7850E-08

0.24

48E-

050.

7127

E-04

0.99

82E-

140.

3266

E-16

0.13

70E-

060.

4483

E-12

0.3094E-07

0.3861E-23

0.26

77E-

040.1106E-10

0.4983E-11

0.89

31E-

040.4575E-07

0.5708E-08

0.6462E-10

0.41

85E-

040.

3695

E-03

0.31

72E-

140.

1066

E-13

0.25

10E-

140.2430E-16

0.21

80E-

130.

1127

E-10

0.1528E-07

ACTI

VITY

0.1807E-C2

Q.1261E-01

0.3099E+00

0.6357E-02

0.3434E+00

0.2189E-02

0.10

00E-

020.6307E-08

0.1592E-05

0.7127E-04

0.6000E-14

0.27

90E-

170.2849E-07

0.2695

E-12

0.76

04E-

C80.8033

E-24

0.1973E-04

0.2719E-11

0.9393

E-12

0.1858E-C4

0.1124E-C7

0.3830

E-C8

0.1749E-11

0.2721E-04

0.3695

E-03

0.7085E-15

0.7674

E-14

0.2510E-14

0.16

77E-

160.4869E-14

0.81

15E-

110.1054E-07

ML 1

i V 1

1

I

COEF

F.0.

2458

0.2640

C.67

100.

6269

Q.62

690.

'!68

73.

6S99

0.80

34-i

i,4>

5XX1

1.CO

OO

0.60

11-V..0854

0.2C

809.6011

G.24

583.

2080

0.73

730.2458

0."885

0.2080

0.2458

0.6710

0.02

710.6501

1.00

00

0.2234

0.7198

1.00

000.6899

0.2234

0.7198

0.6899

-LOG

10

ACTIVITY

2.7429

1.8992

0.5088

2.19

680.

4641

2.6598

3.00

008.2002

5.79S2

4.14

71

14.2219

17.5

544

7.5453

12.5

695

8.1189

24.0

951

4.7048

11.5656

12.0272

4.7310

7.94

918.4168

11.7572

4.5653

3.4323

15.1497

14.1150

14.6

003

16.7756

14.3

125

11.0907

7.97

71

Page 187: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAG

E -

12

-

41 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57 58 59 60 61 62 63 64 71 72 73 74 75 76 77 78 89 90 91 92 96 97 98 99 100

103

104

105

106

107

108

109

113

114

115

116

117

118

SPECIES

AIS04

+AI

S04)

2-Ag

ClAgCl2

-AgCl3

--AgCl4

-3Ag

S04

-CH3COO

-H3AS03

BaC0

3BaHC03 +

BaOH

+

BaSO

ACa

C03

CaHC03 +

CaOH +

CaP0

4 -

CaHP04

CaH2

P04+

CaS0

4CuC

ICu

Cl2

-CuC 13 --

Fed +

FeC

1 2Fe

HP04

H3P04

FeOH

+

Fe(OH)2

FeOOH

-Fe

S04

B(OH)4

-H2

S104

--H3

Si04

-

HAs03

--HF H2

C03

C03

--HP

04 --

H2P04

-HS

04

-HN

03Hg

Cl +

HgCl2

HgCl3

-Hg

Cl4

- HgSOA

KG I

KC03

-

KHS0

4KS

04

-KH

P04

-Li OH

......---------- -HNHLT£CL»- ----------

PPM

MG/L

MOLALITY

0. 0. 0. 0. 0. 0. 0.0.1000

0.1023

0.17

55E-

05

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

PPM

1051

E-11

3179E-12

5954E-06

3801 E- 04

3041E-04

4054

E-05

7863E-10

7225

E-01

5724E-02

1272

E-04

2238

E-03

3236

E-07

2867

E-02

2148E+01

3081E+01

2967E-02

1689E-02

2333

E-02

2206

E-04

1037

E+03

4431 E- 05

5353E-03

1188

E-02

1012

E-03

6764E-12

1070

E-06

2032E-09

3805

E-04

4100

E-07

3536

E-07

6566E-03

4344E+01

2150

E-03

2286E+00

1174

E-07

5013E-05

8450E+00

1923

E+01

1074

E-01

3136E-03

1670

E-03

4329E-10

1665

E-12

4517E-06

3216E-04

0.14

76E-

040. 0. 0. 0. 0. 0. 0.

1264

E-19

2070

E+02

7990E-01

7274

E-05

1957E+02

5416

E-04

1098E-05

-LALLULftltU- '

MG/L

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.1075E-11

.325

2E-1

2. 609

1 E-

06

.3889E-04

.311

1E-0

4.4148E-05

.804

4E-1

0.7391E-01

.585

6E-0

2.1

302E

-04

.229

0E-0

3.3310E-07

.293

3E-0

2.2198E+01

.3152E+01

.303

5E-0

2.1

728E

-02

.238

6E-0

2.2

257E

-04

.106

1E+0

3.4

533E

-05

.547

6E-0

3.1

215E

-02

.103

5E-0

3.6

920E

-12

.1095E-06

.2079E-09

.389

2E-0

4.4

194E

-07

.3618E-07

.671

7E-0

3.4444E+01

0.2199E-03

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.233

9E+0

0.1201E-07

.5129E-05

.864

4E+0

0.1967E+01

.1099E-01

.320

8E-0

3.1709E-03

.442

9E-1

0.1

704E

-12

.462

1E-0

6.3

290E

-04

.151

0E-0

4.1

293E

-19

.211

8E+0

2.8174E-01

. 7441 E- 05

.200

2E+0

2.5

541E

-04

.1124E-05

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0MOLALITY

.885

2E-1

7.1504E-17

.4305E-11

.2204E-09

.147

1E-0

9.1683E-10

.399

6E-1

5.1

268E

-05

.471

0E-0

7.6681E-10

.1169E-08

.217

3E-1

2.1

273E

-07

.222

5E-0

4.3

158E

-04

.538

6E-0

7.1

296E

-07

.177

7E-0

7.1668E-09

.7893E-03

.4639E-10

.4126E-08

.7244E-08

.1149E-08

.553

1E-1

7.7

306E

-12

.214

9E-1

4.5412E-09

.4728E-12

.412

5E-1

2.4

480E

-08

.571

0E-0

4.2

368E

-08

. 249

1 E- 05

.9366E-13

.259

7E-0

9.1412E-04

.332

0E-0

4.1

160E

-06

.335

1E-0

8.1

783E

-08

.712

0E-1

5.7311E-18

.172

4E-1

1.1086E-09

.4469E-10

.441

6E-2

50.2878E-03

0.83

55E-

060 0 0 0

.5536E-10

.150

0E-0

3.4

155E

-09

.4754E-10

ACTIVITY

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

6107E-17

1038E-17

4305E-11

1479

E-09

3060E-10

6631E-12

2681

E-15

8749E-06

4710

E-07

6681E-10

7846E-09

1536E-12

1273

E-07

2225

E-04

2328

E-04

3971

E- 07

9330E-08

1777

E-07

1201

E-09

7893E-03

4639E-10

2769E-08

1507

E-08

7708E-09

5531

E-17

7306E-12

2149

E-14

3827E-09

4728E-12

2917E-12

4480

E-08

3463E-04

5288E-09

1671

E-05

1948

E-13

2597E-09

1412

E-04

7416E-05

2413

E-07

2412

E-08

1230

E-08

7120

E-15

4906

E-18

1724

E-11

7285E-10

9296E-11

4416E-25

0.2878E-

030.

5539

E-06

0. 0. 0. 0.

5536E-10

1080

E-03

2991 E- 09

4754E-10

All 1

VI 1

T

COEF

F.

0.6899

0.6899

1.0000

0.6710

0.2080

0.0394

0.6710

0.6899

1.0000

1.0000

0.6710

0.70

711.0000

1.0000

0.7373

0.7373

0.7198

1.00

000.7198

1.0000

1.0000

0.6710

0.2080

0.6710

1.0000

1.0000

1.0000

0.70

711.0000

0.70

711.0000

0.6065

0.2234

0.6710

0.2080

1.0000

1.0000

0.2234

0.2080

0.7198

0.6899

1.0000

0.6710

1.0000

0.6710

0.2080

1.0000

1.00

000.6629

1.00

000.7198

0.7198

1.00

00

- LI

A» 1

U

ACTIVITY

17.2

142

17.9840

11.3660

9.83

0110

.514

312

.178

415.5717

6.0580

7.3270

10.1

751

9.1053

12.8

135

7.89

514.6528

4.6330

7.40

118.

0301

7.7503

9.9205

3.1028

10.3336

8.5577

8.8219

9.11

3117

.257

212

.136

314.6678

9.41

7112.3253

12.5

351

8.3488

4.4605

9.27

675.7769

13.7

104

9.5855

4.8502

5.1298

7.6174

8.6176

8.9100

15.1

475

18.3093

11.7634

10.1376

11.0317

25.3550

3.5409

6.2566

10.2568

3.9666

9.5242

10.3230

Page 188: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAG

E13

-

oo

oo

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

146

147

148

149

150

151

152

154

155

156

157

158

159

160

161

162

163

164

165

166

228

229

230

231

232

233

234

SPECIES

LiS04

-MgC0

3MgHC03 +

MgF

+MgOH +

MgS0

4MgP04

-MgHPOA

MgH2P04+

MnCl

+

MnCl

2MnCl

3 -

MnCl4

--MnHC03 +

MnS04

MnHPOA

MnOH +

N03

-NaCl

NaC0

3 -

NaHC03

Na2C03

Na2S04

NaS0

4 -

NaHPOA

-NaF

NH4

+NH

40H

PbCt +

PbCl

2PbCl

3 -

PbCl

4 --

PbS0

4Sr

OH

-SrC03

SrHC03 +

SrS0

4Zn

Cl +

ZnCl

ZZnCl

3 -

ZnCl

4 --

ZnSO

AAI

F5 --

AIF6

-3

HgOH

+

Hg(OH)2

CH3COOH

AlAce

++BaAce

+Ca

Ace

+Cu

Ace

+FeAce

+Fe

(Ace

)2

................ -H

|MML j £CU -...-..-...

-.--..-....

PPM

MG/L

MO

LALI

TY

PPM

0.2650E-01

0.72

68E+

010.1818E+02

0.1373E+01

0.42

45E+

000.8054E+03

0.1041E-01

0.4552E-01

0.1363E-03

0.38

39E-

130.3094E-10

0.5098E-09

0.54

72E-

080.

8443

E-08

0.1578E-06

0.3633E-10

0.12

33E-

080.

2900

0.

2967

0.

4847

E-05

0.

2900

E+00

0.8478E+03

0.47

61E+

010.1413E+02

0.1522E-01

0.9321E+03

0.1838E+03

0.23

26E-

020.

4503

E-01

0.3015E-Q1

0.3151E-02

0.2893E-05

0.27

75E-

050.

7843

E-06

0.61

02E-

060.3383E-06

0.20

68E-

040.

1297

E-01

0.61

51E-

010.

1142

E+01

0.14

73E-

020.7271E-03

0.2461E-03

0.22

76E-

030.6217E-03

0.5912E-14

0.29

64E-

170.1154E-13

0.34

14E-

080.1840E-04

0.77

88E-

150.

9235

E-07

0.3723E-02

0.31

38E-

110.2133E-06

0.1230E-13

- -

- -OrtLOULMI CU

MG/L

0.27

11E-

010.

7436

E+01

0.18

60E+

020.1405E+01

0.4343E+00

0.8240E+03

0.1065E-01

0.4656E-01

0.1394E-03

0.39

27E-

130.3165E-10

0.5215E-09

0.55

98E-

080.

8637

E-08

0.16

14E-

060.

3717

E-10

0.12

62E-

080.

2967

E+00

0.8673E+03

0.48

71E+

010.1445E+02

0.1557E-01

0.95

36E+

030.1880E+03

0.23

79E-

020.4607E-01

IL3085E-01

0.3224E-02

0.2960E-05

0.2838E-05

0.80

23E-

060.6242E-06

0.34

61E-

060.

2115

E-04

0.13

27E-

010.

6292

E-01

0.11

69E+

010.

1507

E-02

0.74

38E-

030.

2518

E-03

0.2328E-03

0.63

60E-

030.

6048

E-14

0.3032E-17

0.11

80E-

130.3493E-08

0.18

82E-

040.

7967

E-15

0.9447E-07

0.38

09E-

020.3210E-11

0.21

82E-

060.

1258

E-13

MOLA

LITY

0.2666E-06

0.8933E-04

0.2209E-03

0.3286E-04

0.1065E-04

0.69

34E-

020.9045E-07

0.39

22E-

060.1164E-08

0.44

01E-

180.

2548

E-15

0.32

76E-

140.2882E-13

0.75

46E-

130.

1083

E-11

0.24

95E-

150.1776E-13

0.4847E-05

0.1503E-01

0.5945E-04

0.17

43E-

030.

1488

E-06

0.68

01E-

020.1600E-02

0.2026E-07

0.11

11E-

050.1732E-05

0.93

19E-

070.1236E-10

0.1034E-10

0.25

92E-

110.

1812

E-11

0.1156E-11

0.2048E-09

0.91

04E-

070.4289E-06

0.64

45E-

050.1514E-07

0.55

29E-

080.

1485

E-08

0.1138E-08

0.39

91E-

080.5023E-19

0.2179E-22

0.5495E-19

0.1508E-13

0.31

75E-

090.9382E-20

0.48

74E-

120.

3892

E-07

0.26

53E-

160.1924E-11

0.73

28E-

19

ACTI

VITY

0.1885E-06

0.89

33E-

040.

1482

E-03

0.2267E-04

0.79

92E-

050.

6934

E-02

0.65

11E-

070.3922E-06

0.8380E-09

0.2953E-

180.

2548E-

150.

2198

E-14

0.5996E-

140.5063E-13

0.10

83E-

110.

2495

E-15

0.1192E-13

0.3039

E-05

0.1503E-01

0.4279E-04

0.1743E-03

0.1488E-06

0.68

01E-

020.

1152

E-02

0.1458E-07

0.1111E-05

n ir

uic-

n^V r V*t

"~rE

v^

0.93

19E-

070.

8292

E-11

0.10

34E-

100.

1739

E-11

0.3769

E-12

0.11

56E-

110.1448E-09

0.9104E-07

0.28

78E-

060.6445

E-05

0.10

16E-07

0.5529E-08

0.99

66E-09

0.2368E-09

0.3991E-08

0.10

45E-

190.8586

E-24

0.36

87E-19

0.15

08E-

130.

3175E-09

0.17

69E-

200.

3362

E-12

0.26

85E-07

0.18

30E-

160.1327E-11

0.73

28E-19

«LI 1 VI

1 I

COEF

F.

0.70

711.

0000

0.6710

0.6899

0.7505

1.00

000.7198

1.00

000.7198

0.6710

1.00

000.6710

0.2080

0.6710

1.0000

1.00

000.6710

0.6269

1.00

000.7198

1.00

001.0000

1.0000

0.7198

0.7198

1.00

000.6044^

1.0000

0.6710

1.00

000.6710

0.2080

1.0000

0.70

711.0000

0.6710

1.00

000.6710

1.0000

0.6710

0.2080

1.00

000.2080

0.0394

0.6710

1.00

001.

0000

0.18

850.6899

0.6899

0.68

990.6899

1.0000

- LUU IU

ACTI

VITY

6.72

464.0490

3.8292

4.6445

5.0974

2.1590

7.1864

6.4065

9.07

6718.5297

15.5938

14.6580

14.2

221

13.2956

11.9654

15.6029

13.9237

5.5173

1.8229

4.3686

3.75

886.

8274

2.1674

2.9386

7.8362

5.95

41S

oao/

« yot*t

7.0306

11.0813

10.9855

11.7596

12.4238

11.9370

9.83

927.0408

6.54

105.1908

7.99

328.2573

9.0015

9.62

568.

3989

19.9809

24.0662

19.4333

13.8215

9.4982

20.7524

12.4734

7.5710

16.7375

11.8770

19.1350

Page 189: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAG

E -

14

-

235

236

237

238

239

240

241

244

245

246

247

248

249

250

251

252

253

255

256

257

258

259

261

262

263

264

265

266

267

268

269

270

271

272

274

275

276

277

278

279

280

281

282

284

285

288

289

292

293

294

SPECIES

KAce

MgAce

+Na

Ace

PbAce +

Pb(Ace)2

Pb(A

ce)3

SrAc

e +

ZnAc

e +

Zn(Ace)2

C204 --

HC20

4 -

H2C2

04AlOxy

+Al

Oxy)

2-BaOx

yCaOx

yFe

Oxy

KOxy

-

MgOxy

MnOx

yMnOxy)2

MnOxy)3

NaOx

y -

PbOx

ySrOxy

ZnOxy

C4H404--

HC4H

404-

H2C4

H404

AlSu

c +

AlSuc)2-

BaSu

cCa

Suc

FeSu

cKS

uc

-MgSu

cMn

Suc

NaSu

c -

PbSuc

SrSu

cZn

Suc

CaCl +

CaCl

2SiF6 --

CH4

Gas

PbC0

3Pb

OH +

ZnHC

03 +

ZnOH +

Zn(OH)2

..-.....-.....-- -MNHLI^CLI- ----------

............

PPM

MG/L

MOLA

LITY

PP

M0.

2146

E-03

0.2288E-01

0.1264E-01

0.55

68E-

100.9851E-15

0.1775E-20

0.4820E-04

0.13

91E-

030.

3411

E-13

0.1000

0.1023

0.1177E-05

0.9439E-02

0.34

66E-

090.3114E-13

0.1114E-13

0.48

82E-

160.

5714

E-08

0.55

46E-

020.6582E-06

0.1406E-03

0.1002E+00

0.93

11E-

100.7180E-03

0.15

50E-

060.9487E-02

0.36

50E-

090.2710E-04

0.32

82E-

050.1000

0.1023

0.89

29E-

06

0.64

05E-

010.2139E-05

0.40

99E-

080.1423E-13

0.9109E-16

0.93

18E-

070.3479E-02

0.2554E-07

0.3516E-03

0.2449E-01

0.84

78E-

110.1536E-01

0.1184E-09

0.4665E-04

0.72

53E-

070.1773E+03

0.3377E+01

0.11

77E-

280.1000

0.10

23

0.64

60E-

05

0.10COE+00

0.1796E-04

0.3184E-04

0.53

75E-

040.2324E-03

OJ038E-04

---UALUULAItl

MG/L

0.2195E-03

0.23

40E-

010.1293E-01

0.56

96E-

100.

1008

E-14

0.18

15E-

200.

4930

E-04

0.14

23E-

030.

3490

E-13

0.9656E-02

0.35

46E-

090.

3186

E-13

0.1140E-13

0.49

94E-

160.5845E-08

0.56

73E-

020.6734E-06

0.1438E-03

0.10

25E+

000.9525E-10

0.7345E-03

0.1585E-06

0.9705E-02

0.3734E-09

0.2773E-04

0.33

57E-

050.

6553

E-01

0.2189E-05

0.41

93E-

080.1456E-13

0.93

19E-

160.

9532

E-07

0.35

59E-

020.2613E-07

0.35

97E-

030.

2505

E-01

0.86

73E-

110.

1571

E-01

0.12

11E-

090.

4772

E-04

0.74

19E-

070.

1814

E+03

0.3455E+01

0.1204E-28

0.10

23E+

000.

1837

E-04

0.32

58E-

040.

5499

E-04

0.23

78E-

030.1062E-04

;......--...

MOLALITY

0.22

66E-

080.2844E-06

0.15

96E-

060.2168E-15

0.3139E-20

0.4785E-26

0.3406E-09

0.11

59E-

080.

1927

E-18

0.1111E-06

0.40

35E-

140.

3585

E-18

0.10

04E-

180.2492E-21

0.26

28E-

130.

4487

E-07

0.4742E-11

0.11

46E-

080.9241E-06

0.67

50E-

150.

3760

E-08

0.6353E-12

0.88

57E-

070.

1281

E-14

0.15

99E-

090.

2217

E-10

0.57

19E-

060.1894E-10

0.35

97E-

130.

1031

E-18

0.65

99E-

210.

3811

E-12

0.23

09E-

070.

1540

E-12

0.2348E-08

0.1808E-06

0.51

38E-

160.

1145

E-06

0.3794E-15

0.23

73E-

090.

4143

E-12

0.2433E-02

0.31

53E-

040.

8586

E-34

0.6460E-05

0.69

66E-

100.1472E-09

0.4408E-09

0.29

24E-

080.

1083

E-09

ACTI

VITY

0.22

66E-

080.1962E-06

0.1596E-06

0.1495E-15

0.3139E-20

0.3301E-26

0.2350E-09

0.7997E-09

0.1927E-18

0.24

82E-

070.2784E-14

0.3585E-18

0.6926E-19

0.1719

E-21

0.26

28E-

130.

4487

E-07

0.4742E-11

0.7908E-09

0.9241E-06

0.6750E-15

0.8398E-09

0.13

15E-

140.6110E-07

0.12

81E-

140.

1599E-09

0.2217E-10

0.12

77E-

060.1307E-10

0.3597E-13

0.7112E-19

0.45

53E-

210.

3811

E-12

0.23

09E-

070.1540E-12

0.1620E-08

0.1808E-06

0.5138E-16

0.7898E-07

0.37

94E-

150.

2373E-09

0.4143E-12

0.1633E-02

0.3153E-04

0.17

86E-

34O.OOOOE+00

0.6966E-10

0.9877E-10

0.2958E-09

0.19

62E-

080.

1083E-09

MUI 1 VI 1

T

COEF

F.1.0000

0.68

991.0000

0.68

991.0000

0.68

990.

6899

0.68

991.0000

0.2234

0.68

991.0000

0.68

990.

6899

1 .0

000

1.0000

1.0000

0.68

991 .0

000

1.0000

0.2234

0.00

210.

6899

1.0000

1.0000

1.0000

0.2234

0.6899

1.0000

0.68

990.

6899

1.0000

1.0000

1.0000

0.6899

1.0000

1.0000

0.68

991.0000

1.0000

1.0000

0.67

101.0000

0.2080

1.0000

1.0000

0.6710

0.67

100.

6710

1.0000

-LUU iv

ACTIVITY

8.64

486.7072

6.79

6815.8252

20.5033

26.4813

9.6290

9.0971

18.7

151

7.60

5114.5553

18.4

455

19.1595

21.7646

13.5804

7.34

8111

.324

19.

1019

6.03

4315.1707

9.07

5814.8809

7.2139

14.8923

9.79

6110.6542

6.89

3710.8839

13.4

441

19.1480

21.3417

12.4190

7.6366

12.8126

8.7904

6.74

2816.2892

7.1025

15.4209

9.62

4612.3827

2.78

714.5012

34.7

481

0.0000

10.1570

10.0054

9.5291

8.7072

9.9654

Page 190: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-

15

-

SAMPLE ID

ENT

Test

Sample #

3 Di

ssol

ve A

northite to s

aturate

with Gibbsite in se

awat

er

ANORTHIT PP

T/DI

SS(TEMPERATURE =

25.00)

vo

o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 45 46 47 48 49 50 51 52 53

PHAS

EADULARIA

AKER

MANI

ALBITE

ALBITE L

ALBITE H

ALUN

ITE

AMESI14A

ANAL

CIME

ANDA

LUSI

ANDE

SITE

ANHY

DRIT

ANNI

TEAN

ORTH

ITAP

ATCH

LRAP

ATFL

URAPATHYDX

ARAG

ONIT

AUGITE

BARI

TEBO

EHMI

TEBR

UCIT

EBY

TOWN

ITCA

LCIT

ECE

LEST

ITCH

ALCE

DOCHAM; ZA

CHLO

R, 7

CHLO

R,

1CR

YSOT

ILC-

ENST

ATC-

PTIL

.NC-

PTIL

,KC-

PTIL

,CC-

PTIL

.MCO

RUND

UMCR

ISTO

BACR

ISTO

BBDI

CKIT

EDI

OPSI

DEDO

LOMI

TEDSOR

DENSTATIT

FAYA

LITE

FLUO

R I TE

FORS

TERI

GIBB

S AM

GIBB

SITE

GREENALI

GYPS

UMHA

LITE

HALL

OYSI

LOG

(AP)

0.642

33.530

2.33

02.

330

2.33

0-1

1.02

938

.906

6.452

9.937

9.18

0-5

.403

25.453

19.4

56-4

9.45

0-5

3.55

2-5

4.78

4-7

.873

23.586

-10.

205

7.029

-13.

496

16.031

-7.8

73-7.391

-4.1

3026.466

74.107

74.107

35.2

0110

.363

-11.

929

-15.

305

-13.

654

-12.

810

14.067

-4.1

30-4

.130

5.79

019.881

-14.

902

-14.

902

10.3

6312.416

-11.

874

24.8

55-3

4.94

9-3

4.94

916

.542

-5.4

20-0

.973

5.790

LOG

(KT)

1.26

045.460

2.50

03.

110

4.43

0-2

.790

38.630

6.05

016

.570

12.7

30-4

.330

29.140

25.830

-66.

150

-68.

340

-60.

390

-8.3

4032.560

-9.9

606.

950

-11.

470

18.6

00-8

.480

-6.4

30 3

.730

29.030

71 .940

68.570

32.030

11.2

90-7

.900

-15.

000

-9.3

00-5

.000

21.400

-3.5

40-2

.940

6.17

019

.630

-18.

060

-16.

520

11.4

7019

.430

-10.

960

29.070

-34.

420

-34.

920

22.580

-4.6

001.590

8.91

0

LOG

(AP/

KT)

-0.618

-11.

930

-0.1

70-0

.780

-2.1

00-8.239

0.27

60.402

-6.633

-3.5

50-1

.073

-3.687

-6.3

7416.700

14.788

5.60

60.

467

-8.9

74-0

.245

0.079

-2.026

-2.569

0.60

7-0.961

-0.4

00-2

.564

2.16

75.

537

3.171

-0.927

-4.029

-0.3

05-4.354

-7.8

10-7

.333

-0.5

90-1

.190

-0.3

800.251

3.15

81.618

-1.107

-7.014

-0.9

14-4

.215

-0.529

-0.0

29-6.038

-0.8

20-2.563

-3.1

20

DELG

-0.8

43-1

6.27

5-0

.232

-1.0

64-2

.865

-11.239

0.37

60.

548

-9.049

-4.8

43-1

.464

-5.0

30-8.696

22.782

20.175

7.647

0.63

7-12.243

-0.3

340.108

-2.7

63-3

.505

0.82

8-1.311

-0.5

46-3.497

2.95

67.

554

4.32

6-1

.265

-5.496

-0.4

16-5.940

-10.

655

-10.

004

-0.8

05-1

.624

-0.5

190.343

4.30

92.208

-1.511

-9.569

-1.246

-5.7

50-0.722

-0.039

-8.238

-1.118

-3.496

-4.257

74 75 76 77 78 79 80 81 82 83 84 85 92 93 94 95 96 97 98 99 100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

122

123

124

125

126

127

128

129

130

131

PHAS

EMICROCLN

MIEO

NITE

MIRA

BILT

MONT

ICEL

MORD,

NaMORD,

KMU

SCOV

ITNACHOLIT

NATR

THRM

NATR

ONNE

PHAL

INNE

SQUH

ONOL

IGOC

LAPA

RAGO

N I

PARAGASI

PERI

CLAS

PHIL

LIPS

PHLO

GPIT

PHLO

GPTF

PORT

LAN

POTA

SS I

PREH

NITE

PYRO

PHYL

QUAR

TZSA

NIDI

NESA

PO,

NaSA

PO,

KSAPO,

HSA

PO,

CaSAPO,

MgSEPIOLIT

SILI

CAAM

SILICGEL

SILL

IMAN

SMEC Ca

SMEC K

SMEC

Mg

SMEC Na

Na20

SPINEL

STILBITE

SrC03

SYLV

ITE

TALC

THENARDI

TREMOLIT

TRONA

VIVI

ANIT

WA IRAKI!

WITH

ERIT

WOLL

ASTO

LOG

(AP)

0.642

50.4

94-3.761

24.0

12-5.956

-7.644

14.7

01-3.509

-6.156

-6.231

10.591

-7.0

545.755

16.389

89.2

6714.493

1.47

744

.112

18.598

-14.339

11.998

28.9

66-2.462

-4.1

300.642

33.1

7032.613

30.632

32.885

33.024

33.1

31-4

.130

-4.130

9.93

73.

468

3.20

13.609

3.75

815.374

28.560

-1.2

55-9.861

-2.661

26.9

49-3.677

66.7

11-9.673

-47.938

11.178

-12.

675

9.51

9

LOG

(KT)

-0.5

5069.950

-1.0

9030.150

-3.9

00-7

.600

12.880

-0.4

30-0

.010

-0.8

8013.520

-5.350

8.73

014.390

100.790

21.5

103.300

37.2

2016.730

-5.4

2084

.120

32.0

20-0.100

-3.930

1.180

26.880

26.550

25.850

26.820

26.800

31.5

20-2.700

-2.710

15.730

6.14

05.

860

6.04

06.

120

67.4

3036.460

1.410

-9.270

0.91

021

.130

-0.290

60.8

90-0.630

-36.000

17.330

-8.630

12.600

LOG

(AP/

KT)

1.192

-19.456

-2.671

-6.1

38-2.056

-0.0

441.

821

-3.079

-6.146

-5.351

-2.929

-1.7

04-2

.975

1.99

9-1

1.52

3-7.017

-1.8

236.

892

1.86

8-8.919

-72.122

-3.0

54-2.362

-0.2

00-0.538

6.290

6.063

4.78

26.

065

6.224

1.61

1-1

.430

-1.420

-5.7

93-2

.672

-2.659

-2.431

-2.3

62-52.056

-7.9

00-2

.665

-0.591

-3.5

715.819

-3.387

5.821

-9.043

-11.938

-6.1

52-4

.045

-3.081

DELG

1.626

-26.

542

-3.6

44-8

.374

-2.8

05-0

.060

2.48

4-4

.200

-8.3

84-7

.300

-3.9

96-2

.325

-4.0

592.727

-15.

720

-9.5

73-2

.486

9.402

2.54

8-1

2.16

8-9

8.39

1-4.166

-3.2

23-0

.273

-JL734

8.581

8.271

6.523

8.27

48.

491

2.197

-1.951

-1.9

38-7

.903

-3.6

45-3.627

-3.3

16-3

.222

-71.

016

-10.

777

-3.6

35-0

.806

-4.8

727.938

-4.621

7.94

2-12.337

-16.287

-8.3

92-5.519

-4.2

04

Page 191: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-

16

-

SAMP

LE ID

ENT

- Te

st Sample #

3 - Dissolve A

northite to

sat

urat

e wi

th Gi

bbsi

te in s

eawater

ANORTHIT PPT/DISS

(TEM

PERA

TURE

=

25.0

0)

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 70 71 72 73

PHASE

HEULANDI

HUNT

ITE

HYDRMAGN

HYPH

ILIT

ILLITE

KAOL

INIT

KENY

AITE

K-SP

ARKY

ANIT

ELABRADOR

LARN

ITE

LAUM

ONTI

LEUC

ITE

LIME

MAGA

DITE

MAGN

ESIT

MgCL

2MA

RIAL

ITME

RWIN

IT

LOG

(AP)

-1.2

46-2

8.96

0-3

6.50

7-3.671

8.93

65.790

-37.

788

0.64

29.

937

14.2

4523

.168

11.162

4.772

-19.

152

-21.

263

-7.029

-2.8

276.017

47.179

LOG

(KT)

1.41

0-3

0.62

0-3

8.53

011.800

10.3

406.

230

-25.

000

-0.5

5014

.480

16.250

38.8

8014.170

6.52

032

.660

-14.

340

-8.050

22.150

1.710

68.1

70

LOG

(AP/

KT)

. -2.656

1.66

02.

023

-15.

471

-1.4

04-0

.440

-12.

788

1.192

-4.5

43-2.005

-15.

712

-3.0

08-1.748

-51.

812

-6.9

231.

021

-24.

977

4.30

7-2

0.99

1

DELG

-3.6

242.

265

2.760

-21.

106

-1.916

-0.6

00-1

7.44

61.626

-6.198

-2.735

-21.

435

-4.1

04-2

.384

-70.

683

-9.4

441.393

-34.

075

5.875

-28.

636

132

134

139

144

146

147

158

160

163

164

165

168

169

170

171

173

174

175

177

PHAS

EZO

ISIT

EAg

ClCu20

FeC

1 2FeC03

FeO

HgCl2(C)

HgO

MnCl2

MnC03

MnO

PbCl

2Pb

C03

PbOL

ITHR

PbOM

ASIC

PbS0

4Zn

CCG

ZnO

ZnS04

LOG

(AP)

36.0

04-1

4.68

6-8

.747

-9.0

47-1

3.24

98.273

-25.

023

-7.7

03-1

2.49

4-1

6.69

54.826

-12.

955

-17.

157

4.36

54.365

-14.

687

-13.

079

8.443

-10.

609

LOG

(KT)

42.1

00-9

.730

-1.9

007.

900

-10.

540

13.5

00-1

4.11

02.440

8.790

-10.

540

17.7

00-4

.820

-12.

890

12.5

5012

.690

-7.800

-9.8

7011

.200

3.540

LOG

(AP/

KT)

-6.096

-4.9

56-6

.847

-16.

947

-2.709

-5.227

-10.

913

-10.

143

-21.

284

-6.155

-12.

874

-8.135

-4.267

-8.185

-8.325

-6.8

87-3.209

-2.7

57-1

4.14

9

DELG

-8.317

-6.7

61-9

.341

-23.

120

-3.6

95-7

.131

-14.

888

-13.

838

-29.

036

-8.3

97-1

7.56

3-1

1.09

9-5.821

-11.

167

-11.

358

-9.3

96-4.378

-3.7

61-1

9.30

2

Page 192: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-

1 -

****** INPUT

DATA

ECHO *

*****

TITLE

: Te

st Sample #

4TE

MP

HI TEMP

0.25

00E+

02

0.OOOOE+00

PH

EHM

0.8200E+01

0.5000E+00

CONCENTR

ATIO

N UN

ITS

:Na

K

0.1077E+05

Si 02

0.4280E+01

F 0.1390E+01

Pb

0.50

00E-

04As

0.40

00E-

02Ac

etat

e0.

1000

E+00

ALK

2 DC02

0.OO

OOE+

00

ICCSAT

0TC02M

0.OO

OOE+

00

- Ca/Mg

exch

ange in

se

awat

erDE

NS0.1023E+01

EHMC

0.9000E+01

PPMLi

0.1810E+00

S04

0.2712E+04

N03

0.2900E+00

Cu

0.7000E-03

V 0.OOOOE+00

Succ

inat

e 0.1000E+00

PRES

S0.OOOOE+00

EMFZ

SC0.

9000

E+01

Ca

0.4123E+03

H2S

0.1000E+02

NH3

0.OO

OOE+

00Mn

0.2000E-03

0.3991E+03

Cl

0.19

35E+

05P0

4 0.6000E-01

Zn

0.4900E-02

U 0.OOOOE+00

Oxal

ate

Succ

inat

e CH4

0.1OOOE+00

0.1OOOE+00

0.1O

OOE+

00

ITIC

0 DH2S

DN

H3

DCH4

0.OOOOE+00

0.OO

OOE+

00

0.OO

OOE+

00

IMC0

3 FIXIT

FCCSAT

0 O.OOOOOE+00

0.00

00

TCH4M

TH2S

M WROIL

0.OO

OOE+

00

0.OOOOE+00

0.OOOOE+00

Adsorption/Exchange

option (N=no) =

E Su

rfac

e Ch

emis

try

inpu

t fo

r Io

n Ex

change:

CEC

TARE

A SA

REA

INSP

0.

1000

E+03

0.OOOOE+00

0.OOOOE+00

2 NAME

CHAR

GE

Fract. Surf.

Sites

0.5000E+00

0.50

00E+

00*

Coef

«-0

.100

00E+

01-0

.100

00E+

01

= 0.00

.OOO

OE+0

0

CaX2

0 MgX2

0K

= 1.

1.00

00

CaX2

1.00

00

MgX2

IBMIX

ITMIX

0 0

LOG

KT TO BE CH

ANGE

D AT

TE

MP =

25.00

0 0.OOOOE+00

0 0.OOOOE+00

LOG

KT TO

BE

CH

ANGE

D AT TEMP

0 0.OOOOE+00

0 0

ANSI

ANS2

0 0

Numb

er of

Ad

diti

onal

Mi

nera

ls =

0 FL

AG FOR

ACTI

VITY

COEFF

OF NE

UTRA

L SP

ECIE

S:

FLAG

FO

R AC

TIVI

TY CO

EFF

BY PI

TZER

S EQ

UATI

ONS

FLAGS

FOR

CALCULATING

REDOX

SPEC

IES:

Fe

Cu

Hg

Mn

U V

111100

PRIN

TING

OPTIONS:

INFORM

RATI

O0

0 TOLERANCE

FACT

ORS:

CO

NV1

Mg

0.1292E+04

HC03

0.1234E+03

B 0.

4450

E+01

Hg

0.3000E-04

KC020L

0.OOOOE+00

Fe

0.20

00E-

02C0

3 0.OOOOE+00

Sr

0.81

40E+

01Ag

0.4000E-04

KCH40L

0.OO

OOE+

00

ID 1 2-0.20000E+01

-0.2

0000

E+01

Al

0.OO

OOE+

00TIC

0.OO

OOE+

00Ba

0.2000E-01

KH2SOL

0.OO

OOE+

00DS

EP

0.OOOOE+00

0 0.OOOOE+00

0 0.OOOOE+00

0 0.OOOOE+00

0 0.OOOOE+00

0 0.OOOOE+

00

0 0.OOOOE+00

0 0.OOOOE+00

0 0.OOOOE+00

GEOTH

IPRIN1

0 0

0.5000E-04

CONV

2 =

IPRI

N2 0 0.5000E-04

Page 193: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-2

-

SAMP

LE ID

ENT:

- Te

st Sa

mple

#4

- Ca

/Mg

exchange in s

eawater

KH

tni tnK

8.20

0.5000

25.00

DENS

ITY

AT

TOTAL

DISS

OLVE

D IN

PUT

T SO

LIDS

(M

G/L)

1.0230

3591

6.54

ANAL

= CA

LC=

IONIC

STRENGTH

0.64

960

mi IUNO

619.

6745

577.6281

ACTIVITY

OF W

ATER

0.98

09

Tota

l Al

kali

nity

as

HC03

- C0

3=

CaC03

(MG/

L)=0.1594E+03

0.7840E+02 0

.1308E

+03

(PPM)=0.1559E+03 0

.7664E+02

0.1278E+03

(MOLALITY)=0.2647E-02

0.1324E-02 0

.1324E-02

1 2 3 4 5 6 7 8 9 11 12 13 15 16 17 18 19 21 22 23 24 25 26 27 28 29 30 31 33 43 44 45 46 47

SPEC

IES

Ca +

+Mg

++

Na +

K +

Cl

-S04

--HC

03

-H

+OH

-H4

Si04

Si 02

Ag +

Ba +

+Cu

+Cu

++

Fe +

+Fe +

3Hg

++Li

+

Mn +

+Mn

+3

Pb +

+Sr

++

Zn +

+H2

As03

-P04

-3F

-B(

OH)3

H2S

AgCl

AgCl

2 -

AgCl

3 --

AgCl

4 -3

AgS04

-

PPM

412.3000

1292

.000

010

770.

0000

399.1000

1935

0.00

0027

12.0

000

123.4000

4.28

000.

0000

0.02

000.0007

0.00

20

0.00

000.

1810

0.00

02

0.0001

8.14

000.

0049

0.00

670.

0600

1.39

0025.4540

10.0

000

HnHL.IttL>

MG/L

MOLALITY

421.7829

1321.7160

1101

7.71

00408.2793

1979

5.05

002774.3760

126.

2382

4.37

840.

0000

0.02

050.

0007

0.00

20

0.00

000.

1852

0.00

02

0.0001

8.32

720.

0050

0.00

680.

0614

1.4220

26.0

394

10.2

300

0.10

66E-

010.5508E-01

0.48

55E+

000.1058E-01

0.56

57E+

000.

2926

E-01

0.2096E-02

0.73

82E-

040.3843E-09

0.15

09E-

060.

1142

E-07

0.37

12E-

07

0.15

50E-

090.

2703

E-04

0.37

73E-

08

0.2501E-09

0.96

28E-

040.

7769

E-07

0.52

81E-

070.

6548

E-06

0.75

83E-

040.4266E-03

0.3041E-03

HN1UNO

Uil

618.

2648

570.0555

P TOTAL

(BARS)

1.0000

as

rrtKtmt intuj

1 .4097

7.5726

n-)

---

H - un BALAN^t

^nuLta;

----

---

HTOT

OH

TOT

DIFFERENCE

0.2514E-

02

0.1350E-02

0.1163E-02

nncc

e*i me

...-.----..-..___ fucj^um; ----------------

PH20

PC

02

PH2S

PC

H4

(BARS)

(BARS)

(BARS)

(BARS)

PNH3

(BARS)

0.3169E-01 0.

4782

E-03

0.1449E-03

0.52

52E-

02 O

.OOO

OE+0

0

Dissolved

Inorganic

Carb

onHC

03-

H2C03

Sum

of

Sum

ofTI

C Alkalinity

species

HC03-

C03=

0.

2485

E+02

0.1

373E

+03

0.86

48E+

00 0

.1130E+03

0.12

16E+

02

0.24

29E+

02 0.1343E+03 0

.845

4E+0

0 0.

1105

E+03

0.

1188

E+02

0.

2096

E-02

0.2287E-02 0

.1413E-04

0.18

77E-

02 0

.2052E-03

PPM

0.28

44E+

030.

1121

E+04

0.10

24E+

050.

3825

E+03

0.18

74E+

050.

1203

E+04

0.85

34E+

020.

7638

E-05

0.40

16E-

010.

6615

E+01

0.1039E-08

0.1815E-01

0.23

94E-

090.

3648

E-03

0.1268E-08

0.10

09E-

120.

7470

E-18

0.17

92E+

000.

5864

E-06

0.88

86E-

230.

9758

E-12

0.7551E+01

0.26

91E-

100.

7209

E-03

0.5920E-05

0.76

72E+

000.

2205

E+02

0.36

85E+

000.

5954

E-06

0.38

01E-

040.

3041

E-04

0.4055E-05

0.78

63E-

10

v*nL.VAJL.n

i c.u -----------

MG/L

MOLALITY

0.2909E+03

0.11

47E+

040.

1048

E+05

0.3913E+03

0.19

17E+

050.

1231

E+04

0.87

30E+

020.

7814

E-05

0.41

08E-

010.

6767

E+01

0.1063E-08

0.1857E-01

0.24

50E-

090.3732E-03

0.12

97E-

080.1032E-12

0.7642E-18

0.18

33E+

000.

5998

E-06

0.9091E-23

0.99

83E-

120.7725E+01

0.27

53E-

100.

7375

E-03

0.60

56E-

050.

7848

E+00

0.22

56E+

020.3770E+00

0. 6091 E- 06

0.38

89E-

040.

3111

E-04

0.41

48E-

050.8043E-10

0.73

53E-

020.

4779

E-01

0.46

18E+

000.1014E-01

0.54

78E+

000.

1298

E-01

0.14

49E-

020.7853E-08

0.24

47E-

050.

7133

E-04

0.99

82E-

140.1370E-06

0.39

06E-

140.

5950

E-08

0.23

53E-

130.

1872

E-17

0.38

60E-

230.

2677

E-04

0.11

06E-

100.

1676

E-27

0.48

81E-

170.

8932

E-04

0.42

67E-

150.5706E-08

0.6461E-10

0.41

85E-

040.

3696

E-03

0.11

21E-

040.

4305

E-11

0.2204E-09

0.14

71E-

090.

1683

E-10

0.39

96E-

15

ACTI

VITY

0.18

07E-

020.1261E-01

0.30

99E+

000.6356E-02

0.34

34E+

000.2189E-02

0.1000E-02

0.63

10E-

080.

1591

E-05

0.7133E-04

0.6000E-14

0.28

49E-

070.

2348

E-14

0.14

62E-

080.

5784

E-14

0.15

99E-

180.

8029

E-24

0.1973E-04

0.2719E-11

0.14

32E-

280.

9200

E-18

0.1858E-04

0.10

49E-

150.

3829

E-08

0.1748E-11

0.2721E-04

0.36

96E-

030.1166E-04

0.4305E-11

0.14

79E-

090.3060E-10

0.6631E-12

0.26

81E-

15

MV< 1

1 V 1

1 1

COEFF.

0.24

580.

2639

0.67

100.

6269

0.62

690.

1686

0.68

990.

8034

0.6501

1.0000

0.6011

0.20

800.6011

0.24

580.

2458

0.08

540.

2080

0.73

730.

2458

0.0854

0.1885

0.20

800.

2458

0.67

100.0271

0.6501

1.0000

1.04

071.0000

0.67

100.

2080

0.03

940.

6710

-LOG10

ACTI

VITY

2.74

301.

8992

0.5088

2.1968

0.4641

2.65

983.0000

8.2000

5.79

844.1467

14.2219

7.54

5314

.629

48.8349

14.2378

18.7962

24.0954

4.7048

11.5656

28.8441

18.0362

4.7310

15.9

794

8.4169

11.7

573

4.5653

3.43

234.9332

11.3

660

9.83

0110

.514

312

.178

415.5717

Page 194: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

48 49 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 96 97 98 99 100

101

102

103

104

SP

EC

IES

CH3C

OO

-

H3A

S03

BaC

03B

aHC

03 +

BaO

H +

BaS

04C

aC03

CaH

C03

+Ca

OH

+C

aP04

-

CaH

P04

CaH

2P04

+C

aS04

CuC

IC

uC 1

2 -

CuC

13

--C

uC I

+Cu

C 1 2

CuC

13

-C

uC 1

4 --

CuO

H +

CuS

04Fe

Cl

+F

ed

2Fe

HP

04U

3P04

FeO

H +

Fe(

OH

)2Fe

CX)H

-

FeS

04Fe

C I

++F

eCl2

+

FeC

l3F

eCl4

-

FeS

04

+F

eS04

)2-

FeO

H ++

Fe(

OH

)2+

Fe(

OH

)3F

e(O

H)4

-B

(OH

)4

-H

2S

i04

--H

3Si0

4 -

HA

s03

--HF H

2C03

C03

--

HP

04

--H

2P04

-

HS

-S

--

HS

04

-H

N03

................ -

HrW

LT

£C

L>

" ----------

-------__--.

PPM

M

G/L

M

OLA

LITY

PP

M0.1

000

0.1

02

3

0.1

75

5E

-05

0

.72

30

E-0

10.5

724E

-02

0.1

272E

-04

0.2

23

8E

-03

0.3

23

4E

-07

0.2

86

7E

-02

0.21

47E

+01

0.30

81E

+01

0.2

965E

-02

0.1

68

8E

-02

0.2

33

3E

-02

0.2

207E

-04

0.10

37E

-KI3

0.3

86

0E

-07

0.4

66

3E

-05

0.1

035E

-04

0.7

487E

-04

0.4

363E

-05

0.7

25

5E

-07

0.4

86

9E

-09

0.3

094E

-03

0.8

765E

-04

0.7

69

7E

-10

0.5

14

5E

-18

0.8

142E

-13

0.2Q

34E

-09

0.2

893E

-10

0.3

115E

-13

0.2

68

6E

-13

0.4

994E

-09

0.6

86

4E

-12

0.4

40

0E

-12

0.1

368E

-13

0.1

025E

-15

0.1

00

1E

-11

0.1

03

8E

-23

0.6

22

7E

-07

0.3

69

7E

-04

0.2

09

9E

-02

0.1

95

2E

-02

0.43

42E

+01

0.2

15

0E

-03

0.22

87E

+00

0.1

173E

-07

0.5

01

6E

-05

0.84

54E

+00

0.19

22E

+01

0.1

07

5E

-01

0.3

13

8E

-03

0.90

74E

+01

0.4

357E

-07

0.1

671E

-03

0.4

33

1E

-10

-I

ML

IUL

/MC

I

MG

/L

0.7

396E

-01

0.5

85

6E

-02

0.1

30

1E

-04

0.2

290E

-03

0.3

308E

-07

0.2

93

3E

-02

0.21

97E

+01

0.31

52E

+01

0.3

03

3E

-02

0.1

72

7E

-02

0.2

387E

-02

0.2

25

8E

-04

0.10

61E

+03

0.3

948E

-07

0.4

77

0E

-05

0.1

05

8E

-04

0.7

659E

-04

0.4

464E

-05

0.7

42

1E

-07

0.4

981E

-09

0.3

16

5E

-03

0.8

96

7E

-04

0.7

874E

-10

0.5

26

3E

-18

0.8

32

9E

-13

0.2

08

1E

-09

0.2

95

9E

-10

0.3

18

7E

-13

0.2

74

8E

-13

0.5

10

9E

-09

0.7

02

2E

-12

0.4

50

2E

-12

0.1

39

9E

-13

0.1

049E

-15

0.1

02

4E

-11

0.1

06

2E

-23

0.6

370E

-07

0.3

78

2E

-04

0.2

14

7E

-02

0.1

997E

-02

0.44

42E

+01

0.2

199E

-03

0.23

40E

+00

0.1

20

0E

-07

0.5

13

1E

-05

0.86

48E

+00

0.19

66E

+01

0.1

099E

-01

0.3

21

0E

-03

0.92

82E

+01

0.4

45

8E

-07

0.1

70

9E

-03

0.4

431E

-10

j.. ..

....

...

MO

LALI

TY0.1

269E

-05

0.4

71

0E

-07

0.6

678E

-10

0.1

169E

-08

0.2

172E

-12

0.1

27

3E

-07

0.2

224E

-04

0.3

158E

-04

0.5

38

3E

-07

0.1

29

6E

-07

0.1

777E

-07

0.1

669E

-09

0.7

892E

-03

0.4

041E

-12

0.3

594E

-10

0.6

31

1E

-10

0.7

83

8E

-09

0.3

36

4E

-10

0.4

425E

-12

0.2

457E

-14

0. 3

981

E- 0

80

.56

92

E-0

90.8

737E

-15

0.4

20

7E

-23

0.5

55

8E

-18

0.2

151E

-U0.4

115E

-15

0.3

59

3E

-18

0.3

13

3E

-18

0.3

407E

-14

0.7

791E

-17

0.3

598E

-17

0.8

73

8E

-19

0.5

37

7E

-21

0.6

831E

-17

0.4

340E

-29

0.8

859E

-12

0.4

264E

-09

0.2

035E

-07

0.1

633E

-07

0.5

70

8E

-04

0.2

368E

-08

0.2

492E

-05

0.9

35

7E

-13

0.2

59

8E

-09

0.1

41

3E

-04

0.3

319E

-04

0.1

160E

-06

0.3

353E

-08

0.2

84

3E

-03

0.1

40

8E

-11

0.1

784E

-08

0.7

124E

-15

AC

TIV

ITY

0.8

755E

-06

0.4

710E

-07

0.6

67

8E

-10

0.7

84

6E

-09

0.1

536E

-12

0.1

27

3E

-07

0.2

22

4E

-04

0.2

328E

-04

0.3

969E

-07

0.9

326E

-08

0.1

77

7E

-07

0.1

20

1E

-09

0.7

892E

-03

0.4

04

1E

-12

0.2

41

2E

-10

0.1

313E

-10

0.5

259E

-09

0.3

36

4E

-10

0.2

96

9E

-12

0.5

111E

-15

0.2

671E

-08

0.5

692E

-09

0.5

86

2E

-15

0.4

20

7E

-23

0.5

558E

-18

0,2

15 1

£- 1

40

.29

10

E-1

50.3

593E

-18

0.2

215E

-18

0.3

407E

-14

0.1

621E

-17

0.2

544E

-17

0.8

738E

-19

0.3

60

8E

-21

0.4

83

1E

-17

0.2

912E

-29

0.1

843E

-12

0.3

06

9E

-09

0.2

035E

-07

0.1

176E

-07

0.3

462E

-04

0.5

288E

-09

0.1

672E

-05

0.1

94

6E

-13

0.2

59

8E

-09

0.1

41

3E

-04

0.7

413E

-05

0.2

414E

-07

0.2

414E

-08

0.1

849E

-03

0.2

93

0E

-12

0.1

23

1E

-08

0.7

124E

-15

Ml. 1

I V

I 1

T

CO

EFF

.0

.68

99

1.0

000

1.0

00

00

.67

10

0.7

07

11

.00

00

1.0

000

0.7

373

0.7

37

30.7

198

1.0

00

00

.71

98

1.0

00

01.0

000

0.6

71

00

.20

80

0.6

710

1.0

000

0.6

710

0.2

080

0.6

71

01

.00

00

0.6

71

01.0

000

1.0

00

0j^

ooa

0.7

071

1.0

00

00

.70

71

1.0

000

0.2

080

0.7

07

11

.00

00

0.6

71

00

.70

71

0.6

71

00

.20

80

0.7

198

1.0

00

00

.71

98

0.6

065

0.2

233

0.6

71

00

.20

80

1.0

00

01

.00

00

0.2

233

0.2

08

00.7

198

0.6

50

10

.20

80

0.6

89

91

.00

00

- LU

U 1

U

AC

TIV

ITY

6.0

577

7.3

269

10

.17

53

9.1

053

12

.81

37

7.8

95

24

.65

29

4.6

329

7.4

01

38

.03

03

7.7

503

9.9

20

33

.10

28

12.3

935

10.6

177

10

.88

18

9.27

911

0.4

73

212.5

273

15

.29

15

8.5

733

9.2

44

715.2

319

23.3

761

18.2

551

14.6

673

15

.53

62

18

.44

46

18

.65

46

14.4

676

17

.79

03

17.5

945

19

.05

86

21.4

427

17.3

160

29.5

358

12.7

346

9.5

12

97.6

913

7.9

297

4.4

60

79

.27

67

5.7

76

71

3.7

10

89

.58

53

4.8

50

05

.13

00

7.6

17

38.6

173

3.7

33

21

2.5

33

28.9

098

15.1

473

Page 195: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAG

E -

4 -

vo

Ln

105

106

107

108

109

111

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

148

149

150

151

152

153

154

155

156

157

158

159

160

161

SPEC

IES

HgCl

+

HgCl2

HgCl

3 -

HgCl4

--HgSOA

Hg(H

S)3-

KCl

KC03

-

KHS0

4KS

04

-KH

P04

Li OH

LiSOA

-Mg

C03

MgHC

03 +

MgF

+Mg

OH +

MgSO

AMg

POA

Mg

HP04

MgH2

P04+

MnCl

+

MnCl 2

MnCl3

-Mn

Cl4

--Mn

HC03

+Mn

SOA

MnHPOA

MnOH

+N0

3 -

NaCl

NaC03

-Na

HC03

Na2C

03Na2S04

NaS0

4 -

NaHP

04

-NaF

NaHS

PbCl +

PbCl

2Pb

Cl3

-PbCU --

PbS0

4Mn

Cl ++

SrOH

-

SrC03

SrHC

03 +

SrS04

ZnCl +

ZnCl

2Zn

Cl3

-Zn

Cl4

--

................ -HNMLT^tU- ----------

-----------

PPM

MG/L

MOLALITY

PPM

0.16

64E-

120.

4514

E-06

0.32

14E-

040.

1476

E-04

0.1263E-19

0.23

43E-

070.

2070

E+02

0.7987E-01

0.72

77E-

050.

1957

E+02

0.54

17E-

040.

1098

E-05

0.26

50E-

010.7265E+01

0.18

18E+

020.

1373

E+01

0.42

43E+

000.8054E+03

0.1041E-01

0.4552E-01

0.13

63E-

030.

3838

E-13

0.30

93E-

100.

5097

E-09

0.5472E-08

0.84

42E-

080.

1578

E-06

0.36

33E-

100.

1232

E-08

0.29

00

0.2967

0.48

47E-

05

0.29

00E+

000.

8477

E+03

0.47

59E+

010.

1413

E+02

0.1521E-01

0.93

21E+

030.

1838

E+03

0.23

26E-

020.4503E-01

0.45

83E+

000.

2834

E-11

0.2718E-11

0.76

81E-

120.

5976

E-12

0.3313E-12

0.8400E-21

0.20

67E-

040.

1296

E-01

0.6151E-01

0.1142E+01

0.13

74E-

100.6780E-11

0.2295E-11

0.21

22E-

11

---UftLUULfllCl

MG/L

0.1703E-12

0.4618E-06

0.32

88E-

040.1510E-04

0.12

92E-

190.2397E-07

0.2118E+02

0.8171E-01

0.74

44E-

050.2002E+02

0.5541E-04

0.11

23E-

050.

2711

E-01

0.7432E+01

0.18

60E+

020.

1405

E+01

0.4341E+00

0.82

39E+

030.1065E-01

0.4657E-01

0.13

95E-

030.3926E-13

0.31

64E-

100.

5215

E-09

0.55

97E-

080.

8636

E-08

0.16

14E-

060.3716E-10

0.12

61E-

080.2967E+00

0.8672E+03

0.4869E+01

0.1445E+02

0.1556E-01

0.9535E+03

0.1880E+03

0.2379E-02

0.4607E-01

0.4689E+00

0.2899E-11

0.2780E-11

0.7858E-12

0.6114E-12

0.33

89E-

120.8594E-21

0.2114E-04

0.1326E-01

0.6292E-01

0.11

68E+

010.1405E-10

0.6936E-11

0.23

48E-

110.2171E-11

}. ..........

MOLA

LITY

0.73

08E-

180.

1723

E-11

0.10

85E-

090.4467E-10

0.44

14E-

250.

8098

E-13

0.28

78E-

030.

8352

E-06

0.55

38E-

100.

1500

E-03

0.41

56E-

090.4751E-10

0.26

66E-

060.8930E-04

0.2209E-03

0.3286E-04

0.1064E-04

0.69

34E-

020.9042E-07

0.39

22E-

060.

1165

E-08

0.44

01E-

180.

2547

E-15

0.3275E-14

0.28

82E-

130.7545E-13

0.10

83E-

110.2495E-15

0.1775E-13

0.48

47E-

050.1503E-01

0.59

43E-

040.

1743

E-03

0.14

87E-

060.

6801

E-02

0.1600E-02

0.2026E-07

0.1111E-05

0.84

73E-

050.1210E-16

0.1013E-16

0.2539E-17

0.1775E-17

0.11

32E-

170.9632E-26

0.2047E-09

0.9100E-07

0.4289E-06

0.6444E-05

0.14

12E-

150.5157E-16

0.1385E-16

0.1062E-16

ACTIVITY

0.49

03E-

180.

1723

E-11

0.7281E-10

0.9291E-11

0.44

14E-

250.

5434

E-13

0.28

78E-

030.5536E-06

0.5538E-10

0.10

80E-

030.2991E-09

0.4751E-10

0.18

85E-

060.

8930

E-04

0.14

82E-

030.2267E-04

0.79

88E-

050.

6934

E-02

0.6508E-07

0.39

22E-

060.8385E-09

0.29

53E-

180.

2547

E-15

0.21

98E-

140.5995E-14

0.5063E-13

0.1083E-11

0.24

95E-

150.1191E-13

0.30

39E-

050.1503E-01

0.4278E-04

0.1743E-03

0.14

87E-

060.6801E-02

0.11

52E-

020.1458E-07

0.11

11E-

050.

8473

E-05

0.8122E-17

0.1013E-16

0.1704E-17

0.36

92E-

180.1132E-17

0.20

03E-

260.

1448

E-09

0.9100E-07

0.28

78E-

060.

6444

E-05

0.94

73E-

160.

5157

E-16

0.92

94E-

170.

2208

E-17

AM 1V1 1

I

COEFF.

0.67

101.

0000

0.67

100.2080

1.00

000.6710

1.00

000.6629

1.00

000.7198

0.7198

1.00

000.7071

1.00

000.6710

0.6899

0.75

051.

0000

0.7198

1.00

000.7198

0.67

101.

0000

0.67

100.2080

0.6710

1.00

001.

0000

0.6710

0.6269

1.00

000.7198

1.00

001.

0000

1.00

000.7198

0.7198

1.00

001.

0000

0.67

101.

0000

0.67

100.

2080

1.00

000.2080

0.7071

1.00

000.6710

1.00

000.6710

1.00

000.

6710

0.2080

- LU

lJ 1

U

ACTIVITY

18.3095

11.7637

10.1378

11.0

319

25.3552

13.2649

3.54

096.2568

10.2566

3.9666

9.5241

10.3

232

6.7246

4.04

923.

8292

4.64

455.

0976

2.15

907.

1865

6.40

659.

0765

18.5298

15.5939

14.6

581

14.2

222

13.2

956

11.9654

15.6

030

13.9

240

5.51

731.

8229

4.3688

3.7588

6.8276

2.16

742.9386

7.8361

5.9541

5.07

2017

.090

416

.994

517.7686

18.4328

17.9

460

26.6

982

9.83

947.

0410

6.54

105.

1908

16.0

235

16.2

876

17.0318

17.6

559

Page 196: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAG

E -

5 -

162

165

166

228

230

231

232

233

234

235

236

237

238

239

240

241

244

245

246

247

248

251

252

253

254

255

^56^

257

258

259

260

261

262

263

264

265

266

267

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

SPECIES

ZnS0

4Hg

OH +

Hg(OH)2

CH3COOH

BaAce

+CaAce

+Cu

Ace

+FeAce

+Fe

(Ace

)2KA

ceMg

Ace

+NaAce

PbAc

e +

Pb(A

ce)2

Pb(A

ce)3

SrAc

e +

ZnAc

e +

Zn(A

ce)2

C204

--

HC20

4 -

H2C2

04Ba

Oxy

CaOx

yFe

Oxy

FeOx

y +

KOxy

-MgOxy

MnOxy

MnOxy)2

MnOxy)3

MnOx

yNa

Oxy

-Pb

Oxy

SrOx

yZn

Oxy

C4H404--

HC4H

404-

H2C4

H404

BaSu

cCa

Suc

FeSu

cFe

Suc

+KS

uc

-Mg

Suc

MnSu

cNaSuc

-PbSuc

SrSu

cZnSuc

CaCl

+

CaCl

2Fe

F ++

SiF6 --

.......--------- -ANALT^tU- ----------

--.-.--.-...

PPM

MG/L

MOLALITY

PPM

0.5798E-11

0.11

53E-

130.3409E-08

0.18

42E-

040.

9241

E-07

0.37

25E-

020.

2735

E-13

0.1624E-12

0.93

67E-

200.2147E-03

0.22

89E-

010.1265E-01

0.5458E-16

0.96

61E-

210.1742E-26

0.4823E-04

0.12

99E-

110.

3185

E-21

0.1000

0.1023

0.1177E-05

0.94

40E-

020.3468E-09

0.3117E-13

0.57

14E-

080.5546E-02

0.5007E-12

0.3028E-13

0.1406E-03

0.10

02E+

000.

9310

E-10

0.7180E-03

0.15

50E-

060.

2764

E-19

0.9487E-02

0.3575E-15

0.2710E-04

0.3061E-13

0.1000

0.1023

0.89

29E-

06

0.64

06E-

010.

2140

E-05

0.41

02E-

080.9317E-07

0.3478E-02

0.1942E-13

0.4911E-13

0.3516E-03

0.24

49E-

010.

8476

E-11

0.1536E-01

0.11

59E-

150.4664E-04

0.67

64E-

150.1773E+03

0.3377E+01

0.15

10E-

110.

1180

E-28

-UHLUULHI tl

MG/L

0.5931E-11

0.11

79E-

130.

3488

E-08

0.18

84E-

040.9453E-07

0.3811E-02

0.27

98E-

130.1661E-12

0.95

82E-

200.

2196

E-03

0.2342E-01

0.12

94E-

010.

5583

E-16

0.98

84E-

210.1782E-26

0.49

33E-

040.1328E-11

0.3259E-21

0.9657E-02

0.35

48E-

090.3189E-13

0.58

45E-

080.5673E-02

0.5122E-12

0.3098E-13

0.1438E-03

O.T0

25E+

000.

9524

E-10

0.7345E-03

0.15

86E-

060.

2827

E-19

0.9705E-02

0.36

57E-

150.2773E-04

0.3131E-13

0.65

53E-

010.

2190

E-05

0.41

96E-

080.

9532

E-07

0.3558E-02

0.1987E-13

0.5024E-13

0.3597E-03

0.25

05E-

010.8671E-11

0.15

71E-

010.1186E-15

0.4772E-04

0.69

19E-

150.1814E+03

0.3454E+01

0.1545E-11

0.12

07E-

28

j...

...

....

.MOLALITY

0.3722E-16

0.54

90E-

190.1506E-13

0.31

79E-

090.4877E-12

0.3895E-07

0.23

12E-

180.1464E-17

0.55

81E-

250.2267E-08

0.28

46E-

060.

1598

E-06

0.21

24E-

210.

3078

E-26

0.4696E-32

0.3408E-09

0.10

82E-

160.

1800

E-26

0.1112E-06

0.40

37E-

140.

3588

E-18

0.26

28E-

130.4487E-07

0.3607E-17

0.21

81E-

180.

1146

E-08

0.92

4TE-

060.

6749

E-15

0.37

60E-

080.6354E-12

0.2004E-24

0.8857E-07

0.1255E-20

0.15

99E-

090.2068E-18

0.5719E-06

0.18

95E-

100.3600E-13

0.38

11E-

120.

2309

E-07

0.1171E-18

0.29

60E-

180.2348E-08

0.18

08E-

060.

5137

E-16

0.11

45E-

060.

3716

E-21

0.23

73E-

090.

3863

E-20

0.24

33E-

020.3153E-04

0.20

91E-

160.

8610

E-34

ACTIVITY

0.3722E-16

0.3683E-19

0.15

06E-

130.

3179E-09

0.33

64E-

120.

2687E-07

0.1595E-18

0.1010E-17

0.5581

E-25

0.2267E-08

0.1964E-06

0.15

98E-

060.1466E-21

0.3078E-26

0.32

40E-

320.

2351E-09

0.7463E-17

0.18

00E-

260.

2483

E-07

0.27

85E-

140.3588E-18

0.26

28E-

130.

4487E-07

0.3607E-17

0.15

05E-

180.7909E-09

0.92

41 E"0

60.6749E-15

0.8398

E-09

0.13

15E-

140.1382

E-24

0.61

11E-

070.

1255

E-20

0.15

99E-

090.

2068

E-18

0.12

77E-

060.

1307

E-10

0.3600E-13

0.3811

E-12

0.23

09E-07

0.1171E-18

0.20

42E-

180.

1620

E-08

0.1808E-06

0.5137E-16

0.78

98E-

070.3716E-21

0.2373E-09

0.38

63E-

200.1633

E-02

0.31

53E-

040.

4350

E-17

0.17

91E-

34

m. 1

1 v 1

1 1

COEFF.

1 .00

000.

6710

1.0000

1.0000

0.68

990.

6899

0.68

990.

6899

1.0000

1.0000

0.68

991.0000

0.68

991.0000

0.68

990.

6899

0.68

991.0000

0.22

330.

6899

1.0000

1.0000

1.0000

1.0000

0.68

990.

6899

r.oo

oo1.0000

0.2233

0.0021

0.68

990.

6899

1.0000

1.0000

1.0000

0.2233

0.68

991.0000

1.0000

1.0000

1.0000

0.68

990.

6899

1.0000

1.0000

0.68

991.0000

1.0000

1.0000

0.67

101.0000

0.20

800.

2080

- LUU 1

U

ACTIVITY

16.4292

19.4337

13.8

221

9.49

7712

.473

17.

5707

18.7

971

17.9955

25.2533

8.6445

6.70

696.7965

21 .83

4026.5117

32.4894

9.62

8717

.127

126.7448

7.60

5114

.555

118

.445

113.5804

7.34

8117.4429

18.8

225

9.10

19- &.

0343

15.1707

9.07

5814.8809

24.8594

7.2139

20.9013

9.79

6118

.684

56.

8937

10.8837

13.4437

12.4190

7.6366

18.9

315

18.6898

8.7905

6.74

2916.2893

7.1025

21.4299

9.62

4720.4130

2.78

714.5012

17.3

615

34.7469

Page 197: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-

6 -

SPE

CIES

285

CH4

Gas

286

Pb(HS)2

287

Pb(HS)3-

288

PbC03

289

PbOH +

290

Zn(HS)2

291

Zn(H

S)3-

292

ZnHC03

»29

3 Zn

OH +

294

Zn(OH)2

295

ZnHSOH

--.........--.-- -HNHLT£CU- ----------

.----.......

PPM

MG/L

MOLA

LITY

PPM

0.10

00

0.10

23

0.64

60E-

05

0.10

00E+

000.6586E-04

0.1170E-06

0.1758E-10

0.31

17E-

100.2740E-04

0.1397E-05

0.5013E-12

0.2167E-11

0.96

75E-

130.8629E-02

-

- -LHLl-ULMI CL

MG/L

0.1023E+00

0.6737E-04

0.11

97E-

060.

1799

E-10

0.31

89E-

100.2803E-04

0.1429E-05

0.5129E-12

0.2217E-11

0.9898E-13

0.8827E-02

j. .

. ...

....

.MO

LALI

TY0.6460E-05

0.24

97E-

090.3959E-12

0.68

20E-

160.1441E-15

0.21

59E-

090.8798E-11

0.41

11E-

170.2726E-16

0.10

09E-

170.

7746

E-07

ACTI

VITY

O.OO

OOE+

000.2497E-09

0.26

56E-12

0.6820E-16

0.96

70E-16

0.21

59E-09

0.5903E-11

0.27

58E-

170.18

29E-16

0.1009E-17

0.77

46E-

07

COEF

F.1.0000

1.0000

0.67

101.0000

0.67

101.

0000

0.67

100.

6710

0.67

101.0000

1.0000

ACTI

VITY

0.00

009.6026

12.5

757

16.1

662

16.0

146

9.6657

11.2

289

17.5

593

16.7

377

17.9

961

7.1109

Page 198: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

VQ oo

2 11 14 15 16 17 19 20 22 24 25 26 30 31 37 38 40 41 42 43 45 46 47 50 51 52 55 56 57 60 64 67 68 69 70 71 73 76 77 81 82 83 85 91 95 99 100

103

110

111

112

PHAS

EAKERMANI

ANHY

ORIT

APATCHLR

APATFLUR

APATHYDX

ARAG

ONIT

AZUR

ITE

BARITE

BRUC

ITE

CALC

ITE

CELESTIT

CHALCEOO

CRYS

OTIL

C-EN

STAT

CRIS

TOBA

CRIS

TOBB

DIOP

SIDE

DOLO

MITE

OSORO

ENST

ATIT

FAYALITE

FLUO

R I TE

FORS

TERI

GREENALI

GYPSUM

HALI

TEHU

NTIT

EHY

ORMA

GNHY

PHIL

ITKE

NYAI

TELA

RNIT

ELIME

MAGADITE

MgFe

204

MAGNESIT

MgCl2

MERU

INIT

MIRABILT

MONT

ICEL

NACH

OLIT

NATR

THRM

NATR

ONNE

SQUH

ONOL

OHAM

ITPE

RICL

ASPORT LAN

POTA

SS I

QUAR

TZSE

PIOL

ITSI

LICA

AMSILICGEL

LOG

(AP)

33.530

-5.4

03-4

9.45

1-5

3.55

2-54.785

-7.873

-48.

361

-10.

205

-13.496

-7.8

73-7.391

-4.1

3035.201

10.3

62-4.130

-4.1

3019.881

-14.

902

-14.

902

10.3

620.

178

-11.874

24.8

55-1

.815

-5.4

20-0

.973

-28.

960

-36.

508

-3.671

-37.784

23.167

-19.

151

-21.

260

26.0

75-7.029

-2.8

2747.178

-3.761

24.0

11-3

.509

-6.1

56-6.231

-7.054

1.72

414

.492

-14.340

11.9

98-4.130

33.1

31-4.130

-4.130

LOG

(KT)

45.460

-4.3

30-66.150

-68.

340

-60.

390

-8.3

40-3

9.46

0-9

.960

-11.

470

-8.480

-6.4

30-3.730

32.030

11.290

-3.540

-2.9

4019

.630

-18.060

-16.520

11.4

7019

.430

-10.960

29.070

22.580

-4.600

1.59

0-30.620

-38.530

11.8

00-25.000

38.880

32.660

-14.340

21.1

00-8.050

22.150

68.170

-1.0

9030.150

-0.4

30-0

.010

-0.8

80-5

.350

11.9

0021

.510

-5.4

2084.120

-3.9

3031.520

-2.7

00-2.710

LOG

(AP/KT)

-11.

930

-1.073

16.699

14.7

885.605

0.467

-8.901

-0.245

-2.0

260.

607

-0.961

-0.400

3.171

-0.928

-0.590

-1.190

0.251

3.158

1.61

8-1

.108

-19.

252

-0.9

14-4.215

-24.

395

-0.820

2.5

631.

660

2.02

2-1

5.47

1-12.784

-15.

713

-51.

811

-6.920

4.97

51.

021

-24.977

-20.

992

-2.671

-6.139

-3.0

79-6

.146

-5.351

-1.704

-10.176

-7.018

-8.920

-72.

122

-0.200

1.611

-1.430

-1.420

OELG

-16.

276"

-1.464

22.781

20.1

747.

646

0.63

7-1

2.14

4-0.334

-2.764

0.82

8-1.311

-0.546

4.32

5-1.265

-0.805

-1.623

0.34

34.308

2.207

-1.511

-26.

265

-1.2

46-5.750

-33.

281

-1.1

18-3

.496

2.26

42.

759

-21.

106

-17.441

-21.

436

-70.

683

-9.441

6.787

1.39

3-3

4.07

5-28.637

3.6

44-8.375

-4.200

-8.385

-7.301

-2.325

-13.883

-9.574

-12.169

-98.

391

-0.273

2.19

8-1.951

-1.9

37

122

123

124

125

126

127

128

130

131

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

PHAS

ESr

C03

SYLVITE

TALC

THENARDI

TREMOLIT

TRON

AVI

VIAN

ITUITHERIT

UOLLASTO

SILV

ERAg

C I

Ag2S

COPP

ERMA

LACH

ITCu

OCu

20CuS

Cu2S

CuFeS2

BORN

ITE

FeC

1 2Fe

C 1 3

FeC03

FeO

Fe20

3HEM

Fe20

3MGH

Fe304

Fe(OH)3

GOETHITE

FeSPYRHO

FeSTROLT

FeS2

PYR

GREI

GITE

Hg(L

)Hg

Cl2(

C)Hg

OCI

NNAB

ARCI

NABM

ETMn

Cl2

MnC0

3Mn

OMn

02Mn

SPbCl2

PbC03

PbOL

ITHR

PbOM

ASIC

PbS

GALN

PbS0

4ZnC03

ZnO

LOG

(AP)

-9.861

-2.661

26.949

-3.6

7766

.711

-9.673

-66.295

-12.

675

9.519

-9.663

-14.

686

-23.

977

-10.

071

-34.397

7.55

7-12.867

-4.3

68 2

4.79

2-1

4.13

9-6

3.72

3-15.166

-20.189

19.368

2.15

411

.583

11.5

8313

.736

-36.191

5.78

7-9.771

-9.771

-23.

477

-33.

963

-14.979

-25.024

-7.7

04-19.629

-19.629

-12.

494

16.696

4.826

-13.

339

-7.099

-18.

964

-23.166

1.645

1.645

-13.

569

-20.696

-21.

109

0.41

2

LOG

(KT)

-9.270

0.910

21.1

30-0.290

60.8

90-0.630

-36.000

-8.630

12.600

-0.500

-9.7

30-36.260

4.25

0-33.580

7.670

-1.900

-22.830

-34.

950

-34.

070

-102

.510

7.900

12.3

40-1

0.54

013

.500

0.040

6.40

010

.750

-37.

200

0.480

-3.7

60-3.870

24.

710

-45.

000

-2.840

-14.

110

2.44

0-3

9.86

0-3

8.58

08.

790

-10.540

17.7

00 8.330

-0.470

-4.820

-12.

890

12.5

5012

.690

-14.

780

-7.8

00 9.870

11.2

00

LOG

(AP/KT)

-0.591

-3.571

5.819

-3.3

875.821

-9.043

-30.295

-4.045

-3.081

-9.163

-4.9

5612

.283

-14.

321

-0.8

17-0.113

-10.967

18.4

6210

.158

19.931

38.7

87-23.066

-32.

529

-8.828

-11.346

1K54

3

5.18

32.986

1.00

95.

307

-6.011

-5.901

1.23

311.037

-12.139

-10.

914

-10.

144

20.231

18.951

-21.

284

-6.1

56 1

2.87

4-5

.009

-6.6

29-1

4.14

4-10.276

14.

195

-14.

335

1.211

-12.

896

-11.239

-10.788

OELG

-0.8

06"

-4.872

7.93

9-4.621

7.94

2-12.337

-41.

330

-5.5

19-4

.204

12.

501

-6.761

16.757

-19.537

-1.114

-0.155

-14.

962

25.186

13.8

5827

.191

52.915

-31.468

44.

377

-12.043

-15.479

15^747

7.07

04.

074

1.37

67.

240

8.2

00-8

.050

1.682

15.057

-16.

560

-14.889

-13.

838

27.601

25.854

-29.036

-8.398

-17.563

-6.834

-9.043

-19.296

-14.019

-19.

365

-19.556

1.652

17.593

-15.333

-14.717

Page 199: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-

8 -

SAMP

LE ID

ENT

- Te

st Sample #

4 - Ca/Mg

exch

ange

in

sea

wate

r(T

EMPE

RATU

RE =

25.00)

118

121

PHAS

ENa

20ST

RENG

IT

LOG

(AP)

LOG

(KT)

LOG

(AP/

KT)

15.374

-30.

570

67.4

30

-27.

200

-52.

056

-3.370

DELG

-7

1.01

7"

-4.598

PHAS

E17

6 Zn

S177

ZnS04

LOG

(AP)

LOG

(KT)

LOG

(AP/

KT)

-11.

513

-18.

639

-11.

790

3.54

00.

277

-22.

179

DELG

0.

379"

-30.

258

Page 200: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

9 -

Initial

Surface

Conditions

Surface

Comp

lex

CaX2

HgX2

Mole

s on

Surface

0.25

000E

-01

0.25

000E

-01

Holes

ofSu

rfac

e Si

te0.

5000

0E-0

10.

5000

0E-0

1

Frac

tion

of

Surf

ace

Sites

0.5000

0.50

00

Surf

ace

Comp

. Sp

ecie

s an

d Coef.

...

0.10

000E

+01

= Ca

X2

* (Ca

0.10

000E

+01

= Mg

X2

* (Mg

** -1.00) *

(X-

** -1.00) *

(X-

** -2.00)

** -2.00)

Fina

l Eq

uili

briu

m Su

rfac

e Co

ndit

ions

Surface

Complex

CaX2

HgX2

Mole

s on

Surf

ace

0.14

040E

-01

0.35

960E

-01

Hole

s of

Surf

ace

Site

0.28

079E

-01

0.71921E-01

Frac

tion

of

Surf

ace

Sites

0.2808

0.71

92

ro

o o

CEC

= 0.10000E+03

mi Hi-equivalents

0.10000E+00

mole

s ex

chan

ge c

apacity

for

mono

vale

nt cations

and

anio

ns

Page 201: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-

10

-

SAMP

LE ID

ENT:

- Te

st Sa

mple

#4

- Ca/Mg

exch

ange

in s

eawater

ro

o

KH

tH

ItMK

8.19

0.

5000

25.00

DENS

ITY

AT

TOTAL

DISS

OLVE

D IN

PUT

T SO

LIDS

(M

G/L)

1.0

230

3591

6.54

ANAL

= CALC=

IONI

C STRENGTH

0.64

588

LAI 1UN5

619.

6745

57

5.84

76

ACTI

VITY

OF

WATER

0.98

09

Tota

l Alkalinity a

sHC03-

C03=

CaC03

(MG/

L)=0

.159

4E+0

3 0.7840E+02 0

.1308E+03

(PPM)=0.1559E+03 0

.7664E+02

0.12

78E+

03

(MOLALITY)=0.2647E-02

0.1324E-02 0

.132

4E-0

2

1 2 3 4 5 6 7 8 9 11 12 13 15 16 17 18 19 21 22 23 24 25 26 27 28 29 30 31 33 43 44 45 46 47

SPEC

IES

Ca ++

Mg ++

Na +

K +

Cl

-S0

4 --

HC03

-H

+OH

-H4Si04

Si 02

Ag +

Ba ++

Cu +

Cu ++

Fe ++

Fe +3

Hg

++Li

+

Mn ++

Mn +3

Pb +

+Sr ++

Zn ++

H2As

03-

P04

-3F

-B(

OH)3

H2S

AgCl

AgCl

2 -

AgCl

3 --

AgCl

4 -3

AgS0

4 -

PPM

836.

2569

1034

.833

310770.0000

399.

1000

1935

0.00

0027

12.0

000

123.4007

4.28

000.

0000

0.02

000.

0007

0.00

20

0.00

000.

1810

0.00

02

0.00

018.

1400

0.00

490.

0067

0.0600

1.39

0025

.454

010

.000

0

. . . .

. -MNMLI tc

lMG/L

855.

4908

1058

.634

511017.71

0040

8.27

9319

795.

0500

2774

.376

0126.2389

4.37

840.

0000

0.02

050.0007

0.00

20

0.00

000.

1852

0.00

02

0.00

018.

3272

0.00

500.

0068

0.06

141.

4220

26.0

394

10.2

300

j- ----------

MOLA

LITY

0.2162E-01

0.4411E-01

0.48

55E+

000.1058E-01

0.5657E+00

0.29

26E-

010.2096E-02

0.73

82E-

040.3843E-09

0.1509E-06

0.11

42E-

07

0.37

12E-

07

0.1550E-09

0.2703E-04

0.37

73E-

08

0.2501E-09

0.9628E-04

0.7769E-07

0.5281E-07

0.65

48E-

060.7583E-04

0.42

66E-

030.

3041

E-03

«NIU

N:>

uirrtKtNLt V.HCU/L;

---

n - un BM

LMNL

L muLts; --

----

-61

8.26

48

568.1310

P TOTAL

(BARS)

1.0000

as

1.4097

7.7167

HTOT

OHTOT

DIFFERENCE

0.25

11E-

02

0.1347E-02

0.1163E-02

rtncooi me

................ -r

i^Cooui\c"

--------------

PH20

PC

02

PH2S

PCH4

(BAR

S)

(BAR

S)

(BAR

S)

(BAR

S)PNH3

(BARS)

0.3169E-01 0.4865E-03 0.

1467

E-03

0.5252E-02 O.

OOOO

E+00

Dissolved

Inor

gani

c Ca

rbon

HC03-

H2C0

3 Su

mof

Sum

ofTI

C Al

kali

nity

sp

ecie

s HC03-

C03=

0.2485E+02 0.

1375

E+03

0.

8799

E+00

0.

1128

E+03

0.1235E+02

0.2429E+02 0.1344E+03 0.

8601

E+00

0.

1103

E+03

0.1207E+02

0.2096E-02 0.2290E-02 0.1437E-04 0.

1873

E-02

0.2085E-03

PPM

0.57

62E+

030.

8953

E+03

0.1024E+05

0.3825E+03

0.1866E+05

0.1226E+04

0.8572E+02

0.7736E-05

0.39

64E-

010.

6618

E+01

0.10

50E-

080.

1811

E-01

0.24

05E-

090.3660E-03

0.1323E-08

0.1052E-12

0.7563E-18

0.1792E+00

0.45

56E-

060.6904E-23

0.9742E-12

0.7539E+01

0.2722E-10

0.7126E-03

0.6480E-05

0.8401E+00

0.2209E+02

0.37

32E+

000.5995E-06

0.3811E-04

0.3032E-04

0.4020E-05

0.81

15E-

10

unuuuun ICL

> -----------

MG/L

MOLA

LITY

0.5895E+03

0.91

59E+

030.1048E+05

0.3913E+03

0.1908E+05

0.1254E+04

0.8769E+02

0.7914E-05

0.4055E-01

0.67

70E+

01

0.1074E-08

0.1853E-01

0.24

60E-

090.

3744

E-03

0.1353E-08

0.1076E-12

0.7737E-18

0.18

33E+

000.4660E-06

0.7063E-23

0.9966E-12

0.7713E+01

0.27

85E-

100.7290E-03

0.6629E-05

0.8594E+00

0.22

60E+

020.

3818

E+00

0.6133E-06

0.38

99E-

040.

3102

E-04

0.4113E-05

0.8301E-10

0.1490E-01

0.3817E-01

0.46

17E+

000.

1014

E-01

0.5454E+00

0.1322E-01

0.1456E-02

0.7954E-08

0.2415E-05

0.7136E-04

0.1009E-13

0.1367E-06

0.39

23E-

140.5969E-08

0.2454E-13

0.1951E-17

0.39

07E-

230.2676E-04

0.8594E-11

0.13

02E-

270.4873E-17

0.8918E-04

0.43

16E-

150.5640E-08

0.70

71E-

100.4583E-04

0.37

02E-

030.1135E-04

0.4335E-11

0.2209E-09

0.1467E-09

0.16

69E-

100.

4124

E-15

ACTI

VITY

0.3667E-02

0.10

08E-

010.3099E+00

0.63

58E-

020.3421E+00

0.2235E-02

0.1005E-02

0.63

90E-

080.1571E-05

0.71

36E-

04

0.6066E-14

0.28

48E-

070.2359E-14

0.1469E-08

0.6040E-14

0.1670E-18

0.8141E-24

0.1973E-04

0.2115E-11

0.11

14E-

280.

9202

E-18

0.1858E-04

0.1062E-15

0.3786E-08

0.1922E-11

0.2981E-04

0.3702E-03

0.1181E-04

0.4335E-11

0.1483E-09

0.3056E-10

0.6596E-12

0.2768E-15

MUI 1

VI 1

1

COEF

F.0.

2461

0.26

420.

6712

0.62

720.

6272

0.1690

0.69

010.

8034

0.65

031.0000

0.60

150.

2084

0.60

150.

2461

0.24

610.

0856

0.20

840.7373

0.24

610.

0856

0.1888

0.20

840.

2461

0.67

120.

0272

0.65

031.

0000

1.04

071.

0000

0.67

120.

2084

0.03

950.6712

-LOG

10AC

TIVI

TY2.4357

1.99

630.

5088

2.1967

0.46

592.6507

2.99

808.

1945

5.80

394.

1465

14.2

171

7.5455

14.6

272

8.83

3014

.218

918

.777

324

.089

34.

7049

11.6

747

28.9

529

18.0

361

4.73

0915

.973

88.

4218

11.7

163

4.5257

3.4316

4.9277

11.3

630

9.8289

10.5

148

12.1

807

15.5

578

Page 202: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

zoz

wtfjco p- --

ononnnnonnnnonnnoooooooozn

' ^5 zc ^~ ^ ^ ^ * ^ ^ ^~ O ^J ^ O ^c o O O zc f^ ^^ w f^ ^s ^s> i/j ro o^ ro ^^ ^ o ^* o OJ ^*

w

O 3»

I- 3«

ooooooooooooooooooooooooooooooooooooooooooooooooooooo

ijf *o f\j ^*> v/i ^^ ^D (^ v/i ~^ rvj ^^ rvj ^D * ^^ ^^ ^^ **** <^ ^« v/i ->^ o^ *^ * ^5 OJ ^* OJ ^^ ^o *"^ oo ~* ' ' "" ooro*oo*wsoooo*~~~~~'' ~ -------------- .-^--_.._Tr___OOO»yi'O^*>*^-»«^>mrTirnmrrimmmm --- , - -,--, -------------- . , + . + + , + , + . . i . . i i , . , + , , , , + +^pooooooppopooopprvj-i^^^^Or^r^T^Qr^r^TfPPQPQPOooooooooooooooo

wio^oro-sro-s-^roo mmrnmmmmmm m

o ui ~g -» w -» -»

ooooooooooooooooooooooooooooooooooooooooooooooooooooo

o^j^oooorvj^'O mrnrnrnrnmmm + + ++ ++ + -»oooooooooooooooor\j-»-»-»-»-»o-»-»-j»o-»-»-»oooooooooooooooooooooo

oooooooooooooooooooooooooopoooooooooooooooooooooooooo

rj ^ oo

ooooooooooooooooooooooooooooooooooooooooooooooooooooo

rnmrnmrnirirnrnmrnrnrnmmmmrnrn rn m m rn rn p-ippopoo-^oooooo-^rvj-^rvj-e-*-*-:*^'

-»oooooo-»-»ooooo-»ooooo-»oo-»o-»c

oooooooo-»o-»oo

-»_._.o-»ooo-»ooo-»-»o-»ooo-»-»oo-»-»o o-i

Page 203: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

- 12

-

fO o

SPECIES

105

HgCl

+

106

HgClZ

107

HgCl3

-10

8 HgCl4

--10

9 HgS04

111

Hg(H

S>3-

113

KCl

114

KC03

-

115

KHS04

116

KS04

-117

KHP04

-11

8 Li

OH119

LiS0

4 -

120

MgC0

3121

MgHC

03 +

122

MgF

+123

MgOH +

124

MgS04

125

MgP04

-12

6 Mg

HP04

127

MgH2

P04+

128

MnCl +

129

MnCl2

130

MnCl

3 -

131

MnCl4

--132

MnHC03 +

133

MnS0

4134

MnHP

0413

5 MnOH +

136

N03

-13

7 Na

Cl13

8 Na

C03

-13

9 NaHC03

140

Na2C03

141

Na2S04

142

NaS0

4 -

143

NaHP04

-144

NaF

145

NaHS

148

PbCL +

149

PbCl

2150

PbCl

3 -

151

PbCL

4 --

152

PbS0

4153

MnCl ++

154

SrOH

-

155

SrC0

3156

SrHC03 +

157

SrS04

158

ZnCl +

159

ZnCl

2160

ZnCl3

-161

ZnCU --

PPM

MG/L

0.2900

0.29

67

MOLALITY

PPM

0.16

80E-

120.

4541

E-06

0.32

19E-

040.

1470

E-04

0.1308E-19

0.2374E-07

0.20

62E+

020.

7923

E-01

0.7528E-05

0.19

98E+

020.

6030

E-04

0.1084E-05

0.27

05E-

010.5762E+01

0.1460E+02

0.12

03E+

010.

3350

E+00

0.6576E+03

0.91

44E-

020.4051E-01

0.1229E-03

0.29

73E-

130.

2387

E-10

0.39

16E-

090.

4181

E-08

0.65

96E-

080.

1253

E-06

0.3146E-10

0.9464E-09

0.48

47E-

05

0.2900E+00

0.84

43E+

030.4721E+01

0.1419E+02

0.15

09E-

010.

9519

E+03

0.1877E+03

0.25

89E-

020.4933E-01

0.4583E+00

0.2822E-11

0.2696E-11

0.75

88E-

120.

5872

E-12

0.33

84E-

120.6501E-21

0.2041E-04

0.12

86E-

010.

6178

E-01

0.1166E+01

0.13

85E-

100.

6812

E-11

0.22

96E-

110.2111E-11

- - --L.MLUJLAItl

MG/L

0.17

19E-

120.

4645

E-06

0.32

93E-

040.

1504

E-04

0.1338E-19

0.24

29E-

070.

2110

E+02

0.8105E-01

0.7701E-05

0.2044E+02

0.61

69E-

040.1109E-05

0.27

67E-

010.

5895

E+01

0.1494E+02

0.12

30E+

010.

3427

E+00

0.67

27E+

030.9355E-02

0.4144E-01

0.12

57E-

030.

3041

E-13

0.24

42E-

100.4006E-09

0.42

77E-

080.

6747

E-08

0.12

82E-

060.3218E-10

0.9682E-09

0.2967E+00

0.86

38E+

030.4829E+01

0.14

52E+

020.

1544

E-01

0.97

37E+

030.

1920

E+03

0.2648E-02

0.50

46E-

010.4688E+00

0.2887E-11

0.2758E-11

0.7762E-12

0.6007E-12

0.34

62E-

120.6650E-21

0.2087E-04

0.1316E-01

0.6320E-01

0.1193E+01

0.1417E-10

0.69

68E-

110.2349E-11

0.21

60E-

11

j---

- --

----

-MOLALITY

0.73

78E-

180.

1733

E-11

0.10

87E-

090.

4449

E-10

0.45

70E-

250.8207E-13

0.2867E-03

0.8285E-06

0.57

29E-

100.1532E-03

0.4627E-09

0.4691E-10

0.2722E-06

0.7082E-04

0.17

74E-

030.2878E-04

0.84

03E-

050.5661E-02

0.7945E-07

0.3490E-06

0.10

50E-

080.3408E-18

0.1966E-15

0.2516E-14

0.22

02E-

130.

5895

E-13

0.86

01E-

120.2160E-15

0.13

63E-

130.4847E-05

0.1497E-01

0.58

95E-

040.

1751

E-03

0.1475E-06

0.6945E-02

0.1634E-02'

0.2255E-07

0.1218E-05

0.8472E-05

0.12

05E-

160.1005E-16

0.25

08E-

170.

1744

E-17

0.11

57E-

170.7454E-26

0.20

21E-

090.

9028

E-07

0.43

08E-

060.6581E-05

O.U24E-15

0.51

80E-

160.1386E-16

0.10

56E-

16

ACTIVITY

0.4952E-18

0.1733E-11

0.72

94E-

100.

9270

E-11

0.45

70E-

250.55

08E-

130.28

67E-

030.

5494

E-06

0.57

29E-

100.11

03E-

030.3331E-09

0.46

91E-

100.1925E-06

0.7082

E-04

0.11

90E-

030.

1986

E-04

0.63

07E-

050.5661

E-02

0.57

20E-

070.3490E-06

0.7558E-09

0.2288E-18

0.1966E-15

0.1689

E-14

0.4589

E-14

0.3957E-13

0.86

01E-

120.2160E-15

0.9150

E-14

0.3040E-05

0.14

97E-

010.4243E-04

0.1751

E-03

0.14

75E-

060.

6945

E-02

0.11

76E-

020.1623E-07

0.12

18E-

050.8472E-05

0.8091E-17

0.1005E-16

0.1683E-17

0.36

33E-

180.1157E-17

0.15

53E-26

0.1429E-09

0.9028E-07

0.2891E-06

0.65

81E-

050.

9556E-16

0.5180E-16

0.92

99E-

170.2201E-17

HL.I 1V1 1

I

COEF

F.0.6712

1.0000

0.6712

0.20

841.0000

0.6712

1.0000

0.6631

1.0000

0.71

990.

7199

1.0000

0.7072

1.0000

0.67

120.

6901

0.7505

1.0000

0.71

991.0000

0.71

990.6712

1.0000

0.6712

0.2084

0.67

121.0000

1.0000

0.6712

0.62

721.0000

0.71

991.0000

1.00

001.0000

0.71

990.

7199

1.0000

1.0000

0.6712

1.00

000.6712

0.2084

1.0000

0.20

840.7072

1.0000

0.67

121.0000

0.6712

1.0000

0.67

120.2084

uuu i u

ACTIVITY

18.3052

11.7

611

10.1370

11.0329

25.3400

13.2590

3.54

266.2601

10.2419

3.9574

9.4775

10.3287

6.71

564.

1498

3.92

434.7020

5.2002

2.24

717.

2426

6.45

719.

1216

18.6406

15.7065

14.7724

14.3383

13.4027

12.0654

15.6

655

14.0386

5.5171

1.8247

4.3723

3.75

686.8311

2.1583

2.9295

7.78

965.9145

5.0720

17.0920

16.9979

17.7738

18.4397

17.9369

26.8088

9.84

487.0444

6.53

895.

1817

16.0197

16.2856

17.0315

17.6574

Page 204: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-

13

-

ro

o

SPE

CIES

162

ZnS04

165

HgOH +

166

Hg(O

H)2

228

CH3C

OOH

230

BaAc

e +

231

CaAc

e +

232

CuAc

e +

233

FeAce

+23

4 Fe

(Ace

)2235

KAce

236

MgAc

e +

237

NaAc

e23

8 Pb

Ace

+23

9 Pb

(Ace

)2240

Pb(A

ce)3

241

SrAc

e +

244

ZnAc

e +

245

Zn(Ace)2

246

C204

--

247

HC204

-24

8 H2

C204

251

BaOx

y25

2 Ca

Oxy

253

FeOxy

254

FeOxy

+255

KOxy

-

256

MgOxy

257

MnQxy

258

MnOx

y)2

259

MnOxy)3

260

MnOxy

261

NaOx

y

262

PbOx

y26

3 Sr

Oxy

264

ZnOx

y265

C4H404--

266

HC4H

404-

267

H2C4

H404

270

BaSuc

271

CaSuc

272

FeSu

c27

3 Fe

Suc

+27

4 KS

uc

-275

MgSu

c27

6 Mn

Suc

277

NaSuc

-27

8 PbSuc

279

SrSu

c280

ZnSu

c281

CaCl +

282

CaCl

2283

FeF

++28

4 Si

F6 -

PPM

MG/L

0.10

000.

1023

0.10

000.

1023

MOLA

LITY

PP

M0.

5996

E-11

0.11

54E-

130.

3371 E- 08

0.1884E-04

0.93

28E-

070.7632E-02

0.27

76E-

130.1712E-12

0.99

78E-

200.2169E-03

0.1848E-01

0.1277E-01

0.55

12E-

160.

9857

E-21

0.17

94E-

260.

4870

E-04

0.1328E-11

0.32

91E-

210.1177E-05

0.1070E-01

0.39

86E-

090.

3629

E-13

0.64

83E-

080.

1277

E-01

0.5935E-12

0.35

89E-

130.

1596

E-03

0.9090E-01

0.8220E-10

0.71

85E-

030.

1751

E-06

0.24

38E-

190.1077E-01

0.40

59E-

150.3077E-04

0.35

18E-

130.

8929

E-06

0.6493E-01

0.22

00E-

050.

4271

E-08

0.94

56E-

070.

7165

E-02

0.2059E-13

0.5205E-13

0.35

70E-

030.1988E-01

0.6694E-11

0.15

59E-

010.

1177

E-15

0.4736E-04

0.69

54E-

150.3582E+03

0.6796E+01

0.1725E-11

0.21

47E-

28

- -- -UU-UJLAItl

MG/L

0.61

34E-

110.1180E-13

0.34

49E-

080.

1927

E-04

0.95

42E-

070.

7808

E-02

0.28

40E-

130.

1751

E-12

0.10

21E-

190.

2219

E-03

0.1891E-01

0.1307E-01

0.5639E-16

0.1008E-20

0.18

35E-

260.

4982

E-04

0.1359E-11

0.3366E-21

0.10

94E-

010.

4078

E-09

0.3713E-13

0.66

32E-

080.1307E-01

0.60

71E-

120.

3672

E-13

0.1633E-03

0.9299E-01

n ft

A noc *

1 n0.

*735

0E-0

30.1791E-06

0.24

94E-

190.1101E-01

0.41

52E-

150.3147E-04

0.3599E-13

0.6642E-01

0.2251E-05

0.43

70E-

080.

9673

E-07

0.7329E-02

0.2107E-13

0.53

25E-

130.

3652

E-03

0.2033E-01

0.6848E-11

0.15

95E-

010.

1204

E-15

0.48

45E-

040.

7114

E-15

0.3665E+03

0.6952E+01

0.1765E-11

0.21

96E-

28

j... ...

....

.MO

LALI

TY0.3850E-16

0.54

95E-

190.

1489

E-13

0.3251E-09

0.4923E-12

0.79

80E-

070.

2347

E-18

0.15

44E-

170.

5945

E-25

0.22

90E-

080.

2298

E-06

0.16

13E-

060.2146E-21

0.31

41E-

260.4838E-32

0.34

41E-

090.

1106

E-16

0.18

59E-

260.1260E-06

0.4640E-14

0.41

78E-

180.

2981

E-13

0.10

33E-

060.

4275

E-17

0.25

86E-

180.

1301

E-08

0.83

86E-

06A *sORQC 1 R

o!37

63E-

080.7178E-12

0.1768E-24

0.10

05E-

060.1425E-20

0.18

15E-

090.

2377

E-18

0.57

98E-

060.1948E-10

0.3749E-13

0.3867E-12

0.47

55E-

070.

1241

E-18

0.31

38E-

180.

2384

E-08

0.14

67E-

060.

4057

E-16

0.1162E-06

0.3774E-21

0.24

09E-

090.

3972

E-20

0.4915E-02

0.63

46E-

040.

2389

E-16

0.15

66E-

33

ACTI

VITY

0.38

50E-

160.

3688

E-19

0.14

89E-

130.

3251

E-09

0.33

97E-

120.

5506

E-07

0.1619E-18

0.10

66E-

170.

5945

E-25

0.22

90E-

080.

1586

E-06

0.16

13E-

060.1481E-21

0.31

41E-

260.3339E-32

0.23

75E-

090.

7634

E-17

0.18

59E-

260.2818E-07

0.3202E-14

0.41

78E-

180.

2981

E-13

0.1033E-06

0.42

75E-

170.

1784

E-18

0.89

79E-

090.8386E-06

0.5959E-45

0.84

16E-

090.

1496

E-14

0.12

20E-

240.6936E-07

0.1425E-20

0.18

15E-

090.

2377

E-18

0.1297E-06

0.13

44E-

100.

3749

E-13

0.38

67E-

120.4755E-07

0.12

41E-

180.2165E-18

0.1645E-08

0.1467E-06

0.4057E-16

0.8018E-07

0.3774

E-21

0.2409E-09

0.39

72E-

200.3299E-02

0.6346E-04

0.4977E-17

0.3262E-34

AU 1

1 V

1 1 I

COEFF.

1.00

000.

6712

1.0000

1.0000

0.6901

0.6901

0.6901

0.6901

1.0000

1.00

000.6901

1.0000

0.6901

1.0000

0.6901

0.6901

0.6901

1.0000

0.2237

0.6901

1.0000

1.0000

1.00

001.0000

0.6901

0.6901

1.0000

1.00

000.

2237

0.0021

0.6901

0.6901

1.0000

1.0000

1.0000

0.2237

0.6901

1.0000

1.0000

1.0000

1.0000

0.6901

0.6901

1.0000

1.0000

0.6901

1.0000

1.0000

1.0000

0.67

121.0000

0.20

840.

2084

- LUlI 1

U

ACTI

VITY

16.4

146

19.4

332

13.8

271

9.4879

12.4689

7.2591

18.7

906

17.9724

25.2

258

8.6401

6.7998

6.7922

21.8

296

26.5

030

32.4

764

9.6244

17.1173

26.7

307

7.5501

14.4946

18.3791

13.5256

6.9858

17.3

690

18.7

485

9.0468

6.0764

*c ??/ft

9.0749

14.8

250

24.9

138

7.1589

20.8

462

9.7410

18.6239

6.88

7110

.871

613.4261

12.4126

7.32

2818.9061

18.6

645

8.7838

6.83

3516.3918

7.0959

21.4

232

9.6181

20.4

010

2.4816

4.19

7517

.303

034

.486

5

Page 205: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

- 14

-

SPECIES

285

CH4

Gas

286

Pb(HS)2

287

Pb(HS)3-

288

P6C0

328

9 Pb

OH +

290

Zn(HS)2

291

Zn(HS)3-

292

ZnHC03 ^

293

ZnOH +

294

Zn(OH)2

295

ZnHSOH

PPM

0.1000

MG/L

MOLA

LITY

PPM

0.1023

0.6460E-05

0.10

00E+

000.6586E-04

0.1170E-06

0.17

45E-

100.3078E-10

0.2774E-04

0.1414E-05

0.5100E-12

0.2166E-11

0.9555E-13

0.86

28E-

02

MG/L

0.1023E+00

0.67

37E-

040.

1197

E-06

0.1785E-10

0.3149E-10

0.2838E-04

0.14

47E-

050.5217E-12

0.22

16E-

110.9774E-13

0.8827E-02

MOLA

LITY

0.6460E-05

0.24

97E-

090.3957E-12

0.6767E-16

0.1423E-15

0.2186E-09

0.8905E-11

0.4182E-17

0.27

26E-

160.9964E-18

0.7746E-07

ACTI

VITY

O.OOOOE+00

0.24

97E-

090.2656E-12

0.67

67E-

160.

9550

E-16

0.2186E-09

0.59

77E-

110.

2807

E-17

0.18

29E-16

0.99

64E-

180.7746E-07

COEF

F.1.

0000

1.0000

0.6712

1.0000

0.6712

1.00

000.6712

0.6712

0.6712

1.00

001.

0000

ACTIVITY

0.0000

9.60

2612.5758

16.1696

16.0

200

9.6603

11.2

235

17.5518

16.7377

18.0016

7.1109

Page 206: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

C3 T-

UJ Q

«- «* «- o in

« T-« « CJCJCJ'*"

oooooooooo oooooooooo i O O «- xj- <I T- Vt I

ooooo

o «-«-«- cj«*««-

UJ o .- - -

sSoliiSO _J _J UJ UJ O >

v> tx.2gJ-

UJ

- CJ ro roz o

a. ooooi-i-i-i->35(o<<o

O I i _i ot acO>- >-oia.Q. t CJ

HI ^N cfc( u <i_i s^ ea

o.a.a.a.CLCLisirsi

S <> p -^ cj ro >* in \o s. s. s. N- s. N-

«*CJrocjrocJOCJ«-roooinroroinrooin>*oOtOO>' « ro«4i ONOin<ocjT-^-ON«4i oo« ocjoeoeoin«4-« »ooo«*o«o«-roo>'CJCJin«)>*oo<o«Oin>j-^cjr>. o<o«* <ocjsj-3cjfMin<o»-T-toro>*«*N.r>.>j-Cj<o

ON<o*-«*f>.rocOvtcor>-cjroo>'«-coo«-«-«- rocj'>i>>i<-><-ON>

oooooooooooooooooooooooooooooooooooooooooooooooooo

cj ro ro «- CJ cj

o o N. oo «-- - - Z31 °^ vo c5 o o to s- s- oinroincj ooroororo

CJ «-«-«- «- CJ ,- ^ ^ ro

z >- _i u o - UJ UJ i-i 1-1

Q£i->OU

ex ex i-> oI < O 00 UJ 00

Z < I O Of >-

Z I UJ UJ111 (3 ! * ^_ III ^^

~ X ~ < « Q

gt

1 *- OJ Iin in] i

O>UJi->O<<<UJ-JUJ a. o (O oo oo

206

Page 207: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PAGE

-

16

-

SAMP

LE ID

ENT

- Te

st Sample #

4 - Ca

/Mg

exchange in s

eawater

(TEM

PERA

TURE

=

25.0

0)

PHAS

E LO

G (AP)

LOG

(KT)

LOG

(AP/

KT)

DELG

PHASE

LOG

(AP)

LO

G (KT)

LOG

(AP/

KT)

DELG

_11

8 Na20~

15.3

63

67.4

30

-52.067

-71.032

176

ZnS

-11.

513

-11.

790

0.27

7 0.

378

121

STRE

NGIT

-3

0.51

0 -2

7.20

0 -3

.310

-4

.516

17

7 Zn

S04

-18.625

3.54

0 -22.165

-30.

238

o <~>

"

IS5

O

c. £ 4^

Page 208: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code
Page 209: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

APPENDIX IV. Listing of SOLMINEQ.88

PROGRAM SOLMIN

Program SOLMINEQ.88 : SOLution-MINeral EQuilibrium 1/11/89 JDD j

Written by: P.K. Aggarwal (now at Battelle) |J.D. DeBraal (U.S. Geological Survey) jW.D. Gunter (Alberta Research Council) |R.W. Hull (U.S. Geological Survey) jY.K. Kharaka (U.S. Geological Survey) jE.H. Perkins (Alberta Research Council) jD.J. Specht (U.S. Geological Survey) j

ISOLMINEQ.88 is based on SOLMNEQ (Kharaka and Barnes, 1973), |SOLMNEQF (Aggarwal and others, 1986), and many other unpublished jversions. |

IThis version has been extensively re-written and modified by |E.H. Perkins. The input format was redesigned in conjunction jwith W.D. Gunter and Y.K. Kharaka; these changes were |implemented by J.D. DeBraal. |

IFinancial support for designing SOLMINEQ.88 was provided by |Brian Hitchon (Alberta Geological Survey) and by the Oil Sands |and Hydrocarbon Recovery department, Alberta Research Council. j

IInput/output units: |

5: Sample input file |6: Output from solmineq.88 |7: Data file for Pitzer's equations |

10: Main data file for solmineq.88 |12: Data file for dissolution reactions of the minerals |

I Routines and their purpose |

IACTIVE : Calculate and print activity products of minerals |ADSORB : Routine for calculating surface adsorption j

and ion exchange |AITLIM : Determines the maximum stepsize for convergence on the j

anions |CALCUL : Calculate analyzed molality, cation-anion balance, j

stoichiometric ionic strength, activity coefficients jof neutral species, temperature effects on debye-huckel|constants, and bdot. |

C020PT : Routine for titrating co2 to a given criterion j(pH, pco2, m(h2co3), or saturation with calcite, jsiderite, or dolomite) j

DISTRB Calculate the distribution of species jDPVT Calculate the vapor pressure and vapor density |GASES Routine for partitioning of a gas phase (co2/ch4) |

Between liquid, oil, and vapor jGUESS Routine for calculating the root of a function which j

is known to change sign in a given interval jINPUT Read sample input file from unit 5 \INTIAL Initialize several variable to 0.0 or default values |LAGINT Calculate logk values for aqueous complexes and j

minerals at the desired temperature (t)

SOL 0010 SOL 0020 SOL 0030 SOL 0040 SOL 0050 SOL 0060 SOL 0070 SOL 0080 SOL 0090 SOL 0100 SOL 0110 SOL 0120 SOL 0130 SOL 0140 SOL 0150 SOL 0160 SOL 0170 SOL 0180 SOL 0190 SOL 0200 SOL 0210 SOL 0220 SOL 0230 SOL 0240 SOL 0250 SOL 0260 SOL 0270 SOL 0280 SOL 0290 SOL 0300 SOL 0310 SOL 0320 SOL 0330 SOL 0340 SOL 0350 SOL 0360 SOL 0370 SOL 0380 SOL 0390 SOL 0400 SOL 0410 SOL 0420 SOL 0430 SOL 0440 SOL 0450 SOL 0460 SOL 0470 SOL 0480 SOL 0490 SOL 0500 SOL 0510 SOL 0520 SOL 0530 SOL 0540 SOL 0550 SOL 0560

209

Page 210: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cccccccccccccccccccccccccccccccccccccccc

-

c-

ccccc

-

c

c

MIXER Routine for precipitation/dissolution, mixing, boilingNACALC Calculate the osmotic coefficient of NaCl (aq) and

pure waterPAGE Keeps track of output pagingPCLOGK Calculate the effect of pressure on logk if pressure

is greater than ph2oPHCALC Routine for calculating pH at £ higher temperaturePHOPT Routine for the pH option (adjust pH to saturation

with calcite or siderite or colomite)PITZER Calculate the activity of aqueous species and the

osmotic coefficient based up the pitzer ion pairingmodel

POLY Solves the cubic equation which describes thepartitioning between gas, oil, and water.

PRATIO Print mole ratio, log of activity ratio, andcalculated subsurface temperatures

PRINTR Print calculated distribution df speciesPRNTAB Print the calculated values of aqueous log kPSAT Calculate the vapor saturated pressure of water (ph2o)

at temperature tPTZINT Calculate the parameters for the pitzer equation as a

function of temperatureSORTA Sorts arraysSTORE Creates the restart fileTABLES Read main data file from unit 10WAPVT Calculate the properties of pure waterWDBP Calculate the dielectric properties of water

Functions

ATCPRD Calculates the activity product of a mineralDEBYE Determines the value of an unknown ion size parameterGETUNT Return the unit number of a fileKHCH4 Calculate the Henry's law constant for CH4KHC02 Calculate the Henry's law constant for C02KHH2S Calculate the Henry's law constant for H2SKHNH3 Calculate the Henry's law constant for NH3LENGTH Determines the length of a character stringSEXP10 Substitute exponetial functionSLOG10 Substitute common log function

Declare constants

CPUMAX DBL Largest positive real value program usesCPUMIN DBL Smallest positive real value program usesNMAX INT General array dimension to allow easy expansionUNI INT File unit assigned for input fileUNO INT File unit assigned for output file

INTEGER NMAX, UNI, UNODOUBLE PRECISION CPUMAX, CPUMINPARAMETER (NMAX - 340, UNI - 5, UNO - 6)PARAMETER (CPUMAX - l.OD+35, CPUMIN - l.OB-35)

---__------------------_--_------_--_---_--_i-_-__-________________.Declare variables

*A DBL Molal Debye-Huckel coeffiiient

|SOL 0570JSOL 0580JSOL 0590ISOL 0600ISOL 0610JSOL 0620|SOL 0630(SOL 0640JSOL 0650|SOL 0660(SOL 0670JSOL 0680JSOL 0690ISOL 0700JSOL 0710|SOL 0720(SOL 0730JSOL 0740|SOL 0750|SOL 0760(SOL 0770|SOL 0780JSOL 0790ISOL 0800JSOL 0810JSOL 0820|SOL 0830JSOL 0840JSOL 0850|SOL 0860|SOL 0870JSOL 0880JSOL 0890JSOL 0900JSOL 0910JSOL 0920|SOL 0930JSOL 0940JSOL 0950JSOL 0960

| SOL 0970 |SOL 09801 SOT OQQOI i3wi_i \jyy\j

JSOL 1000JSOL 1010|SOL 1020JSOL 1030JSOL 1040JSOL 1050SOL 1060SOL 1070SOL 1080SOL 1090SOL 1100|SOL 1110ISOL 1120JSOL 1130ISOL 1140

210

Page 211: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

A1MIXAD ENSAD EXAHIALFAALKALOWAMOLANALMANMMIXANMTICATEMPBB2MIXBOATBDENSBOOTBHIBLOWBNMMIXBTEMPBUFFERCECCHICLOWC02FCOEFCONV1CONV2CRCUNITSDCH4DDCH4DC02DDC02DH2SDDH2SDNH3DDNH3DELVRDENSDFRAC1DHADINGDNSDPDSEPEHMEHMCEMFZSCEXELTFBOILFCCSATFILEINFILEOTFIXITFLAGSFMIX

DBLDBLINTDBLDBLINTDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLCHADBLDBLDBLDBLDBLDBLDBLCHADBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLCHADBLDBLDBLDBLDBLDBLDBLDBLCHACHADBLINTDBL

HTOT, OHTOT, and TIC for comp 1 of a mixture |SOL 1150Density of solution A jSOL 1160Flag for surface chemistry option (SOL 1170Pressure correction fit parameter jSOL 1180Activity of aqueous species i |SOL 1190Flag for distribution of carbonate species (SOL 1200Pressure correction fit parameter JSOL 1210Molality of aqueous/mineral species added |SOL 1220Analyzed molality of species i |SOL 1230Analyzed molality of species i in solution A |SOL 1240Analysed TIC |SOL 1250Temperature of solution A |SOL 1260Molal Debye-Huckel coefficient jSOL 1270HTOT, OHTOT, and TIC for comp 1 of a mixture jSOL 1280B-dot as a function of temperature |SOL 1290Density of solution B |SOL 1300Activity coefficient deviation function (SOL 1310Pressure correction fit parameter JSOL 1320Pressure correction fit parameter (SOL 1330Analyzed molality of species i in solution B (SOL 1340Temperature of solution B |SOL 1350Used for memory/memory writes j SOL 1360Cation exchange capacity JSOL 1370Pressure correction fit parameter j SOL 1380Pressure correction fit parameter j SOL 1390Sum of C02 plus C02 lost from solution |SOL 1400Stoichiometric coefficient and Id number |SOL 1410Tolerance factor for convergence of anions j SOL 1420Tolerance factor for hydronium mass-balance |SOL 1430Inserts carriage returns in output j SOL 1440Analytical input concentration |SOL 1450Used to add/remove CH4 from water JSOL 1460 Concentration of CH4 lost before pH measurement |SOL 1470Used to add/remove C02 from water JSOL 1480 Concentration of C02 lost before pH measurement JSOL 1490Used to add/remove H2S from Water JSOL 1500 Concentration of H2S lost before pH measurement |SOL 1510Used to add/remove NH3 from water JSOL 1520 Concentration of NH3 lost before pH measurement JSOL 1530Change in volume at 25 degrees |SOL 1540Density |SOL 1550Smallest fraction of soln 1 mixed with soln 2 JSOL 1560Ion size parameter JSOL 1570Increment of solution 1 to be added |SOL 1580Determines if density should be calculated JSOL 1590Dissolution/precipitation switch JSOL 1600Density of oil at 15 degree C JSOL 1610Measured Eh in volts |SOL 1620Measured Eh using the Calomel electrode |SOL 1630Measured Eh using the Zobell's solution JSOL 1640Total moles of component. |SOL 1650Fraction of solution boiled-off as steam |SOL 1660Tolerance factor for pH and C02 options j SOL 1670Name of input file |SOL 1680Name of output file j SOL 1690Fixing value in the C02 option . |SOL 1700Selection flags for calculation of redox equil. JSOL 1710Stores fraction of mixing |SOL 1720

211

Page 212: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

GAMMAGEOTHGFWHITEMPHTOTHTOTIIIACTIADJIBMIXI CALLICCSATIC02IDDPIDMIXIDNID SATIEXCHIGASILOIMAXIMC03IMIXINFORMINMIXINSPIOPTI PAGEIPGLNI PHASEIPHNUMIPITIPRIN1IPRIN2IRUNIRXDPI SALTI SATISCHGISCOMPITICITMIXITWRJJCCSTJC03JMIXTRKCH40LKC020LKH2SOLKRXNKT1LKT1LKT2LOGKT1LOGKT2MMBASE

DELINTDELDELDELDELINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTDELDELDELDELDELDELDELDELDELDELDEL

Activity coefficient |SOL 1730Flag to select geothermometer j SOL 1740Gram formula weight of aqueous species |SOL 1750In-situ temperature |SOL 1760Current sum of all H+ in solution jSOL 1770Target sum of all H+ in solution |SOL 1780Loop variable/counter jSOL 1790Switch for printing activity ratios |SOL 1800Has HITEMP been calculated or not |SOL 1810Switch for mixing option jSOL 1820Loop variable |SOL 1830Switch for pH option jSOL 1840Switch for C02 option |SOL 1850Id number of the mineral to be dissolved/ppt jSOL 1860Id number of the aqueous species to be added |SOL 1870Id numbers of the ISCOMP components adsorption [SOL 1880Id number of the mineral to be equilibrated jSOL 1890Switch for adsorption/ion exchange |SOL 1900Loop variable for gas qption |SOL 1910Lower limit for index for low/high T log K's |SOL 1920Max number of iterations for various options jSOL 1930Selects C02 option |SOL 1940Switch used in MIXER routines |SOL 1950 Flag to print all the log K values in data base jSOL 1960Total number of mixtures of two solution mixed jSOL 1970Total number of surface sites for adsorption [SOL 1980Switch for C02 option jSOL 1990Current page number of output file |SOL 2000Current line number of the output file jSOL 2010Switch used for GAS options |SOL 2020Counter used in PHCALC |SOL 2030Flag to use pitzer activity coefficients jSOL 2040Flag for printing iteration of anions jSOL 2050Flag for printing hydronium balance j SOL 2060Keeps track of the number of runs completed |SOL 2070Id number of the aqueous species to be added [SOL 2080Switch used in mixer to indicate option jSOL 2090Counter used in co2opt |SOL 2100Charge of each surface site for adsorption jSOL 2110Total number of components in dissociation jSOL 2120Hitemp distribution of carbonate species jSOL 2130Switch for the mineral saturation option jSOL 2140Switch to control printing of some headings |SOL 2150Loop counter jSOL 2160Switch indicating if phopt called 1st time [SOL 2170Switch to control printing of some headings jSOL 2180Counter for maximum number of mixtures [SOL 2190Henry's law coefficient for CH4 in oil [SOL 2200Henry's law coefficient for C02 in oil jSOL 2210Henry's law coefficient for H2S in oil jSOL 2220K for dissociation reaction of surface species jSOL 2230Equilibrium constant of the aqueous reactions jSOL 2240Log K for aqueous species with temperature jSOL 2250Log K for minerals with temperature [SOL 2260Log K for aqueous species at specified temp. |SOL 2270Log K for minerals at specified temperature |SOL 2280Calculated molality of ^queous species |SOL 2290Equivalence Mole Fraction (initial) on surface SOL 2300

212

Page 213: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cccccccccccccccccccccccccccccccccccccccccccccccccccccc

MINCOMININDMINLOGMNACLDMUMXAQKMXMNKMXPCMXSPNDUMNH20NUFLAGODUMOHTOTOHTOTIOKOUTINPAGE1PAGE 2PAGE3PC02PHPH20PHHITPPHHITPRESSRATIORXDPSAREASC02SPNTAREATCH4MTC02TC02MTDSTEMPTH2SMTICTIT1TIT2TITLETITMIXTITRTKTOFTOTELUNITSUNMWROILXDXDUMY28Z

INTEGERINTEGERINTEGER

DBLINTDBLDBLDBLINTINTINTINTINTDBLINTCHADBLDBLINTCHACHACHACHADBLDBLDBLINTINTDBLINTDBLDBLDBLCHADBLDBLDBLDBLDBLDBLDBLDBLCHACHACHACHADBLDBLCHADBLCHAINTDBLDBLDBLINTINT

Stoichiometric coefficient for added mineralsIndex number of the added mineralLog K values for added mineralsSum of Molality * charge / 2Ionic strength of aqueous solutionTotal number of aqueous log k valuesTotal number of mineral log k valuesTotal number of mineral pressure constantsTotal number of aqueous speciesId of mineral/aqueous complex with K(T) changedNumber of water ionization reactions

|SOL 2310JSOL 2320|SOL 2330JSOL 2340|SOL 2350JSOL 2360|SOL 2370JSOL 2380|SOL 2390JSOL 2400|SOL 2410

Sets the activity coefficients of neutral species) SOL 2420Switch to indicate a mineral/aqueous complexCurrent sum of all OH- in solutionTarget sum of all OH- in solutionError flag for Lagrange interpolation routineName of restart file nameNames of aqueous speciesNames of equilibrium constantsNames of solubility constantsPartial pressure of C02Measured pH of the solutionPartial pressure of H20Hitemp switch, used to control phcalcSwitch to control calling phcalcTotal pressureFlag for printing activity ratios of elementsMolal amount of the aqueous species addedTotal surface area per kilogram of solventSum of C02 speciesName of each surface species adsorptionSite density per unit areaMoles CH4 distributed between oil, water, vaporActivity coefficients of C02 with temperatureMoles C02 distributed between oil, water, vaporTotal Dissolved Solids (UNITS = KG/L)Temperature of the solution when pH was measuredMoles H2S distributed between oil, water, vaporConcentration of total inorganic carbonName of solution AName of solution BName of the sampleTitle for mixturesIteration array in DISTRB, used for guessesTemperature steps used by programPlaces a form feed in output fileContains HTOT, OHTOT and Sum C02Units of concentrationFile unit connected the external mixing fileOil to water weight ratioHolds Log K's for additional anions & cationsNew log K(T) valueSet at hitemp to skip unneeded calculationsCharge of aqueous species

ALK, ANSI, ANS2, FLAGS (6), GEOTHI, IACT , IADJ, IBMIX, ICALL, ICCSAT, IC02, IDDPIDMIX(50), IDN(10,10), IDONE, IDSAT

|SOL 2430JSOL 2440|SOL 2450JSOL 2460|SOL 2470JSOL 2480|SOL 2490JSOL 2500|SOL 2510JSOL 2520JSOL 2530|SOL 2540|SOL 2550|SOL 2560|SOL 2570JSOL 2580JSOL 2590|SOL 2600|SOL 2610JSOL 2620|SOL 2630|SOL 2640|SOL 2650JSOL 2660JSOL 2670|SOL 2680|SOL 2690|SOL 2700|SOL 2710|SOL 2720|SOL 2730JSOL 2740|SOL 2750|SOL 2760JSOL 2770JSOL 2780|SOL 2790|SOL 2800JSOL 2810|SOL 2820|SOL 2830|SOL 2840i COT OP ̂ n 1 bULi ZoDU

SOL 2860SOL 2870SOL 2880

213

Page 214: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

INTEGER IEXCH, IGAS, ILO, IMAX, IMC03, IMIX, INFORM, INMIX, INSP INTEGER IOPT, IPAGE, IPGLN, IPHASE, IPHNUM, IPIT, IPRINl, IPRIN2 INTEGER IRUN, IRXDP(IO), ISALT, ISAT, ISCHG(IO), ISCOMP(IO) INTEGER ITIC, ITMIX, ITT, ITWR, J, JCCST, JC03, JMIXTR, LEN INTEGER LENGTH, MININD(8,5), MIXFLG, MXAQK, MXMNK, MXPC, MXSP INTEGER NDUM(12), NUFLAG, NUM, NUMCOM, NUMINS, OK, PHHIT, PPHHIT INTEGER RATIO, UNM, Y28, Z(NMAX)

CHARACTER*! CHARACTER*5 CHARACTER*8 CHARACTER*10 SPN(IO) CHARACTER*32 TIT1, TIT2 CHARACTER*40 TITMIX CHARACTER*80 ANS, BUFFER

ADEX, CR, DNS, ODUM(12), TOFUNITSPAGEl(NMAX), PAGE2(NMAX), PAGES(NMAX)

FILEIN, FILEOT, MIXFLE, OUTIN, TITLE

DOUBLE PRECISION A, AlMIX(5), ADENS, AHI(200), ALFA(NMAX) DOUBLE PRECISION ALOW(200), AMOL(50), ANALM(NMAX), ANMMIX(NMAX)

SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL

DOUBLE PRECISION ANMTIC, ATEMP, B, B2MIX(5), BDAT(IO), BDENS, BDOTSOL DOUBLE PRECISION BHI(200), BLOW(200), BNMMIX(NMAX), BTEMP SOLDOUBLE PRECISION CEC, CHI(200), CLOW(200), C02FDOUBLE PRECISION COEF(10,10), CONV1, CONV2DOUBLE PRECISION CUNITS(NMAX), DCH4, DC02, DDCH4, DDC02, DDH2SDOUBLE PRECISION DDNH3, DELVR(NMAX), DENS, DFRAC1, DH2SDOUBLE PRECISION DHA(NMAX), DING, DNH3, DPDOUBLE PRECISION EHM, EHMC, EMFZSC, EXELT(35)DOUBLE PRECISION FBOIL, FCCSAT, FIXIT, FMIX(IO)DOUBLE PRECISION GAMMA(NMAX), GFW(NMAX), HITEMP, HTOT, HTOTIDOUBLE PRECISION KCH40L, KC020L, KH2SOL, KRXN(IO)DOUBLE PRECISION KTl(NMAX)DOUBLE PRECISION LKT1(NMAX,11), LKT2(NMAX,11)DOUBLE PRECISION LOGKTl(NMAX), LOGKT2(NMAX), M(NMAX)DOUBLE PRECISION MBASE(10), MINCO(9,5), MINLOG(2,5)DOUBLE PRECISION MNACLD, MU, NH20(NMAX), OHTOT, OHTOTIDOUBLE PRECISION PC02, PH, PH20, PRESS, DSEP, RXDP(IO)DOUBLE PRECISION SAREA, SC02

TCH4M, TC02(10), TC02M, TDS, TEMP TIC, TITR(ll), TK(ll), TOTEL(5) XD(2,45), XDUM(12)

DOUBLE PRECISION TAREA DOUBLE PRECISION TH2SM DOUBLE PRECISION WROIL

EXTERNAL ACTIVE, EXTERNAL INTIAL, EXTERNAL PRNTAB,

INTRINSIC DABS, DLOG10, INDEX

SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOLSOL

COMMON /AL / NDUM, XDUM SOLCOMMON /ALOGK / LOGKT1, LOGKT2 SOLCOMMON /AMM / IDMIX, AMOL, ITMIX, INMIX, DFRAC1, DING, FBOIL SOLCOMMON /BASIC / DENS, PRESS, EHM, EHMC, EMFZSC, TIC, FCCSAT, XD, SOL

NUMCOM, NUMINS, MINLOG, MINCO, MININD, CONV1, SOLCONV2 SOL

COMMON /CH / ODUM SOLCOMMON /DIST / TC02M, TCH4M, TH2SM, WROIL, KCH40L, KC020L, SOL

KH2SOL, IPHASE, DSEP SOLCOMMON /EXCHAN/ COEF, MBASE, KRXN, CEC, TAREA, SOL

SAREA, IDN, ISCHG, ISCOMP^ INSP SOLCOMMON /EXTOT / EXELT, TOTEL, TITR SOL

2890290029102920293029402950296029702980299030003010302030303040305030603070308030903100311031203130314031503160317031803190320032103220323032403250326032703280329033003310332033303340335033603370338033903400341034203430344034503460

214

Page 215: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

r>\J -

CCCC

COMMON /FLAGCM/ ALK, ITIC, ICCSAT, IMC03 , ITT, ANSI, ANS2,NUFLAG, IPIT, FLAGS, INFORM, RATIO, GEOTH,IPRIN1, IPRIN2

COMMON /FMFD / TOF, CR, TITMIXCOMMON /FORM / IPAGE, IPGLNCOMMON /GAS / DC02 , DDC02 , DH2S, DDH2S, DNH3 , DDNH3 ,

DCH4, DDCH4, IOPT, FIXITCOMMON /IMM / IBMIX, IMIXCOMMON /KK / LKT1, LKT2COMMON /MM / ANMMIX, AlMIX, B2MIX, FMIX, BNMMIX, ADENS , BDENS ,

ATEMP, BTEMPCOMMON /MOLS / PH, ANALM, M, ALFA, CUNITSCOMMON /NAMES1/ PAGE1, PAGE 2 , PAGE3COMMON /NAMES 2/ SPNCOMMON /NAMES3/ MIXFLE, OUTIN, TITLE, UNITS, ADEXCOMMON /PTK / DELVR, NH20, ALOW, BLOW, CLOW, AHI , BHI , CHICOMMON /SAT/ IDDP, IDSAT, DP, RXDP, IRXDPCOMMON /TABCOM/ MXSP, MXMNK, GFW, Z, DHACOMMON /TOTALS/ C02F, HTOTI , OHTOTICOMMON /TTK / KT1COMMON /ZPH / PHHIT, PPHHIT, JC03, SC02 , HTOT, OHTOT

The following open statements have been commented out byErnie Perkins (ORSD, ARC) in order to allow a commandproceedure under VMS 4.5 on DEC VAX's to assign the filesexternal to the program.

PRINT *, ' ENTER THE NAME OF THE SAMPLE INPUT FILE ?'PRINT*, ' Default- [ SOLMINEQ . IN ]'READ ' (A) ' , FILEINIF (FILEIN ,EQ. ' ') FILEIN - ' SOLMINEQ. IN'

NUM - INDEX (FILEIN, '.')

IF (NUM .EQ. 0) THENNUM - LENGTH (FILEIN)FILEOT - FILEIN(1:NUM) // '.OUT'

ELSEFILEOT - FILEIN(liNUM) // 'OUT'

END IF

LEN = LENGTH (FILEOT)

PRINT *, ' ENTER THE NAME OF THE OUTPUT FILE ?'PRINT '(IX, A, A, A)', ' Default- [', FILEOT (1: LEN ), ']'READ ' (A) ' , ANSIF (ANS .NE. ' ') FILEOT = ANS

OPEN (UNIT-UNI, FILE - FILEIN, STATUS - 'OLD')OPEN (UNIT-UNO, FILE - FILEOT, STATUS - 'UNKNOWN')

TOF - '!'CR - '+'

SOL 3470SOL 3480SOL 3490SOL 3500SOL 3510SOL 3520SOL 3530SOL 3540SOL 3550SOL 3560SOL 3570SOL 3580SOL 3590SOL 3600SOL 3610SOL 3620SOL 3630SOL 3640SOL 3650SOL 3660SOL 3670SOL 3680|SOL 3690 SOL 3700|SOL 3710 |SOL 3720|SOL 3730|SOL 3740JSOL 3750SOL 3760SOL 3770SOL 3780SOL 3790SOL 3800SOL 3810SOL 3820SOL 3830SOL 3840SOL 3850SOL 3860SOL 3870SOL 3880SOL 3890SOL 3900SOL 3910SOL 3920SOL 3930SOL 3940SOL 3950SOL 3960SOL 3970SOL 3980SOL 3990|SOL 4000 SOL 4010SOL 4020SOL 4030SOL 4040

215

Page 216: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

MIXFLG IRUN IPGLN I PAGE

DO 10 I - 1, NMAX PAGEl(I) = ' GFW(I) = 0.0 DHA(I) = 0.0 Z(I) - 0

10 CONTINUE

Read the data base on unit 10

CALL TABLES (MXAQK, BDAT, TK, TC02, MXPC)

Initialize values for each new sample input

20 CONTINUE ICALL = 0 ISALT = 0 IMIX = 0 IBMIX = 0 JMIXTR = 0 INMIX = 0 TITMIX = '

CALL INTIAL (OK, ALK, INFORM, RATIO, GAMMA, TEMP, HITEMP, PRESS, HTOTI, OHTOTI, IC02, IMC03, IBMIX, FCCSAT, IEXCH, ISAT, IPHNUM, JCCST)

Read one data set from the input file on unit 5

CALL INPUT (UNI, TEMP, HITEMP, DNS, PHHIT, IEXCH, IC02, MIXFLG)

ILO - 1

Compute aqueous LOGKT'S at the desired temperature

30 CONTINUECALL LAGINT (TK, LKT1, TEMP, LOGKT1, MXAQK, NMAX, OK)

If the sample "TEMP" is within the range from 0-350 degrees then continue, otherwise get the next data set or stop.

IF (OK .NE. 1) THENCALL STORE (TEMP, HITEMP) GO TO 20

SOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOL

| SOL| SOL| SOLSOLSOLSOL

| SOL| SOL| SOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOL

| SOL| SOL| SOLSOLSOLSOLSOLSOL

| SOL| SOL| SOLSOLSOLSOLSOL

| SOL| SOLj SOL| SOLSOLSOLSOLSOL

4050406040704080409041004110412041304140415041604170418041904200421042204230424042504260427042804290430043104320433043404350436043704380439044004410442044304440445044604470448044904500451045204530454045504560457045804590460046104620

216

Page 217: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

END IF

C Compute mineral LOGKT'S at the desired temperature. C ----.-....-.-.-.---..-.....-.-.-----....-----------------

CALL LAGINT (TK, LKT2, TEMP, LOGKT2, MXMNK, NMAX, OK)

C Calculate the saturation pressure of H20 C ------.-...-...--....-......--------.....-...

CALL PSAT (TEMP, PH20)

If input pressure is greater than PH20, the logkt ofaqueous species are adjusted using the "density model" of mesmerIf hitemp is > 0, adjustment of logkt is done only at hitemp.

IADJ = 0IF (PHHIT .EQ. 1) THEN

IF (DABS(HITEMP - TEMP) .LT. CPUMIN) THENILO = 7

ELSEIADJ - 1

END IF END IF

Replace some of the logkt's that were read in input

DO 40 I = ILO, (ILO + 5) IF (NDUM(I) .GT. 0) THEN

IF (ODUM(I).EQ.'A') THENLOGKT1(NDUM(I)) = XDUM(I)

ELSE IF (ODUM(I).EQ.'M') THENLOGKT2(NDUM(I)) = XDUM(I)

END IF END IF

40 CONTINUE

DO 50 I = 2, 15IF (DABS(HITEMP - TEMP) .LT. CPUMIN) THEN LOGKTl(MXAQK+I- 1) = XD(2,I) LOGKTl(MXAQK+I+13) = XD(2,I+15) LOGKTl(MXAQK+I+27) = XD(2,I+30)

ELSELOGKTl(MXAQK+I- 1) = XD(1,I) LOGKTl(MXAQK+I+13) = XD(1,I+15) LOGKTl(MXAQK+I+27) = XD(1,1+30)

END IF 50 CONTINUE

DO 60 I - 1, 5IF (DABS(HITEMP - TEMP) .LT. CPUMIN) THEN

SOLSOL

| SOL[SOLj SOLSOLSOLSOL

| SOL[SOLj SOLSOLSOLSOLSOL

| SOLj SOLj SOL[SOLI SOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOL

| SOLj SOL| SOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOL

4630464046504660467046804690470047104720473047404750476047704780479048004810482048304840485048604870488048904900491049204930494049504960497049804990500050105020503050405050506050705080509051005110512051305140515051605170518051905200

217

Page 218: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

LOGKT2(MXMNK+I) ELSELOGKT2(MXMNK+I)

END IF 60 CONTINUE

MINLOG(2,I)

MINLOG(1,I)

Adjust aqueous logkts for the pressure difference (press - ph2o)

IF (IADJ .EQ. 0 .AND. PRESS .GT. PH20 .AND. PRESS .GT. l.ODOO) CALL PCLOGK (TEMP, PH20, PRESS, MXAQK, MXPC)

Reset aqueous logkt's so there will be no zero divide and calculate kt from logkt

DLOGIO(CPUMIN) DLOGIO(CPUMAX)

DO 70 I = 1, NMAXIF (LOGKTl(I) .LT. DLOGIO(CPUMIN)) LOGKTl(I) IF (LOGKTl(I) .GT. DLOGIO(CPUMAX)) LOGKTl(I) KT1(I) = 10.0**(LOGKT1(I))

70 CONTINUE

Print log k values

IF (INFORM .EQ. 1) CALL PRNTAB (TITLE, TEMP, MXAQK) Y28 = 1

If "temp" is greater than 0 and equal to "hitemp" then go to calculate.

IF (TEMP.GT.1.0D-10.AND.(DABS(HITEMP-TEMP)).LT.l.OD-10) GO TO 80 ALFA(8) - 10.0DOO**(-PH)

Calculate the molality of total inorganic carbon from the given value of tic and assign first-guess values to the concentration of hco3 and co3

IF (TIC .GT. CPUMIN) THENIF (UNITS .NE. ANMTIC = TIC CUNITS(98) =

CUNITS( 7) = CUNITS(98) = CUNITS( 7) -

ELSE ANMTIC CUNITS(98) -

'MOL/L' .AND. UNITS .NE. 'MOL/K' ) THEN/ 12011.0(TIC / 12011.0) / (l.ODOO + (ALFA(8) / KT1(1))

+ (ALFA(8)**2.0 / (KT1(1) * KT1(72)))) CUNITS(98) * ALFA(8) / KT1(1) CUNITS(98) * 1.0D3 * GFW(98) CUNITS( 7) * 1.0D3 * GFW( 7)

TICTIC / (l.ODOO + (ALFA(8) / KT1(1))

(ALFA(8)**2.0CUNITS( 7) - (CUNITS(98) * ALFA(8) / KTl(l))

* KT1(72))))

SOLSOLSOLSOLSOLSOL

| SOL| SOL| SOLSOLSOLSOLSOL

| SOL| SOL| SOLI SOLSOLSOLSOLSOLSOLSOLSOL

| SOL| SOL| SOLSOLSOLSOLSOL

| SOL| SOLI SOL| SOLSOLSOLSOLSOL

| SOLI SOL| SOL| SOL| SOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOL

5210522052305240525052605270528052905300531053205330534053505360537053805390540054105420543054405450546054705480549055005510552055305540555055605570558055905600561056205630564056505660567056805690570057105720573057405750576057705780

218

Page 219: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

END IF ALK - 2

END IF

Y28 - 0

SOL 5790 SOL 5800 SOL 5810 SOL 5820 SOL 5830 SOL 5840

____._.____________._-----------------------------------------------| SOL 5850Calculation of eh, cation-anion balance, gamma of neutral species)SOL 5860temperature effects on debye-huckel constants and assignment (SOL 5870of mass-balance criteria for speciation calculations (SOL 5880

_____________________.____.-------------------------..------.-----.-jSOL 5890SOL 5900

80 CONTINUE SOL 5910CALL CALCUL (A, B, TDS, Y28, DNS, TEMP, HITEMP, PRESS, DENS, EHM, SOL 5920

EHMC, EMFZSC, GFW, Z, UNITS, MXSP, TIC, ANMTIC, SOL 5930GAMMA, TC02, BOAT, BOOT, MNACLD, NUFIAG) SOL 5940

SOL 5950 .....................................................................|SOL 5960

|SOL 5970 I SOL 5980

-----|SOL 5990 SOL 6000 SOL 6010 SOL 6020 SOL 6030 SOL 6040 SOL 6050

-----|SOL 6060jSOL 6070

..................................................................|SOL 6080SOL 6090

CALL DISTRB (NUFIAG, FLAGS, GAMMA, Z, DHA, TEMP, HITEMP, EHM, ALK,SOL 6100 TITLE, A, B, MXSP, MXAQK, MU, IPRIN1, IPIT, TK, SOL 6110 CONV1, ANMTIC, ITIC, HTOT, OHTOT, SC02, JC03, ITWR, SOL 6120 BOOT) SOL 6130

SOL 6140IF (PHHIT .EQ. 1 .AND. DABS(HITEMP-TEMP) .LT. l.OD-10) GO TO 110 SOL 6150 IF (PHHIT .NE. 1 .AND. IOPT .GT. 0) GO TO 120 SOL 6160

SOL 6170IF (ICCSAT .EQ. 0) THEN SOL 6180

IACT - 1 SOL 6190 GO TO 100 SOL 6200

END IF SOL 6210SOL 6220

-----|SOL 6230 |SOL 6240

..................................................................j SOL 6250SOL 6260

IF (ICCSAT .GT. 0) CALL PHOPT (ICCSAT, FCCSAT, ITWR, JCCST, *90) SOL 6270 IF (PHHIT . EQ. 1) IACT - 1 SOL 6280

SOL 6290-----|SOL 6300

jSOL 6310 .....................................................................| SOL 6320

SOL 6330100 CONTINUE SOL 6340

CALL PRINTR (TITLE, EHM, UNITS, DENS, PRESS, GFW, TEMP, Z, GAMMA, SOL 6350PH20, PC02, TDS, MU, MNACLD, SC02, HTOT, OHTOT, MXSP)SOL 6360

ITWR is set equal to 1 in distrb to avoid the printing of headings during ph calculations

ITWR = 0

90 CONTINUE IACT - 0

Distribution of species calculations

Do the ph option, if asked for

Print the distribution of species calculations.

219

Page 220: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

IF (IACT .EQ. 1) GO TO 210

Iteration routine for the calculation of a new ph

110 CONTINUEIF (PPHHIT .EQ. 0) CALL PHCALC (TEMP, HITEMP, CONV2, ITIC, ITWR,

ISALT; IPHNUM, IPRIN2, *30, *90,*100, *220)

Do the co2 option

120 CONTINUEIF (IOPT .GT. 0) THEN

CALL C020PT (TEMP, HITEMP, GAMMA, IC02, IMC03, FCCSAT, MNACLDITIC, ISAT, IPRIN2, *100)

GO TO 110 END IF

Gas distribution option. Note a max. of twenty five tries

IF (IPHASE .GT. 0) THEN IMAX = 25DO 150 IGAS = 1, IMAX

I = IGAS CALL GASES (TEMP, PRESS, MNACLD, PH20, FCCSAT, I, IMAX,

IPRIN2)IF (IPHASE .LE. 0) GO TO 160 JC03 = 0 ITIC = 2 IOPT = 0 PHHIT = 1 PPHHIT = 0 IPHNUM = 0 DO 140 J - 1, IMAX

CALL PHCALC (TEMP, HITEMP, CONV2, ITIC, ITWR, ISALT, IPHNUMIPRIN2, *150, *130, *150, *150)

GO TO 150 130 CONTINUE

CALL DISTRB (NUFLAG, FLAGS, GAMMA, Z, DHA, TEMP, HITEMP,EHM, ALK, TITLE, A, B, MXSP, MXAQK, MU, IPRIN1 IPIT, TK, CONV1, ANMTIC, ITIC, HTOT, OHTOT, SC02, JC03, ITWR, BDOT)

140 CONTINUE 150 CONTINUE 160 CONTINUE

IACT = 0 CALL PRINTR (TITLE, EHM, UNITS, DENS, PRESS, GFW, TEMP, Z,

GAMMA, PH20, PC02, TDS, MU, MNACLD, SC02, HTOT, OHTOT, MXSP)

END IF

SOLSOLSOL

| SOL| SOL| SOLSOLSOLSOLSOLSOLSOL

| SOL| SOL| SOLSOLSOLSOL,SOLSOLSOLSOLSOL

| SOL| SOL| SOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOL,SOLSOLSOLSOLSOL,SOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOLSOL

6370638063906400641064206430644064506460647064806490650065106520653065406550656065706580659066006610662066306640665066606670668066906700671067206730674067506760677067806790680068106820683068406850686068706880689069006910692069306940

220

Page 221: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ocp\J

c\j Cc

Exchange and adsorption options

IF (IEXCH .GT. 0) THENUNITS = 'MOL/K'IMAX = 100HI TEMP = TEMPDO 190 ICALL = 1, IMAX

I = ICALLCALL ADSORB (TEMP, Z, IDONE, I, IEXCH, MXSP, IPRIN2)IF (IDONE .LE. 0) THEN

IEXCH = 0GO TO 200

END IFJC03 = 0ITIC = 2IOPT = 0PHHIT = 1PPHHIT = 0IPHNUM = 0CALL DISTRB (NUFLAG, FLAGS, GAMMA, Z, DMA,' TEMP, HITEMP, EHM,

ALK, TITLE, A, B, MXSP, MXAQK, MU, IPRIN1,IPIT, TK, CONV1, ANMTIC, ITIC, HTOT, OHTOT,SC02, JC03, ITWR, BDOT)

DO 180 J - 1, IMAXCALL PHCALC (TEMP, HITEMP, CONV2 , ITIC, ITWR, ISALT, IPHNUM

IPRIN2, *190, *170, *190, *190)GO TO 190

170 CONTINUECALL DISTRB (NUFLAG, FLAGS, GAMMA, Z, DHA, TEMP, HITEMP,

EHM, ALK, TITLE, A, B, MXSP, MXAQK, MU,IPRIN1, IPIT, TK, CONV1, ANMTIC, ITIC, HTOT,OHTOT, SC02, JC03, ITWR, BDOT)

180 CONTINUE190 CONTINUE

IPGLN = IPGLN + 6IF (IPGLN .GT. 58) CALL PAGEWRITE (UNO, 910)

200 CONTINUEIACT = 0CALL PRINTR (TITLE, EHM, UNITS, DENS, PRESS, GFW, TEMP, Z,

GAMMA, PH20, PC02 , TDS , MU, MNACLD, SC02 , HTOT,OHTOT, MXSP)

END IF

IF (IACT .EQ. 1) GO TO 220

Print mole ratios, log of activity ratios, and temperaturescalculated by chemical geothermometers

210 CONTINUECALL PRATIO (TITLE, PRESS, TEMP, DENS, UNITS, PC02 , GEOTH, RATIO)

| ID\JLJ u y j\j

JSOL 6960|SOL 6970SOL 6980SOL 6990SOL 7000SOL 7010SOL 7020SOL 7030SOL 7040SOL 7050SOL 7060SOL 7070SOL 7080SOL 7090SOL 7100SOL 7110SOL 7120SOL 7130SOL 7140SOL 7150SOL 7160SOL 7170SOL 7180SOL 7190SOL 7200,SOL 7210SOL 7220SOL 7230SOL 7240SOL 7250SOL 7260SOL 7270SOL 7280SOL 7290SOL 7300SOL 7310SOL 7320SOL 7330SOL 7340SOL 7350SOL 7360SOL 7370SOL 7380SOL 7390SOL 7400SOL 7410SOL 7420SOL 7430SOL 7440|SOL 7450 |SOL 7460|SOL 7470|SOL 7480SOL 7490SOL 7500SOL 7510SOL 7520

221

Page 222: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Calculate and print activity products of phases

CALL ACTIVE (TITLE, ALFA, TEMP, MXMNK, LOGKT2, PAGE3, MINCO, MININD)

IF (IACT .EQ. 1) GO TO 110

Process the mixing/boiling/mineral saturation option

220 CONTINUEIF (IBMIX .NE. 0) THEN

IF (IRUN .EQ. 0 .AND. ISALT .EQ. 0) THENTIT1 - TITLE

END IFIF (IBMIX ,EQ. 1) THEN

IF (ICALL .NE. 3) THENICALL - 1ISALT - 1IMIX - 1IF (ITMIX .EQ. 0) ISALT - 3IF (ISALT .EQ. 1) TITLE - 'MIXTURE OF '// TIT1 //

' WITH A SALT OR MINERAL' END IF CALL MIXER (TEMP, MNACLD, PRESS, DENS, ICALL, ISALT, IRUN,

MXSP, FCCSAT, PH20, IPRIN2, MXMNK) IF (ICALL .EQ. 1) THEN

PHHIT - 0PPHHIT - 1IMIX = 0IBMIX - 0GO TO 100

ELSEIF (ISALT .EQ. 1) IBMIX = 0GO TO 230

END IFELSE IF (IBMIX .EQ. 2) THEN

ICALL - 1 IF (IRUN .NE. 0) THEN

ICALL = 2IMIX - 1TIT2 - TITLE

END IF CALL MIXER (TEMP, MNACLD, PRESS, DENS, ICALL, ISALT, IRUN,

MXSP, FCCSAT, PH20, IPRIN2, MXMNK) IF (IMIX .EQ. 1) THEN

IBMIX - 0TITLE - 'MIXTURE OF '//TIT1//' AND ' // TIT2GO TO 250

END IF ICALL - 0 ISALT - 0 IMIX - 0 JMIXTR - 0 TITMIX - '

|SOL 7530 |SOL 7540 |SOL 7550 SOL 7560 SOL 7570 SOL 7580 SOL 7590 SOL 7600 SOL 7610 |SOL 7620 |SOL 7630 |SOL 7640 SOL 7650 SOL 7660 SOL 7670 SOL 7680 SOL 7690 SOL 7700 SOL 7710 SOL 7720 SOL 7730 SOL 7740 SOL 7750 SOL 7760 SOL 7770 SOL 7780 SOL 7790 SOL 7800 SOL 7810 SOL 7820 SOL 7830 SOL 7840 SOL 7850 SOL 7860 SOL 7870 SOL 7880 SOL 7890 SOL 7900 SOL 7910 SOL 7920 SOL 7930 SOL 7940 SOL 7950 SOL 7960 SOL 7970 SOL 7980 SOL 7990 SOL 8000 SOL 8010 SOL 8020 SOL 8030 SOL 8040 SOL 8050 SOL 8060 SOL 8070 SOL 8080 SOL 8090 SOL 8100

222

Page 223: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

CALL INTIAL (OK, ALK, INFORM, RATIO, GAMMA, TEMP, HITEMP, PRESS, HTOTI, OHTOTI, IC02, IMC03, IBMIX, FCCSAT, IEXCH, ISAT, IPHNUM, JCCST)

IF (MIXFLE .EQ. ' ') THENCALL INPUT (UNI, TEMP, HITEMP, DNS, PHHIT, IEXCH, IC02,

MIXFLG) ELSEUNM - 39OPEN (UNM, FILE - MIXFLE, STATUS = 'OLD')CALL INPUT (UNM, TEMP, HITEMP, DNS, PHHIT, IEXCH, IC02,

MIXFLG)CLOSE (UNM)

END IF IBMIX = 2 ILO = 1 GO TO 30

ELSEIF (ISALT .NE. 2) THEN

ICALL - 1IMIX - 1ISALT - 2TITLE - 'SOLUTION AFTER BOILING OF .. ' // TIT1

END IF CALL MIXER (TEMP, MNACLD, PRESS, DENS, ICALL, ISALT, IRUN,

MXSP, FCCSAT, PH20, IPRIN2, MXMNK) IF (ICALL .EQ. 1) THEN

PHHIT - 0PPHHIT = 1IMIX = 0IBMIX = 0GO TO 100

ELSEGO TO 230

END IF END IF

END IF

IMIX - 0IF (INMIX .EQ. 0) THEN

CALL STORE (TEMP, HITEMP)GO TO 20

END IF

Change the solution parameters to those of the mixture

230 CONTINUEIF (IMIX .EQ. 1) THENCALL INTIAL (OK, ALK, INFORM, RATIO, GAMMA, TEMP, HITEMP, PRESS

HTOTI, OHTOTI, IC02, IMC03, IMIX, FCCSAT, IEXCH, ISAT, IPHNUM, JCCST)

UNITS - 'MOL/K'ALK = 2ITIC - 0

SOL 8110 SOL 8120 SOL 8130 SOL 8140 SOL 8150 SOL 8160 SOL 8170 SOL 8180 SOL 8190 SOL 8200 SOL 8210 SOL 8220 SOL 8230 SOL 8240 SOL 8250 SOL 8260 SOL 8270 SOL 8280 SOL 8290 SOL 8300 SOL 8310 SOL 8320 SOL 8330 SOL 8340 SOL 8350 SOL 8360 SOL 8370 SOL 8380 SOL 8390 SOL 8400 SOL 8410 SOL 8420 SOL 8430 SOL 8440 SOL 8450 SOL 8460 SOL 8470 SOL 8480 SOL 8490 SOL 8500 SOL 8510 SOL 8520 SOL 8530 SOL 8540 SOL 8550 |SOL 8560 |SOL 8570 |SOL 8580 SOL 8590 SOL 8600 SOL 8610 ,SOL 8620 SOL 8630 SOL 8640 SOL 8650 SOL 8660 SOL 8670 SOL 8680

223

Page 224: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

HITEMP - TEMPEHM = 9.0DOEMFZSC - 9.0DOEHMC = 9.0DOY28 = 0PHHIT = 1HTOTI = TOTEL(l)OHTOTI = TOTEL(2)ANMTIC = TOTEL(3)DO 240 I = 1, NMAX

IF (I .EQ. 8) ANALM(I) = O.ODOOIF (I .EQ. 9) ANALM(I) = O.ODOOCUNITS(I) - ANALM(I)M(I) - ANALM(I)

240 CONTINUEGO TO 80

END IF

C ______________ -- - __.

SOL 8690SOL 8700SOL 8710SOL 8720SOL 8730SOL 8740SOL 8750SOL 8760SOL 8770SOL 8780SOL 8790SOL 8800SOL 8810SOL 8820SOL 8830SOL 8840SOL 8850SOL 8860

_______________ ____ _ COT PP7fi-----___-_________-______ i3Vjj_, OO/U

C Mix the two solution in a single or multiple mixtures case SOL 8880c ______________

250 CONTINUEJMIXTR = JMIXTR + 1CALL STORE (TEMP, HITEMP)IF (INMIX .LT. JMIXTR) GO TO 20

QHT p p on_________________________ j)Ui_i ooyu SOL 8900SOL 8910SOL 8920SOL 8930SOL 8940SOL 8950

WRITE (BUFFER, 900) FMIX ( JMIXTR) , (l.ODO - FMIX(JMIXTR) ) SOL 8960READ (BUFFER, '(A)') TITMIX

f> 260 I = 1, MXSP + 44ANALM(I) = (ANMMIX(I) * FMIX ( JMIXTR) )

SOL 8970SOL 8980SOL 8990SOL 9000

+ (BNMMIX(I) * (l.ODO - FMIX (JMIXTR))) SOL 9010260 CONTINUE

DO 270 I = 1, 5TOTEL(I) = (AIMIX(I) * FMIX ( JMIXTR) )

SOL 9020SOL 9030SOL 9040SOL 9050

+ (B2MIX(I) * (l.ODO - FMIX (JMIXTR))) SOL 9060270 CONTINUE

IMIX = 1DNS = 'Y'

SOL 9070SOL 9080SOL 9090SOL 9100

DENS = (ADENS * FMIX(JMIXTR) ) + (BDENS * (l.ODO - FMIX ( JMIXTR) )) SOL 9110TEMP = (ATEMP * FMIX(JMIXTR) ) + (BTEMP * (l.ODO - FMIX ( JMIXTR) )) SOL 9120HITEMP = O.ODOOGO TO 230

SOL 9130SOL 9140SOL 9150

900 FORMAT ('(PROPORTIONS: 1= ' , F4 . 2 , ' 2= ',F4.2,')') SOL 9160910 FORMAT(//, ' ***************WARNING********************' , SOL 9170

/, ' Convergence not reached/, ' /ION EXCHANGE routine./ , ' may be in error . ' ,/)

END

in ADSORBPTION' , SOL 9180Following results', SOL 9190

SOL 9200SOL 9210SOL 9220

224

Page 225: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

522

0850 IOV0^50 IOV0950 IOV0550 IOV0^750 IOVoeso iov0250 IOV0150 IOV0050 IOV06t70 lOVl -08^0 lOVlQLW lovl09^0 lOVl05^0 lOVlOVVO lOVloevo lovl02^0 lOVlOTt70 lOVl00^0 lOVl06£0 lOVloseo lovlo^eo lovl09£0 lOVl05CO lOVloveo lovloeeo lovlO2eo lovloieo lovl00£0 lOVl0620 lOVl0820 lOVl0^20 lOVl0920 lOVl0520 lOVlOV20 lOVloe2o lovl0220 lOVl0120 lOVl0020 lOVl0610 lOVl0810 lOVl -oao iov0910 IOV0510 IOVOt7TO IOVoeio iov0210 lOVl -OIIO lOVl0010 lOVl0600 lOVl0800 lOVl0^00 lOVl 0900 lOVl0500 lOVl -ow lovloeoo'ioyl-0200 IDV^0100 IOV

aim os *XIWIII 0^7 *

(XVWNK33Va 8 *HO '£01 I *

WQN '2NWXW '(5'6)QNINIW ' (XVWN' Ol)XQNIW 'l '233Vai 'Nioai '(OI)XQNI ' (XVWN)X3dNI 'NI£I '01

e^Tj ^nd^no UT peej uiaoj B seoB^j VHOSUTXTUI aoj pasn ai^Tj, VHO

endures eq:j jo euiBj^ VHOepBjST^ueo seeaSep UT exn^B-ieduie:} ^ueaanQ igQ

UTAT_a>i seeaSep UT aan^Baeduia^ ^ueaanQ igQ^UB^SUOO SBO ^gQ

S^UB^SUOO X^TXTci171!03 J° sauiB^ VHO^no pe^uTad eq 03 sxBaeuTui jo ^UHOQ j^NI

sen^BA >[ 'Soi ^BaauTui jo aequmu ^B^OJ, INIXBaeuTUi peppB eq:j jo aequinu xepuj j^NI

e^qB^ UIJLOJ UT pBaa seToeds eq^ jo aequinu xepuj ^gQsxBaeuTUi peppB aoj ^uaTOTjjeoo oTa^euioTqoTo^s 19G

a~[qB^ uioaj UT pBea seToads jo ^uaTOTjjeoQ ^gQean^Baeduie^ peTjToads ^B sxBjeuTui aoj ^ So^ ^gQ^nd^no aq^ jo epTS ^je^; eq^ jo aequinu xapuj j^NI

^nd^no eq^ jo epTS ^qSTJ aq^ jo aequinu xepuj ^NIa^qBTJLBA SUT^UUOO doo^ ^NI

e"[Tj ^nd^no eq^ jo aequmu eufx ^uaaanQ XNIe"[Tj ^nd^no jo aequinu eSBd ^ueaan[) jjsil

uoT^oBea eq^ UT seToads eq^ jo xepuj J.NI^no pe^uTad eq o^ s^BaeuTui eq^ jo sen^BA xepuj XNI

^nd^no eq:j S^BUIJLO^ ^NIuoT^OBea UT s^uauoduioo jo aaquinj^ ^NI

e^qBTaBA SUT^UHOO dooq; ^NIeouaaejjTp XSaeue eaaj sqqfS B^"[eQ ^gQ^nd^no UT suan^ea aSBTaaBO s^aesui VHDuoT^oBea UT seToeds jo ^ueTOTjjeoQ igQ

xepuT uoTtjBjn^Bg 19QuoT^oBea eq:j jo ^onpoad X^TAT^OV 19Q

T seToeds snoenbB jo X^TAT^OV IHQ

(5e-ao'i=Niwnao 'e-a6i^86'i = H)(21 = HNfl '9 = ONQ 'Ot7 = XVWN)

Niwnjo 'H NOISIO:

H3IOVT3VHOH3IOVHVHOH3IOVHVHOH3IOVHVHO

'f H333INI'I H333INI

101XIWIIIami

dW3II^J

e3ovaWQN

>INWXWQNINIW

XQNIWOONIW£300W

2I>I301TXr

Nioai3 ova i

XQNIX3QNINIII

01I

wwnaED

£30D2Dav

vnv

"H3I3WVHVa a3i3WVHva

H"aa 3ianoa

-- o000000000000000000000000000000,-.J

HNQ 'ONQ 'XVWN H333INI

e^Tj uoT^OBea aoj peuSfssB 3Tun a"[T^ iNIa~[Tj ^nd^no aoj pau§TssB ^Tun aii£ XNI

uoTsuBdxe XsBe ^O-[-[B o^ uoTsueuiTp XBJJB -[Bjeue^ xNIsasn uiBjSoad en~[BA T;Bea aAT^TSod ^saxiBuig iga

S3UB3SU

sesBqd jo s^onpoad X^TAT^OB srjuTJid puB se^B~[no~[BO au

\ (QNINIW 'OONIW"^--'caova '2i>iooi '>INWXW 'awai 'v^iv 'aim) BAIIOV

HNQONn

XVWNNiwnao

oo e^BToaa

T^noa STqx

3Niino"aans

0000

0 - 0k-/

0

Page 226: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

DOUBLE PRECISION ATCPRD, ALFA(NMAX), AP(NMAX), C2(2)DOUBLE PRECISION COEF(IO), DUMM(2), LOGKT2(NMAX), MCOEF(10,NMAX)DOUBLE PRECISION MINCO(9,5), T, TEMP

INTRINSIC DABS

EXTERNAL ATCPRD, PAGE

COMMON /FMFD / TOF, CR, TITMIX COMMON /FORM / IPAGE, IPGLN

The following open statement have been changed out by Ernie Perkins (ORSD, ARC) in order to allow an command proceedure under VMS 4.5 on DEC VAX's to assign the files external to the program.

OPEN (UNR, STATUS = 'OLD', shared, readonly) OPEN (UNR, FILE = 'RXN.TBL', STATUS - 'OLD')

DO 10 L - 1, MXMNKREAD (UNR, 900) I, (MCOEF(J,I), MINDX(J.I), J - 1, 10)

10 CONTINUE

CLOSE (UNR)

DO 20 I = 1, MXMNK + 5AP(I) = O.ODO

20 CONTINUE

T = TEMP + 273.15

Activity products of phases

DO 40 I - 1, MXMNK 1C = 0 DO 30 J = 1, 10

IF (DABS(MCOEF(J,I)) .GT. CPUMIN) THEN 1C = 1C + 1 COEF(J) = MCOEF(J,I) INDX(J) - MINDX(J.I)

ELSECOEF(J) = O.ODO INDX(J) = MINDX(J,I)

END IF 30 CONTINUE

AP(I) - ATCPRD (1C, INDX, COEF, ALFA) 40 CONTINUE

Calculate activity product for added minerals

DO 60 I = 1, 5 DO 50 J - 1, 8

ACT ACT ACT ACT ACT ACT ACT ACT ACT ACT ACT

(ACT| ACTI ACTI ACT| ACT| ACTACTACTACTACTACTACTACTACTACTACTACTACTACTACTACT

| ACTj ACT(ACTACTACTACTACTACTACTACTACTACTACTACTACTACTACTACTACT

| ACTI ACT| ACTACTACTACT

0590060006100620063006400650066006700680069007000710072007300740075007600770078007900800081008200830084008500860087008800890090009100920093009400950096009700980099010001010102010301040105010601070108010901100111011201130114011501160

226

Page 227: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

IF (DABS(MINCO(J,I)) .GT. CPUMIN) AP(MXMNK+I) =AP(MXMNK+I) + MINCO(J,I)*ALFA(MININD(J,I))

50 CONTINUEAP(MXMNK+I) - AP(MXMNK+I) + MINCO(9,I)

60 CONTINUE

rj ___________________________________

C Write out activity productsQ __ ______________________

CALL PAGEWRITE (UNO, 910) TITLE, TEMP, TITMIXWRITE (UNO, 920)WRITE (UNO, 930) CRIPGLN = IPGLN + 4NUM = 0

DO 70 I - 1, MXMNK + 5IF (DABS(AP(I)) .LE. 300.0 .AND.

DABS(LOGKT2(I)) .LE. 300.0) THENNUM - NUM + 1INDEX(NUM) - I

END IF70 CONTINUE

IFIN - (NUM + 1) / 2DO 80 I - 1, IFIN

L - INDEX(I)C2(l) = AP(L) - LOGKT2(L)DUMM(l) = 2.302585DO * R * T * C2(l)J = I + IFINIF (J .LE. NUM) THENK - INDEX(J)C2(2) = AP(K) - LOGKT2(K)DUMM(2) = 2.302585DO * R * T * C2(2)

END IF

IF (IPGLN .GT. 58) THENCALL PAGEWRITE (UNO, 910) TITLE, TEMP, TITMIXWRITE (UNO, 920)WRITE (UNO, 930) CRIPGLN = IPGLN + 4

END IF

IF (J .LE. NUM) THENWRITE (UNO, 940)

L, PAGE3(L), AP(L), LOGKT2(L) , C2(l) , DUMM(l) ,K, PAGE3(K), AP(K), LOGKT2(K), C2(2) , DUMM(2)

IPGLN - IPGLN + 1ELSEWRITE (UNO, 940)

L, PAGE3(L), AP(L), LOGKT2(L), C2(l), DUMM(l)IPGLN - IPGLN + 1

END IF80 CONTINUE

RETURN

ACT 1170ACT 1180ACT 1190ACT 1200ACT 1210ACT 1220

_ _ . _ . 1 ACT 1230IACT 1240

- - - 1 ATT 1 9 SO

ACT 1260ACT 1270ACT 1280ACT 1290ACT 1300ACT 1310ACT 1320ACT 1330ACT 1340ACT 1350ACT 1360ACT 1370ACT 1380ACT 1390ACT 1400ACT 1410ACT 1420ACT 1430ACT 1440ACT 1450ACT 1460ACT 1470ACT 1480ACT 1490ACT 1500ACT 1510ACT 1520ACT 1530ACT 1540ACT 1550ACT 1560ACT 1570ACT 1580ACT 1590ACT 1600ACT 1610ACT 1620ACT 1630ACT 1640ACT 1650ACT 1660ACT 1670ACT 1680ACT 1690ACT 1700ACT 1710ACT 1720ACT 1730ACT 1740

227

Page 228: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

900 FORMAT(I3,/,10(F10.4,I4))910 FORMAT(' SAMPLE IDENT - ',A80,4X,'(TEMPERATURE = ',F6.2,')',

/.20X.A40) 920 FORMAT(/,6X,'PHASE',5X,'LOG (AP)',4X,'LOG (KT)',2X,

'LOG (AP/KT)',7X,'DELG', 10X,'PHASE',5X,'LOG (AP)',4X,'LOG (KT)',2X,'LOG (AP/KT)',7X,'DELG')

930 FORMAT(A1,6X, '____' ,5X, '______' ,4X, '______' ,2X,'_________',7X,'___', 10X,'____',5X,' ______',4X,'______',2X,

',7X,'

940 FORMAT (IX, 13, 2X, A8, F10.3, 3(2X,F10.: 5X, 13, 2X, A8, F10.3, 3(2X,F10.:

END

ACT 1750 ACT 1760 ACT 1770 ACT 1780 ACT 1790 ACT 1800 ACT 1810 ACT 1820 ACT 1830 ACT 1840 ACT 1850 ACT 1860 ACT 1870 ACT 1880 ACT 1890 ACT 1900

SUBROUTINE ADSORB (TC, Z, OK, ICALL, IEXCH, MXSP, IPRIN2)

C This is the adsorption routiner -i_, _________........._________.__________------.--_____-_____.----_--_-.C Declare constants rL, _-_-_______.._....___

C AVOG DEL Avogadro's number C BOLTZ DEL Boltzman constant C CPUMIN DEL Smallest positive real value program uses C ECHG DEL Electron charge C NMAX INT General array dimension to allow easy expansion C UNO INT File unit assigned for output file C PERMV DBL Perm, in a vacuumC TEST DBL Value to test against, f

INTEGER NMAX, UNO DOUBLE PRECISION AVOG, BOLTZ, CPUMIN, DIE, ECHG, PERMV, TEST PARAMETER (NMAX - 340, UNO = 6) PARAMETER (AVOG = 6.022D+23, BOLTZ = 1.38D-23) PARAMETER (CPUMIN = l.OD-35, DIE - 78.27, ECHG = 1.6022D-19) PARAMETER (PERMV = 8.854D-12, TEST = l.OD-03)

P C -------------.--..-----------.------..--.----.-...........__.._......

C Declare variables---------------------

C A1MIX DBL HTOT, OHTOT, TIC for initial conditions C ADD DBL Amount of component to add/remove from water C ANALM DBL Analyzed molality of species i C ANMIX DBL Number of moles of initial components C ANSWER DBL Coefficent array used to calculate results C B2MIX DBL HTOT, OHTOT, and TIC for comp 1 of a mixture C BNMMIX DBL Analyzed molality of species i in solution B C C3MIX DBL Temp storage for HTOT, OHTOT, TIC C CEC DBL Cation Exchange Capacity C CNMMIX DBL Temp Storage for total mass of each component C COEF DBL Stoichiometric coefficient and Id number C CROSS LOG Have we crossed the root for species adsorption?

ADS 0010 ADS 0020 ADS 0030 ADS 0040ADS 0050 ADS 0060ADS 0070 ADS 0080 ADS 0090 ADS 0100 ADS 0110 ADS 0120 ADS 0130 ADS 0140 ADS 0150ADS 0160 ADS 0170 ADS 0180 ADS 0190 ADS 0200 ADS 0210 ADS 0220 ADS 0230ADS 0240ADS 0250 ADS 0260 ADS 0270 ADS 0280 ADS 0290 ADS 0300 ADS 0310 ADS 0320 ADS 0330 ADS 0340 ADS 0350 ADS 0360 ADS 0370

228

Page 229: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

BNMMIX(7) BNMMIX(98)

TOTEL(3) 0.0

25

3040

II .EQ. 8 .OR. II .EQ. 10) THEN

DO 40 I - 1, INSP NEUT = 0 II - 0 X - 0.0 IBASE(I) = 0 DO 25 K - 1, ISCOMP(I)

J = IDN(I,K) IF (J .EQ. 0) THENNEUT = K

ELSEIF (II .EQ. 0 .OR.

II .EQ. 9 .OR. II = J X =10.0

ELSEIF (COEF(I.K) .LT. X) THEN X - COEF(I.K) II - J

END IF END IF

END IF CONTINUE IBASE(I) = II DO 30 K = 1, ISCOMP(I)

J = IDN(I.K)IF (J .EQ. 0 .OR. DABS(COEF(I,K)) .LT. CPUMIN) GO TO 30 X = CEC * l.OD-03 * MBASE(I) / (DABS(COEF(I, NEUT))) X = X * (-1.0) * COEF(I.K)EQFACIFIFIFIFIFIFIFIFIFIFIFEQH

IFIFIFIFIFIFIF

(J(J(J(J(J(J(J(J(J(J(J=*

(J(J(J(J(J(J(JJ

= 0..EQ..EQ..EQ..EQ..EQ..EQ..EQ..EQ..EQ..EQ..EQ.EQH

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

07)8)9)

11)12)28)3D32)33)49)97)

+ (X

7)97)98)

207)208)209)

7207

EQFACEQFACEQFACJ - 12EQFACEQFACEQFACEQFACEQFACEQFACEQFAC

==-

=-=====>

1.1.

-1.

4.2.

-3.-1.2.1.2.

000

0000000

* EQFAC)

EQC =EQC =EQC -EQC -EQC =EQC =.OR. J.OR. J

(X(X(X(X(X(X

**

.EQ.

.EQ.

))))

2.0)3.0)97

208

+ EQC+ EQC+ EQC+ EQC+ EQC+ EQC.OR. J .EQ. 98 .OR..OR. J .EQ. 209) J =

BNMMIX(J) CONTINUE

CONTINUE

BNMMIX(J) + X

B2MIX(1) = B2MIX(1) + EQH

ADS 1540 ADS 1550 ADS 1560 ADS 1570 ADS 1580 ADS 1590 ADS 1600 ADS 1610 ADS 1620 ADS 1630 ADS 1640 ADS 1650 ADS 1660 ADS 1670 ADS 1680 ADS 1690 ADS 1700 ADS 1710 ADS 1720 ADS 1730 ADS 1740 ADS 1750 ADS 1760 ADS 1770 ADS 1780 ADS 1790 ADS 1800 ADS 1810 ADS 1820 ADS 1830 ADS 1840 ADS 1850 ADS 1860 ADS 1870 ADS 1880 ADS 1890 ADS 1900 ADS 1910 ADS 1920 ADS 1930 ADS 1940 ADS 1950 ADS 1960 ADS 1970 ADS 1980 ADS 1990 ADS 2000 ADS 2010 ADS 2020 ADS 2030 ADS 2040 ADS 2050 ADS 2060 ADS 2070 ADS 2080 ADS 2090 ADS 2100 ADS 2110

231

Page 230: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

CC

CCC

B2MIX(3) - B2MIX(3) + EQCIF (B2MIX(3) .GT. 0.0) THEN

BNMMIX(7) = B2MIX(3)BNMMIX(98) =0.0

ELSEBNMMIX(7) =0.0BNMMIX(98) =0.0

END IF

DO 50 I - 1, 11ADD(I) = O.ODOOSTEP(I) = O.ODOO

50 CONTINUE

YO - 0.0END IF

Zero out local arrays

NEUT = 0DO 80 I - 1,11

DO 70 J - 1, 11ANSWER(J,I) = O.ODOO

70 CONTINUEKNOWN(I) = O.ODOO

80 CONTINUE

ADS 2120ADS 2130ADS 2140ADS 2150ADS 2160ADS 2170ADS 2180ADS 2190ADS 2200ADS 2210ADS 2220ADS 2230ADS 2240ADS 2250ADS 2260ADS 2270ADS 2280

-_-__-___-_.__-__--_.--. I AD*? 99901 rvL? O £. £.J\J

JADS 2300........................ | ADS 2310

ADS 2320ADS 2330ADS 2340ADS 2350ADS 2360ADS 2370ADS 2380ADS 2390ADS 2400

--_...._...._.._........ | ADS 2410Set Coefficient array and known column vector |ADS 2420

100 DO 120 I = 1, INSPKNOWN(I) = DLOG10(KRXN(I))DO 110 J = 1, ISCOMP(I)

IF (IDN(I,J) .EQ. 0) THENANSWER(I, 11) = COEF(I,J)

ELSEIF (IEXCH .EQ. 1) THENKNOWN(I) = KNOWN(I) - (COEF(I,J)

---_-..-_..._-....._.... | ADS 2430ADS 2440ADS 2450ADS 2460ADS 2470ADS 2480ADS 2490ADS 2500ADS 2510

* DLOG10((M(IDN(I,J)) * ADS 2520DEXP(((-1.0) * YO * DBLE(ISCHG(I))))))) ADS 2530

17T OT"ELSEKNOWN(I) = KNOWN(I) - (COEF(I,J)

END IFEND IF

110 CONTINUEANSWER(I, I) = l.ODOO

ADS 2540* DLQG10(M(IDN(I,J)))) ADS 2550

ADS 2560ADS 2570ADS 2580ADS 2590

IF (ISCOMP(I) .EQ. 1 .AND. IDN(I.l) .EQ. 0) NEUT = I ADS 26001 OA /" / » XTrpTVTTTTI120 CONTINUE

IF (NEUT .EQ. 0) NEUT = INSP + 1

DO 130 I = 1, INSPANSWER(NEUT, I) =0.0ANSWER(I, NEUT) - ANSWER(I, 11)ANSWER(I, 11) = O.ODOO

130 CONTINUE

ADS 2610ADS 2620ADS 2630ADS 2640ADS 2650ADS 2660ADS 2670ADS 2680ADS 2690

232

Page 231: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cccccccccccccccccccccccccccccccccccccccccccccccccccp

CROSSY LOG Have we crossed the root for epsilon?DIE DEL Dielectric constantDIFF DEL Difference from rootDIFYO DBL Difference from YODONE LOG If we are finished, set to .TRUE.DUM CHA Dummy character arrayEQC DBL Equivalent carbon in material been added/removedEQFAC DBL Factor for adding/removing materialEQH DBL Equivalent Hydrogen in material added/removedEXELT DBL Total amount of componentsHTOTI DBL Total hydroniumI INT Loop CounterIBASE INT ID numbers of the surface for adsorptionICALL INT Number of calls to this routineIDN INT Id numbers of the ISCOMP components adsorptionIEXCH INT Switch for adsorption/ion exchangeII INT Local pointer used to check for H, OH or H20INSP INT Total number of surface sites for adsorptionIPRIN2 INT Print switch to print out iterationsISCHG INT Charge of each surface site for adsorptionISCOMP INT Total number of components in dissociationIVAL INT Number of IterationsIY INT Pointer to last value calculatedJ INT Loop counterK INT Loop counterKNOWN DBL Final value of moles of complex on surfaceKRXN DBL K for dissociation reaction of surface speciesM DBL Calculated molality of aqueous speciesMAT DBL Matrix used for intermediate calculationsMBASE DBL Equivalence Mole Fraction (initial) on surfaceMXSP INT Max number of speciesNEUT INT Index for the bare surface complexOHTOTI DBL Initial OH totalOK INT Normal exit?PAGE1 CHA Names of aqueous speciesSIGD DBL Charge density in the difuse layerSIGO DBL Charge density at the surfaceSINGLE LOG Switch if all surface comp. have same # of X'sSPN CHA Name of each surface species adsorptionSTEP DBL Step size for amount added/subSUM DBL Total of charged species on surfaceTC DBL Temperature in deg CTITR DBL Iteration array in DISTRB, used for guessesTOTEL DBL Contains HTOT, OHTOT and Sum C02TRYV DBL Working storage for mass on surfaceTRYYO DBL Guess for YOVAL DBL Intermediate storageVECT DBL Solution vector for surface complexesX DBL Temperary storageYO DBL YOZ INT Charge of aqueous species

LOGICAL DONE, CROSS, CROSSY, SINGLE

CHARACTER*8 PAGEl(NMAX), PAGE2(NMAX), PAGES (NMAX)CHARACTER*8 DUM(ll)CHARACTER*10 SPN(IO)

IADS ossoIADS 0390IADS 0400IADS 04ioIADS 0420IADS 0430IADS 0440IADS 0450IADS 0460IADS 0470IADS 0480IADS 0490IADS osooIADS osioIADS 0520IADS 0530IADS 0540IADS 0550IADS 0560IADS 0570IADS ossoIADS 0590IADS oeooIADS 06ioIADS 0620IADS 0630IADS 0640IADS 0650IADS 0660IADS 0670IADS 0680IADS 0690IADS 0700IADS 0710IADS 0720IADS 0730IADS 0740IADS 0750IADS 0760IADS 0770IADS 0780IADS 0790IADS osooIADS osioIADS 0820IADS 0830IADS 0840IADS ossoIADS 0860IADS 0870IADS ossoIADS 0890ADS 0900ADS 0910ADS 0920ADS 0930ADS 0940ADS 0950

229

Page 232: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

INTEGER I, IBASE(IO), ICALLADS 0960ADS 0970

INTEGER IDN(10,10), IEXCH, II, IPRIN2, ISCHG(IO) , INSP ADS 0980INTEGER IPAGE, IPGLN, ISCOMP(IO) , IVAL,INTEGER NEUT, OK, Z(NMAX)

IY, J, K, MXSP ADS 0990ADS 1000ADS 1010

DOUBLE PRECISION ADD(ll) , AD ENS , ALFA(NMAX) , ANALM(NMAX) ADS 1020DOUBLE PRECISION ANMMIX(NMAX) , ANSWER(11 ,11), ATEMP, A1MIX(5) ADS 1030DOUBLE PRECISION BDENS , BNMMIX(NMAX) , BTEMP, B2MIX(5) ADS 1040DOUBLE PRECISION CEC, CNMMIX(NMAX) , COEF(10,10) ADS 1050DOUBLE PRECISION CUNITS (NMAX) , C02F, C3MlX(5) , DIFF(IO) ADS 1060DOUBLE PRECISION DIFYO(IO), EQC, EQFAC,DOUBLE PRECISION EXELT(35) , FMIX(IO) , HIDOUBLE PRECISION KRXN(IO) , M(NMAX) , MAT(DOUBLE PRECISION OHTOTI , PH, SAREA, SIGDDOUBLE PRECISION STEP(ll) , SUM, TAREA, 1

EQH ADS 1070OTI, KNOWN(ll) ADS 108010,10), MBASE(IO) ADS 1090, SIGO ADS 1100C, TITR(ll) ADS 1110

DOUBLE PRECISION TOTEL(5) , TRYV(IO) , TRYYO(IO) ADS 1120DOUBLE PRECISION VAL, VECT(IO) , X, YO

EXTERNAL GUESS, SORTA, PAGE

ADS 1130ADS 1140ADS 1150ADS 1160

INTRINSIC DABS, DBLE, DEXP, DLOG10, DSIGN, MAXO , DSQRT ADS 1170

COMMON /EXCHAN/ COEF, MBASE, KRXN, CEC,ISCHG, ISCOMP, INSP

COMMON /EXTOT / EXELT, TOTEL, TITRCOMMON /FORM / IPAGE, IPGLN

ADS 1180TAREA, SAREA, IDN, ADS 1190

ADS 1200ADS 1210ADS 1220

COMMON /MM / ANMMIX, AlMIX, B2MIX, FMIX, BNMMIX, ADENS , BDENS, ADS 1230ATEMP, BTEMP ADS 1240

COMMON /MOLS / PH, ANALM, M, ALFA, CUNITS ADS 1250

C

CCCC

COMMON /NAMES1/ PAGE1 , PAGE2 , PAGE3COMMON /NAMES2/ SPNCOMMON /TOTALS/ C02F, HTOTI , OHTOTI

SAVE ADD, IBASE, KNOWN, STEP, YO

_ ar -r

IY =0CROSSY - .FALSE.

Store solution parameters if first call

ADS 1260ADS 1270ADS 1280ADS 1290ADS 1300ADS 1310

._ 1 Arjc 1 ^901 tHJ >3 J- J t- \J

ADS 1330ADS 1340ADS 1350ADS 1360

......................... | ADS 1370IADS 1380

totel: (1) = htot; (2) = ohtot; (3) = tf.c |ADS 1390

IF (ICALL .EQ. 1) THENDO 10 I - 1, 5AIMIX(I) = TOTEL(I)B2MIX(I) - TOTEL(I)

10 CONTINUE

DO 20 I - 1, MXSP + 44ANMMIX(I) - ANALM(I)BNMMIX(I) - ANALM(I)

20 CONTINUE

EQC = 0.0EQH =0.0

fc ........................ | ADS 1400ADS 1410ADS 1420ADS 1430ADS 1440ADS 1450ADS 1460ADS 1470ADS 1480ADS 1490ADS 1500ADS 1510ADS 1520ADS 1530

230

Page 233: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

SINGLE = .TRUE.

DO 132 1=1, (INSP-1)IF (DABS (ANSWER (I, NEUT) - ANSWER (INSP, NEUT )) .GT. l.OE-05)

SINGLE = .FALSE.132 CONTINUE

KNOWN (NEUT) =0.0ANSWER (NEUT, NEUT) =1.0

r - ____ ____________________________--___------------------------\j -------------------------------------- ___C Now normalize values and get current valuesr - - ____ ___________________________--_____---_-----------\j --------------------------------------------- -____

IF (SINGLE) THENSUM =0.0DO 150 I = 1, INSP

KNOWN(I) = 10.0**KNOWN(I)SUM = SUM + (KNOWN(I) * DABS(ANSWER(I ,NEUT) ) )

150 CONTINUE

DO 160 I = 1, INSPKNOWN(I) = KNOWN(I) * CEC / (1000.0 * SUM)

160 CONTINUE

ELSECROSS = .FALSE.IVAL = 0VAL - O.ODOO

200 DO 220 I = 1, MAXO(INSP, NEUT)VECT(I) = KNOWN(I)DO 210 K = 1, MAXO(INSP, NEUT)

MAT(K.I) = ANSWER(K,I)210 CONTINUE220 CONTINUE

VECT(NEUT) = VAL

DO 250 I = 1, MAXO(INSP, NEUT)IF (I .NE. NEUT) THENX = MAT (I, NEUT) / MAT (NEUT, NEUT)VECT(I) = VECT(I) - (X * VECT(NEUT))

END IF250 CONTINUE

SUM =0.0DO 260 1=1, INSP

SUM = SUM + (10.0**VECT(I))260 CONTINUE

IVAL = IVAL + 1TRYV(IVAL) = VALDIFF(IVAL) = SUM - l.ODOOIF (DABS (DIFF( IVAL)) .GT. TEST) THEN

IF (IVAL .GT. 1 .AND. .NOT. CROSS) THENIF ((DIFF(IVAL) * DIFF(IVAL-l)) .LT. 0.0) CROSS = .TRUE.

END IF

ADS 2700ADS 2710ADS 2720ADS 2730ADS 2740ADS 2750ADS 2760ADS 2770ADS 2780ADS 2790ADS 2800

--|ADS 2810IADS 2820

-- JADS 2830ADS 2840ADS 2850ADS 2860ADS 2870ADS 2880ADS 2890ADS 2900ADS 2910ADS 2920ADS 2930ADS 2940ADS 2950ADS 2960ADS 2970ADS 2980ADS 2990ADS 3000ADS 3010ADS 3020ADS 3030ADS 3040ADS 3050ADS 3060ADS 3070ADS 3080ADS 3090ADS 3100ADS 3110ADS 3120ADS 3130ADS 3140ADS 3150ADS 3160ADS 3170ADS 3180ADS 3190ADS 3200ADS 3210ADS 3220ADS 3230ADS 3240ADS 3250ADS 3260ADS 3270

233

Page 234: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

270

280

290

IF (IVAL .GT. 1) THEN 1 = 1CALL SORTA(TRYV, DIFF, IVAL, I)

END IFIF (CROSS) THEN K - 0 DO 270 I - 1, (IVAL-1)

IF ((DIFF(I) * DIFF(I+1)) .LT. 0,0) K CONTINUE IF (IVAL .GT. 5) THEN

IF (K .GT. (IVAL/2)) THEN DO 280 I - 1, (IVAL-1)

DIFF(I) = DIFF(I+1) TRYV(I) - TRYV(I+1)

CONTINUE K - K - 1

END IFIVAL - IVAL - 1

END IF CALL GUESS(TRYV, DIFF, VAL, IVAL)X - DABS(TRYV(K) - TRYV(K+1)) / 10000.ODOO IF (DABS (TRYV(K) - VAL) .LT. X

DABS (TRYV(K+1) - VAL) .LT. X ).OR.THEN

(TRYV(K) + TRYV(K+1)) / 2.0VAL = END IF

END IFIF (.NOT. CROSS) THEN

IF (IVAL .GT. 2) THEN DO 290 I - 1, (IVAL-1)

DIFF(I) = DIFF(I+1) TRYV(I) - TRYV(I+1)

CONTINUE IVAL - IVAL - 1

END IF IF (IVAL .EQ. 1) THENVAL = VAL - l.ODOO

ELSE IF (DABS(DIFF(IVAL)) .LT. DABS(DIFF(IVAL-1))) THENVAL = (2.0 * TRYV(IVAL)) - TRYV(lVAL-l)

ELSEVAL - (2.0 * TRYV(IVAL-1)) - TRYV(IVAL)

END IF END IF GO TO 200

END IF

DO 300 I - 1, INSPKNOWN(I) - (10.0**VECT(I)) * CEC * l.OD-3 /

DABS(ANSWER(I,NEUT)) 300 CONTINUE

END IF

IF (IEXCH .EQ. 1) THEN SIGO = O.ODOO SUM = O.ODOO DO 330 I - 1, INSP

IF (ISCHG(I) .NE. 0) SIGO = (DBLE(ISCHG(I)) * KNOWN(I)) +J =0DO 320 K = 1, ISCOMP(I)

ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS

SIGOADS ADS ADS

3280329033003310332033303340335033603370338033903400341034203430344034503460347034803490350035103520353035403550356035703580359036003610362036303640365036603670368036903700371037203730374037503760377037803790380038103820383038403850

234

Page 235: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

320

330

350

370

380

PERMV * DIE) (TC + 273.15))

IF (IDN(I,K) .EQ. 0) J - K CONTINUESUM = SUM + (DABS(COEF(I,J)) * KNOWN(I))

CONTINUESIGO - ECHG * CEC * AVOG * SIGO / (SUM * 1000.0) SIGD - O.ODOO DO 350 I - 1, MXSP + 44

SIGD = (M(I) * (DEXP(DBLE(Z(I)) * YO * (-1.0DO)) -SIGD

CONTINUESIGD = SIGD * 1000.ODOO * AVOG IF (SIGD .GT. CPUMIN) THEN

SIGD - DSQRT(SIGD) ELSE

SIGD - O.ODOO END IFSIGD - SIGD * DSQRT(2.0DOO * SIGD - SIGD * DSQRT(BOLTZ * IY - IY + 1 TRYYO(IY) - YO DIFYO(IY) - SIGD + SIGO IF (DABS(DIFYO(IY)) .GT. TEST) THEN

IF (IY .GT. 1 .AND. .NOT. CROSSY) THENIF ((DIFYO(IY) * DIFYO(IY-l)) .LT. 0.0) CROSSY =

END IFIF (CROSSY) THEN

1 = 1CALL SORTA(TRYYO, DIFYO, IY, I)

END IFIF (IY .GT. 6) THEN K = 0 IF (CROSSY) THEN

DO 370 1=1, (IY-1)IF ((DIFYO(I) * DIFYO(I+1)) .LT. 0.0) K = I

CONTINUE END IF IF (K .GT. (IY/2) .OR. .NOT. CROSSY) THEN

, (IY-1) DIFYO(I+1) TRYYO(I+1)

DO 380 I - DIFYO(I) TRYYO(I)

CONTINUE K - K - 1

END IF IY = IY - 1

END IFIF (CROSSY) THEN CALL GUESS(TRYYO, X = DABS(TRYYO(K) IF (DABS (TRYYO(K) - YO) .LT.

DABS (TRYYO(KH-l) - YO) .LT. VAL - (TRYYO(K) + TRYYO(K+1))

END IF ELSE

IF (DIFYO(IY) .GT. 0.0) THENYO - YO + 0.1DOO

ELSEYO - YO - l.ODOO

END IF

DIFYO, YO, IY) - TRYYO(K+1))

X X

10000.ODOO.OR.

) THEN 2.0

ADS 3860 ADS 3870 ADS 3880 ADS 3890 ADS 3900 ADS 3910 ADS 3920

l.ODO)) + ADS 3930 ADS 3940 ADS 3950 ADS 3960 ADS 3970 ADS 3980 ADS 3990 ADS 4000 ADS 4010 ADS 4020 ADS 4030 ADS 4040 ADS 4050 ADS 4060 ADS 4070 ADS 4080

.TRUE. ADS 4090 ADS 4100 ADS 4110 ADS 4120 ADS 4130 ADS 4140 ADS 4150 ADS 4160 ADS 4170 ADS 4180 ADS 4190 ADS 4200 ADS 4210 ADS 4220 ADS 4230 ADS 4240 ADS 4250 ADS 4260 ADS 4270 ADS 4280 ADS 4290 ADS 4300 ADS 4310 ADS 4320 ADS 4330 ADS 4340 ADS 4350 ADS 4360 ADS 4370 ADS 4380 ADS 4390 ADS 4400 ADS 4410 ADS 4420 ADS 4430

235

Page 236: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

c c cf*_l

END IF GO TO 100

END IF END IF

ADS 4440 ADS 4450 ADS 4460 ADS 4470 ADS 4480

1 A n C A A Q fi

Check totels, see if we are done, calculate step size. |ADS 4500 Always iterate at least once. JADS 4510

________________________________ ____________i________________________i&nc A e;on1

500 DO 505 I = 1, MXSP + 44CNMMIX(I) = ANALM(I)

505 CONTINUE

EQC =0.0EQH = 0.0CNMMIX(7) = TOTEL(3)CNMMIX(98) =0.0DO 520 I = 1, INSP

DO 510 K = 1, ISCOMP(I)J = IDN(I.K)

------------------------- | t\u ij «+ _; £, \J

ADS 4530ADS 4540ADS 4550ADS 4560ADS 4570ADS 4580ADS 4590ADS 4600ADS 4610ADS 4620ADS 4630ADS 4640

IF (J .EQ. 0 .OR. DABS(COEF(I,K)) ,LT. CPUMIN) GO TO 510 ADS 4650f T T T\.T/"\T T"».T / -¥" V « ̂. « " y ^ »- ». . - -

X = KNOWN(I) * COEF(I.K) * (-1.0)EQFAC =0.0IF (J .EQ. 7) EQFAC = 1.0IF (J .EQ. 8) EQFAC = 1.0IF (J .EQ. 9) EQFAC = -1.0IF (J .EQ. 11) J = 12IF (J .EQ. 12) EQFAC = 4.0IF (J .EQ. 28) EQFAC = 2.0IF (J .EQ. 31) EQFAC = -3.0IF (J .EQ. 32) EQFAC = -1.0IF (J .EQ. 33) EQFAC = 2.0IF (J .EQ. 49) EQFAC = 1.0IF (J .EQ. 97) EQFAC = 2.0EQH = EQH + (X * EQFAC)

ADS 4660ADS 4670ADS 4680ADS 4690ADS 4700ADS 4710ADS 4720ADS 4730ADS 4740ADS 4750ADS 4760ADS 4770ADS 4780ADS 4790ADS 4800

IF (J .EQ. 7) EQC = (X ) + EQC ADS 4810IF (J .EQ. 97) EQC = (X ) + EQC ADS 4820IF (J .EQ. 98) EQC = (X ) + EQC ADS 4830IF (J .EQ. 207) EQC = (X ) + EQC ADS 4840IF (J .EQ. 208) EQC = (X * 2.0) + EQC ADS 4850IF (J .EQ. 209) EQC = (X * 3.0) + EQC ADS 4860IF (J .EQ. 7 .OR. J .EQ. 97 .OR. J .EQ. 98 .OR. ADS 4870

J .EQ. 207 .OR. J .EQ. 208 .OR. J .EQ. 209) J = 7 ADS 4880

CNMMIX(J) = CNMMIX(J) + X510 CONTINUE520 CONTINUE

C3MIX(1) = TOTEL(l) + EQHC3MIX(2) = TOTEL(2)C3MIX(3) = TOTEL(3) + EQCIF (C3MIX(3) .GT. 0.0) THEN

CNMMIX(7) = C3MIX(3)CNMMIX(98) =0.0

ELSECNMMIX(7) =0.0

ADS 4890ADS 4900ADS 4910ADS 4920ADS 4930ADS 4940ADS 4950ADS 4960ADS 4970ADS 4980ADS 4990ADS 5000ADS 5010

236

Page 237: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

CNMMIX(98) END IF

0.0

IF (ICALL .EQ. 1) THEN DONE = .FALSE. DO 530 I = 1, INSP

J - IBASE(I) IF (J .EQ. 11) J - 12 IF (J .NE. 0 .AND. J THENSTEP(I) = (BNMMIX(J)

ELSE IF (J .EQ. 8 .OR.

NE. 8 .AND. J .NE. 9 .AND. J .NE. 10)

- CNMMIX(J)) * 0.25 J .EQ. 9) THEN

X - (B2MIX(1) - B2MIX(2)) - (C3MIX(1) - C3MIX(2)) IF (DABS(X) .GT. l.OE-06) STEP(I) = X * 0.1

END IF IF (DABS(STEP(I)) .LT. CPUMIN) THEN

STEP(I) - (CEC / 1000.0) / 100.0 END IF

530 CONTINUEIF (INSP .EQ. 2) THENX - (DABS(STEP(1)) + DABS(STEP(2))) / 2.0 STEP(l) - DSIGN(X, STEP(l)) STEP(2) = DSIGN(X, STEP(2))

END IF ELSE

DONE - .TRUE. DO 550 1=1, INSP

J - IBASE(I)IF (J .NE. 0 .AND. J .NE. 8 .AND. J .NE. 9 .AND. J .NE. 1 THEN IF ((DABS(BNMMIX(J) - CNMMIX(J)) / BNMMIX(J)) .GT. TEST)DONE - .FALSE.

IF ((BNMMIX(J) - CNMMIX(J)) .GT. 0.0) THENIF (STEP(I) .LT. 0.0) STEP(I) - STEP(I) * (-0.4)

ELSEIF (STEP(I) .GT. 0.0) STEP(I) = STEP(I) * (-0.4)

END IF ELSE IF (J .EQ. 8 .OR. J .EQ. 9) THENX - (B2MIX(1) - B2MIX(2)) - (C3MIX(1) - C3MIX(2)) IF ((DABS(B2MIX(1) - B2MIX(2))) .GT. l.OD-8)X - X / (B2MIX(1) - B2MIX(2))

IF (DABS(X) .GT. TEST) DONE = .FALSE. IF (X .GT. 0.0) THEN

IF (STEP(I) .LT. 0.0) STEP(I) - STEP(I) * (-0.4) ELSE

IF (STEP(I) .GT. 0.0) STEP(I) - STEP(I) * (-0.4) END IF

END IF550 CONTINUE

END IF

IF (DONE) THEN J - NEUTIF (NEUT .EQ. 0) J = INSP+1 OK - 0 CALL PAGEIPGLN - IPGLN + 26 + (INSP * 3) WRITE (UNO, 1005)

ADS 5020 ADS 5030 ADS 5040 ADS 5050 ADS 5060 ADS 5070 ADS 5080 ADS 5090 ADS 5100 ADS 5110 ADS 5120 ADS 5130 ADS 5140 ADS 5150 ADS 5160 ADS 5170 ADS 5180 ADS 5190 ADS 5200 ADS 5210 ADS 5220 ADS 5230 ADS 5240 ADS 5250 ADS 5260 ADS 5270 ADS 5280 ADS 5290 ADS 5300 ADS 5310 ADS 5320 ADS 5330 ADS 5340 ADS 5350 ADS 5360 ADS 5370 ADS 5380 ADS 5390 ADS 5400 ADS 5410 ADS 5420 ADS 5430 ADS 5440 ADS 5450 ADS 5460 ADS 5470 ADS 5480 ADS 5490 ADS 5500 ADS 5510 ADS 5520 ADS 5530 ADS 5540 ADS 5550 ADS 5560 ADS 5570 ADS 5580 ADS 5590

237

Page 238: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

GCCG

WRITE (UNO, 1002)DO 600 I - 1, INSPWRITE (UNO, 1003) SPN(I) ,

(MBASE(I) * CEC / (1000.0 * DABS(ANSWER(I , J) ) ) ) ,(MBASE(I) * CEC / 1000.0), MBASE(I)

600 CONTINUE

WRITE (UNO, 1007)DO 620 I - 1, INSP

DO 610 K - 1, ISCOMP(I)IF (IDN(I,K) .EQ. 0) THEN

DUM(K) - 'X-ELSE

DUM(K) - PAGE1(IDN(I,K))END IF

610 CONTINUEWRITE (UNO, 1008) KRXN(I), SPN(I) , (DUM(K) , COEF(I.K), K-l,

ISCOMP(I))620 CONTINUE

WRITE (UNO, 1001)WRITE (UNO, 1002)DO 650 I - 1, INSPWRITE (UNO, 1003) SPN(I) , KNOWN(I) ,

(KNOWN(I) * DABS (ANSWER (I, J))),(KNOWN(I) * 1000.0 * DABS ( ANSWER ( I, J)) / CEC)

650 CONTINUE

WRITE (UNO, 1006) CEC, (CEC / 1000.0)RETURN

END IF

Change the original solution parameters for the new step andgo back to calculate species distribution

700 EQC =0.0EQH = 0.0ANALM(7) = A1MIX(3)ANALM(98) =0.0DO 710 I = 1, INSPADD(I) = ADD(I) + STEP(I)

710 CONTINUE

DO 730 I - 1, INSPDO 720 K - 1, ISCOMP(I)

J = IDN(I.K)IF (J .EQ. 0 .OR. DABS(COEF(I,K)) .LT. CPUMIN) GO TO 720X = COEF(I.K) * ADD(I) * (-1.0)EQFAC =0.0IF (J .EQ. 7) EQFAC = 1.0IF (J .EQ. 8) EQFAC = 1.0IF (J .EQ. 9) EQFAC = -1.0IF (J .EQ. 11) J - 12IF (J .EQ. 12) EQFAC = 4.0IF (J .EQ. 28) EQFAC - 2.0IF (J .EQ. 31) EQFAC - -3.0

ADS 5600ADS 5610ADS 5620ADS 5630ADS 5640ADS 5650ADS 5660ADS 5670ADS 5680ADS 5690ADS 5700ADS 5710ADS 5720ADS 5730ADS 5740ADS 5750ADS 5760ADS 5770ADS 5780ADS 5790ADS 5800ADS 5810ADS 5820ADS 5830ADS 5840ADS 5850ADS 5860ADS 5870ADS 5880ADS 5890ADS 5900ADS 5910

-| ADS 5920|ADS 5930|ADS 5940

-JADS 5950ADS 5960ADS 5970ADS 5980ADS 5990ADS 6000ADS 6010ADS 6020ADS 6030ADS 6040ADS 6050ADS 6060ADS 6070ADS 6080ADS 6090ADS 6100ADS 6110ADS 6120ADS 6130ADS 6140ADS 6150ADS 6160ADS 6170

238

Page 239: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

IFIFIFIFEQH

IFIFIFIFIFIFIF

(J(J(J(J=

(J(J(J(J(J(J(JJ

.EQ.

.EQ.

.EQ.

.EQ.EQH

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

32)33)49)97)

+ (X

7)97)98)

207)208)209)

7207

EQFACEQFACEQFACEQFAC

- -1.- 2.- 1.- 2.

0000

* EQFAC)

EQC -EQC =EQC -EQC -EQC -EQC -.OR. J.OR. J

(X(X(X(X(X *(X *.EQ..EQ.

23

2

) + EQC) +) +) +

EQC EQC EQC EQC0)

0) + EQC 97 .OR. J EQ. 98 .OR.

OR. J .EQ. 209) J -

ANALM(J) - ANMMIX(J) + XIF (J .NE. 8 .AND. J .NE. 9 .AND. J .NE. 10

.AND. ANALM(J) .LE. 0.0) THEN1, INSP ADD(J) - STEP(J)STEP(J) * (0.5DOO)

DO 715 J ADD(J) STEP(J)

715 CONTINUEGO TO 700

END IF720 CONTINUE 730 CONTINUE

TOTEL(l) - AlMIX(l) + EQH TOTEL(3) - A1MIX(3) + EQC IF (TOTEL(3) .GT. 0.0) THENANALM(7) - TOTEL(3)ANALM(98) - 0.0

ELSEANALM(7) - 0.0ANALM(98) - 0.0

END IF

J - 0 DO 800 I - 1

J - J + 1 IF (J .EQ. IF (J .EQ. IF (J .EQ. IF (J .EQ. IF (J .EQ. IF (J .EQ. IF (J .EQ. EXELT(I)

800 CONTINUE EXELT(29) - EXELT(30) - EXELT(31) - EXELT(32) - EXELT(33) - EXELT(34) - EXELT(35) -

, 28

8) J - 12 17) J - 18 19) J - 21 24) J - 25 34) J - 48 49) J - 169 170) J - 210

- ANALM(J)

ANALM(7) ANALM(246) ANALM(265) ANALM(136) ANALM(MXSP+1) ANALM(MXSP+16) ANALM(MXSP+31)

TITR( 1) - EXELT(29)

ADS 6180ADS 6190ADS 6200ADS 6210ADS 6220ADS 6230ADS 6240ADS 6250ADS 6260ADS 6270ADS 6280ADS 6290ADS 6300ADS 6310ADS 6320ADS 6330ADS 6340ADS 6350ADS 6360ADS 6370ADS 6380ADS 6390ADS 6400ADS 6410ADS 6420ADS 6430ADS 6440ADS 6450ADS 6460ADS 6470ADS 6480ADS 6490ADS 6500ADS 6510ADS 6520ADS 6530ADS 6540ADS 6550ADS 6560ADS 6570ADS 6580ADS 6590ADS 6600ADS 6610ADS 6620ADS 6630ADS 6640ADS 6650ADS 6660ADS 6670ADS 6680ADS 6690ADS 6700ADS 6710ADS 6720ADS 6730ADS 6740ADS 6750

239

Page 240: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

TITR( 2) = EXELT( 6) TITR( 3) = EXELT(22) TITR( 4) = EXELT(21) TITR( 5) = EXELT( 5) TITR( 6) = EXELT(26) TITR( 7) = EXELT(25) TITR( 8) - EXELT(30) TITR( 9) = EXELT(31) TITR(IO) = EXELT(33) TITR(ll) = EXELT(34)

HTOTI OHTOTI

TOTEL(l) TOTEL(2)

J - NEUTIF (NEUT .EQ. 0) J - INSP+1OK - 1IF (IPRIN2 .NE. 0) THEN

IF ((IPGLN + INSP +9) .GT. 58) CALL PAGE IPGLN = IPGLN + INSP + 9 WRITE (UNO, 1000) WRITE (UNO, 1002) DO 970 I - 1, INSPWRITE (UNO, 1003) SPN(I), KNOWN(I),

(KNOWN(I) * DABS(ANSWER(I,J))), (KNOWN(I) * 1000.0 * DABS(ANSWER(I,J)) / CEC)

970 CONTINUE

WRITE (UNO, 1004) END IF

RETURN

1000 FORMAT(//, ' Surface Conditions calculated for the next', ' step ..... ')

1001 FORMAT(///, ' Final Equilibrium Surface Conditions .........')1002 FORMAT( /,3X, 'Surface', 9X, 'Moles on', 11X, 'Moles of, 6X,

' Fraction of ,/,3X, 'Complex', 9X, 'Surface', 10X, 'Surface Site', 4X,

'Surface Sites')1003 FORMAT(5X, A, 2X, E12.5, 7X, E12.5, 7X, F6.4)1004 FORMAT(//)1005 FORMAT(//, ' Initial Surface Conditions .........')1006 FORMAT(//, ' CEC = ',E12.5,' milli-equivalents ',

/, ' ',E12.5,' moles exchange capacity for mono','valent cations and anions')

1007 FORMAT(//, ' K Surface Comp. Species and Coef. .... '

1008 FORMAT(E12.5, ' - ',A, END

ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS ADS

67606770678067906800681068206830684068506860687068806890690069106920693069406950696069706980699070007010702070307040705070607070708070907100711071207130714071507160717071807190720072107220723072407250

C ===C

SUBROUTINE AITLIM (X, Y, CROSS)

Determines maximum stepsize for convergence on anions

240

AIT 0010'IAIT 0020|AIT 0030

Page 241: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

C CROSS LOG Indicates root has been crossed JAIT 0050 C RATIO DBL Test value based on Y |AIT 0060 C X DBL Multiplication factor for stepsize JAIT 0070 C Y DBL Currently calculated value over mass of |AIT 0080 C component in solution |AIT 0090 c - - - -------------------------------------------- IATT mnn

DOUBLE PRECISION X, Y, RATIOLOGICAL CROSSINTRINSIC DABS

-o

RATIO = DABS(1.0DOO - Y)

IF (CROSS) THENX - X / 2.0IF (X .LT. 1.0) X = 1.0

ELSEX = X * 1.3

END IF

IF (X .GT. 20.0) X - 20.0

IF (RATIO .GT. 0.02 .AND. X .GT. 10.0) X =10.0IF (RATIO .GT. 0.05 .AND. X .GT. 5.0) X - 5.0IF (RATIO .GT. 0.10 .AND. X .GT. 3.0) X - 3.0IF (RATIO .GT. 0.20 .AND. X .GT. 2.0) X = 2.0IF (RATIO .GT. 0.3) X = 1.0

RETURNEND

AIT 0110AIT 0120AIT 0130IATT 0140AIT 0150AIT 0160AIT 0170AIT 0180AIT 0190AIT 0200AIT 0210AIT 0220AIT 0230AIT 0240AIT 0250AIT 0260AIT 0270AIT 0280AIT 0290AIT 0300AIT 0310AIT 0320AIT 0330AIT 0340

CCCCCCCCCCC

C

DOUBLE PRECISION FUNCTION ATCPRD (1C, INDEX, COEF, ALFA)

This function calculates the activity products for reactions

ALFA DBL Activity of aqueous speciesCOEF DBL Stoichiometric coefficient for the speciesCPUMIN DBL Smallest positive real value program usesI INT Loop counting variable1C INT Number of componentsINDEX INT Index number of the componentsJ INT Current index number of this component

DOUBLE PRECISION CPUMINPARAMETER (CPUMIN = l.OD-35)

INTEGER I, 1C, INDEX(*) , JDOUBLE PRECISION ALFA(*) , COEF(*)INTRINSIC DLOG10

=====================================================================

ATC 0010IATC 0020IATC 0030IATC 0040IATC oosoIATC 0060IATC 0070IATC oosoIATC 0090IATC 0100IATC 0110IATC 0120ATC 0130ATC 0140ATC 0150ATC 0160ATC 0170ATC 0180ATC 0190ATC 0200IATC 0210ATC 0220

241

Page 242: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ATCPRD - O.ODOO

DO 100 1=1, 1C J - INDEX(I) IF (J .GT. 0) THEN

IF (ALFA(J) .LT. CPUMIN) THEN ATCPRD = -999.99 RETURN

END IFATCPRD - ATCPRD + (COEF(I) * DLOG10(ALFA(J)))

END IF 100 CONTINUE

RETURN END

ATCATCATCATCATCATCATCATCATCATCATCATCATCATCATC

023002400250026002700280029003000310032003300340035003600370

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE CALCUL (A, B, TDS , Y28, DNS, TEMP, HITEMP, PRESS. DENS CAT. nmn

This routine 1) Calculate2) Calculate 3) Calculate4) Calc. temp

A DBL ANALM DBL ANMTIC DBLB DBL BOAT DBL BOOT DBL CADENS DBL CPUMIN DBL CUNITS DBL CURDEN DBLDENOLD DBL DENS DBLDNS CHA EHM DBLEHMC DBL EMFZSC DBL EXELT DBL GAMMA DBL GFW DBL GFWC DBL HITEMP DBLI INTIMIX INT J INTM DBL MNACLD DBL MXSP INT

ifiHM, EHMC, EMFZSC, GFW, Z, UNITS, MXSP,ANMTIC, GAMMA, TC02, BOAT, BOOT, MNACLDNUFLAG)

will do the following: eh from field data.analyzed molality.C* JJ f~ "T f^T^ £t f\ "1 f^T^ t\ Q 1 QT^ f* OL-ctUJ-Uil" dilJ-Ull UclJ_ctIlCc .

. effects on debye-huckel solvent constants.

Molal Debye-Huckel coefficient Analyzed molality of species i Analyzed TICMolal Debye-Huckel coefficient B-dot as a function of temperature Activity coefficient deviation function Calculated density Smallest positive real value program uses Analytical input concentration Current densityPrevious density, used for iterations DensityDetermines if density should be calculated Measured Eh in voltsMeasured Eh using the Calomel electrode Measured Eh using the Zobell's solution Total moles of component. Activity coef . of species Gram formula weight of aqueous species Gram Formula weight of catbon In- situ temperatureLoop variableSwitch used in MIXER routines Loop variableCalculated molality of aqUeous species Sum of Molality * charge / 2 Total number of aqueous species

TIT PAT nfionI XL", \jt\Li UU^U

CAL 0030CAL 0040

|CAL 0050

ICAL 0060ICAL 0070JCAL 0080|CAL 0090ICAL 0100

--..... JCAL 0110 ICAL 0120 ICAL 0130|CAL 0140 |CAL 0150 JCAL 0160 |CAL 0170ICAL oiso|CAL 0190 JCAL 0200|CAL 0210ICAL 0220|CAL 0230 |CAL 0240|CAL 0250 JCAL 0260ICAL 0270 ICAL 0280 ICAL 0290 ICAL 0300 ICAL 0310JCAL 0320JCAL 0330 |CAL 0340|CAL 0350ICAL 0360 ICAL 0370JCAL 0380

242

Page 243: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ccccccccccccccccr\J

c

cr.

NMAX INT General array dimension to allow easy expansionNUFLAG INT Sets the activity coefficients of neutral speciesPRESS DEL Total pressureSi DEL Temperary sum variableS2 DEL Temperary sum variableS3 DEL Temperary sum variableT DEL Temperature in deg. KTC02 DEL Activity coefficients of C02 with temperatureTDS DEL Total Dissolved Solids (UNITS = KG/L)TEMP DEL Temperature of the solution when pH was measuredTIC DEL Concentration of total inorganic carbonTITR DEL Used for convergence in DISTRBTOTEL DEL Contains HTOT, OHTOT and Sum C02UNITS CHA Units of concentrationY28 INT Set at hitemp to skip unneeded calculationsZ INT Charge of aqueous species

INTEGER NMAXDOUBLE PRECISION CPUMIN, GFWC

PARAMETER (NMAX = 340)PARAMETER (CPUMIN=1 .OD-35 , GFWC - 12.011DO)

CHARACTER*! DNSCHARACTER*5 UNITS

INTEGER I, IBMIX, IDMIX(50) , IMIX, INMIX, ITMIXINTEGER J, MXSP, NUFLAG, Y28, Z(NMAX)

DOUBLE PRECISION A, ALFA ( NMAX ), AMOL(50) , ANALM(NMAX) , ANMTICDOUBLE PRECISION B, BDAT(IO) , BOOT, CADENS , C02F, CUNITS(NMAX)DOUBLE PRECISION CURDEN, DENOLD, DENS, DFRACl, DINC, EHM, EHMCDOUBLE PRECISION EMFZSC , EXELT(35) , FBOIL, GAMMA(NMAX)DOUBLE PRECISION GFW(NMAX) , HITEMP, HTOTI, KHC02 , KHH2SDOUBLE PRECISION M(NMAX) , MNACLD, OHTOTI , PH, PRESS, SI, S2, S3DOUBLE PRECISION T, TC02(10), TDS, TEMP, TIC, TITR(ll) , TOTEL(5)

EXTERNAL KHC02 , KHH2S

INTRINSIC DABS, DSQRT, IABS

COMMON /AMM / IDMIX, AMOL, ITMIX, INMIX, DFRACl, DINC, FBOILCOMMON /EXTOT / EXELT, TOTEL, TITRCOMMON /IMM / IBMIX, IMIXCOMMON /MOLS / PH, ANALM, M, ALFA, CUNITSCOMMON /TOTALS/ C02F, HTOTI, OHTOTI

SAVE DENOLD

=====================================================================

T = TEMP + 273.15DOIF (Y28 .EQ. 1) GO TO 70

Calculation of Eh from field data.

|CAL 0390JCAL 0400ICAL 0410JCAL 0420JCAL 0430ICAL 0440JCAL 0450JCAL 0460JCAL 0470JCAL 0480JCAL 0490ICAL osoo|CAL 0510JCAL 0520ICAL 0530ICAL 0540JCAL 0550CAL 0560CAL 0570CAL 0580CAL 0590CAL 0600CAL 0610CAL 0620CAL 0630CAL 0640CAL 0650CAL 0660CAL 0670CAL 0680CAL 0690CAL 0700CAL 0710CAL 0720CAL 0730CAL 0740CAL 0750CAL 0760CAL 0770CAL 0780CAL 0790CAL 0800CAL 0810CAL 0820CAL 0830CAL 0840CAL 0850CAL 0860CAL 0870CAL 0880(GAL 0890CAL 0900CAL 0910CAL 0920CAL 0930(GAL 0940ICAL 0950ITAT OQAn

243

Page 244: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ccccc

IF ((DABS(EMFZSC - 9.0DO)) .LT. l.OD-10) THENSI - 0.2145DO - (7.6D-04 * (TEMP - 25.0DO))

ELSESI = 4.28D-1 - (2.2D-03 * (TEMP - 25.0DO)) - EMFZSC

END IF

IF (EHMC .LT. 9. DO) EHM - EHMC + SI

Calculation of analyzed molality.If no value for density is entered then One will be computedusing the empirical equation:DENSITY = 1.00 + 6.88 X 10 D-7 X TOTAL I^ISSOLVED SOLIDS

i

CURDEN - DENSTDS = O.ODOO

10 CONTINUESI - O.ODOODO 20 I = 1, MXSP + 44

IF (UNITS .EQ. 'PPM ') THENSI = SI + (l.OD-6 * CUNITS(I) * DENS)

ELSE IF (UNITS .EQ. 'MG/L ') THENSI - SI + (l.OD-6 * CUNITS(I))

ELSE IF (UNITS .EQ. 'MOL/L' .OR. UNITS .EQ. 'MOL/K') THENSI = SI + (l.OD-3 * CUNITS(I) * GFW(I) * (DENS - TDS))

ELSE IF (UNITS .EQ. 'MEQ/L' .AND. Z(I) .NE. 0) THENSI - SI + (l.OD-6 * CUNITS(I) * GFW(I) * (DENS - TDS) /

IABS(Z(I)))END IF

20 CONTINUE

CADENS = l.ODO + (6.88D-7 * (1.0D6 * Si))IF (DNS .EQ. 'U') THEN

DENS = CADENSDENOLD = CADENS

END IF

IF (SI .GT. CPUMIN) THENIF (DABS ((TDS - Si) / Si) .LT. 0.0001) THEN

TDS - SIELSE

TDS - SIGO TO 10

END IFEND IF

IF (DNS .EQ. 'N') THENCURDEN = CURDEN + CADENS - DENOLD

ELSE IF (DNS .EQ. 'U') THENCURDEN = DENS

END IF

DNS = 'N'DENOLD = CADENSDENS = CURDEN

CAL 0970CAL 0980CAL 0990CAL 1000CAL 1010CAL 1020CAL 1030CAL 1040CAL 1050

--ICAL 1060JCAL 1070ICAL losoJCAL 1090JCAL 1100

--JCAL 1110CAL 1120CAL 1130CAL 1140CAL 1150CAL 1160CAL 1170CAL 1180CAL 1190CAL 1200CAL 1210CAL 1220CAL 1230CAL 1240CAL 1250CAL 1260CAL 1270CAL 1280CAL 1290CAL 1300CAL 1310CAL 1320CAL 1330CAL 1340CAL 1350CAL 1360CAL 1370CAL 1380CAL 1390CAL 1400CAL 1410CAL 1420CAL 1430CAL 1440CAL 1450CAL 1460CAL 1470CAL 1480CAL 1490CAL 1500CAL 1510CAL 1520CAL 1530CAL 1540

244

Page 245: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

IF (IMIX .EQ. 1) GO TO 40

DO 30 I = 1, MXSP + 44M(I) = O.ODOIF (UNITS .EQ. 'PPM ' .AND. GFW(I) .GT. CPUMIN) THENM(I) - l.OD-3 * CUNITS(I) * DENS / (GFW(I) * (DENS - TDS))

ELSE IF (UNITS .EQ. 'MG/L ' .AND. GFW(I) .GT. CPUMIN) THENM(I) = l.OD-3 * CUNITS(I) / (GFW(I) * (DENS - TDS))

ELSE IF (UNITS .EQ. 'MOL/L') THENM(I) = CUNITS(I) / (DENS - TDS)

ELSE IF (UNITS .EQ. 'MOL/K') THENM(I) = CUNITS(I)

ELSE IF (UNITS .EQ. 'MEQ/L' .AND. Z(I) .NE. 0) THENM(I) = l.OD-3 * CUNITS(I) / (IABS(Z(I)) * (DENS - TDS))

END IFANALM(I) = M(I)

30 CONTINUE

IF (UNITS .EQ. 'PPM ') THENANMTIC - TIC * l.OD-3 * DENS / (GFWC * (DENS - TDS))

ELSE IF (UNITS .EQ. 'MG/L ') THENANMTIC = TIC * l.OD-3 / (GFWC * (DENS - TDS))

ELSE IF (UNITS .EQ. 'MOL/L') THENANMTIC - TIC / (DENS - TDS)

ELSE IF (UNITS .EQ. 'MOL/K') THENANMTIC = TIC

END IF

40 CONTINUE

Set the mass balance variables to be used in species distribution

J = 0DO 60 I = 1, 28

J = J + 1IF (J .EQ. 8) J - 12IF (J .EQ. 17) J - 18IF (J .EQ. 19) J - 21IF (J .EQ. 24) J - 25IF (J .EQ. 34) J - 48IF (J .EQ. 49) J - 169IF (J .EQ. 170) J - 210EXELT(I) = M(J)

60 CONTINUE

EXELT(29) = M(7) + (2.0 * M(98))EXELT(30) - M(246)EXELT(31) = M(265)EXELT(32) = M(136)EXELT(33) = M(MXSP+1)EXELT(34) = M(MXSP+16)EXELT(35) = M(MXSP+31)

TITR( 1) = EXELT(29)

CAL 1550CAL 1560CAL 1570CAL 1580CAL 1590CAL 1600CAL 1610CAL 1620CAL 1630CAL 1640CAL 1650CAL 1660CAL 1670CAL 1680CAL 1690CAL 1700CAL 1710CAL 1720CAL 1730CAL 1740CAL 1750CAL 1760CAL 1770CAL 1780CAL 1790CAL 1800CAL 1810CAL 1820CAL 1830CAL 1840CAL 1850

-| CAL 1860 JCAL 1870

-ICAL i860CAL 1890CAL 1900CAL 1910CAL 1920CAL 1930CAL 1940CAL 1950CAL 1960CAL 1970CAL 1980CAL 1990CAL 2000CAL 2010CAL 2020CAL 2030CAL 2040CAL 2050CAL 2060CAL 2070CAL 2080CAL 2090CAL 2100CAL 2110CAL 2120

245

Page 246: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

r>\_>

cccccr>\_>

ccr> \_>

TITR( 2) - EXELT( 6)TITR( 3) - EXELT(22)TITR( 4) - EXELT(21)TITR( 5) - EXELT( 5)TITR( 6) - EXELT(26)TITR( 7) - EXELT(25)TITR( 8) - EXELT(30)TITR( 9) - EXELT(31)TITR(IO) - EXELT(33)TITR(ll) - EXELT(34)

70 CONTINUE

MNACLD - O.ODODO 80 I = 1, MXSP + 44MNACLD = MNACLD + (ANALM(I) * IABS(Z(I)))

80 CONTINUEMNACLD - 0.5*MNACLD + l.DO

Calculation of the activity coeffs (gamma) for neutral species.Gamma - 1 if nuflag =1. If nuflag = 0 then gamma for neutralspecies are equal to gamma (co2) except for gamma (h2s) which iscalculated separately. Gamma for co2 is calculated by the methodof drummond (unpublished disert. , 1981) .

SI - KHC02(T, MNACLD) / KHC02(T, l.ODOO)

DO 90 I - 1, MXSP + 44IF (IABS(Z(I)) .LT. 1) THEN

IF (NUFLAG .EQ. 1) THENGAMMA(I) - l.ODO

ELSEGAMMA(I) = SI

END IFEND IF

90 CONTINUE

IF (ANALM(33) .GT. CPUMIN) THENGAMMA(33) - KHH2S(T, MNACLD) / KHH2S(T, l.ODOO)

ELSEGAMMA(33) = l.ODOO

END IF

IF (IMIX .EQ. 1) RETURN

Temperature effects on debye-huckel solvent constants.

SI - 374.11DO - TEMPS2 = S1**0.333333DOS3 = DSQRT( (l.ODO + 0.1342489DO * S2 - 3.946263D-3 * SI) /

(3.1975DO - 0.3151548DO * S2 - 1.203374D-3 * SI +7.48908D-13 * Sl**4))

CAL 2130CAL 2140CAL 2150CAL 2160CAL 2170CAL 2180CAL 2190CAL 2200CAL 2210CAL 2220CAL 2230CAL 2240CAL 2250CAL 2260CAL 2270CAL 2280CAL 2290CAL 2300CAL 2310CAL 2320

|CAL 2330 |CAL 2340|CAL 2350JCAL 2360|CAL 2370JCAL 2380|CAL 2390CAL 2400CAL 2410CAL 2420CAL 2430CAL 2440CAL 2450CAL 2460CAL 2470CAL 2480CAL 2490CAL 2500CAL 2510CAL 2520CAL 2530CAL 2540CAL 2550CAL 2560CAL 2570CAL 2580CAL 2590CAL 2600|CAL 2610 |CAL 2620|CAL 2630 CAL 2640CAL 2650CAL 2660CAL 2670CAL 2680CAL 2690CAL 2700

246

Page 247: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

IF ((DABS(HITEMP-TEMP)) .LT. l.OD-10 .OR. HITEMP .LT. l.OD-10) . S3 = DSQRT(S3**2 + 0.0087 * PRESS / (400.0 - TEMP)**0.95)

IF (T .LT. 373.16DO) THENSI = 87.74DO - TEMP * (TEMP * (1.41D-6 * TEMP -

9.398D-4) + 0.4008DO) ELSE

SI - 5321DO / T + 233.76DO - T * (T * (8.292D-7 * T -1.417D-3) + 0.9297DO)

END IF

IF ((DABS(HITEMP-TEMP)) .LT. l.OD-10 .OR. HITEMP .LT. l.OD-10) . SI = SI + 0.053 * PRESS / (400.0 - TEMP)**0.5

SI = DSQRT(S1 * T)A = 18246D2 * S3 / Sl**3B =50.29 * S3 / SI

Calculate bdot

IF (TEMP .GT. 300.ODO) THENBDOT = O.ODO

ELSEDO 120 J - 1, 9

IF ((DABS(TEMP-TC02(J))) .LT. l.OD-10) THEN BDOT = BDAT(J) GO TO 130

ELSE IF (TEMP .LT. TC02(J)) THENBDOT = BDAT(J-l) + (TEMP-TC02(J-1)) * (BDAT(J)

BDAT(J-l)) / (TC02(J)-TC02(J-1)) GO TO 130

END IF120 CONTINUE130 CONTINUE

END IF

RETURN END

CAL 2710 CAL 2720 CAL 2730 CAL 2740 CAL 2750 CAL 2760 CAL 2770 CAL 2780 CAL 2790 CAL 2800 CAL 2810 CAL 2820 CAL 2830 CAL 2840 CAL 2850 CAL 2860 CAL 2870 CAL 2880 |CAL 2890 jCAL 2900 ICAL 2910 CAL 2920 CAL 2930 CAL 2940 CAL 2950 CAL 2960 CAL 2970 CAL 2980 CAL 2990 CAL 3000 CAL 3010 CAL 3020 CAL 3030 CAL 3040 CAL 3050 CAL 3060 CAL 3070 CAL 3080 CAL 3090 CAL 3100

C .

cC

c c c c c c c

SUBROUTINE C020PT (TEMP, HITEMP, GAMMA, IC02 , IMC03 , FCCSAT, MNACLD, ITIC, ISAT, IPRIN2 , *)

Titrates co2 to a given criterion (pH, pco2, m(h2co3) , or saturation with calcite, siderite, or dolomite)

ALFA DBL Activity of aqueous species i ANALM DBL Analyzed molality of species i C02F DBL Sum of C02 plus C02 lost from solution C02INC DBL Amount of C02 to be added/removed C02SAT DBL Saturation indices/test for various options CPUMIN DBL Smallest positive real value program uses CROSS LOG Have we crossed root?

C02 0010 C02 0020

<===|C02 0030 |C02 0040 JC02 0050

--- JC02 0060JC02 0070 JC02 0080 |C02 0090 |C02 0100 |C02 0110 |C02 0120 IC02 0130

247

Page 248: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cccccccccccccccccccccccccccccccccccccccccccccccccccccc

- -

DCH4DDCH4DC02DDC02DH2SDDH2SDNH3DDNH3DONEEXELTFCCSATFIXITGAMMAHFACHITEMPHTOTHTOTIIIC02IICIMC03IOPTI PAGEIPGLNIPRIN2I SATITICJC03KHKHC02KT1KTFACLOGKT1LOGKT2LTCSATMMAXC02

MNACLDNDIMNMAXOHTOTOHTOTIPHPHHITPPHHITSATNAMTEMPTIAPTITRTKTKTTOTELUNO

INTEGERDOUBLE

DELDELDELDELDELDELDELDBLLOGDBLDBLDBLDBLDBLDBLDBLDBLINTINTINTINTINTINTINTINTINTINTINTDBLDBLDBLDBLDBLDBLDBLDBLDBL

DBLINTINTDBLDBLDBLINTINTCHADBLDBLDBLDBLDBLDBLINT

NDIM,

Concentration of CH4 lost up annulusConcentration of CH4 lost before pH measurementConcentration of C02 lost up annulusConcentration of C02 lost before pH measurementConcentration of H2S lost up annulusConcentration of H2S lost before pH measurementConcentration of NH3 lost up annulusConcentration of NH3 lost before pH measurementSwitch indicating DONETotal amount of componentsZero test valueFixing value in the C02 optionActivity coef . of aqueous speciesAmount of H to be added to hydronium balanceIn- situ temperatureCurrent total hydroniumInitial hydroniumLoop variableSwitch for C02 optionIndex pointer to select carbonate speciesSelects C02 optionSwitch for C02 optionCurrent page number of output fileCurrent line number of the output fileSwitch for printingCounter for storing things in the positionHitemp distribution of carbonate speciesSwitch to control printing of some headingsHenry's law constant for C02 at TFunction to Calculate the Henry's law K for C02Equilibrium constant of the aqueous reactionsCorrection for number of C02 groupsLog K for aqueous species at specified temp.Log K for minerals at specified temperatureValue used for testingCalculated molality of aqueous speciesDetermines which carbonate species has the

largest molalitySum of Molality * charge / 2Parameter for dimensionGeneral array dimension to allow easy expansionTotal OH in solutionTotal OH in solution . . initiallyMeasured pH of the solutionHITEMP switch, used to control PHCALCSwitch to control calling PHCALCName used for this option, Cal, Dol, ....Temperature of the solution when pH was measuredTemporary activity productUsed for convergence in DISTRBTemperature in deg KTemporary thermodynamic log kTotal amount of each elenientFile unit assigned for odtput file

NMAX, UNOPRECISION CPUMIN

|C02 0140C02 0150|C02 0160C02 0170C02 0180|C02 0190C02 0200|C02 0210JC02 0220JC02 0230|C02 0240C02 0250|C02 0260|C02 0270|C02 0280JC02 0290|C02 0300|C02 0310|C02 0320|C02 0330JC02 0340|C02 0350|C02 0360|C02 0370|C02 0380|C02 0390|C02 0400|C02 0410|C02 0420|C02 0430JC02 0440|C02 0450|C02 0460|C02 0470|C02 0480|C02 0490|C02 0500JC02 0510|C02 0520|C02 0530|C02 0540|C02 0550|C02 0560C02 0570|C02 0580C02 0590|C02 0600|C02 0610|C02 0620|C02 0630|C02 0640|C02 0650|C02 0660|C02 0670|C02 0680C02 0690C02 0700C02 0710

248

Page 249: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PARAMETER (CPUMIN - l.OD-35, NDIM - 7, NMAX - 340, UNO = 6)

INTEGER I, IC02, IIC, IMC03 , IOPT, IPAGE, IPGLN, IPRIN2 , ISATINTEGER ITIC, JC03, PHHIT, PPHHIT

LOGICAL CROSS, DONE

CHARACTER * 1 TOF, CRCHARACTER * 8 SATNAM(6)CHARACTER * 40 TITMIX

DOUBLE PRECISION ALFA(NMAX) , ANALM(NMAX)DOUBLE PRECISION C02F, C02SAT(NDIM) , C02INC(NDIM) , CUNITS(NMAX)DOUBLE PRECISION DCH4, DDCH4, DC02 , DDC02 , DH2S, DDH2SDOUBLE PRECISION DNH3 , DDNH3 , EXELT(35) , FCCSAT, FIXITDOUBLE PRECISION GAMMA(NMAX) , HFAC, HITEMP, HTOT, HTOTIDOUBLE PRECISION KH, KHC02 , KTl(NMAX) , KTFACDOUBLE PRECISION LOGKTl(NMAX) , LOGKT2 (NMAX) , LTCSATDOUBLE PRECISION M(NMAX) , MAXC02 , MNACLD, OHTOT, OHTOTI , PHDOUBLE PRECISION SC02, TEMP, TIAP, TITR(ll) , TK, TKT, TOTEL(5)

EXTERNAL GUESS, KHC02 , PAGE, SORTA

INTRINSIC DABS, DLOG10

COMMON /ALOGK / LOGKTl , LOGKT2COMMON /EXTOT / EXELT, TOTEL, TITRCOMMON /FMFD / TOF, CR, TITMIXCOMMON /FORM / IPAGE, IPGLNCOMMON /GAS / DC02 , DDC02 , DH2S, DDH2S, DNH3 , DDNH3 ,

DCH4, DDCH4, IOPT, FIXITCOMMON /MOLS / PH, ANALM, M, ALFA, CUNITSCOMMON /TOTALS/ C02F, HTOTI, OHTOTICOMMON /TTK / KT1COMMON /ZPH / PHHIT, PPHHIT, JC03, SC02 , HTOT, OHTOT

SAVE C02SAT, C02INC, CROSS, DONE

DATA SATNAM/ 'CALCITE ', 'DOLOMITE', 'SIDERITE', ' AQ C02 ' ,' PH' , ' PC02'/

c ======================================================================

C -----

C If C02, H2S, NH3 or CH4 are being addedC -----

IF (IC02 .EQ. 0) THENDC02 = DDC02DH2S = DDH2SDNH3 = DDNH3DCH4 - DDCH4CALL PAGEWRITE (UNO, 1001) DC02, DH2S, DNH3 , DCH4IPGLN = IPGLN + 6

IF (DABS(HITEMP-TEMP) .GT. CPUMIN) HITEMP = TEMP

C02 0720C02 0730C02 0740C02 0750C02 0760C02 0770C02 0780C02 0790C02 0800C02 0810C02 0820C02 0830C02 0840C02 0850C02 0860C02 0870C02 0880C02 0890C02 0900C02 0910C02 0920C02 0930C02 0940C02 0950C02 0960C02 0970C02 0980C02 0990C02 1000C02 1010C02 1020C02 1030C02 1040C02 1050C02 1060C02 1070C02 1080C02 1090C02 1100C02 1110C02 1120|C02 1130C02 1140|C02 1150 |C02 1160|C02 1170 C02 1180C02 1190C02 1200C02 1210C02 1220C02 1230C02 1240C02 1250C02 1260C02 1270C02 1280C02 1290

249

Page 250: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cccccccccccc

c --cc

JC03 = 1me = 2IOPT - 0PHHIT = 1PPHHIT = 0HTOTI - HTOTOHTOTI = OHTOT

EXELT(25) = EXELT(25) + DDH2STITR(7) = EXELT(25)EXELT(24) - EXELT(24) + DDNH3EXELT(29) - EXELT(29) + DDC02TITR(l) - EXELT(29)M(285) = M(285) + DDCH4ANALM(285) = M(285) + DDCH4

DDC02 =0.0DDH2S =0.0DDNH3 =0.0DDCH4 =0.0

RETURNEND IF

Add the amount of CO 2required for saturation with CALCITE (IMC03=1)required for saturation with DOLOMJTE (IMC03=2)required for saturation with SIDERITE (IMC03=3)required to reach a specified m H2C03 (IMC03=4)

which is stored in FIXITrequired to reach a specified pH (IMC03=5)

which is stored in FIXITrequired to reach a specified p C02 (IMC03=6)

which is stored in FIXIT

IC02 must be greater than zero for this option to be used.,_________________________________________ H _______________________

IF (ISAT .EQ. 0) THENCROSS = .FALSE.DONE = .FALSE.

IF (DABS(HITEMP-TEMP) .GT. l.OD-10) HITEMP - TEMP

PHHIT - 1PPHHIT - 0HTOTI = HTOTOHTOTI = OHTOTJC03 = 1ITIC = 2

END IF

ISAT - ISAT + 1

Scan for the most abundant species of C02 and use it later tominimize round- off errors in calculation^ .

C02 1300C02 1310C02 1320C02 1330C02 1340C02 1350C02 1360C02 1370C02 1380C02 1390C02 1400C02 1410C02 1420C02 1430C02 1440C02 1450C02 1460C02 1470C02 1480C02 1490C02 1500C02 1510C02 1520C02 1530

--|C02 1540JC02 1550|C02 1560|C02 1570|C02 1580JC02 1590JC02 1600|C02 1610JC02 1620|C02 1630|C02 1640|C02 1650JC02 1660

--|C02 1670C02 1680C02 1690C02 1700C02 1710C02 1720C02 1730C02 1740C02 1750C02 1760C02 1770C02 1780C02 1790C02 1800C02 1810C02 1820C02 1830C02 1840

|C02 1860JC02 1870

250

Page 251: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

^ _________-___-______--__--_---------------------------------------

MAXC02 = M(7)HFAC = ALFA(8)IIC = 7

DO 10 I = 97, 98IF (M(I) .GT. MAXC02) THENMAXC02 = M(I)IIC = I

END IF10 CONTINUE

IF (IIC .EQ. 97) HFAC = ALFA(8)**2IF (IIC .EQ. 98) HFAC =1.0

_________-_______-----____----------------------------------------C Set up TEST for each of the optionsr ___ ______ ____--___.__________--___---.

IF (IMC03 .EQ. 1) THENTKT = LOGKT2(24)KTFAC =1.0TIAP = ALFA(l) * ALFA (I 1C) / HFAC

ELSE IF (IMC03 .EQ. 2) THENTKT = LOGKT2(41)KTFAC =2.0TIAP = ALFA(l) * ALFA(2) * ALFA(IIC)**2 / HFAC**2

ELSE IF (IMC03 .EQ. 3) THENTKT = LOGKT2(146)KTFAC =1.0TIAP = ALFA(18) * ALFA(IIC) / HFAC

ELSE IF (IMC03 .EQ. 4) THENLTCSAT = DLOGIO(FIXIT) - DLOG10(M(97) )

ELSE IF (IMC03 .EQ. 5) THENLTCSAT = PH - FIXIT

ELSE IF (IMC03 .EQ. 6) THENTK = TEMP + 273.15KH = KHC02 (TK, MNACLD)LTCSAT = DLOG10((FIXIT/KH)) - DLOG10(M(97) )

END IF

IF (IMC03 .EQ. 1 .OR. IMC03 .EQ. 2 .OR. IMC03 .EQ. 3) THENIF (IIC .EQ. 7) THENTKT = TKT - KTFAC * LOGKTl(l)

ELSE IF (IIC .EQ. 97) THENTKT = TKT - KTFAC * (LOGKTl(l) + LOGKT1(72))

END IFLTCSAT = DLOGIO(TIAP) - TKT

END IF

IF (DABS (LTCSAT) .LT. FCCSAT) DONE = .TRUE,

IF (DONE) THENIOPT = 0PHHIT = 0PPHHIT = 1ISAT = 0

C02 1890C02 1900C02 1910C02 1920C02 1930C02 1940C02 1950C02 1960C02 1970C02 1980C02 1990C02 2000C02 2010C02 2020C02 2030

---|C02 2040|C02 2050i rr\o often - - - | uUZ ZUoUC02 2070C02 2080C02 2090C02 2100C02 2110C02 2120C02 2130C02 2140C02 2150C02 2160C02 2170C02 2180C02 2190C02 2200C02 2210C02 2220C02 2230C02 2240C02 2250C02 2260C02 2270C02 2280C02 2290C02 2300C02 2310C02 2320C02 2330C02 2340C02 2350C02 2360C02 2370C02 2380C02 2390C02 2400C02 2410C02 2420C02 2430C02 2440C02 2450

251

Page 252: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

JC03HTOTITOTEL(l)TOTEL(3)C02F

0HTOTIHTOTITOTEL(3) + DC02C02F + DC02

+ (2.DO * DC02)

IF (IPGLN .GT. 55 .OR. IPRIN2 .EQ. 0) CALL PAGE IF (IMC03 .LE. 3) THENWRITE (UNO,1007) SATNAM(IMC03), DC02

ELSE IF (IMC03 .EQ. 4) THENWRITE (UNO,1008) SATNAM(IMC03), FIXlT, DC02

ELSE IF (IMC03 .EQ. 5) THENWRITE (UNO,1009) FIXIT, DC02

ELSE IF (IMC03 .EQ. 6) THENWRITE (UNO,1008) SATNAM(IMC03), FIXlT, DC02

END IFIPGLN = IPGLN + 5 DC02 = O.DO RETURN 1

END IF

IF (ISAT .EQ. 1) THEN C02SAT(1) = LTCSAT C02INC(1) - 0.0 IF (IMC03 EQ. 1) THEN DC02 = M(IIC) * ((1.0/(10.0**LTCSAT)) -1.0) IF (DC02 .LT. 0.0) DC02 =0.01 IF (DC02 .GT. 0.05) DC02 - 0.01

ELSE IF (IMC03 .EQ. 2) THENDC02 = M(IIC) * ((1.0/(10.0**LTCSAT)) -1.0) DC02 = DC02 / 2.0 IF (DC02 .LT. 0.0) DC02 =0.01 IF (DC02 .GT. 0.05) DC02 =0.01

ELSE IF (IMC03 .EQ. 3) THENDC02 - M(IIC) * ((1.0/(10.0**LTCSAT)) -1.0) IF (DC02 .LT. 0.0) DC02 = 0.01 IF (DC02 .GT. 0.05) DC02 =0.01

ELSE IF (IMC03 .EQ. 4) THEN IF (IIC .EQ. 7) THEN

DC02 - FIXIT * KT1(72) * GAMMA(97) / ALFA(8)DC02 - DC02 / GAMMA(7)DC02 = (DC02 - M(7)) / 3.0

ELSE IF (IIC .EQ. 97) THENDC02 = FIXIT - M(97)

ELSE IF (IIC .EQ. 98) THENDC02 - FIXIT * KT1(72) * GAMMA(97) / ALFA(8)DC02 = DC02 * KT1(1) / (GAMMA(98) * ALFA(8))DC02 = (DC02 - M(98)) / 3.0

END IF ELSE IF (IMC03 .EQ. 5) THEN

DC02 = 10.0**(-FIXIT) - 10.0**(-PH) DC02 = DC02 / 2.0

ELSE IF (IMC03 .EQ. 6) THEN IF (IIC .EQ. 7) THENDC02 = (FIXIT/KH) * KT1(72) * GAMMA(97) / ALFA(8)DC02 = DC02 / GAMMA(7)DC02 = (DC02 - M(7)) / 3.0

ELSE IF (IIC .EQ. 97) THEN

C02 2460 C02 2470 C02 2480 C02 2490 C02 2500 C02 2510 C02 2520 C02 2530 C02 2540 C02 2550 C02 2560 C02 2570 C02 2580 C02 2590 C02 2600 C02 2610 C02 2620 C02 2630 C02 2640 C02 2650 C02 2660 C02 2670 C02 2680 C02 2690 C02 2700 C02 2710 C02 2720 C02 2730 C02 2740 C02 2750 C02 2760 C02 2770 C02 2780 C02 2790 C02 2800 C02 2810 C02 2820 C02 2830 C02 2840 C02 2850 C02 2860 C02 2870 C02 2880 C02 2890 C02 2900 C02 2910 C02 2920 C02 2930 C02 2940 C02 2950 C02 2960 C02 2970 C02 2980 C02 2990 C02 3000 C02 3010 C02 3020 C02 3030

252

Page 253: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

20

30

40

DC02 = (FIXIT/KH) - M(97) ELSE IF (IIC .EQ. 98) THEN

DC02 = (FIXIT/KH) * KTl(72) * GAMMA(97) / ALFA(8) DC02 = DC02 * KT1(1) / (GAMMA(98) * ALFA(8)) DC02 = (DC02 - M(98)) / 3.0

END IF END IF

ELSE IF (ISAT .GE. 2) THEN C02SAT(ISAT) = LTCSAT C02INC(ISAT) = DC02 IF ((LTCSAT * C02SAT(1)) .LT. 0.0) CROSS = .TRUE.

Sort if Root has been crossed

1 = 1IF (CROSS) CALL SORTA (C02INC, C02SAT, ISAT, I)

Due to size of guess routine, keep only last NDIM-1 pts

IF (ISAT .EQ. NDIM) THEN IF (.NOT. CROSS) THEN

DO 20 I = 1, (NDIM-1) C02INC(I) = C02INC(I+1) C02SAT(I) = C02SAT(I+1)

CONTINUE END IF IF (CROSS) THEN

IF (C02SAT(1) * C02SAT(2)ISAT = NDIM-1

ELSE IF (C02SAT(NDIM-1)*C02SAT(NDIM) DO 30 I = 1,(NDIM-1)

C02INC(I) = C02INC(I+1) C02SAT(I) = C02SAT(I+1)

CONTINUEELSE IF (DABS(C02SAT(1)) .GT

DO 40 I = 1,(NDIM-1)C02INC(I) = C02INC(I+1)

C02SAT(I+1)

,LT. 0.0) THEN

.LT. 0.0) THEN

DABS(C02SAT(NDIM))) THEN

C02SAT(I) CONTINUE

END IF END IFISAT = NDIM - 1

END IF

If root not yet crossed, keep on trucking

IF (.NOT. CROSS) THENDC02 = DC02 * 2.0IF ((C02F + DC02) .LT. CPUMIN) DC02

END IFl.OD-10 - C02F

C02 C02 C02 C02 C02 C02 C02 C02 C02 C02 C02 C02 |C02 |C02 |C02 C02 C02 C02 C02 |C02 JC02 |C02 C02 C02 C02 C02 C02 C02 C02 C02 C02 C02 C02 C02 C02 C02 C02 C02 C02 C02 C02 C02 C02 C02 C02 C02 C02 C02 |C02 |C02 |C02 C02 C02 C02 C02 C02 C02 IC02

3040305030603070308030903100311031203130314031503160317031803190320032103220323032403250326032703280329033003310332033303340335033603370338033903400341034203430344034503460347034803490350035103520353035403550356035703580359036003610

253

Page 254: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

C If ROOT crossed, go and get it C ----------------.-------.---_--___..-_..--.....-_._....__..-..-......

IF (CROSS) THENCALL GUESS (C02INC, C02SAT, DC02 , ISAT)

END IFEND IF

IF (IPRIN2 .GT. 0) THENIF (IMC03 .LE. 3) THENWRITE (UNO, 1004) SATNAM(IMC03) , LTCSAT

ELSEWRITE (UNO, 1002) SATNAM(IMC03) , LTtfSAT

END IFIPGLN - IPGLN + 2IF (IPGLN .GT. 57) CALL PAGEWRITE (UNO, 1003) DC02IPGLN - IPGLN + 2

END IF

IF (ISAT .EQ. 1) THENEXELT(29) - DC02 + EXELT(29)TITR(l) - EXELT(29)

END IF

RETURN

1001 FORMAT(/,' Adding gases to the analyses using the DC02/DH2S/DNH3'' /DCH4 ' ,

/,' option. Moles of C02 added - ', E14.6,/, ' of H2S added - ' , E14.6,/,' of NH3 added - ', E14.6,/ , ' of CH4 added - ' , E14 . 6 ,/)

1002 FORMAT (/,5X, 'LOG (CALCULATED -DES IRED) ',A8,' - '.E10.4)1003 FORMAT (/,5X, 'VALUE OF DC02 FOR THIS ITERATION - ',E10.4)1004 FORMAT (/,5X, 'LOG SI (',A8,') - ', E10.4)1005 FORMAT(/, *** DESIRED EQUILIBRIUM DOES NOT SEEM TO ',

CONVERGE WITHIN THE LIMITS OF' ,.5 AND 1.0E5 PPM AQ C02 ***' ,

/, SI - ' , D16.8, ' TIC - ' , D16.8,MOLS/KG WATER')

1006 FORMAT(/, *** DESIRED EQUILIBRIUM DOES NOT SEEM TO',CONVERGE ***' , /)

1007 FORMAT (//,5X,'C02 added to achieve equilibrium with ' , A8 , ' - ',E10.4, 'Moles/Kg Water' ,//)

1008 FORMAT (//,' C02 added to achieve saturation with ',A8,' of ',E10.4,' - ', E10.4, ' Moles/Kg water' ,//)

1009 FORMAT (//,' C02 added to achieve pH of ', F10.4, ' - ',E13.4, ' Moles/Kg water' ,//)

END

|C02 3620 |C02 3630C02 3640C02 3650C02 3660C02 3670C02 3680C02 3690C02 3700C02 3710C02 3720C02 3730C02 3740C02 3750C02 3760C02 3770C02 3780C02 3790C02 3800C02 3810C02 3820C02 3830C02 3840C02 3850C02 3860C02 3870C02 3880C02 3890,C02 3900C02 3910C02 3920C02 3930C02 3940C02 3950C02 3960C02 3970C02 3980C02 3990C02 4000C02 4010C02 4020C02 4030C02 4040C02 4050C02 4060C02 4070C02 4080C02 4090C02 4100C02 4110C02 4120C02 4130C02 4140

254

Page 255: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cc

ccc

C = =

c

cccccccccc

DOUBLE PRECISION FUNCTION DEBYE (CHARGE, DNA)

This function returns the value of the ion size parameter basedupon the charge of the species

CHARGE INT Charge of the aqueous speciesCPUMIN DBL Smallest positive real value program usesDNA DBL Read- in value of the ion size parameter

DOUBLE PRECISION CPUMINPARAMETER (CPUMIN - l.OD-35)

INTEGER CHARGEDOUBLE PRECISION DNA

INTRINSIC IABS

IF (DNA .GT. CPUMIN) THENDEBYE - DNA

ELSE IF (IABS (CHARGE) .EQ. 0) THENDEBYE - O.ODOO

ELSE IF (IABS (CHARGE) .EQ. 1) THENDEBYE - 4.0DOO

ELSE IF (IABS (CHARGE) .EQ. 2) THENDEBYE - 6.0DOO

ELSE IF (IABS (CHARGE) .EQ. 3) THENDEBYE - 9.0DOO

ELSE IF (IABS (CHARGE) .GE. 4) THENDEBYE - 12.0DOO

END IF

RETURNEND

SUBROUTINE DISTRB (NUFLAG, FLAGS, GAMMA, Z, DHA, TEMP, HITEMP,EHM, ALK, TITLE, A, B, MXSP, MXAQK, MU,IPRIN1, IPIT, TK, CONV1, ANMTIC, ITIC, HTOT,OHTOT, SC02, JC03, ITWR, BOOT)

This routine iterates and distributes the species

A DBL Molal Debye-Huckel coefficientALFA DBL Activity of aqueous species iALK INT Flag for distribution of carbonate speciesANALCO DBL Inorganic Carbon . . . initially alk or ticANALM DBL Analyzed molality of species iANMTIC DBL Analyzed total inorganic carbonB DBL Molal Debye-Huckel coefficientBDOT DBL Activity coefficient deviation functionCl DBL TDS * 1000.0C02F DBL Sum of C02 plus C02 lost from solution

DEB 0010i r\T?m r\r\or\ 1 L/CJ.D UUZU

IDEB 0030IDEB 0040

-IDEB ooso IDEB ooeoIDEB 0070IDEB ooso

-IDEB 0090DEB 0100DEB 0110DEB 0120DEB 0130DEB 0140DEB 0150DEB 0160DEB 0170DEB 0180

=|DEB 0190 DEB 0200DEB 0210DEB 0220DEB 0230DEB 0240DEB 0250DEB 0260DEB 0270DEB 0280DEB 0290DEB 0300DEB 0310DEB 0320DEB 0330DEB 0340DEB 0350DEB 0360

DIS 0010DIS 0020DIS 0030DIS 0040

-|DIS 0050 JDIS 0060

-IDIS 0070 IDIS oosoIDIS 0090IDIS 0100IDIS 0110IDIS 0120IDIS 0130IDIS ouoIDIS oisoIDIS 0160IDIS 0170

255

Page 256: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

CONV1CPUMINCRCROSSCUNITSDHADIFFDONEEHMEXELTFFACTORFIXITFLAGSGAMMAHITEMPHTOTHTOTIIIFL1IOPTI PAGEIPGLNIPITIPRIN1ITERITICITWRJC03KT1T .OGKT1LOGKT2MMUMXAQKMXSPNMAXNUFLAGOHTOTOHTOTIPAGE1PAGE2PAGE3PALFAPGPGDCAPGDNAPHRSSC02TTEMPTITLETITMIXTITRTKTOTEL

DBLDBLCHALOGDBLDBLDBLLOGDBLDBLDBLDBLDBLINTDBLDBLDBLDBLINTINTINTINTINTINTINTINTINTINTINTDBLDBLDBLDBLDBLINTINTINTINTDBLDBLCHACHACHADBLDBLDBLDBLDBLDBLDBLDBLDBLDBLCHACHADBLDBLDBL

Tolerance factor for convergence of anionsSmallest positive real value program usesInserts carriage returns in outputLocal logical variable for crossing rootAnalytical input concentrationIon size parameterDifference used in convergenceHave we crossed rootMeasured Eh in voltsTotal amount of each componentFaraday constantFactor used in convergenceFixing value in the C02 optionSelection flags for calculation of redox equil.Activity coefficient of species iIn-situ temperatureTotal hydronium (currenn)Total hydronium (initial)Loop counterSwitch sets activity coeffs of non-pitzer speciesH+ optionCurrent page number of output fileCurrent line number of the output fileFlag to use pitzer activity coefficientsFlag for printing iteration of anionsIteration countHitemp distribution of carbonate speciesPrinting FlagSwitch to control printing of some headingsEquilibrium constant of the aqueous reactionsLog K for aqueous species at specified temp.Log K for minerals at specified temperatureCalculated molality of aqueous speciesIonic strength of aqueous solutionTotal number of aqueous log k valuesTotal number of aqueous speciesGeneral array dimension to allow easy expansionSets the activity coefficients of neutral speciesOH totalInitial OH totalNames of aqueous speciesNames of equilibrium constantsNames of solubility constantsPitzer alpha'sPitzer gamma'sPitzer gamma for CaPitzer gamma for NaMeasured pH of the solutionGas constantSum of anions complexesSum of carbonate in solutionTemperatureTemperature of the solution when pH was measuredName of the sampleTitle for MixturesConvergence (vector) for each componentTemperature steps used by programTotal amount of each component

IDIS IDIS|DISIDIS IDIS IDIS IDIS IDIS JDIS JDIS IDIS JDIS|DISJDIS|DIS JDISJDIS IDIS|DIS |DIS JDIS JDIS |DISIDIS IDIS IDIS IDIS JDIS IDIS IDIS|DISJDIS JDIS JDIS IDIS JDIS IDIS JDIS|DISIDIS IDIS JDIS IDIS JDIS IDIS IDIS JDIS IDIS JDIS IDIS JDIS JDIS|DIS |DISJDIS IDIS IDIS JDIS

0180019002000210022002300240025002600270028002900300031003200330034003500360037003800390040004100420043004400450046004700480049005000510052005300540055005600570058005900600061006200630064006500660067006800690070007100720073007400750

256

Page 257: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

c c c c

_ _ .

UNO INT File unit assigned for output file VERSN CHA Version Number X DBL Temperary variable Z INT Charge of aqueous species

INTEGER NMAX, UNODOUBLE PRECISION CPUMIN, F, R

PARAMETER (NMAX = 340, UNO = 6)PARAMETER (CPUMIN =1.00-35, F = 2.30603D+1, R = 1.98719D-3)

INTEGER ALK, FLAGS(6), I, IFL1, IOPT, IPAGE, IPGLNINTEGER IPIT, IPRINl, ITER, ITIC, ITWRINTEGER JC03, MXAQK, MXSP, NUFLAG, Z(NMAX)

LOGICAL DONE, CROSS

CHARACTER * 1 TOF, CRCHARACTER* 8 PAGEl(NMAX) , PAGE2(NMAX), PAGE3(NMAX)CHARACTER * 14 VERSNCHARACTER * 40 TITMIXCHARACTER * 80 TITLE

DOUBLE PRECISION A, ALFA ( NMAX ), ANALCO, ANALM(NMAX) , ANMTICDOUBLE PRECISION B, BOOT, Cl , C02F, CONVl , CUNITS(NMAX)DOUBLE PRECISION DCH4, DC02 , DDCH4, DDC02 , DDH2S, DDNH3DOUBLE PRECISION DH2S , DHA(NMAX) , DIFF(ll) , DNH3DOUBLE PRECISION EHM, EXELT(35) , FACTOR ( 11 ), FIXIT, GAMMA(NMAX)DOUBLE PRECISION HITEMP, HTOT, HTOTI , INC, KTl(NMAX)DOUBLE PRECISION LALFA(NMAX) , LOGKTl(NMAX) , LOGKT2(NMAX)DOUBLE PRECISION M(NMAX) , MU, OHTOT, OHTOTIDOUBLE PRECISION PALFA(NMAX) , PG(NMAX) , PGDCA, PGDNA, PHDOUBLE PRECISION S(ll), SC02, SEXP10, SLOG10 , T, TEMP, TITR(ll)DOUBLE PRECISION TK(ll) , TOTEL(5) , X

EXTERNAL AITLIM, PAGE, PITZER, SEXP10, SLOG10

INTRINSIC DABS, DLOG10, DSQRT, IABS , MOD

COMMON /ALOGK / LOGKTl , LOGKT2COMMON /EXTOT / EXELT, TOTEL, TITRCOMMON /FMFD / TOF, CR, TITMIXCOMMON /FORM / IPAGE, IPGLNCOMMON /GAS / DC02 , DDC02 , DH2S, DDH2S, DNH3 , DDNH3 ,

DCH4, DDCH4, IOPT, FIXITCOMMON /MOLS / PH, ANALM, M, ALFA, CUNITSCOMMON /NAMES1/ PAGEl , PAGE2 , PAGE3COMMON /TOTALS/ C02F, HTOTI, OHTOTICOMMON /TTK / KT1

SAVE DIFF, PGDCA, PGDNA

VERSN ='USGS-ARC-88-8'

T = TEMP + 273.15

|DIS 0760 |DIS 0770 |DIS 0780 |DIS 0790

- IDIS 0800DIS 0810DIS 0820DIS 0830DIS 0840DIS 0850DIS 0860DIS 0870DIS 0880DIS 0890DIS 0900DIS 0910DIS 0920DIS 0930DIS 0940DIS 0950DIS 0960DIS 0970DIS 0980DIS 0990DIS 1000DIS 1010DIS 1020DIS 1030DIS 1040DIS 1050DIS 1060DIS 1070DIS 1080DIS 1090DIS 1100DIS 1110DIS 1120DIS 1130DIS 1140DIS 1150DIS 1160DIS 1170DIS 1180DIS 1190DIS 1200DIS 1210DIS 1220DIS 1230DIS 1240DIS 1250DIS 1260DIS 1270DIS 1280

1 t-f J_ O J_ £. J \J

DIS 1300DIS 1310DIS 1320DIS 1330

257

Page 258: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cc

ccc

cc

c

c

Initialize activities to 0

DO 10 I - 1, NMAXALFA(I) = O.ODOPG(I) = O.ODO

10 CONTINUE

ALFA(8) - 10.0**(-PH)

IFL1 - 0

DO 20 I - 1, 11DIFF(I) - 0.0FACTOR(I) -1.0

20 CONTINUE

Write titles etc.

IF (JC03 .EQ. 0 .AND. ITWR .EQ. 0) THENIF (IPRIN1 .NE. 0) THEN

IF (IPGLN .GE. 45) CALL PAGEWRITE (UNO, 1000) VERSN, CRWRITE (UNO, 1001) TITLE, TITMIXWRITE (UNO, 1002) TEMPWRITE (UNO, 1003)WRITE (UNO, 1004) CRIPGLN = IPGLN + 14

END IFEND IF

Iterative loopiter2 counts ph loop; iter counts species distribution

ITER - 0

30 CONTINUEITER - ITER + 1

Calculation of total molality & ah2o.

Cl = O.ODODO 40 I - 1, MXSP + 44

IF (I .NE. 10 .AND. I .NE. 12 .AND. I .NE. 32) Cl - Cl + M(I)40 CONTINUE

IF (Cl .GT. 10.0) Cl - 10.0ALFA(IO) = l.ODO - (1.7D-2 * Cl)

DIS 1340-|DIS 1350 JDIS 1360

-JDIS 1370DIS 1380DIS 1390DIS 1400DIS 1410DIS 1420DIS 1430DIS 1440DIS 1450DIS 1460DIS 1470DIS 1480DIS 1490DIS 1500DIS 1510DIS 1520

-|DIS 1530|DIS 1540

-JDIS 1550DIS 1560DIS 1570DIS 1580DIS 1590DIS 1600DIS 1610DIS 1620DIS 1630DIS 1640DIS 1650DIS 1660DIS 1670DIS 1680

-|DIS 1690 JDIS 1700|DIS 1710

-JDIS 1720DIS 1730DIS 1740DIS 1750DIS 1760DIS 1770DIS 1780

-|DIS 1790 |DIS 1800

-|DIS 1810DIS 1820DIS 1830DIS 1840DIS 1850DIS 1860DIS 1870DIS 1880DIS 1890DIS 1900

_ iniQ i oin

258

Page 259: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Calculation of the ionic strength (i), equivalent mnacle=i.

MU = O.ODODO 50 I = 1, MXSP + 44

IF (M(I) .LT. CPUMIN) THENM(I) = O.ODO

ELSE IF (I .EQ. 163 .AND. M(I) .GT. 2.0) THENMU - MU + (1.0 * Z(I)**2)

ELSEMU - MU + (M(I) * Z(I)**2)

END IF50 CONTINUE

MU - 0.5DO * MUIF (MU .GT. 10.0) MU = 10.0

|DIS 1920 ---|DIS 1930

DIS 1940DIS 1950DIS 1960DIS 1970DIS 1980DIS 1990DIS 2000DIS 2010DIS 2020DIS 2030DIS 2040DIS 2050DIS 2060DIS 2070DIS 2080

--- IDTS 2090C Only call pitzer the first time each temperature is done |DIS 2100 C .---.....-.--.....---------------------------------------------------j DIS 2110

DIS 2120IF (IPIT .EQ. 1 .AND. ITER .EQ. 1) THEN DIS 2130

CALL PITZER (A, MU, MXSP, TEMP, PGDCA, PGDNA, PG, TK, PALFA, DIS 2140EXELT(29), Z, IFL1) DIS 2150

END IF DIS 2160DIS 2170

IFL1 = 1 DIS 2180DIS 2190

60 CONTINUE DIS 2200DIS 2210 DIS 2220 DIS 2230 DIS 2240 DIS 2250 DIS 2260 .DIS 2270

C The following statement when enabled may give improved results JDIS 2280 C at lower temperatures and salinities. When high temperatures or JDIS 2290 C salinities are involved this statement should be disabled since JDIS 2300 C it will cause the program to return activity coefficients which JDIS 2310 C are too high. JDIS 2320 C IF (M(I) .GT. CPUMIN) GAMMA(I) - GAMMA(I) * EXELT(I) / M(I) DIS 2330 C _____________________________________________________________________iDIS 2340

IF (IPIT .EQ. 1) THEN IF (IFL1 .EQ. 1) 1=3 IF (IFL1 .EQ. 2) 1=1 IF (IFL1 .EQ. 1) GAMMA(I) IF (IFL1 .EQ. 2) GAMMA(I)

= PGDNA - PGDCA

BOOT

BOOT END IF

- DLOG10(GAMMA(I)) (1.0 + DHA(I) * B

= BOOT / MU

+ ((A * Z(I)**2 * DSQRT(MU)) / * DSQRT(MU)))

DIS 2350 DIS 2360 DIS 2370 DIS 2380 DIS 2390 DIS 2400

. . . . i r>TQ 9AinC Calculation of the activity coefficients (gamma) for charged |DIS 2420 C species by the bdot method (helgeson,1969). If pitzer equations JDIS 2430 C are being used, bdot is not the same as in helgeson. JDIS 2440 C ---------------------------------------------------------------------|DIS 2450

DIS 2460DO 70 I - 1, MXSP + 44 DIS 2470

IF (Z(I).EQ.O) GO TO 70 DIS 2480 IF (IFL1.EQ.1 .AND. (IABS(Z(I))).NE.1) GO TO 70 DIS 2490

259

Page 260: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

IF (IFL1.EQ.2 .AND. (IABS(Z(I))) .LT.2) GO TO 70 DIS 2500GAMMA(I) - A * DSQRT(MU) * Z(I)**2 DIS 2510GAMMA(I) - GAMMA(I) / (1.0 + (DHA(I) * B * DSQRT(MU))) DIS 2520

CCpo

GAMMA(I) - (BOOT * MU) - GAMMA(I)GAMMA(I) = 10.0**GAMMA(I)

70 CONTINUE

DIS 2530DIS 2540DIS 2550DIS 2560

__________________________ 1 DIS 2570Calculation of a number of anion activities. JDIS 2580

IF (NUFLAG '.EQ. 0) THEN

1 TNT C O C Q f\

DIS 2600DIS 2610

GAMMA(ll) = 10. 0**(0. 00978 * 10.0**(2dO.O / T) * (MU + l.ODO)) DIS 2620

CC

/*"

CC

GAMMA(12) - GAMMA(ll)END IF

IF (IFL1 .EQ. 1) THENIFL1 - 2GO TO 60

END IF

IFL1 = 3

DO 80 I - 1, MXSP + 44IF (ALFA(I) .LT. CPUMIN) THEN

ALFA(I) - O.ODOLALFA(I) - -999.9

ELSELALFA(I) - DLOG10(ALFA(I))

END IFIF (I .NE. 6 .AND. PG(I) .GT. CPUMIN)

80 CONTINUE

Activity of H+ and OH-

ALFA(8) = 10.0**(-PH)LALFA(8) = -PHM(8) - ALFA(8) / GAMMA(8)

ALFA(9) - ALFA(IO) * KT1(2) / ALFA(8)LALFA(9) = DLOG10(ALFA(9))M(9) - ALFA(9) / GAMMA(9)

Chloride species

IF (EXELT(5) .GT. CPUMIN) THEN90 CONTINUE

M(5) = TITR(5)ALFA(5) - M(5) * GAMMA(5)LALFA(5) - SLOG10(ALFA(5))

DIS 2630DIS 2640DIS 2650DIS 2660DIS 2670DIS 2680DIS 2690DIS 2700DIS 2710DIS 2720DIS 2730DIS 2740DIS 2750DIS 2760DIS 2770DIS 2780DIS 2790

GAMMA(I) = PG(I) DIS 2800DIS 2810DIS 2820

I TVT o o o o r\DIS zoJU |DIS 2840JDIS 2850DIS 2860DIS 2870DIS 2880DIS 2890DIS 2900DIS 2910DIS 2920DIS 2930DIS 2940

_________________________ 1 r\T<? 9950| L/ J_ t_> £-jJ\J

JDIS 2960JDIS 2970DIS 2980DIS 2990DIS 3000DIS 3010DIS 3020DIS 3030DIS 3040

IF (IPIT .EQ. 1 .AND. PG(5) .GT. CPUMIN DIS 3050.AND. GAMMA(5) .LE. 10) THEN DIS 3060

IF (DABS(PALFA(5) - ALFA(5)) .GT. 1. OD-2 * PALFA(5)) THEN DIS 3070

260

Page 261: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

c

c -cp

c - c

IF (PALFA(5) .GT. ALFA(5)) THENINC=0 . 1

ELSEINC=-0.01

END IFGAMMA ( 5 ) =GAMMA ( 5 ) * ( 1 . 0+INC )GO TO 90

END IFEND IFIF (IPIT .EQ. 1 .AND. GAMMA(5) .GT. 10.0) GAMMA(5) = 10.0IF (IPIT .EQ. 1 .AND. GAMMA(5) .LT. PG(5)) GAMMA(5) = PG(5)

END IF

Acetate species

IF (EXELT(26) .GT. CPUMIN) THENM(228) = TITR(6) / (l.ODO + ((GAMMA(228) * KTl(25)) /

(ALFA(8) * GAMMA(48))))ALFA(228) = M(228) * GAMMA(228)LALFA(228) = SLOG10(ALFA(228) )

M(48) = LOGKT1(25) + LALFA(228) - DLOG10(GAMMA(48) ) - LALFA(8)M(48) = SEXP10(M(48))ALFA(48) = M(48) * GAMMA(48)LALFA(48) = SLOG10(ALFA(48) )

END IF

Oxalate species

IF (EXELT(30) .GT. CPUMIN) THENM(247) = TITR(8) / (l.ODO + ((GAMMA(247) * ALFA(8) /

KT1(224) * GAMMA(248)). + ((KT1(223) * GAMMA(247))(GAMMA(246) * ALFA(8)))))

ALFA(247) = M(247) * GAMMA(247)LALFA(247) = SLOG10 (ALFA ( 247 ))

M(248) = LALFA(247) + LALFA(8) - LOGKT1(224)- DLOG10( GAMMA (248))

M(248) = SEXP10(M(248))

ALFA(248) = M(248) * GAMMA(248)LALFA(248) = SLOG10 (ALFA ( 248 ))

M(246) = LOGKT1(223) + LALFA(247) - DLOG10 ( GAMMA ( 246 ))- LALFA(8)

M(246) = SEXP10(M(246))ALFA(246) = M(246) * GAMMA(246)LALFA(246) - SLOG10 ( ALFA ( 246 ))

END IF

Succinate species

DIS 3080DIS 3090DIS 3100DIS 3110DIS 3120DIS 3130DIS 3140DIS 3150DIS 3160DIS 3170DIS 3180DIS 3190DIS 3200

-|DIS 3210|DIS 3220injc 707f)1 UJ.^ *j£.*J\J

DIS 3240DIS 3250DIS 3260DIS 3270DIS 3280DIS 3290DIS 3300DIS 3310DIS 3320DIS 3330DIS 3340DIS 3350DIS 3360

-|DIS 3370|DIS 3380|DIS 3390DIS 3400DIS 3410DIS 3420

/ DIS 3430DIS 3440DIS 3450DIS 3460DIS 3470DIS 3480DIS 3490DIS 3500DIS 3510DIS 3520DIS 3530DIS 3540DIS 3550DIS 3560DIS 3570DIS 3580DIS 3590DIS 3600DIS 3610DIS 3620

| r\TC *3 £ *3 r\ULa JDJU

|DIS 3640|DIS 3650

261

Page 262: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

IF (EXELT(31) .GT. CPUMIN) THENM(266) - TITR(9) / (l.ODO + ((GAMMA(266) * ALFA(8) /

KT1(242) * GAMMA(267)) + ((KT1(241) * GAMMA(266)) (GAMMA(265) * ALFA(8)))))

ALFA(266) LALFA(266)

M(267) M(267) M(267)

ALFA(267) - LALFA(267)

M(265) M(265) M(265)

ALFA(265) LALFA(265)

END IF

= M(266) * GAMMA(266) = SLOG10(ALFA(266))

LALFA(266) + LALFA(8) - LOGKT1(242)SEXP10(M(267))M(267) / GAMMA(267)

M(267) * GAMMA(267) = SLOG10(ALFA(267))

LOGKT1(241) + LALFA(266)SEXP10(M(265))M(265) / GAMMA(265)

= M(265) * GAMMA(265) = SLOG10(ALFA(265))

LALFA(8)

User defined anion #1

IF (EXELT(33) M(MXSP+2)

ALFA(MXSP+2)

M(MXSP+3)

.GT. CPUMIN) THEN = TITR(IO) / (l.ODO + ((GAMMA(MXSP+2) * ALFA(8)) /

(KTl(MXAQK+2) * GAMMA(MXSP+3)) + ((KT1(MXAQK+1) * GAMMA(MXSP+2)) /(GAMMA(MXSP+1) * ALFA(8)))))

- M(MXSP+2) * GAMMA(MXSP+2)

= (ALFA(MXSP+2) * ALFA(8))|/ (KTl(MXAQK+2) *GAMMA(MXSP+3))

ALFA(MXSP+3) - M(MXSP+3) * GAMMA(MXSP+3)

M(MXSP+1)

ALFA(MXSP+1) END IF

(KT1(MXAQK+1) * ALFA(MXSP+2)) / (GAMMA(MXSP+1) * ALFA(8)) M(MXSP+1) * GAMMA(MXSP+1)

User defined anion #2

IF (EXELT(34) .GT. CPUMIN) THENM(MXSP+17) - TITR(ll) / (l.ODO + ((GAMMA(MXSP+17) *

ALFA(8)) / (KT1(MXAQK+16) * GAMMA(MXSP+18)) + ((KT1(MXAQK+15) * GAMMA(MXSP+17)) /(GAMMA(MXSP+16) * ALFA(8)))))

ALFA(MXSP+17) - M(MXSP+17) * GAMMA(MXSP+17)

M(MXSP+18) - (ALFA(MXSP+17) * ALFA(8)) GAMMA(MXSP+18))

(KT1(MXAQK+16) *

DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DISIDISI DIS I DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS

| DIS | DIS | DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS

3660367036803690370037103720373037403750376037703780379038003810382038303840385038603870388038903900391039203930394039503960397039803990400040104020403040404050406040704080409041004110412041304140415041604170418041904200421042204230

262

Page 263: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

c

c

c

ALFA(MXSP+18) - M(MXSP+18) * GAMMA(MXSP+18)

M(MXSP+16) - (KT1(MXAQK+15) * ALFA(MXSP+17)) /(GAMMA(MXSP+16) * ALFA(8))

ALFA(MXSP+16) - M(MXSP+16) * GAMMA(MXSP+16)END IF

Fluoride species

IF (EXELT(22) .GT. CPUMIN) THENM(30) - TITR(3) / (l.ODO + ((GAMMA(30) * ALFA(8)) /

(KT1(71) * GAMMA(96))))ALFA(30) - M(30) * GAMMA(30)LALFA(30) - SLOG10(ALFA(30))

M(96) - (ALFA(30) * ALFA(8)) / (KT1(71) * GAMMA(96))ALFA(96) - M(96) * GAMMA(96)LALFA(96) - SLOG10(ALFA(96))

END IF

C02 species

IF (EXELT(29) .GT. CPUMIN) THENM(7) - TITR(l) / (l.ODO + ((GAMMA(7) * KT1(1) * 2) /

(GAMMA(98) * ALFA(8))))ALFA(7) - M(7) * GAMMA(7)LALFA(7) = SLOG10(ALFA(7))

M(98) - (KT1(1) * ALFA(7)) / (GAMMA(98) * ALFA(8))ALFA(98) = M(98) * GAMMA(98)LALFA(98) - SLOG10(ALFA(98))

M(97) = (ALFA(7) * ALFA(8)) / (KT1(72) * GAMMA(97))ALFA(97) - M(97) * GAMMA(97)LALFA(97) = SLOG10(ALFA(97) )

END IF

Sulfur species

IF (EXELT(25) .GT. CPUMIN) THENM(101) - TITR(7) / (l.ODO + ((GAMMA(lOl) * ALFA(8)) /

(KTl(lO) * GAMMA(33)) + ((KT1(75) * GAMMA(lOl)) /(GAMMA(102) * ALFA(8)))))

ALFA(lOl) - GAMMA(lOl) * M(101)LALFA(lOl) = SLOG10(ALFA(101))

M(33) - (ALFA(lOl) * ALFA(8)) / (KTl(lO) * GAMMA(33))ALFA(33) - M(33) * GAMMA(33)LALFA(33) - SLOG10(ALFA(33))

M(102) = (KT1(75) * ALFA(lOl)) / (GAMMA(102) * ALFA(8))ALFA(102) - M(102) * GAMMA(102)

DIS 4240DIS 4250DIS 4260DIS 4270DIS 4280DIS 4290DIS 4300

-| DIS 4310|DIS 4320JDIS 4330DIS 4340DIS 4350DIS 4360DIS 4370DIS 4380DIS 4390DIS 4400DIS 4410DIS 4420DIS 4430DIS 4440DIS 4450

- |DIS 4460 |DIS 4470|DIS 4480 DIS 4490DIS 4500DIS 4510DIS 4520DIS 4530DIS 4540DIS 4550DIS 4560DIS 4570DIS 4580DIS 4590DIS 4600DIS 4610DIS 4620DIS 4630DIS 4640

- |DIS 4650 |DIS 4660|DIS 4670DIS 4680DIS 4690DIS 4700DIS 4710DIS 4720DIS 4730DIS 4740DIS 4750DIS 4760DIS 4770DIS 4780DIS 4790DIS 4800DIS 4810

263

Page 264: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

LALFA(102) = SLOG10( ALFA (102))END IF

100 CONTINUEIF (EXELT(6) .GE. CPUMIN) THEN

DIS 4820DIS 4830DIS 4840DIS 4850DIS 4860

M(103) = TITR(2) / (l.ODO + (((KTl(76) * GAMMA(103)) / DIS 4870(GAMMA(6) * ALFA(8)))))

ALFA(103) = M(103) * GAMMA(103)LALFA(103) - SLOG10( ALFA (103))

DIS 4880DIS 4890DIS 4900DIS 4910

M(6) - (KT1(76) * ALFA(103)) / (GAMMA(6) * ALFA(8)) DIS 4920ALFA(6) = M(6) * GAMMA(6)LALFA(6) = SLOG10(ALFA(6))

IF (IPIT .EQ. 1 .AND. PG(6) .GT. CPUMI.AND. GAMMA(6) .LE. 10

DIS 4930DIS 4940DIS 4950

V DIS 4960.0) THEN DIS 4970

IF (DABS(PALFA(6)-ALFA(6)) .GT. 1 . OD-2*PALFA(6) ) THEN DIS 4980IF (PALFA(6) .GT. ALFA(6)) THEN

INC=0 . 1ELSE

INC=-0.01END IFGAMMA ( 6 ) -GAMMA ( 6 ) * ( 1 . 0+INC )GO TO 100

END IFEND IF

DIS 4990DIS 5000DIS 5010DIS 5020DIS 5030DIS 5040DIS 5050DIS 5060DIS 5070

IF (IPIT.EQ.l .AND. GAMMA(6) .GT. 10.0) GAMMA(6) = 10.0 DIS 5080IF (IPIT.EQ.l .AND. GAMMA(6) .LT. PG(6)) GAMMA(6) = PG(6) DIS 5090

END IF

C ---______ _

C Silica speciesr>\j ------------------

IF (EXELT(8) .GT. CPUMIN) THEN

DIS 5100DIS 5110

......................... | DIS 5120|DIS 5130|DIS 5140DIS 5150DIS 5160

M(91) = EXELT(8) / (l.ODO + ((GAMMA(91) * ALFA(8)) / DIS 5170(KT1(3) * GAMMA(ll)) + ((Kltl(66) * GAMMA(91)) / DIS 5180(GAMMA(90) * ALFA(8)))))

ALFA(91) = GAMMA(91) * M(91)LALFA(91) - SLOG10(ALFA(91))

DIS 5190DIS 5200DIS 5210DIS 5220

M(ll) - (ALFA(91) * ALFA(8)) / (KT1(3) * GAMMA(ll)) DIS 5230ALFA(ll) - M(ll) * GAMMA (11)LALFA(ll) - SLOG10(ALFA(11))

DIS 5240DIS 5250DIS 5260

M(90) = (KT1(66) * ALFA(91)) / (GAMMA(90) * ALFA(8)) DIS 5270ALFA(90) = M(90) * GAMMA(90)LALFA(90) = SLOG10(ALFA(90))

M(12) = M(ll)ALFA(12) = M(12) * GAMMA(12)LALFA(12) - SLOG10(ALFA(12))

DIS 5280DIS 5290DIS 5300DIS 5310DIS 5320DIS 5330DIS 5340

M(284) = (ALFA(ll) * ALFA(30)**2 * (ALFA(30) / ALFA(9)) DIS 5350* (ALFA(30) / ALFA(9)) * (ALFA(30) / ALFA(9)) DIS 5360* (ALFA(30) / ALFA(9))) / KT1(257) DIS 5370

ALFA(284) = M(284) * GAMMA(284)DIS 5380DIS 5390

264

Page 265: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

r>

Cr>

r<

Cr<

Cr<

LALFA(284) = SLOG10(ALFA(284) )END IF

Boron Species

IF (EXELT(23) .GT. CPUMIN) THENM(31) - EXELT(23) / (l.ODO + ((GAMMA(31) * ALFA(9)) /

(KT1(64) * GAMMA(89))))ALFA(31) - M(31) * GAMMA(31)LALFA(31) - SLOG10(ALFA(31))

M(89) = (ALFA(31) * ALFA(9)) / (KT1(64) * GAMMA(89))ALFA(89) = M(89) * GAMMA(89)LALFA(89) = SLOG10(ALFA(89) )

END IF

Phosphate species

IF (EXELT(21) .GT. CPUMIN) THENM(29) - TITR(4) / (l.ODO + GAMMA(29) * ((ALFA(8) /

(KT1(73) * GAMMA(99))) + (ALFA(8)**2 / (KT1(74) *GAMMA(IOO))) + (ALFA(8)**3 / (KT1(49) *GAMMA(74)))))

ALFA(29) - M(29) * GAMMA(29)LALFA(29) - SLOG10(ALFA(29) )

M(74) - (ALFA(29) * ALFA(8)**3) / (KT1(49) * GAMMA(74))ALFA(74) = M(74) * GAMMA(74)LALFA(74) - SLOG10(ALFA(74) )

M(99) = (ALFA(29) * ALFA(8)) / (KT1(73) * GAMMA(99))ALFA(99) - M(99) * GAMMA(99)LALFA(99) = SLOG10(ALFA(99) )

M(100) = (ALFA(29) * ALFA(8)**2) / (KT1(74) * GAMMA(IOO))ALFA(IOO) = M(100) * GAMMA(IOO)LALFA(IOO) = SLOG10( ALFA (100))

END IF

Nitrogen species

IF (EXELT(24) .GT. CPUMIN) THENM(147) - ALFA(9) / (KT1(118) * GAMMA(147))

M(146) = EXELT(24) / (l.ODO + GAMMA(146) * M(147))ALFA(146) = M(146) * GAMMA(146)LALFA(146) - SLOG10(ALFA(146) )

M(147) - M(147) * ALFA(146)ALFA(147) - M(147) * GAMMA(147)LALFA(147) = SLOG10(ALFA(147) )

DIS 5400DIS 5410DIS 5420

-| DIS 5430|DIS 5440|DIS 5450DIS 5460DIS 5470DIS 5480DIS 5490DIS 5500DIS 5510DIS 5520DIS 5530DIS 5540DIS 5550DIS 5560DIS 5570

-| DIS 5580 |DIS 5590|DIS 5600DIS 5610DIS 5620DIS 5630DIS 5640DIS 5650DIS 5660DIS 5670DIS 5680DIS 5690DIS 5700DIS 5710DIS 5720DIS 5730DIS 5740DIS 5750DIS 5760DIS 5770DIS 5780DIS 5790DIS 5800DIS 5810DIS 5820

1 T\T C Rfl ̂ fl- 1 L/lo Do JU

|DIS 5840|DIS 5850DIS 5860DIS 5870DIS 5880DIS 5890DIS 5900DIS 5910DIS 5920DIS 5930DIS 5940DIS 5950DIS 5960DIS 5970

265

Page 266: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cc

ccc

M(32) - M(147)ALFA(32) = M(32) * GAMMA(32)LALFA(32) = SLOG10(ALFA(32))

END IF

IF (EXELT(32) .GT. CPUMIN) THENM(136) = EXELT(32) / (l.ODO + ((GAMMA(136) * ALFA(8)) /

(KT1(77) * GAMMA(104))))ALFA(136) = M(136) * GAMMA(136)LALFA(136) - SLOG10(ALFA(136)) i

1

M(104) = (ALFA(8) * ALFA(136)) / (KT1(77) * GAMMA(104))ALFA(104) = M(104) * GAMMA(104)LALFA(104) = SLOG10(ALFA(104))

END IF

User defined cation

IF (EXELT(35) .GT. CPUMIN) THENM(MXSP+32) = ALFA( 5) / (KTl(MXAQK+29) * GAMMA (MXS P+32 ))M(MXSP+33) = ALFA( 6) / (KT1(MXAQK+30) * GAMMA (MXSP+33 ))M(MXSP+34) - ALFA( 7) / (KT1(MXAQK+31) * GAMMA (MXS P+34))M(MXSP+35) = ALFA( 9) / (KTl(MXAQK+32) * GAMMA ( MXS P+35 ))M(MXSP+36) = ALFA( 29) / (KTl(MXAQK+33) * GAMMA (MXS P+36 ))M(MXSP+37) = ALFA( 30) / (KTl(MXAQK+34) * GAMMA (MXS P+3 7) )M(MXSP+38) = ALFA( 48) / (KTl(MXAQK+35) * GAMMA ( MXSP+38 ))M(MXSP+39) = ALFA( 98) / (KTl(MXAQK+36) * GAMMA(MXSP+39) )M(MXSP+40) - ALFA(lOl) / (KTl(MXAQK+37) * GAMMA (MXS P+40 ))M(MXSP+41) - ALFA(246) / (KTl(MXAQK+38) * GAMMA ( MX SP+41 ))M(MXSP+42) = ALFA(265) / (KTl(MXAQK+39) * GAMMA (MXS P+42 ))M(MXSP+43) = ALFA(MXSP+ 1) / (KT1(MXAQK+40) * GAMMA (MXSP+43))M(MXSP+44) = ALFA(MXSP+16) / (KT1(MXAQK+41) * GAMMA (MXS P+44 ))

M(MXSP+31) = EXELT(35) / (l.ODO + GAMMA (MXS P+3 1) *(M(MXSP+32) + M(MXSP+33) + M(MXSP+34) +M(MXSP+35) + M(MXSP+36) + M(MXSP+37) +M(MXSP+38) + M(MXSP+39) + M(MXSP+40) +M(MXSP+41) + M(MXSP+42) + M(MXSP+43) +M(MXSP+44)))

ALFA(MXSP+31) - M(MXSP+31) * GAMMA (MXS P+3 1)LALFA(MXSP+31) - SLOG10(ALFA(MXSP+31))

DO 110 I = 32, 44M(MXSP+I) = M(MXSP+I) * ALFA(MXSP+31)ALFA(MXSP+I) = M(MXSP+I) * GAMMA(MXSP+I)LALFA(MXSP+I) - SLOG10(ALFA(MXSP+I) )

110 CONTINUEEND IF

Calcium species

120 CONTINUEIF (EXELT(l) .GT. CPUMIN) THENM( 55) = ALFA( 98) / (KT1( 30) * GAMMA(55))

DIS 5980DIS 5990DIS 6000DIS 6010DIS 6020DIS 6030DIS 6040DIS 6050DIS 6060DIS 6070DIS 6080DIS 6090DIS 6100DIS 6110DIS 6120DIS 6130

-|DIS 6140 |DIS 6150JDIS 6160DIS 6170DIS 6180DIS 6190DIS 6200DIS 6210DIS 6220DIS 6230DIS 6240DIS 6250DIS 6260DIS 6270DIS 6280DIS 6290DIS 6300DIS 6310DIS 6320DIS 6330DIS 6340DIS 6350DIS 6360DIS 6370DIS 6380DIS 6390DIS 6400DIS 6410DIS 6420DIS 6430DIS 6440DIS 6450DIS 6460DIS 6470DIS 6480

-| DIS 6490|DIS 6500|DIS 6510DIS 6520DIS 6530DIS 6540DIS 6550

266

Page 267: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

M( 56) - ALFA( 7) M( 57) - ALFA( 9) M( 58) - ALFA( 29) M( 59) = ALFA( 99) M( 60) - ALFA(IOO) M( 61) = ALFA( 6) M(231) = ALFA( 48) M(252) = ALFA(246) M(271) = ALFA(265) M(281) = ALFA( 5) M(282) = ALFA( 5)**2 M(MXSP+ 6) M(MXSP+21)

M(l)

/ (KT1( 31) * GAMMA(56))/ (KT1( 32) * GAMMA(57))/ (KT1( 33) * GAMMA(58))/ (KT1( 34) * GAMMA(59))/ (KT1( 35) * GAMMA(60))/ (KT1( 36) * GAMMA(61))/ (KT1(211) * GAMMA(231))/ (KT1(228) * GAMMA(252))/ (KT1(246) * GAMMA(271))/ (KT1(146) * GAMMA(281))/ (KT1(147) * GAMMA(282))

ALFA(MXSP+ 1) / (KT1(MXAQK+ 5) * GAMMA(MXSP+ 6)) ALFA(MXSP+16) / (KT1(MXAQK+19) * GAMMA(MXSP+21))

EXELT(l) / (l.ODO + GAMMA(l) * (M(55) + M(56) + M(57) + M(58) + M(59) + M(60) + M(61) + M(231) + M(252) + M(271) + M(281) + M(282) + M(MXSP+6) + M(MXSP+21)))

ALFA(l) = M(l) * GAMMA(l)LALFA(l) = SLOG10(ALFA(1))

DO 130 1-55, 61M(I) = M(I) * ALFA(l) ALFA(I) = M(I) * GAMMA(I) LALFA(I) - SLOG10(ALFA(I))

130 CONTINUE

M(231) = M(231) * ALFA(l)ALFA(231) = M(231) * GAMMA(231)LALFA(231) = SLOG10(ALFA(231) )

M(252) = M(252) * ALFA(l)ALFA(252) = M(252) * GAMMA(252)LALFA(252) = SLOG10(ALFA(252) )

M(271) = M(271) * ALFA(l)ALFA(271) = M(271) * GAMMA(271)LALFA(271) = SLOG10(ALFA(271) )

M(281) = M(281) * ALFA(l)ALFA(281) = M(281) * GAMMA(281)LALFA(281) - SLOG10(ALFA(281) )

M(282) = M(282) * ALFA(l)ALFA(282) = M(282) * GAMMA(282)LALFA(282) = SLOG10(ALFA(282))

M(MXSP+6) = M(MXSP+6) * ALFA(l)ALFA(MXSP+6) = M(MXSP+6) * GAMMA(MXSP+6)LALFA(MXSP+6) = SLOG10(ALFA(MXSP+6) )

M(MXSP+21) - M(MXSP+21) * ALFA(l)ALFA(MXSP+21) = M(MXSP+21) * GAMMA (MXSP+21)LALFA(MXSP+21) - SLOG10(ALFA(MXSP+21) )

IF (IPIT.EQ.l .AND. PG(1) .GT. CPUMIN.AND. GAMMA(l).LE.lO.O) THEN

IF (DABS(PALFA(1) - ALFA(l)) .GT. 1.0D-2*PALFA(1) ) THEN IF (PALFA(l) .GT. ALFA(l)) THEN

DIS 6560 DIS 6570 DIS 6580 DIS 6590 DIS 6600 DIS 6610 DIS 6620 DIS 6630 DIS 6640 DIS 6650 DIS 6660 DIS 6670 DIS 6680 DIS 6690 DIS 6700 DIS 6710 DIS 6720 DIS 6730 DIS 6740 DIS 6750 DIS 6760 DIS 6770 DIS 6780 DIS 6790 DIS 6800 DIS 6810 DIS 6820 DIS 6830 DIS 6840 DIS 6850 DIS 6860 DIS 6870 DIS 6880 DIS 6890 DIS 6900 DIS 6910 DIS 6920 DIS 6930 DIS 6940 DIS 6950 DIS 6960 DIS 6970 DIS 6980 DIS 6990 DIS 7000 DIS 7010 DIS 7020 DIS 7030 DIS 7040 DIS 7050 DIS 7060 DIS 7070 DIS 7080 DIS 7090 DIS 7100 DIS 7110 DIS 7120 DIS 7130

267

Page 268: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

INC = 0.1 ELSE

INC = -0.01 END IFGAMMA(l) - GAMMA(l) * (1 + INC) GO TO 120

END IF END IF

IF (IPIT.EQ.l .AND. GAMMA(l).GT.10.0) GAMMA(l) IF (IPIT.EQ.l .AND. GAMMA(l).LT.PG(1)) GAMMA(l)

END IF

10.0 PG(1)

Magnesium species

140 CONTINUEIF (EXELT(2) .GT. CPUMIN) THENM(120) = ALFA( 98) / (KT1( 93) * GAMMA(120)) M(121) = ALFA( 7) / (KT1( 94) * GAMMA(121)) M(122) = ALFA( 30) / (KT1( 95) * GAMMA(122)) M(123) = ALFA( 9) / (KT1( 96) * GAMMA(123)) M(124) = ALFA( 6) / (KT1( 97) * GAMMA(124)) M(125) = ALFA( 29) / (KT1( 98) * GAMMA(125)) M(126) = ALFA( 99) / (KT1( 99) * GAMMA(126)) M(127) = ALFA(IOO) / (KTl(lOO) * GAMMA(127)) M(236) - ALFA( 48) / (KT1(216) * GAMMA(236)) M(256) = ALFA(246) / (KT1(232) * GAMMA(256)) M(275) = ALFA(265) / (KT1(250) * GAMMA(275)) M(MXSP+10) = ALFA(MXSP+ 1) / (KT1(MXAQK+ 9) *

GAMMA(MXSP+10)) M(MXSP+25) = ALFA(MXSP+16) / (KTl(MXAQK+23) *

GAMMA(MXSP+25))

150

M(2)

ALFA(2) LALFA(2)

EXELT(2) / (l.ODO + GAMMA(2) * (M(120) + M(121) + M(122) + M(123) + M(124) + M(125) + M(126) + M(127) M(236) + M(256) + M(275) + M(MXSP+10) + M(MXSP+25))) M(2) * GAMMA(2) SLOG10(ALFA(2))

DO 150 I = 120, 127M(I) - M(I) * ALFA(2) ALFA(I) - M(I) * GAMMA(I) LALFA(I) = SLOG10(ALFA(I))

CONTINUE

M(236)ALFA(236)LALFA(236)

M(256)ALFA(256)LALFA(256)

M(275)ALFA(275)LALFA(275)

M(236) * ALFA(2) M(236) * GAMMA(236) SLOG10(ALFA(236))

M(256) * ALFA(2) M(256) * GAMMA(256)^ SLOG10(ALFA(256))

M(275) * ALFA(2) M(275) * GAMMA(275) SLOG10(ALFA(275))

DIS 7140 DIS 7150 DIS 7160 DIS 7170 DIS 7180 DIS 7190 DIS 7200 DIS 7210 DIS 7220 DIS 7230 DIS 7240 DIS 7250 DIS 7260

-|DIS 7270 |DIS 7280 |DIS 7290 DIS 7300 DIS 7310 DIS 7320 DIS 7330 DIS 7340 DIS 7350 DIS 7360 DIS 7370 DIS 7380 DIS 7390 DIS 7400 DIS 7410 DIS 7420 DIS 7430 DIS 7440 DIS 7450 DIS 7460 DIS 7470 DIS 7480 DIS 7490

+DIS 7500 DIS 7510 DIS 7520 DIS 7530 DIS 7540 DIS 7550 DIS 7560 DIS 7570 DIS 7580 DIS 7590 DIS 7600 DIS 7610 DIS 7620 DIS 7630 DIS 7640 DIS 7650 DIS 7660 DIS 7670 DIS 7680 DIS 7690 DIS 7700 DIS 7710

268

Page 269: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

M(MXSP+10)ALFA(MXSP+10)LALFA(MXSP+10)

M(MXSP+25)ALFA(MXSP+25)LALFA(MXSP+25)

- M(MXSP+10) * ALFA(2)= M(MXSP+10) * GAMMA(MXSP+10)= SLOG10(ALFA(MXSP+10))

= M(MXSP+25) * ALFA(2)= M(MXSP+25) * GAMMA(MXSP+25)= SLOG10(ALFA(MXSP+25))

IF (IPIT.EQ.l .AND. PG(2).GT.CPUMIN.AND. GAMMA(2).LE.50.0) THEN

IF (DABS(PALFA(2)-ALFA(2)) .GT. 1.OD-2*PALFA(2)) THEN IF £PALFA(2) .GT. ALFA(2)) THEN

INC=0.1 ELSE

INC=-0.01 END IFGAMMA(2)=GAMMA(2)*(1.0+INC) GO TO 140

END IF END IF

IF (IPIT.EQ.l .AND. GAMMA(2) IF (IPIT.EQ.l .AND. GAMMA(2)

END IF

.GT. 10.0) GAMMA(2) = 10.0

.LT. PG(2)) GAMMA(2) = PG(2)

DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS

Sodium species

160 CONTINUEIF (EXELT(3) .GT. CPUMIN) THENM(137) = ALFA( 5) / (KTl(llO) * GAMMA(137))M(138) = ALFA( 98) / (KTl(lll) * GAMMA(138))M(139) = ALFA( 7) / (KT1(112) * GAMMA(139))M(140) = (M(3) * GAMMA(3) * ALFA(98)) /M(141) - (M(3) * GAMMA(3) * ALFA(6)) /M(142) = ALFA( 6) / (KTl(115) * GAMMA(142))M(143) = ALFA( 99) / (KTl(116) * GAMMA(143))M(144) - ALFA( 30) / (KT1(120) * GAMMA(144))M(145) - ALFA(lOl) / (KT1(119) * GAMMA(145))M(237) = ALFA( 48) / (KT1(217) * GAMMA(237))M(261) = ALFA(246) / (KT1(237) * GAMMA(261))M(277) - ALFA(265) / (KT1(252) * GAMMA(277))

| DIS I DIS DIS DIS DIS DIS DIS DIS

* GAMMA(140)) DIS* GAMMA(141)) DIS

DIS DIS DIS DIS DIS DISDIS

M(MXSP+12) - ALFA(MXSP+ 1) / (KT1(MXAQK+11) * GAMMA(MXSP+12)) DIS M(MXSP+27) - ALFA(MXSP+16) / (KTl(MXAQK+25) * GAMMA(MXSP+27)) DIS

DIS DISEXELT(3) / (l.ODO + GAMMA(3) * (M(137) + M(138) +

M(142) + M(143) + M(144) M(277) + M(MXSP+12)

M(3) -M(139) + M(140)M(145) + M(237) + M(261)M(MXSP+27)))

ALFA(3) = M(3) * GAMMA(3) LALFA(3) = SLOG10(ALFA(3))

DO 170 I = 137, 145M(I) = M(I) * ALFA(3) ALFA(I) = M(I) * GAMMA(I) LALFA(I) = SLOG10(ALFA(I))

DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS

7720773077407750776077707780779078007810782078307840785078607870788078907900791079207930794079507960797079807990800080108020803080408050806080708080809081008110812081308140815081608170818081908200821082208230824082508260827082808290

269

Page 270: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

170 CONTINUE

M(237) - M(237) * ALFA(3)ALFA(237) - M(237) * GAMMA(237)LALFA(237) - SLOG10(ALFA(237) )

M(261) - M(261) * ALFA(3)ALFA(261) - M(261) * GAMMA(261)LALFA(261) - SLOG10(ALFA(261))

M(277) - M(277) * ALFA(3)ALFA(277) - M(277) * GAMMA(277)LALFA(277) - SLOG10(ALFA(277))

M(MXSP+12) - M(MXSP+12) * ALFA(3)ALFA(MXSP+12) - M(MXSP+12) * GAMMA(MXSP+12)LALFA(MXSP+12) - SLOG10(ALFA(MXSP+12) )

M(MXSP+27) - M(MXSP+27) * ALFA(3)ALFA(MXSP+27) - M(MXSP+27) * GAMMA(MXSP+27)LALFA(MXSP+27) - SLOG10(ALFA(MXSP+27))

IF (IPIT.EQ.l .AND. PG ( 3 ) . GT . CPUMIN.AND. GAMMA(3).LE.10.0) THEN

IF (DABS(PALFA(3)-ALFA(3)) .GT. 1.0D-2*PALFA(3) ) THENIF (PALFA(3) .GT. ALFA(3)) THEN

INC - 0.1ELSE

INC - -0.01END IF

GAMMA ( 3 ) =GAMMA ( 3 ) * ( 1+INC )GO TO 160END IF

END IF

IF (IPIT .EQ. 1 .AND. GAMMA(3) .GT. 10.0) GAMMA(3) = 10.0IF (IPIT .EQ. 1 .AND. GAMMA(3) .LT. PG(3)) GAMMA(3) = PG(3)

END IF

/ <

C Potassium species C --------...-........

180 CONTINUEIF (EXELT(4) .GT. CPUMIN) THENM(113) - ALFA( 5) / (KT1( 86) * GAMMA(113))M(114) - ALFA( 98) / (KT1( 87) * GAMMA(114))M(115) - ALFA(103) / (KT1( 88) * GAMMA(llS))M(116) - ALFA( 6) / (KT1( 89) * GAMMA(116))M(117) = ALFA( 99) / (KT1( 90) * GAMMA(117))M(235) - ALFA( 48) / (KT1(215) * GAMMA(235))M(255) = ALFA(246) / (KT1(231) * GAMMA(255))M(274) - ALFA(265) / (KT1(249) * GAMMA(274))

M(MXSP+ 9) = ALFA(MXSP+ 1) / (KTl(MXAQtf+8) * GAMMA(MXSP+ 9))M(MXSP+24) - ALFA(MXSP+16) / (KTl(MXAQK+22) * GAMMA (MXSP+24))

M(4) - EXELT(4) / (l.ODO + GAMMA(4) * (M(113) + M(114) +

DIS 8300DIS 8310DIS 8320DIS 8330DIS 8340DIS 8350DIS 8360DIS 8370DIS 8380DIS 8390DIS 8400DIS 8410DIS 8420DIS 8430DIS 8440DIS 8450DIS 8460DIS 8470DIS 8480DIS 8490DIS 8500DIS 8510DIS 8520DIS 8530DIS 8540DIS 8550DIS 8560DIS 8570DIS 8580DIS 8590DIS 8600DIS 8610DIS 8620DIS 8630DIS 8640DIS 8650DIS 8660DIS 8670DIS 8680

-|DIS 8690|DIS 8700|DIS 8710DIS 8720DIS 8730DIS 8740DIS 8750DIS 8760DIS 8770DIS 8780DIS 8790DIS 8800DIS 8810DIS 8820DIS 8830DIS 8840DIS 8850DIS 8860DIS 8870

270

Page 271: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

M(115) + M(116) + M(117) + M(235) + M(255) +M(274) + M(MXSP+9) + M(MXSP+24)))

ALFA(4) = M(4) * GAMMA(4)

DO 190 1-113, 117M(I) = M(I) * ALFA(4)ALFA(I) = M(I) * GAMMA(I)

190 CONTINUE

M(235) = M(235) * ALFA(4)ALFA(235) - M(235) * GAMMA(235)

M(255) = M(255) * ALFA(4)ALFA(255) = M(255) * GAMMA(255)

M(274) = M(274) * ALFA(4)ALFA(274) = M(274) * GAMMA(274)

M(MXSP+ 9) = M(MXSP+ 9) * ALFA(4)ALFA(MXSP+ 9) = M(MXSP+ 9) * GAMMA(MXSP+ 9)

M(MXSP+24) - M(MXSP+24) * ALFA(4)ALFA(MXSP+24) - M(MXSP+24) * GAMMA (MXSP+24)

IF (IPIT.EQ.l .AND. PG(4) .GT.CPUMIN.AND. GAMMA(4).LE.10.0) THEN

IF (DABS(PALFA(4)-ALFA(4)) .GT. 1.0D-2*PALFA(4) ) THENIF (PALFA(4) .GT. ALFA(4)) THEN

INC =0.1ELSE

INC =-0.01END IFGAMMA ( 4 ) -GAMMA ( 4 ) * ( 1 . 0+INC )GO TO 180

END IFEND IF

IF (IPIT .EQ. 1 .AND. GAMMA(4) .GT. 10.0) GAMMA(4) = 10.0IF (IPIT .GT. 1 .AND. GAMMA(4) .LT. PG(4)) GAMMA(4) = PG(4)

END IF

C _ _ _C Silver speciesC _____ ______

IF (EXELT(9) .GT. CPUMIN) THENM(43) = O.ODOOM(44) = O.ODOOM(45) = O.ODOOM(46) = O.ODOOM(47) = O.ODOOIF (DABS(KT1(20)) .GT. l.OD-30)

M(43) - ALFA(5) / (KT1(20) * GAMMA(43))IF (DABS(KT1(21)) .GT. l.OD-30)

M(44) = ALFA(5)**2 / (KT1(21) * GAMMA(44))IF (DABS(KT1(22)) .GT. l.OD-30)

M(45) = ALFA(5)**3 / (KT1(22) * GAMMA(45))IF (DABS(KT1(23)) .GT. l.OD-30)

DIS 8880DIS 8890DIS 8900DIS 8910DIS 8920DIS 8930DIS 8940DIS 8950DIS 8960DIS 8970DIS 8980DIS 8990DIS 9000DIS 9010DIS 9020DIS 9030DIS 9040DIS 9050DIS 9060DIS 9070DIS 9080DIS 9090DIS 9100DIS 9110DIS 9120DIS 9130DIS 9140DIS 9150DIS 9160DIS 9170DIS 9180DIS 9190DIS 9200DIS 9210DIS 9220DIS 9230DIS 9240DIS 9250DIS 9260DIS 9270DIS 9280injc QOQO

JDIS 9300|DIS 9310 DIS 9320DIS 9330DIS 9340DIS 9350DIS 9360DIS 9370DIS 9380DIS 9390DIS 9400DIS 9410DIS 9420DIS 9430DIS 9440DIS 9450

271

Page 272: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

M(46) = ALFA(5)**4 / (KT1(23) * GAMMA(46))IF (DABS(KT1(24)) .GT. l.OD-30)

M(47) = ALFA(6) / (KT1(24) * GAMMA(47))

M(13) = EXELT(9) / (l.ODO + GAMMA(13) * (M(42) + M(44) +M(45) + M(46) + M(47)))

ALFA(13) = M(13) * GAMMA(13)

DO 200 I = 43, 47M(I) = M(I) * ALFA(13)ALFA(I) = M(I) * GAMMA(I)

200 CONTINUEEND IF

C Aluminum species---------------------

IF (EXELT(IO) .GT. CPUMIN) THENM( 34) - ALFA( 30) / (KT1( 11) * GAMMA( 34))M( 35) - ALFA( 30)**2 / (KT1( 12) * GAMMA( 35))M( 36) - ALFA( 30)**3 / (KT1( 13) * GAMMA( 36))M( 37) - 0.0IF (DABS(KT1(15)) .GT. l.OD-30)

M( 37) - ALFA( 30)**4 / (KT1( 14) * GAMMA( 37))

M( 38) - LALFA(9) - LOGKT1(15) - DLOG10(GAMMA(38) )M( 38) - SEXP10( M(38))M( 39) - (2.0*LALFA(9)) - LOGKT1(16) - DLOG10(GAMMA(39))M( 39) - SEXP10( M(39))M( 40) - (4.0*LALFA(9)) - LOGKT1(17) - DLOG10(GAMMA(40) )M( 40) = SEXP10( M(40))

M( 41) = ALFA( 6) / (KT1( 18) * GAMMA( 41))M( 42) = ALFA( 6)**2 / (KT1( 19) * GAMMA( 42))M(163) = O.ODOOIF (DABS(KT1(9)) .GT. l.OD-30) M(163) = ALFA( 30)**5

/ (KT1( 9) * GAMMA(163))M(164) = O.ODOOIF (DABS(KT1(65)) .GT. l.OD-30) M(164) - ALFA( 30)**6

/ (KT1( 65) * GAMMA(164))M(229) = ALFA( 48) / (KT1(209) * GAMMA(229))M(249) = ALFA(246) / (KT1(225) * GAMMA(249))M(250) = ALFA(246)**2 / (KT1(226) * GAMMA(250))M(268) = ALFA(265) / (KT1(243) * GAMMA(268))M(269) = ALFA(265)**2 / (KT1(244) * GAMMA(269))M(MXSP+ 4) = ALFA(MXSP+ 1) / (KTl(MXAQK+3) * GAMMA(MXSP+ 4))M(MXSP+19) = ALFA(MXSP+16) / (KT1(MXAQK+17) * GAMMA (MXSP+ 19).)

M(14) = EXELT(IO) / (l.ODO + GAMMA(14) * (M(34) + M(35) +M( 36) + M( 37) + M( 38) + M( 39) + M( 40) + M(41) +M( 42) + M(163) + M(164) + M(229) + M(249) +M(250) + M(268) + M(269) + M(MXSP+4) + M(MXSP+19)))

ALFA(14) = M(14) * GAMMA(14)

IF (M(163) .GT. 3.0) M(163) = 3.0

DO 210 I = 34, 42

DIS 9460DIS 9470DIS 9480DIS 9490DIS 9500DIS 9510DIS 9520DIS 9530DIS 9540DIS 9550DIS 9560DIS 9570DIS 9580DIS 9590|DIS 9600|DIS 9610i T\T o n /" o /\

DIS 9630DIS 9640DIS 9650DIS 9660DIS 9670DIS 9680DIS 9690DIS 9700DIS 9710DIS 9720DIS 9730DIS 9740DIS 9750DIS 9760DIS 9770DIS 9780DIS 9790DIS 9800DIS 9810DIS 9820DIS 9830DIS 9840DIS 9850DIS 9860DIS 9870DIS 9880DIS 9890DIS 9900DIS 9910DIS 9920DIS 9930DIS 9940DIS 9950DIS 9960DIS 9970DIS 9980DIS 9990DIS10000DIS10010DIS10020DIS10030

272

Page 273: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

210

220

M(I) = M(I) * ALFA(14) ALFA(I) = M(I) * GAMMA(I)

CONTINUE

DO 220 I = 163, 164M(I) = M(I) * ALFA(14) ALFA(I) = M(I) * GAMMA(I)

CONTINUE

M(229) ALFA(229)

M(249) ALFA(249)

M(250) ALFA(250)

M(268) ALFA(268)

M(269) ALFA(269)

M(MXSP+ 4) ALFA(MXSP+4)

M(MXSP+19) ALFA(MXSP+19)

END IF

M(229) M(229)

M(249) M(249)

M(250) M(250)

M(268) M(268)

M(269) M(269)

* ALFA(14)* GAMMA(229)

* ALFA(14)* GAMMA(249)

* ALFA(14)* GAMMA(250)

* ALFA(14)* GAMMA(268)

* ALFA(14)* GAMMA(269)

M(MXSP+ 4) * ALFA(14) M(MXSP+ 4) * GAMMA(MXSP+ 4)

M(MXSP+19) * ALFA(14) M(MXSP+19) * GAMMA(MXSP+19)

Iron species

IF (EXELT(13) .GT. CPUMIN) THENM( 71) = ALFA( 5) / (KT1( 46) * GAMMA( 71)) M( 72) = ALFA( 5)**2 / (KT1( 47) * GAMMA( 72))

ALFA( 99) / (KT1( 48) * GAMMA( 73)) 9) / (KT1( 50) * GAMMA( 75)) 9)**2 / (KT1( 51) * GAMMA( 76))

/ (KT1( 52) * GAMMA( 77) * ALFA(8)**3) / (KT1( 53) * GAMMA( 78)) / (KT1(213) * GAMMA(233)) / (KT1(214) * GAMMA(234)) / (KT1(229) * GAMMA(253)) / (KT1(247) * GAMMA(272))

M(MXSP+ 8) = ALFA(MXSP+ 1) / (KT1(MXAQK+ 7) * GAMMA(MXSP+ 8)) M(MXSP+23) = ALFA(MXSP+16) / (KT1(MXAQK+21) * GAMMA(MXSP+23))

M( 73)M( 75) = ALFA(M( 76) = ALFA(M( 77) = ALFA( 10)**2M( 78) = ALFA( 6)M(233) = ALFA( 48)M(234) = ALFA( 48)**2M(253) = ALFA(246)M(272) = ALFA(265)

If fe+3 is to be calculated from eh measurements then put flags(l) =1. If from the reaction:

fe+3 + l/2h2o + l/8hs- = fe++ + l/8so4 + 9/8h+ then flags(l) = 0.

IF (EHM .LT. 9.0DO .AND. FLAGS(l) .EQ. 1) THEN

273

DIS10040 DIS10050 DIS10060 DIS10070 DIS10080 DIS10090 DIS10100 DIS10110 DIS10120 DIS10130 DIS10140 DIS10150 DIS10160 DIS10170 DIS10180 DIS10190 DIS10200 DIS10210 DIS10220 DIS10230 DIS10240 DIS10250 DIS10260 DIS10270 DIS10280 DIS10290 DIS10300 DIS10310 DIS10320 DIS10330 DIS10340 |DIS10350 JDIS10360 JDIS10370 DIS10380 DIS10390 DIS10400 DIS10410 DIS10420 DIS10430 DIS10440 DIS10450 DIS10460 DIS10470 DIS10480 DIS10490 DIS10500 DIS10510 DIS10520 DIS10530 [DIS1054C JDIS10550 JDIS10560 JDIS10570 JDIS10580 [DIS10590 DIS10600 DIS10610

Page 274: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

230

240

Cl = 10.0**((EHM * F - LOGKT1(138)) / (2 . 303 * R * T) )M(19) = Cl / GAMMA(19)

ELSE IF (EXELT(25) .LT. CPUMIN) THENM(19) = 0.0

ELSE IF (FLAGS(l) .EQ. 0) THENM(19) = (ALFA(6)**0.125 * ALFA(8)**1. 125) / (KT1(5) *

DSQRT(ALFA(10)) * ALFA(101)**0 . 125 * GAMMA(19))END IF

M( 79) = ALFA( 5) / (KT1( 54) * GAMMA( 79))M( 80) - ALFA( 5)**2 / (KT1( 55) * GAMMA( 80))M( 81) = O.ODOOIF (DABS(KT1(56)) .GT. l.OD-30)

M( 81) = ALFA( 5)**3 / (KT1( 56) * GAMMA( 81))M( 82) = O.ODOOIF (DABS(KT1(57)) .GT. l.OD-30)

M( 82) = ALFA( 5)**4 / (KT1( 57) * GAMMA( 82))M( 83) - ALFA( 6) / (KT1( 58) * GAMMA( 83))M( 84) - ALFA( 6)**2 / (KT1( 59) * GAMMA( 84))M( 85) - ALFA( 9) / (KT1( 60) * GAMMA( 85))M( 86) - ALFA( 9)**2 / (KT1( 61) * GAMMA( 86))M( 87) - O.ODOOIF (DABS(KT1(62)) .GT. l.OD-30)

M( 87) = ALFA( 9)**3 / (KT1( 62) * GAMMA( 87))M( 88) - O.ODOOIF (DABS(KT1(53)) .GT. l.OD-30)

M( 88) - ALFA( 9)**4 / (KT1( 63) * GAMMA( 88))M(254) - ALFA(246) / (KT1(230) * GAMMA(253))M(273) - ALFA(265) / (KT1(248) * GAMMA(273))M(283) = ALFA( 30) / (KT1(256) * GAMMA(283))

DO 230 I = 79, 88M(I) - M(I) * M(19) * GAMMA(19)

CONTINUE

M(254) = M(254) * M(19) * GAMMA(19)M(273) - M(273) * M(19) * GAMMA(19)M(283) = M(283) * M(19) * GAMMA(19)

M(18) - EXELT(13) / (l.ODO + GAMMA(18) * (M(19) + M(71) +M( 72) + M( 73) + M( 75) + M( 76) + M( 77) + M( 78)M( 79) + M( 80) + M( 81) + M( 82) + M( 83) + M( 84)M( 85) + M( 86) + M( 87) + M( 88) + M(233) + M(234)M(253) + M(254) + M(272) + M(273) + M(283) +M(MXSP+8) + M(MXSP+23)))

ALFA(18) = M(18) * GAMMA(18)

M(19) = M(19) * ALFA(18)ALFA(19) = M(19) * GAMMA(19)

DO 240 1-71, 88IF (I .EQ. 74) GO TO 240M(I) - M(I) * ALFA(18)ALFA(I) - M(I) * GAMMA(I)

CONTINUE

M(233) - M(233) * ALFA(18)ALFA(233) - M(233) * GAMMA(233)

DIS10620DIS10630DIS10640DIS10650DIS10660DIS10670DIS10680DIS10690DIS10700DIS10710DIS10720DIS10730DIS10740DIS10750DIS10760DIS10770DIS10780DIS10790DIS10800DIS10810DIS10820DIS10830DIS10840DIS10850DIS10860DIS10870DIS10880DIS10890DIS10900DIS10910DIS10920DIS10930DIS10940DIS10950DIS10960DIS10970DIS10980DIS10990DIS11000DIS11010

+ DIS11020+ DIS11030+ DIS11040

DIS11050DIS11060DIS11070DIS11080DIS11090DIS11100DIS11110DIS11120DIS11130DIS11140DIS11150DIS11160DIS11170DIS11180DIS11190

274

Page 275: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

M(234) - M(234) * ALFA(18)ALFA(234) - M(234) * GAMMA(234)

M(253) - M(253) * ALFA(18)ALFA(253) - M(253) * GAMMA(253)

M(254) = M(254) * ALFA(18)ALFA(254) = M(254) * GAMMA(254)

M(272) = M(272) * ALFA(18)ALFA(272) = M(272) * GAMMA(272)

M(273) = M(273) * ALFA(18)ALFA(273) = M(273) * GAMMA(273)

M(283) = M(283) * ALFA(18)ALFA(283) = M(283) * GAMMA(283)

M(MXSP+ 8) = M(MXSP+ 8) * ALFA(18)ALFA(MXSP+ 8) - M(MXSP+ 8) * GAMMA(MXSP+ 8)

M(MXSP+23) - M(MXSP+23) * ALFA(18)ALFA(MXSP+23) - M(MXSP+23) * GAMMA(MXSP+23)

END IF

r __________C Barium speciesf

IF (EXELT(ll) .GT. CPUMIN) THENM( 51) = ALFA( 98) / (KT1( 26) * GAMMA( 51))M( 52) = ALFA( 7) / (KT1( 27) * GAMMA( 52))M( 53) = ALFA( 9) / (KT1( 28) * GAMMA( 53))M( 54) = ALFA( 6) / (KT1( 29) * GAMMA( 54))M(230) = ALFA( 48) / (KT1(210) * GAMMA(230))M(251) = ALFA(246) / (KT1(227) * GAMMA(251))M(270) = ALFA(265) / (KT1(245) * GAMMA(270))M(MXSP+ 5) = ALFA(MXSP+ 1) / (KT1(MXAQK+ 4) * GAMMA(MXSP+ 5))M(MXSP+20) = ALFA(MXSP+16) / (KT1(MXAQK+18) * GAMMA ( MXS P+20 ))

M(15) = EXELT(ll) / (l.ODO + GAMMA(15) * (M(51) + M(52) +M(53) + M(54) + M(230) + M(251) + M(270) +M(MXSP+5) + M(MXSP+20)))

ALFA(15) = M(15) * GAMMA(15)

DO 250 I = 51, 54M(I) = M(I) * ALFA(15)ALFA(I) = M(I) * GAMMA(I)

250 CONTINUE

M(230) - M(230) * ALFA(15)ALFA(230) = M(230) * GAMMA(230)

M(251) = M(251) * ALFA(15)ALFA(251) = M(251) * GAMMA(251)

M(270) = M(270) * ALFA(15)

275

DIS11200DIS11210DIS11220DIS11230DIS11240DIS11250DIS11260DIS11270DIS11280DIS11290DIS11300DIS11310DIS11320DIS11330DIS11340DIS11350DIS11360DIS11370DIS11380DIS11390DIS11400DIS11410DIS11420DIS11430DIS11440DIS11450

-|DIS11460|DIS11470|DIS11480DIS11490DIS11500DIS11510DIS11520DIS11530DIS11540DIS11550DIS11560DIS11570DIS11580DIS11590DIS11600DIS11610DIS11620DIS11630DIS11640DIS11650DIS11660DIS11670DIS11680DIS11690DIS11700DIS11710DIS11720DIS11730DIS11740DIS11750DIS11760DIS11770

Page 276: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

/I^"

cy~i*-*

Ccc

ALFA(270) = M(270) * GAMMA(270)

M(MXSP+5) = M(MXSP+5) * ALFA(15)ALFA(MXSP+5) = M(MXSP+5) * GAMMA(MXSP+5)

M(MXSP+20) = M(MXSP+20) * ALFA(15)ALFA(MXSP+20) = M(MXSP+20) * GAMMA (MXSfP+20)

END IF

Copper species

IF (EXELT(12) .GE. CPUMIN) THENM(62) = ALFA( 5) / (KT1( 37) * GAMtfA( 62))M(63) - ALFA( 5)**2 / (KT1( 38) * GAMdA( 63))M(64) = ALFA( 5)**3 / (KTl( 39) * GAM*A( 64))M(232) = ALFA(48) / (KTl(212) * GAM*A(232))M(MXSP+ 7) = ALFA(MXSP+ 1) / (KT1(MXAQK+ 6) * GAMMA(MXSP+ 7))M(MXSP+22) = ALFA(MXSP+16) / (KT1(MXAQK+20) * GAMMA (MXS P+22 ))

If cu++ is to be calculated from eh measurements thenflags(2) =1. If from cu++ + fe++ - cu+ + fe+3, thenflags(2) = 0.

IF (EHM .LT. 9.0 .AND. FLAGS (2) .EQ. 1) THENCl = 1.0D1**((EHM * F - LOGKT1(139)) / (2 . 303 * R * T) )M(17) = Cl / GAMMA(19)

ELSE IF (EXELT(25) .LT. CPUMIN) THENM(17) = O.ODO

ELSE IF (FLAGS (2) .EQ. 0) THENM(17) = ALFA(19) / (KT1(4) * ALFA(18) * GAMMA(17))

END IF

M(65) = ALFA(5) / (KT1(40) * GAMMA(65))M(66) = ALFA(5)**2 / (KT1(41) * GAMMA(66))M(67) - O.ODOOIF (DABS(KT1(42)) .GT. l.OD-30)

M(67) = ALFA(5)**3 / (KT1(42) * GAMMA(67))M(68) = O.ODOOIF (DABS(KT1(43)) .GT. l.OD-30)

M(68) = ALFA(5)**4 / (KT1(43) * GAMMA(68))M(69) = ALFA(9) / (KT1(44) * GAMMA(69))M(70) = ALFA(6) / (KT1(45) * GAMMA(70))

DO 260 I = 65, 70M(I) = M(I) * M(17) * GAMMA(17)

260 CONTINUE

M(16) = EXELT(12) / (l.ODO + GAMMA(16) * (M(17) + M(62) +M(63) + M(64) + M(65) + M(66) + M(67) + M(68) +M(69) + M(70) + M(232) + M(MXSP+7) + M(MXSP+22)))

ALFA(16) = M(16) * GAMMA(16)

M(17) = M(17) * ALFA(16)ALFA(17) = M(17) * GAMMA(17)

DIS11780DIS11790DIS11800DIS11810DIS11820DIS11830DIS11840DIS11850DIS11860

-|DIS11870|DIS118801 T^T O1 1 BOH| Ulollo;7U

DIS11900DIS11910DIS11920DIS11930DIS11940DIS11950DIS11960DIS11970DIS11980

i F>T c 1 1 oon

JDIS12000|DIS12010|DIS12020

- (DIS12030 DIS12040DIS12050DIS12060DIS12070DIS12080DIS12090DIS12100DIS12110DIS12120DIS12130DIS12140DIS12150DIS12160DIS12170DIS12180DIS12190DIS12200DIS12210DIS12220DIS12230DIS12240DIS12250DIS12260DIS12270DIS12280DIS12290DIS12300DIS12310DIS12320DIS12330DIS12340DIS12350

276

Page 277: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

c

ccfo

foccf o

DO 270 I = 62, 70M(I) - M(I) * ALFA(16)ALFA(I) - M(I) * GAMMA(I)

270 CONTINUE

M(232) - M(232) * ALFA(16)ALFA(232) - M(232) * GAMMA(232)

M(MXSP+.7) - M(MXSP+ 7) * ALFA(16)ALFA(MXSP+ 7) - M(MXSP+ 7) * GAMMA(MXSP+7)

M(MXSP+22) - M(MXSP+22) * ALFA(16)ALFA(MXSP+22) = M(MXSP+22) * GAMMA(MXSP+22)

END IF

Mercury species

IF (EXELT(14) .GT. CPUMIN) THENM(105) - ALFA(5) / (KT1(78) * GAMMA(105))M(106) - ALFA(5)**2 / (KT1(79) * GAMMA(106))M(107) - ALFA(5)**3 / (KT1(80) * GAMMA(107))M(108) = ALFA(5)**4 / (KT1(81) * GAMMA(108))M(109) - ALFA(6) / (KT1(82) * GAMMA(109))

The k values for hgsh2s)2 are so small a divide by zero errorwill occur is the reason for the following statement.

M(110) = 0.0IF (DABS(KT1(83)) .GT. l.OD-30) M(110) - ALFA(33)**2

* ALFA(lOl) / (KT1(83) * GAMMA(llO) * ALFA(8))M(lll) = ALFA(101)**3 / (KT1(84) * GAMMA(lll))M(165) - ALFA(9) / (KT1(117) * GAMMA(165))M(166) - ALFA(9)**2 / (KT1(137) * GAMMA(166))

If hg++ is to be calculated from eh then flags (3) - 1.If from 2hg++ + 2fe++ - hg++ + 2fe+3 then flags (3) - 0.

IF (EHM .LT. 9.0 .AND. FLAGS(3) .EQ. 1) THENCl - 10.0**(((EHM*F - LOGKT1(140))*2) / (2.303*R*T))M(20) - Cl * M(21) * GAMMA(21) / GAMMA(20)

ELSE IF (EXELT(25) .LT. CPUMIN .OR. EXELT(13) .LT. CPUMIN.OR. ALFA(18) .LT. l.OD-30 .OR. ALFA(19) .LT. l.OD-30)

THENM(20) - 0.0M(112) = 0.0

ELSE IF (FLAGS(3) .EQ. 0) THENM(20) = 2.0 * DLOG10(ALFA(18)) - 2.0 * DLOG10(ALFA(19) )

+ DLOG10(M(21)) + DLOG10(GAMMA(21)) + DLOG10(KT1(6) )- DLOG10(GAMMA(20))

IF (M(20) .GT. -30.0 .AND. M(20) .LT. +30.0) THENM(20) - 10.0**M(20)

ELSE

DIS12360DIS12370DIS12380DIS12390DIS12400DIS12410DIS12420DIS12430DIS12440DIS12450DIS12460DIS12470DIS12480DIS12490DIS12500DIS12510

1 DTS1 9S90| >J ± iJ 1. i- -J i-\J

|DIS12530JDIS12540DIS12550DIS12560DIS12570DIS12580DIS12590DIS12600DIS12610DIS12620

I T\T o i o a onUlDlZo JU (DIS12640(DIS12650|DIS12660DIS12670DIS12680DIS12690DIS12700DIS12710DIS12720DIS12730JDIS12740(DIS12750JDIS12760|DIS12770DIS12780DIS12790DIS12800DIS12810DIS12820DIS12830DIS12840DIS12850DIS12860DIS12870DIS12880DIS12890DIS12900DIS12910DIS12920DIS12930

277

Page 278: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

M(20) - O.ODOOEND IF

M(112) - 2.0 * DLOG10(ALFA(18)) - 2

DIS12940DIS12950DIS12960

0 * DLOG10(ALFA(19)) DIS12970+ DLOG10(KT1(85)) - DLOG10(GAMMA(112)) DIS12980

IF (M(112) .GT. -30.0 .AND. M(112)M(112) - 10.0**M(112)

ELSEM(112) - 0.0

END IFEND IF

LT. +30.0) THEN DIS12990DIS13000DIS13010DIS13020DIS13030DIS13040DIS13050

M(21) = EXELT(14) / (l.ODO + GAMMA(21) * (M(20) + M(105) + DIS13060

CCC

M(106) + M(107) + M(108) +M(lll) + M(112) + M(165) +

ALFA(21) = M(21) * GAMMA(21)

M(20) - M(20) * ALFA(21)ALFA(20) = M(20) * GAMMA(20)

DO 280 1-105, 112M(I) - M(I) * ALFA(21)ALFA(I) - M(I) * GAMMA(I)

280 CONTINUE

DO 290 1-165, 166M(I) = M(I) * ALFA(21)ALFA(I) = M(I) * GAMMA(I)

290 CONTINUEEND IF

Lithium species

IF (EXELT(15) .GT. CPUMIN) THENM(118) = ALFA(9) / (KT1(91) * GAMMA(11M(119) = ALFA(6) / (KT1(92) * GAMMA(11

M(109) + M(110) + DIS13070M(166))) DIS13080

DIS13090DIS13100DIS13110DIS13120DIS13130DIS13140DIS13150DIS13160DIS13170DIS13180DIS13190DIS13200DIS13210DIS13220DIS13230DIS13240

......................... |DIS13250|DIS13260|DIS13270DIS13280DIS13290

8)) DIS133009)) DIS13310

DIS13320M(22) = EXELT(15) / (l.ODO + GAMMA(22) * (M(118) + M(119))) DIS13330

CCC

ALFA(22) = M(22) * GAMMA(22)

DO 300 I = 118, 119M(I) - M(I) * ALFA(22)ALFA(I) - M(I) * GAMMA(I)

300 CONTINUEEND IF

Manganese species

IF (EXELT(16) .GT. CPUMIN) THEN

DIS13340DIS13350DIS13360DIS13370DIS13380DIS13390DIS13400DIS13410

......................... | DIS13420|DIS13430JDIS13440DIS13450DIS13460

M(128) = ALFA( 5) / (KTl(lOl) * GAMMA(128)) DIS13470M(129) = ALFA( 5)**2 / (KT1(102) * GAMMA(129)) DIS13480M(130) = ALFA( 5)**3 / (KT1(103) * GAMMA(130)) DIS13490M(131) = O.ODOOIF ( DABS (KT1( 104)) .GT. l.OD-30)

DIS13500DIS13510

278

Page 279: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ALFA( 5)**4 / (KT1(104) * GAMMA(131))M(132) - ALFA( 7) / M(133) - ALFA( 6) / M(134) - ALFA( 99) / M(135) - ALFA( 9) / M(257) - ALFA(246) / M(258) - ALFA(246)**2 / M(259) - ALFA(246)**3 / M(276) = ALFA(265) / M(MXSP+11) = ALFA(MXSP+

(KT1(105) (KT1(106) (KT1(108) (KT1(109) (KT1(233) (KT1(234) (KT1(235) (KT1(251) 1) / (KT1(MXAQK+10) * GAMMA(MXSP+ll))

* GAMMA(132))* GAMMA(133))* GAMMA(134))* GAMMA(135))* GAMMA(257))* GAMMA(258))* GAMMA(259))* GAMMA(276))

M(MXSP+26) - ALFA(MXSP+16) / (KTl(MXAQK+24) * GAMMA(MXSP+26))

If mn+++ is to be calculated from eh then flags(4) - 1. If from mn+3 + fe++ = mn++ + fe+3 then flags(4) - 0.

IF (EHM.LT.9.0DO .AND. FLAGS(4) .EQ. 1) THENCl = 1.0D1**((EHM * F - LOGKT1(141)) / (2 . 303 * R * T) )M(24) - Cl / GAMMA(23)

ELSE IF (EXELT(25) .LT. CPUMIN) THENM(24) O.ODO

ELSE IF (EXELT(13) .LT. CPUMIN) THEN

310

320

M(24) - O.ODO ELSE IF (FLAGS (4) EQ. 0) THEN

M(24) END IF

M(153) M(153)

M(260) M(260)

M(23)

ALFA(23)

M(24) ALFA (24)

DO 310 I

ALFA(19) / (KT1(7) * ALFA(18) * GAMMA(24))

ALFA( 5) / M(153) * M(24)

(KT1(107) * GAMMA(153)) * GAMMA(24)

ALFA(I) CONTINUE

M(153) ALFA(153)

DO 320 I

ALFA(246) / (KTl(236) * GAMMA(258)) M(260) * M(24) * GAMMA(24)

= EXELT(16) / (l.ODO + GAMMA(23) * (M(24) + M(128) + M(129) + M(130) + M(131) + M(132) + M(133) + M(134) + M(135) + M(153) + M(257) + M(258) + M(259) + M(260) + M(276) + M(MXSP+11) + M(MXSP+26)))

- M(23) * GAMMA(23)

= M(24) * ALFA(23)- M(24) * GAMMA(24)

= 128, 135M(I) * ALFA(23) M(I) * GAMMA(I)

ALFA(I) CONTINUE

M(276) ALFA(276)

= M(153) - M(153)

257, 260 M(I) * ALFA(23) M(I) * GAMMA(I)

* ALFA(23)* GAMMA(153)

M(276) M(276)

* ALFA(23)* GAMMA(276)

DIS13520 DIS13530 DIS13540 DIS13550 DIS13560 DIS13570 DIS13580 DIS13590 DIS13600 DIS13610 DIS13620 DIS13630 |DIS13640 JDIS13650 JDIS13660 |DIS13670 DIS13680 DIS13690 DIS13700 DIS13710 DIS13720 DIS13730 DIS13740 DIS13750 DIS13760 DIS13770 DIS13780 DIS13790 DIS13800 DIS13810 DIS13820 DIS13830 DIS13840 DIS13850 DIS13860 DIS13870 DIS13880 DIS13890 DIS13900 DIS13910 DIS13920 DIS13930 DIS13940 DIS13950 DIS13960 DIS13970 DIS13980 DIS13990 DIS14000 DIS14010 DIS14020 DIS14030 DIS14040 DIS14050 DIS14060 DIS14070 DIS14080 DIS14090

279

Page 280: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

M(MXSP+11) - M(MXSP+11) * ALFA(23)ALFA(MXSP+11) - M(MXSP+11) * GAMMA (MXSP+11)

M(MXSP+26) - M(MXSP+26) * ALFA(23)ALFA(MXSP+26) - M(MXSP+26) * GAMMA(MXSP+26)

END IF

/t\

C Lead species----------------

IF (EXELT(17) .GT. CPUMIN) THENM(148) - ALFA( 5) / (KT1(121) * GAMMA (148))M(149) - ALFA( 5)**2 / (KT1(122) * GAMMA(149))M(150) - ALFA( 5)**3 / (KT1(123) * GAMMA(ISO))M(151) - O.ODOOIF (DABS (KT1 (124)) .GT. l.OD-30)

M(151) - ALFA( 5)**4 / (KT1(124) * GAMMA(lSl))M(152) - ALFA( 6) / (KT1(125) * GAMMA(152))M(238) - ALFA( 48) / (KT1(218) * GAMMA(238))M(239) - ALFA( 48)**2 / (KT1(219) * GAMMA(239))M(240) - ALFA( 48)**3 / (KT1(220) * GAMMA(240))M(262) = ALFA(246) / (KT1(238) * GAMMA(262))M(278) - ALFA(265) / (KT1(253) * GAMMA(278))M(286) = ALFA(101)**2 / (KT1(258) * GAMMA(286))M(287) - ALFA(101)**3 / (KT1(259) * GAMMA(287))M(288) - ALFA( 98) / (KT1(260) * GAMMA(288))M(289) - ALFA( 9) / (KT1(261) * GAMMA(289))M(MXSP+13) - ALFA(MXSP+ 1) / (KT1(MXAQK+12) * GAMMA(MXSP+13) )M(MXSP+28) - ALFA(MXSP+16) / (KTl(MXAQK+26) * GAMMA(MXSP+28))

M(25) - EXELT(17) / (l.ODO + GAMMA(25) * (M(148) + M(149) +M(150) + M(151) + M(152) + M(238) + M(239) + M(240)M(262) + M(278) + M(286) + M(287) + M(288) + M(289)M(MXSP+13) + M(MXSP+28)))

ALFA(25) - M(25) * GAMMA(25)

DO 330 1-148, 152M(T) - M(I) * ALFA(25)ALFA(I) = M(I) * GAMMA(I)

330 CONTINUE

DO 340 I - 238, 240M(I) - M(I) * ALFA(25)ALFA(I) - M(I) * GAMMA(I)

340 CONTINUE

M(262) - M(262) * ALFA(25)ALFA(262) - M(262) * GAMMA(262)

M(278) - M(278) * ALFA(25)ALFA(278) - M(278) * GAMMA(278)

DO 350 I - 286, 289M(I) - M(I) * ALFA(25)ALFA(I) - M(I) * GAMMA(I)

DIS14100DIS14110,DIS14120DIS14130DIS14140DIS14150DIS14160DIS14170

-|DIS14180|DIS14190JDIS14200DIS14210DIS14220DIS14230DIS14240DIS14250DIS14260DIS14270DIS14280DIS14290DIS14300DIS14310DIS14320DIS14330DIS14340DIS14350DIS14360DIS14370DIS14380DIS14390DIS14400DIS14410DIS14420

+DIS14430+DIS 14440DIS14450DIS14460DIS14470DIS14480DIS14490DIS14500DIS14510DIS14520DIS14530DIS14540DIS14550DIS14560DIS14570DIS14580DIS14590DIS14600DIS14610DIS14620DIS14630DIS14640DIS14650DIS14660DIS14670

280

Page 281: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

350 CONTINUE

M(MXSP+13) = M(MXSP+13) * ALFA(25)ALFA(MXSP+13) = M(MXSP+13) * GAMMA(MXSP+13)

M(MXSP+28) = M(MXSP+28) * ALFA(25)ALFA(MXSP+28) = M(MXSP+28) * GAMMA(MXSP+28)

END IF

r

C Strontium speciesP

360 CONTINUEIF (EXELT(18) .GT. CPUMIN) THENM(154) = ALFA( 9) / (KT1(127) * GAMMA(154))M(155) = ALFA( 98) / (KT1(128) * GAMMA(155))M(156) = ALFA( 7) / (KT1(129) * GAMMA(156))M(157) - ALFA( 6) / (KT1(130) * GAMMA(157))M(241) - ALFA( 48) / (KT1(221) * GAMMA(241))M(263) = ALFA(246) / (KT1(239) * GAMMA(263))M(279) = ALFA(265) / (KT1(254) * GAMMA(279))M(MXSP+14) - ALFA(MXSP+ 1) / (KTl(MXAQK+13) * GAMMA (MXS P+14 ))M(MXSP+29) = ALFA(MXSP+16) / (KTl(MXAQK+27) * GAMMA(MXSP+29) )

M(26) - EXELT(18) / (l.ODO + GAMMA(26) * (M(154) + M(155) +M(156) + M(157) + M(241) + M(263) + M(279) +M(MXSP+14) + M(MXSP+29)))

ALFA(26) = M(26) * GAMMA(26)

DO 370 I = 154, 157M(I) = M(I) * ALFA(26)ALFA(I) = M(I) * GAMMA(I)

370 CONTINUE

M(241) = M(241) * ALFA(26)ALFA(241) = M(241) * GAMMA(241)

M(263) - M(263) * ALFA(26)ALFA(263) - M(263) * GAMMA(263)

M(279) = M(279) * ALFA(26)ALFA(279) = M(279) * GAMMA(279)

M(MXSP+14) = M(MXSP+14) * ALFA(26)ALFA (MXS P+14) = M (MXS P+14) * GAMMA (MXS P+14)

M(MXSP+29) = M(MXSP+29) * ALFA(26)ALFA(MXSP+29) - M(MXSP+29) * GAMMA (MXS P+2 9)

IF (IPIT.EQ.l .AND. PG ( 26 ). GT. CPUMIN.AND. GAMMA(26).LE.10.0) THEN

IF (DABS(PALFA(26)-ALFA(26)) .GT. 1.0D-2*PALFA(26)) THENIF (PALFA(26) .GT. ALFA(26)) THEN

INC=0 . 1ELSEINC 0.01

END IF

DIS14680DIS14690DIS14700DIS14710DIS14720DIS14730DIS14740DIS14750DIS14760[DIS14770 JDIS14780JDIS14790DIS14800DIS14810DIS14820DIS14830DIS14840DIS14850DIS14860DIS14870DIS14880DIS14890DIS14900DIS14910DIS14920DIS14930DIS14940DIS14950DIS14960DIS14970DIS14980DIS14990DIS15000DIS15010DIS15020DIS15030DIS15040DIS15050DIS15060DIS15070DIS15080DIS15090DIS15100DIS15110DIS15120DIS15130DIS15140DIS15150DIS15160DIS15170DIS15180DIS15190DIS15200DIS15210DIS15220DIS15230DIS15240DIS15250

281

Page 282: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

GAMMA(26)=GAMMA(26)*(1.0+INC)GO TO 360

END IFEND IF

IF (IPIT.EQ.l .AND. GAMMA(26) .GT. 10.0) GAMMA(26) = 10.0IF (IPIT.GT.l .AND. GAMMA(26) .LT.PG(26) ) GAMMA(26) = PG(26)

END IF

r

C Zinc speciesc

IF (EXELT(19) .GT. CPUMIN) THENM(158) - ALFA( 5) / (KT1(131) * GAMMA(158))M(159) = ALFA( 5)**2 / (KT1(132) * GAMMA(159))M(160) = ALFA( 5)**3 / (KT1(133) * GAMMA(IGO))M(161) = O.ODOOIF (DABS(KT1(134)) .GT. l.OD-30)

M(161) = ALFA( 5)**4 / (KT1(134) * GAMMA(161))M(162) = ALFA( 6) / (KT1(135) * GAMMA(162))M(244) = ALFA( 48) / (KT1(222) * GAMMA(244))M(245) = ALFA( 48)**2 / (KT1(126) * GAMMA(245))M(264) = ALFA(246) / (KT1(240) * GAMMA(264))M(280) = ALFA(265) / (KT1(255) * GAMMA(280))M(290) = ALFA(101)**2 / (KT1(262) * GAMMA(290))M(291) = ALFA(101)**3 / (KT1(263) * GAMMA(291))M(292) = ALFA( 7) / (KT1(264) * GAMMA(292))M(293) = ALFA( 9) / (KT1(265) * GAMMA(293))M(294) = ALFA( 9)**2 / (KT1(266) * GAMMA(294))M(295) = ALFA(lOl) * ALFA( 9) / (KT1(267) * GAMMA(295))M(MXSP+15) = ALFA(MXSP+ 1) / (KT1(MXAQK+14) * GAMMA (MXSP+15 ))M(MXSP+30) = ALFA(MXSP+16) / (KTl(MXAQK+28) * GAMMA (MXSP+30 ))

M(27) = EXELT(19) / (l.ODO + GAMMA(27) * (M(158) + M(159) +M(160) + M(161) + M(162) + M(244) + M(245) + M(264)M(280) + M(290) + M(291) + M(292) + M(293) + M(294)M(295) + M(MXSP+15) + M(MXSP+30)))

ALFA(27) - M(27) * GAMMA(27)

DO 380 I = 158, 162M(I) = M(I) * ALFA(27)ALFA(I) = M(I) * GAMMA(I)

380 CONTINUE

M(244) - M(244) * ALFA(27)ALFA(244) - M(244) * GAMMA(244)

M(245) = M(245) * ALFA(27)ALFA(245) - M(245) * GAMMA(245)

M(264) - M(264) * ALFA(27)ALFA(264) - M(264) * GAMMA(264)

M(280) - M(280) * ALFA(27)ALFA(280) - M(280) * GAMMA(280)

DO 390 1-290, 295

DIS15260DIS15270DIS15280DIS15290DIS15300DIS15310DIS15320DIS15330DIS15340

-|DIS15350|DIS15360|DIS15370DIS15380DIS15390DIS15400DIS15410DIS15420DIS15430DIS15440DIS15450DIS15460DIS15470DIS15480DIS15490DIS15500DIS15510DIS15520DIS15530DIS15540DIS15550DIS15560DIS15570DIS15580DIS15590DIS15600

+DIS15610+DIS15620DIS15630DIS15640DIS15650DIS15660DIS15670DIS15680DIS15690DIS15700DIS15710DIS15720DIS15730DIS15740DIS15750DIS15760DIS15770DIS15780DIS15790DIS15800DIS15810DIS15820DIS15830

282

Page 283: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

390ALFA(I)

CONTINUE

M(I) * ALFA(27) M(I) * GAMMA(I)

M(MXSP+15) ALFA(MXSP+15)

M(MXSP+30) ALFA(MXSP+30)

END IF

M(MXSP+15) * ALFA(27)M(MXSP+15) * GAMMA(MXSP+15)

M(MXSP+30) * ALFA(27)M(MXSP+30) * GAMMA(MXSP+30)

Arsenic species

IF (EXELT(20) .GT. CPUMIN) THENM(49) = ALFA(8) / KT1(67) * GAMMA(49)

The following statement prevents a divide by zero error if the concentration or fe+2 is zero

IF (DABS(ALFA(18)) .GT. l.OD-30) M(50) = (ALFA(19) /ALFA(18))**2 * ALFA(IO) / KTl(136) * ALFA(8)**4 * GAMMA(50)

M(92) = KT1(8) / ALFA(8) * GAMMA(92)M(93) = ALFA(8) / (KT1(68) * GAMMA(93))M(94) = ALFA(8)**2 / (KT1(69) * GAMMA(94))M(95) = ALFA(8)**3 / (KT1(70) * GAMMA(95))

DO 400 I = 93, 95M(I) = M(I) * M(50) * GAMMA(50)

400 CONTINUE

M(28) = EXELT(20) / (l.ODO + GAMMA(28) * (M(49) + M(50) +M(92) + M(93) + M(94) + M(95)))

ALFA(28) = M(28) * GAMMA(28)

DO 410 I = 49, 50M(I) = M(I) * ALFA(28) ALFA(I) = M(I) * GAMMA(I)

410 CONTINUE

DO 420 I = 92, 95M(I) = M(I) * ALFA(28) ALFA(I) = M(I) * GAMMA(I)

420 CONTINUE END IF

Uranium species

IF (EXELT(27) .GT. CPUMIN) THENM(189) = ALFA(9) / (KT1(167) * GAMMA(189)) M(190) = ALFA(9)**2 / (KT1(168) * GAMMA(190)) M(191) - M(169) * GAMMA(169) * ALFA(9)**2 /

DIS15840 DIS15850 DIS15860 DIS15870 DIS15880 DIS15890 DIS15900 DIS15910 DIS15920 DIS15930 DIS15940 |DIS15950 |DIS15960 |DIS15970 DIS15980 DIS15990 DIS16000 DIS16010 DIS16020 DIS16030 DIS16040 DIS16050 DIS16060 DIS16070 DIS16080 DIS16090 DIS16100 DIS16110 DIS16120 DIS16130 DIS16140 DIS16150 DIS16160 DIS16170 DIS16180 DIS16190 DIS16200 DIS16210 DIS16220 DIS16230 DIS16240 DIS16250 DIS16260 DIS16270 DIS16280 DIS16290 DIS16300 DIS16310 DIS16320 DIS16330 [DIS16340 |DIS16350 [DIS16360 DIS16370 DIS16380 DIS16390 DIS16400 DIS16410

283

Page 284: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

(KT1(169) * GAMMA(191)) M(192) - O.ODOO IF (DABS (KTl (170)) .GT. CPUMIN)

M(192) - M(169)**2 * GAMMA(169)**2 * ALFA(10)**5 /(ALFA(8)**5 * GAMMA(192) * KT1(170))

M(193) = O.ODOO IF (DABS (KTl (171)) .GT. CPUMIN)

M(193) = M(169)**2 * GAMMA(169)**2 * ALFA(10)**7 /(ALFA(8)**7 * GAMMA(193) * KT1(171»

M(194) = ALFA(6) / (KTl(172) * GAMMA(194)) M(195) - ALFA(6)**2 / (KT1(173) * GAMMA(195)) M(196) = ALFA(30) / (KTl(174) M(197) - ALFA(30)**2 / (KT1(175) M(198) = ALFA(30)**3 / (KT1(176) M(199) - 0.0 IF (DABS (KTl (177)) .GT. l.OD-30)

M(199) = ALFA(30)**4 / (KTl(177) * GAMMA(199)) M(200) = ALFA(5) / (KTl(178) * GAMMA(200)) M(201) = ALFA(ll) / (KT1(179) * GAMMA(201) * ALFA(8)) M(202) - ALFA(99) / (KT1(180) * GAMMA(202)) M(203) - ALFA(99)**2 / (KTl(181) * GA^1MA(203)) M(204) - ALFA(99) * ALFA(8) / (KT1(182) * GAMMA(204)) M(205) = ALFA(99)**2 * ALFA(8)**2 / (KT1(183) * GAMMA(205))

ALFA(8)**3 (KTl(185) (KT1(186) (KT1(187) (KT1(203) (KTl(204)

M(206) = ALFA(99)**3 M(207) - ALFA(98) M(208) = ALFA(98)**2 M(209) = ALFA(98)**3 M(242) = ALFA(48) M(243) = ALFA(48)**2

(KT1(184) * GAMMA(206)) GAMMA(207)) GAMMA(208)) GAMMA(209)) GAMMA(242))GAMMA(243))

If uo2 is to be calculated from eh then flags(5) =1, if from uo+2 + fe+2 - uo2+ + fe+3 then flags(5) - 0.

IF (EHM .LT. 9.0 .AND. FLAGS(5) .EQ. 1)Cl = 10.0**((-EHM * F - LOGKT1(143))M(168) = Cl / (GAMMA(169))

ELSE IF (EXELT(25) .LT. CPUMIN) THENM(168) = 0.0

ELSE IF (EXELT(13) .LT. CPUMIN) THENM(168) - 0.0

ELSE IF (FLAGS(5) .EQ. 0) THENM(168) - ALFA(18) / (KTl(205)

END IF

THEN / (2.303 * R * T))

ALFA(19) * GAMMA(168))

If u+4 is to be calculated from eh then flag(5) =1, if from uo2+ + fe+2 + 4h+ = u+4 + fe+3 +2 h2o then flag(5) = 0.

IF (EHM .LT. 9DO .AND. FLAGS(5) .EQ. I) THENCl = 1.0D1**((-EHM * F - (LOGKTi(142))) /

(2.303 * R * T)) + DLOG10(^LFA(10)**2 / ALFA(8)**4)M(167) = Cl / GAMMA(168)

ELSE IF (EXELT(25) .LT. CPUMIN .OR. EX^ELT(13) .LT. CPUMIN) THENM(167) = O.ODO

ELSE IF (FLAGS(5) .EQ. 0) THEN

DIS16420 DIS16430 DIS16440 DIS16450 DIS16460 DIS16470 DIS16480 DIS16490 DIS16500 DIS16510 DIS16520 DIS16530 DIS16540 DIS16550 DIS16560 DIS16570 DIS16580 DIS16590 DIS16600 DIS16610 DIS16620 DIS16630 DIS16640 DIS16650 DIS16660 DIS16670 DIS16680 DIS16690 DIS16700 DIS16710 [DIS16720 JDIS16730 JDIS16740 (DIS16750 DIS16760 DIS16770 DIS16780 DIS16790 DIS16800 DIS16810 DIS16820 DIS16830 DIS16840 DIS16850 DIS16860 DIS16870 [DIS16880 (DIS16890 |DIS16900 [DIS16910 DIS16920 DIS16930 DIS16940 DIS16950 DIS16960 DIS16970 DIS16980 DIS16990

284

Page 285: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

430

M(167)

END IF(KT1(206)

ALFA(18) * ALFA(19)

* ALFA(8)**4 /* GAMMA(167) * ALFA(10)**2)

M(167) = M(167) * M(168) M(170) = ALFA(9) / M(171) = ALFA(9)**2 / M(172) = ALFA(10)**3 / M(173) = O.ODOO IF (DABS(KT1(151)) .GT.M(173) = ALFA(10)**4

M(174) = O.ODOO IF (DABS(KT1(152)) .GT.M(174) = ALFA(10)**5

M(175) = ALFA(30) / M(176) = ALFA(30)**2 / M(177) = O.ODOO IF (DABS(KTl(155)) .GT.M(177) = ALFA(30)**3

M(178) = O.ODOO IF (DABS(KT1(156)) .GT.M(178) = ALFA(30)**4

M(179) = O.ODOO IF (DABS(KT1(157)) .GT.M(179) = ALFA(30)**5

M(180) = O.ODOO IF (DABS(KT1(158)) .GT.M(180) = ALFA(30)**6

M(181) = ALFA(5) / M(182) = ALFA(99) / M(183) = ALFA(99)**2 / M(184) = ALFA(100)**3 / M(185) = O.ODOO IF (DABS(KT1(185)) .GT.M(185) = ALFA(100)**4

M(186) = ALFA(6) / M(187) = ALFA(6)**2 /

* GAMMA(168) (KT1(148) * GAMMA(170)) (KT1(149) * GAMMA(171)) (KT1(150) * GAMMA(172) * ALFA(8)**3)

1.OD-30) / * GAMMA(173) * ALFA(8)**4)

1.OD-30)/ (KT1(152) * GAMMA(174) (KT1(153) * GAMMA(175)) (KT1(154) * GAMMA(176))

* ALFA(8)**5)

1. OD-30) / (KT1(155)

1. OD-30) / (KT1(156)

1. OD-30) / (KT1(157)

GAMMA(177))

GAMMA(178))

GAMMA(179))

1.OD-30)/ (KT1(158) * GAMMA(180))(KT1(159) * GAMMA(181))(KT1(160) * GAMMA(182))(KT1(161) * GAMMA(183))(KT1(162) * GAMMA(184) * ALFA(8)**3)

1.OD-30)/ (KT1(163) * GAMMA(185) * ALFA(8)**4)(KT1(164) * GAMMA(186))(KT1(165) * GAMMA(187))

IF (ALFA(167) .GT. O.ODO) THENM(188) = ALFA(10)**12 * ALFA(9)**3 *

1.0D1**(DLOG10(ALFA(167)) * 5) / (KT1(166) * GAMMA(188) *1.0D1**(DLOG10(ALFA(8)) * 12))

END IF

DO 430 I = 170, 188M(I) = M(I) * M(167) * GAMMA(167)

CONTINUE

M(169) = M(167) M(168) M(173) + M(177) +

M(169) = M(169)

+M(185) + M(189) M(190) + 2 M(194) + M(198) + M(202) +

M(170) M(174) M(178) M(182) M(186)

0*M(191) M(195) M(199) M(203)

M(175) M(179) M(183) M(187)

3.0*M(192) M(196) M(200) M(204)

M(172) M(176) M(180) M(184)

6.0*M(188)

3.0*M(193) M(197) M(201) M(205)

DIS17000DIS17010DIS17020DIS17030DIS17040DIS17050DIS17060DIS17070DIS17080DIS17090DIS17100DIS17110DIS17120DIS17130DIS17140DIS17150DIS17160DIS17170DIS17180DIS17190DIS17200DIS17210DIS17220DIS17230DIS17240DIS17250DIS17260DIS17270DIS17280DIS17290DIS17300DIS17310DIS17320DIS17330DIS17340DIS17350DIS17360DIS17370DIS17380DIS17390DIS17400DIS17410DIS17420DIS17430DIS17440DIS17450DIS17460DIS17470DIS17480DIS17490DIS17500DIS17510DIS17520DIS17530DIS17540DIS17550DIS17560DIS17570

285

Page 286: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ccc

cccc

+ M(206) + M(207) + M(208) + M(209)+ M(242) + M(243)

M(169) = EXELT(27) / (l.ODO + GAMMA(169) * M(169))ALFA(169) = M(169) * GAMMA(169)

M(167) = M(167) * ALFA(169)ALFA(167) = M(167) * GAMMA(167)M(168) = M(168) * ALFA(169)ALFA(168) = M(168) * GAMMA(168)

DO 440 I = 170, 209M(I) = M(I) * ALFA(169)ALFA(I) = M(I) * GAMMA(I)

440 CONTINUE

M(242) = M(242) * ALFA(169)ALFA(242) = M(242) * GAMMA(242)M(243) = M(243) * ALFA(169)ALFA(243) = M(243) * GAMMA(243)

END IF

Vanadium species

IF (EXELT(28) .GT. CPUMIN) THENM(213) = ALFA(8) / (KT1(188) * GAMMA(213))M(214) = ALFA(8)**2 / (KT1(189) * GAMMA(214))M(215) = ALFA(8)**3 / (KT1(190) * GAMMA(215))M(216) = ((ALFA(8)**2 / KTl(191)) / GAMMA(216)) * ALFA(8)**2M(217) = ALFA(3) * ALFA(8) / (KT1(192) * GAMMA(217))M(218) = ALFA(30) / (KT1(193) * GAMMA(218))M(219) = ALFA(30)**2 / (KT1(194) * GAMMA(218))

If vo+2 is to be calculated from eh then flags (6) = 1 , iffrom vo4 -3 + 6h+ + fe+2 = vo+2 + 3h2o + fe+3 then flags (6) = 0.

IF (EHM .LT. 9.0 .AND. FLAGS (6) .EQ. 1) THENCl = 10.0**((EHM * F - LOGKT1(145) + DLOG10(ALFA(10)**3)

6.0 * DLOG10(ALFA(8))) / (2 . 303 * R * T) )M(211) = Cl / GAMMA(210)

ELSE IF (EXELT( 25 ).LT. CPUMIN .OR. EXELT ( 13 ). LT. CPUMIN) THENM(211) = O.ODO

ELSE IF (FLAGS(6) .EQ. 0 .AND. ALFA(18) .GT. CPUMIN) THENM(211) = 10.0**(DLOG10(ALFA(8)) * 6.0 + DLOG10(ALFA(18) /

ALFA(19))) / (KT1(208) * GAMMA(167) * ALFA(10)**3)ELSEM(211) = 0.0

END IF

M(223) = ALFA(9) / (KT1(198) * GAMMA(223))M(224) = ALFA(6) / (KT1(199) * GAMMA(224))M(225) = ALFA(5) / (KTl(200) * GAMMA(225))M(226) = ALFA(30) / (KTl(201) * GAMMA(226))M(227) = ALFA(30)**2 / (KTl(202) * GAMMA(227))

DIS17580DIS17590DIS17600DIS17610DIS17620DIS17630DIS17640DIS17650DIS17660DIS17670DIS17680DIS17690DIS17700DIS17710DIS17720DIS17730DIS17740DIS17750DIS17760DIS17770DIS17780[DIS17790|DIS17800|DIS17810DIS17820DIS17830DIS17840DIS17850DIS17860DIS17870DIS17880DIS17890DIS17900DIS17910(DIS17920(DIS17930|DIS17940|DIS17950DIS17960DIS17970-DIS17980DIS17990DIS18000DIS18010DIS18020DIS18030DIS18040DIS18050DIS18060DIS18070DIS18080DIS18090DIS18100DIS18110DIS18120DIS18130DIS18140DIS18150

286

Page 287: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cc

c

DO 450 I = 223, 227M(I) = M(I) * GAMMA(211) * M(211)

450 CONTINUE

If v+3 is to be calculated from eh then flag(6) = 1, if fromvo+2 + 2h+ + fe+2 = v+3 + h2o + fe+3 then flag(6) = 0.

IF (EHM .LT. 9.0 .AND. FLAGS (6) .EQ. 1) THENCl - 10.0** ((EHM * F * LOGKT1(144) + DLOG10(ALFA(10) ) -

2.0 * DLOG10(ALFA(8))) / (2.303 * R * T))M(212) = Cl / GAMMA(211)

ELSE IF (EXELT(25) .LT. CPUMIN) THENM(211) = 0.0

ELSE IF (EXELT(13) .LT. CPUMIN) THENM(220) - 0.0

ELSE IF (FLAGS(6) .EQ. 0) THENM(212) = ALFA(18) * ALFA(8)**2 / (KT1(207) * ALFA(19) *

GAMMA(167) * ALFA(IO))END IF

M(220) - ALFA(9) / (KT1(195) * GAMMA(220))M(221) = ALFA(9)**2 / (KT1(196) * GAMMA(221))M(222) = ALFA(9)**2 / (KT1(197) * GAMMA(222))

DO 460 I = 220, 222M(I) - M(I) * M(212) * GAMMA(212)

460 CONTINUE

Cl - O.ODO

DO 470 I = 211, 227Cl = Cl + M(I)

470 CONTINUE

M(210) - EXELT(28) / (1.0 + GAMMA(210) * Cl)ALFA(210) - M(210) * GAMMA(210)

DO 480 I = 211, 227M(I) = M(I) * ALFA(210)ALFA(I) - M(I) * GAMMA(I)

480 CONTINUEEND IF

Summation of anion species

S(l) - M(7) + 2.0*M(98) + 2.0*M(51) + M(52) +2.0*M(55) + M(56) + 2.0*M(114) + 2.0*M(120) +

M(121) + M(132) + 2.0*M(138) + M(139) +2.0*M(140) + 2.0*M(155) + M(156) + 2.0*M(207) +4.0*M(208) + 6.0*M(209) + 2.0*M(288) + M(292) +

M(MXSP+34) + 2.0*M(MXSP+39)

S(2) = M(6) + M(41) + 2.0*M(42) + M(47) +M(54) + M(61) + M(70) + M(78) +

DIS18160DIS18170DIS18180DIS18190

l r\TC 1 Bonn- - 1 LJlblOZUU

|DIS18210JDIS18220i r\T c i QO ir\- - 1 UloloZ jU

DIS18240DIS18250DIS18260DIS18270DIS18280DIS18290DIS18300DIS18310DIS18320DIS18330DIS18340DIS18350DIS18360DIS18370DIS18380DIS18390DIS18400DIS18410DIS18420DIS18430DIS18440DIS18450DIS18460DIS18470DIS18480DIS18490DIS18500DIS18510DIS18520DIS18530DIS18540DIS18550DIS18560DIS18570DIS18580DIS18590DIS18600

--JDIS18610 |DIS18620

--JDIS18630DIS18640DIS18650DIS18660DIS18670DIS18680DIS18690DIS18700DIS18710DIS18720DIS18730

287

Page 288: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

S(3)

S(4)

S(5)

S(5)

S(6)

S(7)

S(8) -

S(9)

S(10)

M(83) 4M(115) 4M(133) 4M(157) 4M(194) 4

M(30) 44.0*M(37) 45.0*M(163) 43.0*M(177) 4

M(196) 4M(218) 4M(283) 4

M(29) 4M(73) 4M(117) 4M(134) 4

3.0*M(184) 4M(204) 4

M(5) 44.0*M(46) 4

M(65) 4M(71) 4

3.0*M(81) 43.0*M(107) 4S(5) 42.0*M(129) 4

M(148) 4M(153) 4

4.0*M(161) 4M(281) 4

M(48) 4M(231) 4M(235) 4

2.0*M(239) 42.0*M(243) 4

M(33) 43.0*M(111) 42.0*M(290) 4

M(246) 42.0*M(250) 4

M(254) 42.0*M(258) 4

M(262) 4

M(265) 42.0*M(269) 4

M(273) 4M(277) 4

2.0*M(84) 4M(116) 4M(141) 4M(162) 4

2.0*M(195) 4

M(34) 4M(96) 4

6.0*M(164) 44.0*M(178) 42.0*M(197) 42.0*M(219) 46.0*M(284) 4

M(58) 4M(74) 4M(125) 4M(143) 4

4.0*M(185) 42.0*M(205) 4

M(43) 4M(62) 4

2.0*M(66) 4- 2.0*M(72) 4- 4.0*M(82) 4- 4.0*M(108) 4

- 3.0*M(130) 4- 2.0*M(149) 4

M(158) 4M(181) 4

- 2.0*M(282) 4

M(228) 4M(232) 4M(236) 4

3.0*M(240) 4M(244) 4

M(101) 4M(145) 4

3.0*M(291) 4

M(247) 4M(251) 4M(255) 4

3.0*M(259) 4M(263) 4

M(266) 4M(270) 4M(274) 4M(278) 4

M(103) 4M(119) 4M(142) 4M(186) 4M(224) 4

2.0*M(35) 4M(}22) 4M(1.75) 4

5.0*M(179) 43.0*M(198) 4

M(2.26) 4

M(109) 4M(124) 4M(152) 4

2.0*M(187) 4M(MXSP433)

3.0*M(36) 4M(144) 4

2.0*M(176) 46.0*M(180) 44.0*M(199) 42.0*M(227) 4

M(^XSP437)

M(^9) 4M(99) 4M(126) 4M(182) 4M(202) 4

3.0*M(206) 4

2.0*M(44) 42.0*M(<J3) 43.0*M(^7) 4

M(7^9) 4M(105) 4M(113) 4

- 4.0*M(131) 4- 3.0*M(150) 4- 2.0*M(159) 4

M(200) 4

M(60) 4M(100) 4M(127) 4

2.0*M(183) 42.0*M(203) 4

M(MXSP436)

3.0*M(45) 43.0*M(64) 44.0*M(68) 4

- 2.0*M(80) 42.0*M(106) 4

M(128)

M(137) 4- 4.0*M(151) 4- 3.0*M(160) 4

M(225) 4M(MXSP432)

M(2!29) 4M(233) 4M(237) 4M(241) 4

2.0*M(245) 4

M(102) 42.0*M(286) 4

M(295)

M(248) 4M(252) 4M(256) 4M(260) 4M(264) 4

M(267) 4M(271) 4M(275) 4M(279) 4

M(230) 4 2.0*M(234) 4

M(238) 4M(242) 4M(MXSP+38)

4.0*M(110) 43.0*M(287) 4

M(249) 4M(253) 4M(257) 4M(261) 4M(MXSP441)

M(268) 4M(272) 4M(276) 4M(280) 4

M(MXSP442)

M(MXSP4 1)M(MXSP4 5)

4 M(MXSP4 2)4 M(MXSP4 6)

4 M(MXSP-h 3)4 M(MXSP4 7)

4 M(MXSP4 4) 44 M(MXSP4 8) 4

DIS18740 DIS18750 DIS18760 DIS18770 DIS18780 DIS18790 DIS18800 DIS18810 DIS18820 DIS18830 DIS18840 DIS18850 DIS18860 DIS18870 DIS18880 DIS18890 DIS18900 DIS18910 DIS18920 DIS18930 DIS18940 DIS18950 DIS18960 DIS18970 DIS18980 DIS18990 DIS19000 DIS19010 DIS19020 DIS19030 DIS19040 DIS19050 DIS19060 DIS19070 DIS19080 DIS19090 DIS19100 DIS19110 DIS19120 DIS19130 DIS19140 DIS19150 DIS19160 DIS19170 DIS19180 DIS19190 DIS19200 DIS19210 DIS19220 DIS19230 DIS19240 DIS19250 DIS19260 DIS19270 DIS19280 DIS19290 DIS19300 DIS19310

288

Page 289: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

M(MXSP+ 9) + M(MXSP+10) + M(MXSP+11) + M(MXSP+12) + M(MXSP+13) + M(MXSP+14) + M(MXSP+15) + M(MXSP+43)

490

500

510

SC02 -

M(MXSP+16)M(MXSP+20)M(MXSP+24)M(MXSP+28)

M(7) +M(56) +M(120) +M(139) +M(207) +M(292) +

+ M(MXSP+17) ++ M(MXSP+21) ++ M(MXSP+25) ++ M(MXSP+29) +

M(51) +M(97) +M(121) +M(140) +

2.0*M(208) + 3M(MXSP+34)

M(MXSP+18) HM(MXSP+22) HM(MXSP+26) HM(MXSP+30) H

M(52) +M(98) +M(132) +M(155) +

.0*M(209) ++

h M(MXSP+19) +h M(MXSP+23) +h M(MXSP+27) +h M(MXSP+44)

M(55) +M(114) +M(138) +M(156) +M(288) +M(MXSP+39)

IF (ALK .EQ. 1) THEN ANALCO = EXELT(29)

ELSE IF (ALK .EQ. 0) THEN ANALCO - EXELT(29)

M(38) 3.0*M(50)

M(75) 0*M(86)

ANALCO -

2.2.0*M(90)

M(94) ANALCO

M(9) 2.0*M(39)

M(53) 2.0*M(76) 3.0*M(87)

M(91) 2.0*M(99)

M(28) - 4.0*M(40)

M(57) M(77)

- 4.0*M(88) - 2.0*M(92)

M(100)

- 3.0*M(29) M(48) M(69) M(85) M(89)

- 2.0*M(93)

2.0*M(102) - M(135) -

2.0*M(166) - 4.0*M(173) - 5 6.0*M(184) - 8 2.0*M(190) - 2

ANALCO - ANALCOM(201) - 2.

2.0*M(205) - 3. 2.0*M(214) - 2.0*M(221) - 3.

M(239) - 2. M(246) -

ANALCO - ANALCO2.0*M(265) -

M(293) - 2. ANALCO - ANALCO

3.0*M(MXSP+36) 2.0*M(MXSP+41)

1-229, 245 ANALCO -

M(103) -M(147) -M(170) - 2

,0*M(174) - 2,0*M(185) -15,0*M(191) - 5

DO 490ANALCO

CONTINUE

0*M(202) - 40*M(206) - 4M(215) - 3

0*M(222) -0*M(240) -M(250) -

M(266) - 0*M(294) - M(MXSP+34)

- M(MXSP+38)- M(MXSP+40)

M(154) ,0*M(171) ,0*M(182) ,0*M(188) ,0*M(192)

0*M(203)0*M(212)0*M(217)M(223)M(243)M(258)

M(123)M(165)

3.0*M(172)4.0*M(183)

M(189)7.0*M(193)

- 3M(204)

0*M(213) M(220) M(234) M(245)

2.0*M(259)

M(269) - M(289) - M(295)

M(MXSP+35) -- 2.0*M(MXSP+39) -- 2.0*M(MXSP+42)

DO 500 IANALCO

CONTINUE

DO 510 I ANALCO

CONTINUE ELSE

S(l) - SC02

249, 264 ANALCO -

268, 280 ANALCO -

DIS19320DIS19330DIS19340DIS19350DIS19360DIS19370DIS19380DIS19390DIS19400DIS19410DIS19420DIS19430DIS19440DIS19450DIS19460DIS19470DIS19480DIS19490DIS19500DIS19510DIS19520DIS19530DIS19540DIS19550DIS19560DIS19570DIS19580DIS19590DIS19600DIS19610DIS19620DIS19630DIS19640DIS19650DIS19660DIS19670DIS19680DIS19690DIS19700DIS19710DIS19720DIS19730DIS19740DIS19750DIS19760DIS19770DIS19780DIS19790DIS19800DIS19810DIS19820DIS19830DIS19840DIS19850DIS19860DIS19870DIS19880DIS19890

289

Page 290: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

IF (ANMTIC .GT. O.ODO) THENANALCO = ANMTIC

ELSEANALCO - ANALM(7) + ANALM(98)

END IF END IF

IF ((DABS(HITEMP-TEMP)) .GT. l.OD-10) C02F = SC02

IF (ITIC .EQ. 2) THENS(l) - SC02ANALCO - C02F + DC02

END IF

Iteration test

DONE .TRUE.

IF (ANALCO .GT. CPUMIN) THEN X - (S(l) - ANALCO) / ANALCO CROSS = .FALSE.IF ((X * DIFF(l)) .LT. 0.0) CROSS - DIFF(l) - X IF (DABS(DIFF(1)) .GE. CONV1) DONE -

IF (DONE) THENFACTOR(l) -1.0

ELSE IF (ITER .GT. 7) THENX - ANALCO / S(l)CALL AITLIM (FACTOR(l), X, CROSS)

END IF X - FACTOR(l)

.TRUE.

.FALSE

IF (S(l) .GT. CPUMIN) THENTITR(l) - TITR(l) - (X * (1.0

ELSE / TITR(l) - ANALCOEND IF

END IF

IF (EXELT(6) .GE. CPUMIN) THEN X - (S(2) - EXELT(6)) / EXELT(6) CROSS - .FALSE.IF ((X * DIFF(2)) .LT. 0.0) CROSS DIFF(2) = X IF (DABS(DIFF(2)) .GE. CONV1) DONE

- (ANALCO / S(l))) * TITR(l))

.TRUE.

.FALSE.

IF (DONE) THENFACTOR(2) -1.0

ELSE IF (ITER .GT. 7) THENX = EXELT(6) / S(2)CALL AITLIM (FACTOR(2), X, CROSS)

END IFX = FACTOR(2) IF (S(2) .GT. CPUMIN) THEN

TITR(2) - TITR(2) - (X * (1.0 - (EXEL"(6) / S(2))) * TITR(2))

DIS19900 DIS19910 DIS19920 DIS19930 DIS19940 DIS19950 DIS19960 DIS19970 DIS19980 DIS19990 DIS20000 DIS20010 DIS20020 DIS20030 DIS20040 DIS20050 DIS20060 DIS20070 DIS20080 DIS20090 DIS20100 DIS20110 DIS20120 DIS20130 DIS20140 DIS20150 DIS20160 DIS20170 DIS20180 DIS20190 DIS20200 DIS20210 DIS20220 DIS20230 DIS20240 DIS20250 DIS20260 DIS20270 DIS20280 DIS20290 DIS20300 DIS20310 DIS20320 DIS20330 DIS20340 DIS20350 DIS20360 DIS20370 DIS20380 DIS20390 DIS20400 DIS20410 DIS20420 DIS20430 DIS20440 DIS20450 DIS20460 DIS20470

290

Page 291: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ELSETITR(2)

END IF END IF

EXELT(6)

IF (EXELT(22) .GE. CPUMIN) THENX - (S(3) - EXELT(22)) / EXELT(22)CROSS - .FALSE.IF ((X * DIFF(3)) .LT. 0.0) CROSS - .TRUE.DIFF(3) - XIF (DABS(DIFF(3)) .GE. CONV1) DONE - .FALSE.IF (DONE) THEN

FACTOR(3) -1.0 ELSE IF (ITER .GT. 7) THENX = EXELT(22) / S(3)CALL AITLIM (FACTOR(3), X, CROSS)

END IFX - FACTOR(3) IF (S(3) .GT. CPUMIN) THEN

TITR(3) - TITR(3) - (X * (1.0 - (EXELT(22) ELSE

TITR(3) - EXELT(22) END IF

END IF

IF (EXELT(21) .GE. CPUMIN) THENX - (S(4) - EXELT(21)) / EXELT(21)CROSS - .FALSE.IF ((X * DIFF(4)) .LT. 0.0) CROSS - .TRUE.DIFF(4) - XIF (DABS(DIFF(4)) .GE. CONV1) DONE - .FALSE.IF (DONE) THEN

FACTOR(4) -1.0 ELSE IF (ITER .GT. 7) THENX - EXELT(21) / S(4)CALL AITLIM (FACTOR(4), X, CROSS)

END IFX = FACTOR(4) IF (S(4) .GT. CPUMIN) THEN

TITR(4) = TITR(4) - (X * (1.0 - (EXELT(21) ELSE

TITR(4) = EXELT(21) END IF

END IF

IF (EXELT(5) .GE. CPUMIN) THEN X - (S(5) - EXELT(5)) / EXELT(5) CROSS - .FALSE. IF ((X * DIFF(5)) DIFF(5) = X IF (DABS(DIFF(5)) IF (DONE) THEN

FACTOR(5) -1.0 ELSE IF (ITER .GT

,LT. 0.0) CROSS - .TRUE.

,GE. CONV1) DONE - .FALSE,

7) THENX - EXELT(5) / S(5)CALL AITLIM (FACTOR(5), X, CROSS)

END IF X - FACTOR(5)

DIS20480 DIS20490 DIS20500 DIS20510 DIS20520 DIS20530 DIS20540 DIS20550 DIS20560 DIS20570 DIS20580 DIS20590 DIS20600 DIS20610 DIS20620 DIS20630 DIS20640 DIS20650 DIS20660

* TITR(3))DIS20670 DIS20680 DIS20690 DIS20700 DIS20710 DIS20720 DIS20730 DIS20740 DIS20750 DIS20760 DIS20770 DIS20780 DIS20790 DIS20800 DIS20810 DIS20820 DIS20830 DIS20840 DIS20850 DIS20860

* TITR(4))DIS20870 DIS20880 DIS20890 DIS20900 DIS20910 DIS20920 DIS20930 DIS20940 DIS20950 DIS20960 DIS20970 DIS20980 DIS20990 DIS21000 DIS21010 DIS21020 DIS21030 DIS21040 DIS21050

291

Page 292: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

IF (S(5) .GT. CPUMIN) THENTITR(5) = TITR(5) - (X * (1.0 - (EXELT(5)

ELSETITR(5) = EXELT(5)

END IF END IF

IF (EXELT(26) .GE. CPUMIN) THEN X = (S(6) - EXELT(26)) / EXELT(26) CROSS = .FALSE. IF ((X * DIFF(6)) DIFF(6) = X IF (DABS(DIFF(6)) IF (DONE) THEN

FACTOR(6) =1.0 ELSE IF (ITER .GT,

.LT. 0.0) CROSS

.GE. CONV1) DONE

TRUE.

FALSE.

7) THENX = EXELT(26) / S(6)CALL AITLIM (FACTOR(6), X, CROSS)

END IFX = FACTOR(6) IF (S(6) .GT. CPUMIN) THENTITR(6) = TITR(6) - (X * (1.0 - (EXELT(26)

ELSETITR(6) = EXELT(26)

END IF END IF

LT. 0.0) CROSS

IF (EXELT(25) .GT. CPUMIN) THENX = (S(7) - EXELT(25)) / EXELT(25)CROSS = .FALSE.IF ((X * DIFF(7))DIFF(7) = XIF (DABS(DIFF(7))IF (DONE) THEN

FACTOR(7) =1.0 ELSE IF (ITER .GT

, TRUE.

,GE. CONV1) DONE = .FALSE.

7) THENX = EXELT(25) / S(7)CALL AITLIM (FACTOR(7), X, CROSS)

END IFX = FACTOR(7) IF (S(7) .GT. CPUMIN) THENTITR(7) - TITR(7) - (X * (1.0 - (EXELT(25)

ELSETITR(7) - EXELT(25)

END IF END IF

IF (EXELT(30) .GT. CPUMIN) THENX = (S(8) - EXELT(30)) / EXELT(30)CROSS = .FALSE.IF ((X * DIFF(8))DIFF(8) = XIF (DABS(DIFF(8))IF (DONE) THEN

FACTOR(8) =1.0 ELSE IF (ITER .GT. 7) THENX - EXELT(30) / S(8)CALL AITLIM (FACTOR(8), X, CROSS)

,LT. 0.0) CROSS = .TRUE.

,GE. CONV1) DONE = .FALSE,

DIS21060* TITR(5)) DIS21070

DIS21080 DIS21090 DIS21100 DIS21110 DIS21120 DIS21130 DIS21140 DIS21150 DIS21160 DIS21170 DIS21180 DIS21190 DIS21200 DIS21210 DIS21220 DIS21230 DIS21240 DIS21250 DIS21260

/ S(6))) * TITR(6))DIS21270DIS21280 DIS21290 DIS21300 DIS21310 DIS21320 DIS21330 DIS21340 DIS21350 DIS21360 DIS21370 DIS21380 DIS21390 DIS21400 DIS21410 DIS21420 DIS21430 DIS21440 DIS21450 DIS21460

/ S(7))) * TITR(7))DIS21470DIS21480 DIS21490 DIS21500 DIS21510 DIS21520 DIS21530 DIS21540 DIS21550 DIS21560 DIS21570 DIS21580 DIS21590 DIS21600 DIS21610 DIS21620 DIS21630

292

Page 293: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

(1.0 - (EXELT(30) /

END IFX = FACTOR(8)IF (S(8) .GT. CPUMIN) THEN

TITR(8) = TITR(8) - (X * ELSE

TITR(8) = EXELT(30) END IF

END IF

IF (EXELT(31) .GT. CPUMIN) THENDIFF(9) = (S(9) - EXELT(31)) / EXELT(31)X = (S(9) - EXELT(31)) / EXELT(31)CROSS = .FALSE.IF ((X * DIFF(9))DIFF(9) = XIF (DABS(DIFF(9»IF (DONE) THEN

FACTOR(9) =1.0 ELSE IF (ITER .GT

LT. 0.0) CROSS TRUE.

,GE. CONV1) DONE = .FALSE.

7) THENX - EXELT(31) / S(9)CALL AITLIM (FACTOR(9), X, CROSS)

END IFX = FACTOR(9) IF (S(9) .GT. CPUMIN) THEN

TITR(9) = TITR(9) - (X * (1.0 - (EXELT(31) / ELSE

TITR(9) = EXELT(31) END IF

END IF

IF (EXELT(33) .GT. CPUMIN) THENX = (S(10) - EXELT(33)) / EXELT(33)CROSS - .FALSE.IF ((X * DIFF(IO)) .LT. 0.0) CROSS = .TRUE.DIFF(IO) = XIF (DABS(DIFF(10)) .GE. CONV1) DONE - .FALSE.IF (DONE) THEN

FACTOR(IO) =1.0 ELSE IF (ITER .GT. 7) THENX = EXELT(33) / S(10)CALL AITLIM (FACTOR(10), X, CROSS)

END IFX = FACTOR(10) IF (S(10) .GT. CPUMIN) THEN

TITR(IO) = TITR(IO) - (X * (1.0 - (EXELT(33) / S(10))) *TITR(IO))

ELSETITR(IO) = EXELT(33)

END IF END IF

IF (EXELT(34) .GT. CPUMIN) THEN

.TRUE.

.FALSE,

X = (S(ll) - EXELT(34)) / EXELT(34)CROSS = .FALSE.IF ((X * DIFF(ll)) .LT. 0.0) CROSSDIFF(ll) = XIF (DABS(DIFF(11)) .GE. CONV1) DONEIF (DONE) THEN

DIS21640 DIS21650 DIS21660

S(8))) * TITR(8))DIS21670 DIS21680 DIS21690 DIS21700 DIS21710 DIS21720 DIS21730 DIS21740 DIS21750 DIS21760 DIS21770 DIS21780 DIS21790 DIS21800 DIS21810 DIS21820 DIS21830 DIS21840 DIS21850 DIS21860 DIS21870

TITR(9))DIS21880 DIS21890 DIS21900 DIS21910 DIS21920 DIS21930 DIS21940 DIS21950 DIS21960 DIS21970 DIS21980 DIS21990 DIS22000 DIS22010 DIS22020 DIS22030 DIS22040 DIS22050 DIS22060 DIS22070 DIS22080 DIS22090 DIS22100 DIS22110 DIS22120 DIS22130 DIS22140 DIS22150 DIS22160 DIS22170 DIS22180 DIS22190 DIS22200 DIS22210

293

Page 294: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

FACTOR(ll) -1.0 ELSE IF (ITER .GT. 7) THENX = EXELT(34) / S(ll)CALL AITLIM (FACTOR(ll), X, CROSS)

END IFX = FACTOR(ll) IF (S(ll) .GT. CPUMIN) THEN

TITR(ll) - TITR(ll) - (X * (1.0 - (EXELT(34) / S(ll))) *

ELSETITR(ll)

END IF END IF

TITR(ll))

EXELT(34)

IF (ITER .GE. 100) DONE = .TRUE.

IF (IPRIN1 .NE. 0) THENIF (ITER .EQ. 1 .OR. DONE .OR. MOD(ITER.IO) .EQ. 0) THEN

IF (IPGLN .GT. 57) THEN CALL PAGEWRITE (UNO, 1001) TITLE, TITMIX WRITE (UNO, 1002) TEMP WRITE (UNO, 1003) WRITE (UNO, 1004) CR IPGLN - IPGLN + 9

END IFWRITE (UNO, 1005) ITER, (DIFF(I) , 1=1,1JL) IPGLN = IPGLN + 1

END IF END IF

GO BACK OR QUIT

IF (.NOT. DONE) GO TO 30

IF (ITER .GE. 100) THEN IF (IPGLN .GT. 59) THENCALL PAGEWRITE (UNO, 1001) TITLE, TITMIXWRITE (UNO, 1002) TEMPIPGLN = IPGLN + 5

END IFWRITE (UNO,1006) IPGLN - IPGLN + 2

END IF

IF (IPRIN1 .NE. 0) THEN IF (IPGLN .GT. 57) THENCALL PAGEWRITE (UNO, 1001) TITLE, TITMIXWRITE (UNO, 1002) TEMPIPGLN - IPGLN + 5

END IFWRITE (UNO,1007) ITER, PH IPGLN - IPGLN + 2

END IF

DIS22220 DIS22230 DIS22240 DIS22250 DIS22260 DIS22270 DIS22280 DIS22290 DIS22300 DIS22310 DIS22320 DIS22330 DIS22340 DIS22350 DIS22360 DIS22370 DIS22380 DIS22390 DIS22400 DIS22410 DIS22420 DIS22430 DIS22440 DIS22450 DIS22460 DIS22470 DIS22480 DIS22490 DIS22500 DIS22510 DIS22520 DIS22530 DIS22540 DIS22550 DIS22560 DIS22570 DIS22580 DIS22590 DIS22600 DIS22610 DIS22620 DIS22630 DIS22640 DIS22650 DIS22660 DIS22670 DIS22680 DIS22690 DIS22700 DIS22710 DIS22720 DIS22730 DIS22740 DIS22750 DIS22760 DIS22770 DIS22780 DIS22790

294

Page 295: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

HTOT - M(7) + M(8) + 4.0*M(11) + 2.0*M(28) +2.0*M(33) + 3.0*M(49) + M(52) + M(56) +

M(59) + 2.0*M(60) + M(73) + 3.0*M(74) +2.0*M(90) + 3.0*M(91) + M(92) + M(93) +2.0*M(94) + 3.0*M(95) + M(96) + 2.0*M(97) +

M(99) + 2.0*M(100) + M(101) + M(103) +M(104) + 4.0*M(110) + 3.0*M(111) + M(115) +M(117) + M(121) + M(126) + 2.0*M(127) +M(132) + M(134) + M(139) + M(143)

HTOT - HTOT +M(145) + M(156) + M(182) +

2.0*M(183) + 3.0*M(184) + 4.0*M(185) + M(202) +2.0*M(203) + 2.0*M(204) + 4.0*M(205) + 6.0*M(206) +

M(213) + 2.0*M(214) + 3.0*M(215) + 4.0*M(216) +M(217) + M(228) + M(247) + 2.0*M(248) +M(266) + 2.0*M(267) + 2.0*M(286) + 3.0*M(287) +

2.0*M(290) + 3.0*M(291) + M(292) + M(295) +M(MXSP+34) + M(MXSP+40)

OHTOT - M(9) + 3.0*M(31) + M(38) + 2.0*M(39) +4.0*M(40) + M(53) + M(57) + M(69) +

M(75) + 2.0*M(76) + M(77) + M(85) +2.0*M(86) + 3.0*M(87) + 4.0*M(88) + 4.0*M(89) +

M(118) + M(123) + M(135) + M(147) +M(154) + M(165) + 2.0*M(166) + M(170)

OHTOT - OHTOT +2.0*M(171) + 3.0*M(172) + 4.0*M(173) + 5.0*M(174) +

15.0*M(188) + M(189) + 2.0*M(190) + 2.0*M(191) +5.0*M(192) + 7.0*M(193) + M(220) + 2.0*M(221) +3.0*M(222) + M(223) + M(289) + M(293) +2.0*M(294) + M(295) + M(MXSP+35)

IF (PALFA(6) .GT. CPUMIN .AND. DABS(PALFA(6) -ALFA(6) ).GT. 1.0D-2*PALFA(6) .AND. IPIT .EQ. 1) THEN

ALFA(6) - PALFA(6)END IFIF (PALFA(l) .GT. CPUMIN .AND. DABS(PALFA(1) -ALFA(l) )

.GT. 1.0D-2*PALFA(1) .AND. IPIT .EQ. 1) THENALFA(l) - PALFA(l)

END IF

RETURN

1000 FORMAT (/, 2X, ' SOLMINEQ. 87 (VERSION: ',A14,') - SOLUTION -MINERAL- EQUILIBRIUM COMPUTATIONS' ,

/,A1,2X,77(' '),///)1001 FORMAT (' SAMPLE IDENT:- ' ,A80,/, 20X,A40)1002 FORMAT (//, 6X, ' ITERATIVE CONVERGENCE TEST AT TEMPERATURE =',F8.2)1003 FORMAT (//, IX, 'ITER', IX, 'CARBONATE', 3X, 'SULFATE', 4X,

'FLUORIDE', 2X, 'PHOSPHATE', 3X, 'CHLORIDE', 3X,'ACETATE', 4X, 'SULFIDE', 4X, 'OXYLATE', 3X,

'SUCCINATE', 2X, 'USR-DEF#1', IX, 'USR-DEF#2')1004 FORMAT (Al, ' ' , IX, 11(' ', IX))1005 FORMAT (IX, 13, 2X, IP, 11(E10.3, IX))1006 FORMAT (' *** NO CONVERGENCE IN 100 ITERATIONS DURING SPECIES',

' DISTRIBUTION ***' ,/,13X, 'RESULTS MAY BE IN ERROR')1007 FORMAT (/,6X, 'Total number of iterations = ',13,

DIS22800DIS22810DIS22820DIS22830DIS22840DIS22850DIS22860DIS22870DIS22880DIS22890DIS22900DIS22910DIS22920DIS22930DIS22940DIS22950DIS22960DIS22970DIS22980DIS22990DIS23000DIS23010DIS23020DIS23030DIS23040DIS23050DIS23060DIS23070DIS23080DIS23090DIS23100DIS23110DIS23120DIS23130DIS23140DIS23150DIS23160DIS23170DIS23180DIS23190DIS23200DIS23210DIS23220DIS23230DIS23240DIS23250DIS23260DIS23270DIS23280DIS23290DIS23300DIS23310DIS23320DIS23330DIS23340DIS23350DIS23360DIS23370

295

Page 296: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

' at pH = ',F5.2)1008 FORMAT (/,6X,' *** ACT. OF S04 FROM PITZER ***',E12.5)1009 FORMAT (/,6X,' *** ACT. OF Ca FROM PITZER ***',E12.5)

END

DIS23380 DIS23390 DIS23400 DIS23410 DIS23420

cccccccccccccccccccccccc

SUBROUTINE DPVT (TC, TISA, PBAR, VDEN)

Routine dpvt calculates the vapor pressure and vapor densitygiven tc and the ionic strength of the solution.

ALPHA DBL Coefficient of thermal expansionAW DBL Activity of waterBETAG DBL Coefficient of compressibilityGG DBL Intermediate storage variableGLO DBL Initial gibbs free energy per moleGX DBL Gibbs free energy per moleI INT Loop variablePO DBL Saturation pressurePBAR DBL Pressure in barsPHI DBL Osmotic coefficientR DBL Gas constantRQ DBL Gas constant in cubic centimetersT DBL Temperature in kelvinTC DBL Temperature in celciusTISA DBL Sum of Molality * charge / 2VDEN DBL Vapor densityXG DBL DensityXS DBL Intermediate storage variableYP DBL Low temperature fit constantsZP DBL High temperature fit constants

INTEGER I

DOUBLE PRECISION ALPHA, AW, BETAG, GG, GLO, GXDOUBLE PRECISION PO, PBAR, PHI, R, RQDOUBLE PRECISION T, TC, TISA, VDENDOUBLE PRECISION XG, XS , YP(57) , ZP(57)

EXTERNAL NACALC, PSAT, WAPVT

INTRINSIC DABS, DEXP, DLOG

DATA YP /-71659.702, 2.3483335, -8 . 3668484D-5 ,2.4018168D-9, 624.88205, -5 . 3697119D-4,3.5126966D-7, 0., -110.74702,0.038900801, 2.6973456D-6, -6. 2746876D-10,-1.5267612D-5, 0., 516.99706,-5.9960300D6, -656.81518, , 24.879183,-2.1552731D-5, 5 .0166855D-8 , 0.,-4.4640952, 0.011087099, -6.4479761D-8 ,-2.3234032D-10, 0., -5 . 2194871D-6,2.4445210D-10, 2 . 8527066D-13 , -1.5696231,

DPV 0010=|DPV 0020|DPV 0030IDPV 0040

- IDPV 0050IDPV 0060|DPV 0070IDPV 0080|DPV 0090IDPV 0100IDPV 0110IDPV 0120IDPV 0130IDPV 0140IDPV oisoIDPV 0160IDPV 0170IDPV oisoJDPV 0190IDPV 0200IDPV 0210JDPV 0220IDPV 0230|DPV 0240IDPV 0250

- IDPV 0260 DPV 0270DPV 0280DPV 0290DPV 0300DPV 0310DPV 0320DPV 0330DPV 0340DPV 0350DPV 0360DPV 0370DPV 0380DPV 0390DPV 0400DPV 0410DPV 0420DPV 0430DPV 0440DPV 0450DPV 0460DPV 0470DPV 0480

296

Page 297: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

2.2337864D-3,5.4151933,0.,1.4068095D-3,0.40743803,1.2609014D-4,-1.0731284D-10,0.,1.,

DATA ZP /- 71637. 375,-4.8099272D-9,3.4069074D-7,0.039494473,-1.5842012D-5,-5.9960301D6,5.3812753D-5,-4.4640952,1.7460070D-10,8.6340233D-10,2.2022821D-3,9.706578,-3.2153983D-9,1.4068095D-3,0.40217793,1.5317673D-4,8.6926600D-11,-0.091871455,1.,

-6.3933891D-7,o.,

119.31966,-4.2345814,-6.8152430D-6,6.2480692D-8,0.32136572,0.,1.,2.2209012,

624.68121,2.1962044D-11,-6.5313475D-7,3.2452006D-9,

-656.81518,-5.5887470D-8,0.011109914,1.0462619D-14,-4.1785962D-13,-1.3105503D-7,-2.6860396D-2,

119.31966,-4.2345814,2.2902837D-5,-9.0550901D-8,0.35310414,5.1904777D-4,1.,

4.5270573D-11, 0.,-0.48309327,-6.1084589,-0.075354649, 1.8994373D-8,-2.5382945D-4,1., I./-7.7991396D-5, 6.0159787D-4,

-110.74702,-6.4781894D-10,

516.99706, 24.86913, 6.5893263D-12,-2.6573399D-7,-5.3070129D-6,-1.579366,-6.3813683D-11, 1.5344744D-5,-0.48309327,-6.1084589,-0.075354649,-1.5386008D-8,-4.3314252D-4,1., I./

Nacalc calculates the osmotic coefficients of the nacl solution and the free energy of pure water at the saturation pressure of pure water and temperature.

IF (TC .LT. 65.1) THENCALL NACALC (TC, TISA, PBAR, PHI, YP, GLO)

ELSECALL NACALC (TC, TISA, PBAR, PHI, ZP, GLO)

END IF

Calculate water activity from phi.

AW = DEXP(-3.60304D-2 * PHI * TISA)

CALL PSAT (TC, PO)

R = 8.31424 RQ = 83.14699 T = TC + 273.15

Calculate an initial guess for the density of the vapor from the ideal gas law.

DPVDPVDPVDPVDPVDPVDPVDPVDPVDPVDPVDPVDPVDPVDPVDPVDPVDPVDPVDPVDPVDPVDPVDPVDPVDPVDPVDPVDPV

| DPVDPV

| DPV| DPV| DPV| DPV| DPVDPVDPVDPVDPVDPVDPVDPV

| DPV| DPV| DPVDPVDPVDPVDPVDPVDPVDPVDPVDPV

| DPV| DPVI DPV

0490050005100520053005400550056005700580059006000610062006300640065006600670068006900700071007200730074007500760077007800790080008100820083008400850086008700880089009000910092009300940095009600970098009901000101010201030104010501060

297

Page 298: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

L.

C

cCcc

cccccccc

XG - 18.0153 * PO / (RQ * T)

Calculate the free energy of the salt solution from the freeenergy of pure liquid water and the activity of water insolution.

GG - GW + (R * T) * DLOG(AW)

Use wapvt to calculate the vapor pressure and vapor density attc. wapvt is used iteratively along with a free energyadjustment of the vapor density until the vapor densityconverges. this requires that the free energy of the liquid and

' vapor are the same and that the equilibrium vapor pressure anddensity have been determined.

DO 10 I = 1, 100CALL WAPVT (TC, XG, PBAR, BETAG, GX, ALPHA)XS - XGXG - XG * DEXP((GG - GX) / (R * T))IF (DABS((XG-XS)/XS) .LT. l.OD-8) GO TO 20

10 CONTINUE

20 CONTINUEVDEN = XG

RETURNEND

| Uf V J.V / V

DPV 1080DPV 1090DPV 1100|DPV 1110IDPV 1120|DPV 1130IDPV 1140IDPV 1150DPV 1160DPV 1170DPV 1180IDPV 1190IDPV 1200IDPV 1210|DPV 1220|DPV 1230|DPV 1240|DPV 1250|DPV 1260DPV 1270DPV 1280DPV 1290DPV 1300DPV 1310DPV 1320DPV 1330DPV 1340DPV 1350DPV 1360DPV 1370DPV 1380DPV 1390

C

CCCCCCCCCCCCCCC

SUBROUTINE GASES (TC, PTOTAL, MNACLD, PH20, FCCSAT, I GAS , IMAX, IPRIN2)

Partitions gases between the oil, water, and gas phases

A DEL Temperary working variableANALM DBL Analyzed molality of species iB DBL Temperary working variableC DBL Temperary working variableCH4DIF DBL Difference in total CH4 . . . zero is rootCH4TRY DBL Next value of CH4 to tryC02DIF DBL Difference in total C02 . . . zero is rootC02TRY DBL Next value of C02 to tryCPUMIN DBL Smallest positive real value program usesD DBL Temperary working variableDCH4 DBL Concentration of CH4 lost before pH measurementDC02 DBL Concentration of C02 lost before pH measurementDH2S DBL Concentration of H2S lost before pH measurementDONE LOG Done?E DBL Temperary working variable

GAS 0010 GAS 0020

=|GAS 0030IGAS 0040

- 1 GAS 0050IGAS ooeoJGAS 0070JGAS 0080IGAS 0090IGAS 0100IGAS 0110IGAS 0120IGAS 0130JGAS 0140IGAS oisoJGAS 0160IGAS 0170JGAS oisoIGAS 0190IGAS 0200

298

Page 299: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

EXELTFCCSATGH2SDIFH2STRYHTOTHTOTIII GASIMAXI PAGEIPGLNI PHASEIPRIN2JJC03KCH40LKCH4WKC020LKC02WKH2SOLKH2SWKHCH4KHC02KHH2SMMNACLDNMAXOHTOTOHTOTIORGCH4ORGC02ORGH2SORGT1PCH4WPC02WPH20PH2SWPTOTALROOTSC02STEPTCTCH4MTCH40TCH4VTCH4WTC02MTC020TC02VTC02WTESTTH2SMTH2SOTH2SVTH2SWTITRTK

DELDBLDBLDBLDBLDBLDBLINTINTINTINTINTINTINTDBLINTDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLINTDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBL

Total amount of components |GAS 0210Zero Test value |GAS 0220Temperary working variable |GAS 0230Difference in total H2S ... zero is root JGAS 0240Next value of H2S to try |GAS 0250Current sum of all H+ in solution JGAS 0260Target sum of all H+ in solution |GAS 0270Loop counter GAS 0280Loop variable for gas option |GAS 0290 Max number of iterations for various options JGAS 0300Current page number of output file JGAS 0310Current line number of the output file JGAS 0320Switch used for GAS options JGAS 0330Print switch |GAS 0340Temperary working variable JGAS 0350Switch to control printing of some headings JGAS 0360Henry's law coefficient for CH4 in oil |GAS 0370Henry's law coefficient for CH4 in water |GAS 0380Henry's law coefficient for C02 in oil JGAS 0390Henry's law coefficient for C02 in water |GAS 0400Henry's law coefficient for H2S in oil |GAS 0410Henry's law coefficient for H2S in water |GAS 0420 Function to Calculate the Henry's law K for CH4 |GAS 0430 Function to Calculate the Henry's law K for C02 JGAS 0440 Function to Calculate the Henry's law K for H2S JGAS 0450Calculated molality of aqueous species JGAS 0460Sum of Molality * charge / 2 JGAS 0470 General array dimension to allow easy expansion |GAS 0480Total OH in system |GAS 0490initial total OH in system JGAS 0500Initial amount of CH4 in system JGAS 0510Initial amount of C02 in system JGAS 0520Initial amount of H2S in system JGAS 0530Original TOTEL(l) JGAS 0540Partial Pressure of Methane JGAS 0550Partial Pressure of Carbon Dioxide |GAS 0560Partial Pressure of Water |GAS 0570Partial Pressure of Hydrogen Sulphide JGAS 0580Total pressure on the system JGAS 0590Root of the equation |GAS 0600Sum of C02 species JGAS 0610Step adjustment for the moles of each gas JGAS 0620Temperature in deg C JGAS 0630 Moles CH4 distributed between oil, water, vapor JGAS 0640Moles CH4 in oil JGAS 0650Moles CH4 in vapor JGAS 0660Moles CH4 in water |GAS 0670 Moles C02 distributed between oil, water, vapor JGAS 0680Moles C02 in oil |GAS 0690Moles C02 in vapor |GAS 0700Moles C02 in water |GAS 0710 Insure sum of partitioned moles equal total moles|GAS 0720 Moles H2S distributed between oil, water, vapor JGAS 0730Moles H2S in oil JGAS 0740Moles H2S in vapor |GAS 0750Moles H2S in water |GAS 0760Iteration array in DISTRB, used for guesses JGAS 0770Temperature in deg K |GAS 0780

299

Page 300: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ccc

C _

TOTEL DBL Contains HTOT, OHTOT and Sum C02UNO INT File unit assigned for output fileWROIL DBL Oil to water weight ratio

INTEGER NMAX, UNODOUBLE PRECISION CPUMINPARAMETER (NMAX - 340, UNO = 6, CPUMIN = l.OD-35)

INTEGER I, IGAS, IMAX, IOPT, IPAGE, IPGLN, IPHASE, IPRIN2INTEGER PHHIT, PPHHIT, JC03

LOGICAL DONE

DOUBLE PRECISION A, ALFA ( NMAX ), ANALM(NMAX) , BDOUBLE PRECISION C, CH4DIF(3) , CH4TRY(3) , C02FDOUBLE PRECISION C02DIF(3) , C02TRY(3) , CUNITS(NMAX)DOUBLE PRECISION D, DC02 , DDC02 , DH2S, DDH2S, DNH3 , DDNH3DOUBLE PRECISION DCH4, DDCH4, E, EXELT(35) , FCCSAT, FIXIT, GDOUBLE PRECISION H2SDIF(3) , H2STRY(3) , HTOT, HTOT I , JDOUBLE PRECISION KHCH4, KHC02 , KHH2S, KCH40L, KC020L, KH2SOLDOUBLE PRECISION KCH4W, KC02W, KH2SWDOUBLE PRECISION M(NMAX) , MNACLD, OHTOT, OHTOTIDOUBLE PRECISION ORGCH4, ORGC02 , ORGH2S, ORGT1DOUBLE PRECISION PCH4W, PC02W, PH2SW, PH, PH20, DSEP, PTOTALDOUBLE PRECISION ROOT, SC02 , STEP(4)DOUBLE PRECISION TC, TCH4M, TC02M, TH2SMDOUBLE PRECISION TC020, TC02V, TC02WDOUBLE PRECISION TCH40, TCH4V, TCH4WDOUBLE PRECISION TH2SO, TH2SV, TH2SWDOUBLE PRECISION TEST, TITR(ll) , TK, TOTEL(5) , WROIL

EXTERNAL KHCH4, KHC02, KHH2S, POLY, PAGE

INTRINSIC DABS, DLOG10, DSIGN

COMMON /DIST / TC02M, TCH4M, TH2SM, WROIL, KCH40L, KC020L,KH2SOL, IPHASE, DSEP

COMMON /EXTOT / EXELT, TOTEL, TITRCOMMON /FORM / IPAGE, IPGLNCOMMON /GAS / DC02 , DDC02 , DH2S, DDH2S, DNH3 , DDNH3 ,

DCH4, DDCH4, IOPT, FIXITCOMMON /MOLS / PH, ANALM, M, ALFA, CUNITSCOMMON /TOTALS/ C02F, HTOTI , OHTOTICOMMON /ZPH / PHHIT, PPHHIT, JC03 , SC02 , HTOT, OHTOT

SAVE ORGT1, STEP, C02DIF, C02TRY, H2SDIF, H2STRY, CH4DIF, CH4TRYSAVE TC020, TC02V, TC02W, ORGC02 , PC02W, KC02WSAVE TCH40, TCH4V, TCH4W, ORGCH4, PCH4W, KCH4WSAVE TH2SO, TH2SV, TH2SW, ORGH2S, PH2SW, KH2SW

TK = TC + 273.15DOO

KC02W = KHC02 (TK, MNACLD)KH2SW = KHH2S (TK, MNACLD)

|GAS 0790JGAS 0800IGAS osioI f A c noon bAo UoZU

GAS 0830GAS 0840GAS 0850GAS 0860GAS 0870GAS 0880GAS 0890GAS 0900GAS 0910GAS 0920GAS 0930GAS 0940GAS 0950GAS 0960GAS 0970GAS 0980GAS 0990GAS 1000GAS 1010GAS 1020GAS 1030GAS 1040GAS 1050GAS 1060GAS 1070GAS 1080GAS 1090GAS 1100GAS 1110GAS 1120GAS 1130GAS 1140GAS 1150GAS 1160GAS 1170GAS 1180GAS 1190GAS 1200GAS 1210GAS 1220GAS 1230GAS 1240GAS 1250GAS 1260GAS 1270GAS 1280GAS 1290

=|GAS 1300 GAS 1310GAS 1320GAS 1330GAS 1340GAS 1350GAS 1360

300

Page 301: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

10

20

IF (IGAS .EQ. 1) THEN HTOTI = HTOT OHTOTI = OHTOT ORGH2S = ANALM(33) ORGCH4 = ANALM(285) ORGC02 = SC02 ORGT1 = TOTEL(l) TC02M = TC02M + SC02 TCH4M = TCH4M + ANALM(285) TH2SM = TH2SM + ANALM(33) TC02W = ORGC02 TCH4W = ORGCH4 TH2SW = ORGH2S PCH4W -1.0 IF (TCH4M .GT. CPUMIN) THEN

DO 10 I - 1, 5KCH4W - KHCH4 (TK, MNACLD, PCH4W)PCH4W = TCH4M / ((WROIL / KCH40L) + (1.0 / KCH4W))IF (PCH4W .GT. PTOTAL) PCH4W = PTOTALIF (PCH4W .LT. 1.0) PCH4W -1.0

CONTINUE ELSEKCH4W = l.ODOOPCH4W = O.ODOO

END IFIF (TC02M .LT. CPUMIN) KC02W = l.ODOO IF (TH2SM .LT. CPUMIN) KH2SW = l.ODOO TCH40 TCH4W IF (TCH4W .LE.

CPUMIN) KC02W = CPUMIN) KH2SW -

WROIL * (PCH4W / KCH40L)TCH4M - TCH40

CPUMIN .AND. TCH4M .GT. CPUMIN) THENTCH4M / 2.ODOO TCH4W

TCH4WTCH40

ELSE IF (TCH4WTCH4W =0.0TCH40 =0.0

END IFM(285) = TCH4W DO 20 I = 1, 4

STEP(I) = 0.0 CONTINUE

END IF

PC02W = KC02W * M(97)PCH4W = KCH4W * M(285)PH2SW = KH2SW * M(33)

.LE. CPUMIN .AND. TCH4M .LE. CPUMIN) THEN

IF ((PH20 + PC02W + PCH4W + PH2SW) IPHASE = 2

WROIL * (PC02W / KC020L)WROIL * (PCH4W / KCH40L)WROIL * (PH2SW / KH2SOL)O.ODOOO.ODOOO.ODOO

LT. PTOTAL) THEN

TC020 TCH40 TH2SO TC02V TCH4V TH2SV

ELSEIPHASE = A - TC02M B = TCH4M

- SC02 + M(97)

GAS 1370 GAS 1380 GAS 1390 GAS 1400 GAS 1410 GAS 1420 GAS 1430 GAS 1440 GAS 1450 GAS 1460 GAS 1470 GAS 1480 GAS 1490 GAS 1500 GAS 1510 GAS 1520 GAS 1530 GAS 1540 GAS 1550 GAS 1560 GAS 1570 GAS 1580 GAS 1590 GAS 1600 GAS 1610 GAS 1620 GAS 1630 GAS 1640 GAS 1650 GAS 1660 GAS 1670 GAS 1680 GAS 1690 GAS 1700 GAS 1710 GAS 1720 GAS 1730 GAS 1740 GAS 1750 GAS 1760 GAS 1770 GAS 1780 GAS 1790 GAS 1800 GAS 1810 GAS 1820 GAS 1830 GAS 1840 GAS 1850 GAS 1860 GAS 1870 GAS 1880 GAS 1890 GAS 1900 GAS 1910 GAS 1920 GAS 1930 GAS 1940

301

Page 302: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

C - TH2SM - ANALM(33) + M(33) E - PTOTAL - PH20 D - E * ((WROIL/KC020L) + G - E * ((WROIL/KCH40L) + J - E * ((WROIL/KH2SOL) + CALL POLY( A, B, C, E, D, D - D / E

(1.0DOO/KC02W)) (1.0DOO/KCH4W)) (1.0DOO/KH2SW)) G, J, ROOT)

G - G / EJ - J / EPC02W = A / (D + ROOT)PCH4W - B / (G + ROOT)PH2SW = C / (J + ROOT)

TC020 = WROIL * (PC02WTCH40 = WROIL * (PCH4WTH2SO - WROIL * (PH2SW

TC02V = PC02W * ROOTTCH4V - PCH4W * ROOTTH2SV - PH2SW * ROOT

A - PC02W / KC02WB - PCH4W / KCH4WC - PH2SW / KH2SW

/ KC020L)/ KCH40L)/ KH2SOL)

IF (A .GT. CPUMIN) THENTC020 = TC020 * M(97) / A TC02V = TC02V * M(97) / A

END IF

IF (B .GT. TCH40 - TCH4V =

END IF

CPUMIN) THEN TCH40 * M(285) / B TCH4V * M(285) / B

IF (C .GT. CPUMIN) THEN TH2SO = TH2SO * M(33) / TH2SV = TH2SV * M(33) /

END IF END IF

DONE .TRUE.

IF (TC02M .GT. CPUMIN) THENTEST - (TC020 + TC02V + SC02) / TC02MIF (TEST .LT.IF (IGAS .GT.DO 30 I = 1

CPUMIN) TEST = CPUMIN3 .AND. DABS(DLOGIO(TEST)) .GT. FCCSAT) THEN 2

C02TRY(I) = C02TRY(I+1) C02DIF(I) = C02DIF(I+1)

30 CONTINUEEND IFTEST = TEST - l.ODOOI = IGASIF (IGAS .GT. 3) I = 3C02TRY(I) - TC02WC02DIF(I) - TESTIF (IGAS .EQ. 1) THEN

GAS 1950 GAS 1960 GAS 1970 GAS 1980 GAS 1990 GAS 2000 GAS 2010 GAS 2020 GAS 2030 GAS 2040 GAS 2050 GAS 2060 GAS 2070 GAS 2080 GAS 2090 GAS 2100 GAS 2110 GAS 2120 GAS 2130 GAS 2140 GAS 2150 GAS 2160 GAS 2170 GAS 2180 GAS 2190 GAS 2200 GAS 2210 GAS 2220 GAS 2230 GAS 2240 GAS 2250 GAS 2260 GAS 2270 GAS 2280 GAS 2290 GAS 2300 GAS 2310 GAS 2320 GAS 2330 GAS 2340 GAS 2350 GAS 2360 GAS 2370 GAS 2380 GAS 2390 GAS 2400 GAS 2410 GAS 2420 GAS 2430 GAS 2440 GAS 2450 GAS 2460 GAS 2470 GAS 2480 GAS 2490 GAS 2500 GAS 2510 GAS 2520

302

Page 303: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

40

IF (TEST .GT. -0.98) THENSTEP(l) - TC02W * ((1.0 / (TEST + 1.0)) - 1.0)

ELSESTEP(l) - TC02M / 3.0

END IFIF (DABS(STEP(1)) .LT. CPUMIN) STEP(l) - TC02M * l.OD-04

ELSEIF ((C02DIF(I) * C02DIF(I-1)) .LE. 0.0) THEN

STEP(l) - STEP(l) * (-0.40) END IFIF ((TC02W + STEP(l)) .LT. 0.0) STEP(l) - TC02W * (-0.90) IF ((TC02W + STEP(l)) .GT. TC02M)

STEP(l) - (TC02M - TC02W) * 0.90 END IFSTEP(l) - (-1.0) * DSIGN(STEP(1), TEST) TEST - TEST + l.ODOOIF (DABS(DLOGIO(TEST)) .GT. FCCSAT) THEN DONE - .FALSE. TC02W - TC02W + STEP(l)

END IF END IF

IF (TH2SM .GT. CPUMIN) THENTEST - (TH2SO + TH2SV + ANALM(33)) / TH2SM IF (TEST .LT. CPUMIN) TEST = CPUMIN

IF (IGAS .GT. 3 .AND. DABS(DLOG10(TEST)) .GT. FCCSAT) THEN DO 40 I = 1, 2H2STRY(I) - H2STRY(I+1) H2SDIF(I) - H2SDIF(I+1)

CONTINUE END IF

TEST - TEST - l.ODOO I - IGASIF (IGAS .GT. 3) 1-3 H2STRY(I) - TH2SW H2SDIF(I) - TEST

IF (IGAS .EQ. 1) THENIF (TEST .GT. -0.98) THEN

STEP(2) - TH2SW * ((1.0 / (TEST + 1.0)) - 1.0) ELSE

STEP(2) = TH2SM / 3.0 END IFIF (DABS(STEP(2)) .LT. CPUMIN) STEP(2) - TH2SM * l.OD-04

ELSEIF ((H2SDIF(I) * H2SDIF(I-1)) .LE. 0.0) THEN

STEP(2) = STEP(2) * (-0.40) END IFIF ((TH2SW + STEP(2)) .LT. 0.0) STEP(2) = TH2SW * (-0.90) IF ((TH2SW + STEP(2)) .GT. TH2SM)

STEP(2) = (TH2SM - TH2SW) * 0.90 END IF

STEP(2) - (-1.0) * DSIGN(STEP(2), TEST) TEST - TEST + l.ODOO

GAS 2530 GAS 2540 GAS 2550 GAS 2560 GAS 2570 GAS 2580 GAS 2590 GAS 2600 GAS 2610 GAS 2620 GAS 2630 GAS 2640 GAS 2650 GAS 2660 GAS 2670 GAS 2680 GAS 2690 GAS 2700 GAS 2710 GAS 2720 GAS 2730 GAS 2740 GAS 2750 GAS 2760 GAS 2770 GAS 2780 GAS 2790 GAS 2800 GAS 2810 GAS 2820 GAS 2830 GAS 2840 GAS 2850 GAS 2860 GAS 2870 GAS 2880 GAS 2890 GAS 2900 GAS 2910 GAS 2920 GAS 2930 GAS 2940 GAS 2950 GAS 2960 GAS 2970 GAS 2980 GAS 2990 GAS 3000 GAS 3010 GAS 3020 GAS 3030 GAS 3040 GAS 3050 GAS 3060 GAS 3070 GAS 3080 GAS 3090 GAS 3100

303

Page 304: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

IF (DABS(DLOGIO(TEST)) .GT. FCCSAT) THENDONE = .FALSE.TH2SW = TH2SW + STEP(2)

END IF END IF

IF (TCH4M .GT. CPUMIN) THENTEST = (TCH40 + TCH4V + ANALM(285)) / IF (TEST .LT. CPUMIN) TEST = CPUMIN

CH4M

IF (IGAS .GT. 3 .AND. DABS(DLOGIO(TEST)) .GT. FCCSAT) THEN DO 50 I = 1, 2

CH4TRY(I) = CH4TRY(I+1) CH4DIF(I) - CH4DIF(I+1)

50 CONTINUE END IF

TEST - TEST - l.ODOO I = IGASIF (IGAS .GT. 3) 1=3 CH4TRY(I) = TCH4W CH4DIF(I) = TEST

IF (IGAS .EQ. 1) THENIF (TEST .GT. -0.98) THEN

STEP(3) - TCH4W * ((1.0 / (TEST + 1.0)) - 1.0) ELSE

STEP(3) = TCH4M / 3.0 END IFIF (DABS(STEP(3)) .LT. CPUMIN) STEP(3) - TCH4M * l.OD-04

ELSEIF ((CH4DIF(I) * CH4DIF(I-1)) .LE. 0.0) THEN

STEP(3) = STEP(3) * (-0.40) END IFIF ((TCH4W + STEP(3)) .LT. 0.0) STEP(3) = TCH4W * (-0.90) IF ((TCH4W + STEP(3)) .GT. TCH4M)

STEP(3) = (TCH4M - TCH4W) * 0.90 END IFSTEP(3) = (-1.0) * DSIGN(STEP(3), TEST) TEST = TEST + l.ODOOIF (DABS(DLOGIO(TEST)) .GT. FCCSAT) THEN DONE = .FALSE. TCH4W - TCH4W + STEP(3)

END IF END IF

IF (DONE .OR. IGAS .EQ. IMAX) THEN IPHASE = 0 CALL PAGE IPGLN = IPGLN + 6 WRITE (UNO,1000) IPGLN = IPGLN + 3WRITE (UNO, 1010) SC02, TC020, TC02V, T^02M, PC02W WRITE (UNO, 1020) TCH4W, TCH40, TCH4V, TCH4M, PCH4W WRITE (UNO, 1030) TH2SW, TH2SO, TH2SV, TH2SM, PH2SW IPGLN = IPGLN + 9WRITE (UNO, 1040) KC02W, KC020L, KCH4W, KCH40L, KH2SW, KH2SOL IPGLN = IPGLN + 3

GAS 3110 GAS 3120 GAS 3130 GAS 3140 GAS 3150 GAS 3160 GAS 3170 GAS 3180 GAS 3190 GAS 3200 GAS 3210 GAS 3220 GAS 3230 GAS 3240 GAS 3250 GAS 3260 GAS 3270 GAS 3280 GAS 3290 GAS 3300 GAS 3310 GAS 3320 GAS 3330 GAS 3340 GAS 3350 GAS 3360 GAS 3370 GAS 3380 GAS 3390 GAS 3400 GAS 3410 GAS 3420 GAS 3430 GAS 3440 GAS 3450 GAS 3460 GAS 3470 GAS 3480 GAS 3490 GAS 3500 GAS 3510 GAS 3520 GAS 3530 GAS 3540 GAS 3550 GAS 3560 GAS 3570 GAS 3580 GAS 3590 GAS 3600 GAS 3610 GAS 3620 GAS 3630 GAS 3640 GAS 3650 GAS 3660 GAS 3670 GAS 3680

304

Page 305: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

WRITE (UNO, 1050) WROIL, FCCSATDC02 =0.0DH2S =0.0DCH4 =0.0

ELSETOTEL(3) = TC02WHTOTI = ORGT1

DC02 = TC02W - ORGC02EXELT(29) = TC02WTITR(l) = TC02WANALM(7) = TC02WANALM(98) =0.0

DH2S = TH2SW - ORGH2SEXELT(25) = TH2SWTITR(7) = TH2SWANALM(33) = TH2SW

DCH4 = TCH4W - ORGCH4ANALM(285) = TCH4WM(285) = TCH4W

IF (IPRIN2 .EQ. 0) RETURNIF (IGAS .EQ. 1 .OR. IPGLN .GT. 45) CALL PAGEIPGLN = IPGLN + 7WRITE (UNO, 1060)IPGLN = IPGLN + 4I = IGASIF (IGAS .GT. 3) 1=3WRITE (UNO, 1010) C02TRY(I), TC020, TC02V, TC02M, PC02W, TC02WWRITE (UNO, 1020) CH4TRY(I) , TCH40, TCH4V, TCH4M, PCH4W, TCH4WWRITE (UNO, 1030) H2STRY(I) , TH2SO, TH2SV, TH2SM, PH2SW, TH2SW

END IFRETURN

1000 FORMAT( //, ' ************ COMPOSITION OF CO-EXISTING GAS,',' OIL, AND WATER ********* ',

//,19X, 'Total Moles in' , 12X, ' Sum in Water, ' , 3X, 'Pressure' ,/,10X, 'Water' ,8X, 'Oil' ,10X, 'Gas',7X,'Oil and Gas ', 5X, ' (bars) ',/, 5X, 65( '='))

1010 FORMATC C02 ' , 6(E12 . 5 , IX) )1020 FORMATC CH4 ' , 6(E12 . 5 , IX) )1030 FORMATC H2S ' , 6 (E12 . 5 , IX) )1040 FORMAT(///,' HENRY LAW CONSTANTS used for',

' Calculations',//,' K(C02/H20) = ' ,E12.5,7X, 'K(C02/OIL) =',E12.5,/,' K(CH4/H20) = ' ,E12.5,7X, 'K(CH4/OIL) =',E12.5,/,' K(H2S/H20) = ' > E12.5,7X,'K(H2S/OIL) =',E12.5,/)

1050 FORMAT(/, ' Oil to Water ratio (WROIL) = '.E12.5,/, ' Convergence Factor (FCCSAT) = '.E12.5)

1060 FORMAT( //, ' ********** COMPOSITION OF CO-EXISTING GAS,',' OIL, AND WATER ********** ' ,

/,' **************CALCULATED PRE-STEP VALUES',' ***************************** >

//,19X, 'Total Moles in',12X,'Sum in Water, ',3X,'Pressure' ,3X, 'Next Guess for',

/,10X, 'Water' ,8X, 'Oil' ,10X, 'Gas' ,

GAS 3690GAS 3700GAS 3710GAS 3720GAS 3730GAS 3740GAS 3750GAS 3760GAS 3770GAS 3780GAS 3790GAS 3800GAS 3810GAS 3820GAS 3830GAS 3840GAS 3850GAS 3860GAS 3870GAS 3880GAS 3890GAS 3900GAS 3910GAS 3920GAS 3930GAS 3940GAS 3950GAS 3960GAS 3970GAS 3980GAS 3990GAS 4000GAS 4010GAS 4020GAS 4030GAS 4040GAS 4050GAS 4060GAS 4070GAS 4080GAS 4090GAS 4100GAS 4110GAS 4120GAS 4130GAS 4140GAS 4150GAS 4160GAS 4170GAS 4180GAS 4190GAS 4200GAS 4210GAS 4220GAS 4230GAS 4240GAS 4250GAS 4260

305

Page 306: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

7X,'Oil and Gas' ,5X, '(bars)' ,4X, 'Moles in Water' , GAS 4270

/">

CCCc - - -ccccc

C __ _

/,5X,65('='))END

INTEGER FUNCTION GETUNT (NAME)I

L

GAS 4280GAS 4290

GET 0010

This function determines if a file is opened and return the unit (GET 0030it is opened under. If the file is not opened it will open the (GET 0040the file and return the unit it was opened under (GET 0050

BASE INT Starting choice for fileNAME CHA Name of file

1 /**VT* f\f\£.f\

unit |GET 0070(GET ooso

OPEN LOG Determines if file opened under name (GET 0090UNTNUM INT File unit number IGET 0100YES LOG Determines if file opened under unit (GET 0110

INTEGER BASE, UNTNUMLOGICAL OPEN, YESCHARACTER * 80 NAME

BASE - 40

1 ^f T^ /"M O f\________________________| Gh/T U12U

GET 0130GET 0140GET 0150GET 0160

- _= = 1 PT?T O1 7O

GET 0180GET 0190

INQUIRE (FILE = NAME, NUMBER - UNTNUM, OPENED = OPEN) GET 0200

10IF (.NOT. OPEN) THEN

INQUIRE (UNIT - BASE, OPENED = YES)IF (YES) THENBASE - BASE + 1GO TO 10

END IF

GET 0210GET 0220GET 0230GET 0240GET 0250GET 0260GET 0270

OPEN (BASE, FILE = NAME, STATUS = 'UNKNOWN') GET 0280

CCCCCCCC

GETUNT = BASEELSEGETUNT = UNTNUM

END IF

RETURNEND

SUBROUTINE GUESS (XX, FXX, NEWX, NPTS)

GET 0290GET 0300GET 0310GET 0320GET 0330GET 0340GET 0350

CUE 0010i sfi -m r\f\nn_J_ u._.^__f. ===.,==:= == ̂ ^n--»l i =s«== = = = =_= =_ | ^UE| \J\J£\J

Calculate the value of X where FUN(X) - 0 JGUE 0030

Input values ... X - NPTS values of X

FX - NPTS values of FUN(from lowest to

NPTS - number of X, FUN(X)

|GUE 0040IGUE oosoIGUE ooeo

X). MUST be ordered JGUE 0070highest. IGUE 0080pairs JGUE 0090

IGUE 0100

306

Page 307: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cccccc

ccccccccccccccccc

c

cc

Returned values . . ,NEWX - "Guessed" value of X where FUN(X) is zero

Uses method of Lagrangian interpolation. Note that we solveusing FX as the x variable, and X as the Y variable, and theninterpolate for a value of FX - 0.0

A DEL Intermediate calculationB DEL Intermediate calculationFX DEL Local storage of FXXFXX DEL Values of the function of XI INT Loop variableIHIGH INT Pointer to value just above rootILOW INT Pointer to value just below the rootJ INT Loop variableJHIGH INT Pointer to value just above the rootJLOW INT Pointer to value just below the rootNEWX DBL New value of x where f (x) = 0NPTS INT Number of pointsSTART INT Restricts the range of points looked atSTOP INT Restricts the range of points looked atX DBL Local storage of XXXX DBL Ordinate values

INTEGER NPTS, I, J, START, STOP, IHIGH, JHIGH, ILOW, JLOW

DOUBLE PRECISION XX(*) , FXX(*) , NEWX, A, BDOUBLE PRECISION X(30) , FX(30)

INTRINSIC DABS

START = 1STOP = NPTS

DO 10 I = START, STOPX(I) = XX(I)FX(I) - FXX(I)

10 CONTINUE

50 CONTINUENEWX =0.0DO 200 I - START, STOPA - l.ODOOB - l.ODOODO 100 J - START, STOP

IF (J .NE. I) THENA = A * (FX(I) - FX(J))B = B * (-l.ODOO) * FX(J)

END IF100 CONTINUE

NEWX = NEWX + (X(I) * B / A)200 CONTINUE

Check for a "fish hook" function. . .ie: new value of X must be

307

|GUE 0110IGUE 0120IGUE 0130JGUE 0140IGUE oisoJGUE 0160

--JGUE 0170IGUE oisoIGUE 0190JGUE 0200IGUE 0210IGUE 0220JGUE 0230JGUE 0240IGUE 0250IGUE 0260IGUE 0270JGUE 0280IGUE 0290IGUE 0300IGUE 0310|GUE 0320JGUE 0330

--IGUE 0340CUE 0350CUE 0360CUE 0370CUE 0380CUE 0390CUE 0400CUE 0410CUE 0420

" | CUE 0430CUE 0440CUE 0450CUE 0460CUE 0470CUE 0480CUE 0490CUE 0500CUE 0510CUE 0520CUE 0530CUE 0540CUE 0550CUE 0560CUE 0570CUE 0580CUE 0590CUE 0600CUE 0610CUE 0620CUE 0630CUE 0640CUE 0650CUE 0660

-- IGUE 0670 IGUE oeso

Page 308: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

C between previous bounding values. If not, recalculate using C one less order polynomial than present try.r - _- ___ ________ _________ ___

IHIGH - STOPILOW - STARTJHIGH - STOPJLOW - START

DO 300 I - START+1, STOPIF (FX(I) .LT. 0.0) THEN

IF (DABS(X(IHIGH) - X(ILOW)) .GT. o4BS(X(IHIGH) - X(I)))ILOW - I

IF (DABS (X( JHIGH) - X(JLOW)) .LT. DABS (X( JHIGH) - X(I)))JLOW = I

ELSEIF (DABS (X( IHIGH) - X(ILOW)) .GT. DAIBS(X(I) - X(ILOW)))

IHIGH - IIF (DABS (X( JHIGH) - X(JLOW)) .LT. DABS(X(I) - X(JLOW) ) )JHIGH - I

END IF300 CONTINUE

IF ((NEWX .LT. X(ILOW) .AND. NEWX .LT. X( IHIGH)) .OR.(NEWX .GT. X(ILOW) .AND. NEWX .GT. X( IHIGH))) THEN

IF (DABS (X( JHIGH) -X(IHIGH) ) .GT. DABS (X(JLOW) -X( ILOW))) THENJ = JHIGH

ELSEJ - JLOW

END IFIF (J .LT. STOP) THEN

DO 400 I - J, (STOP-1)X(I) - X(I+1)FX(I) - FX(I+1)

400 CONTINUEEND IFSTOP - STOP - 1GO TO 50

END IF

RETURNEND

|GUE 0690IGUE 0700

--JGUE 0710CUE 0720CUE 0730CUE 0740CUE 0750CUE 0760CUE 0770CUE 0780CUE 0790CUE 0800CUE 0810CUE 0820CUE 0830CUE 0840CUE 0850CUE 0860CUE 0870CUE 0880CUE 0890CUE 0900CUE 0910CUE 0920CUE 0930CUE 0940CUE 0950CUE 0960CUE 0970CUE 0980CUE 0990CUE 1000CUE 1010CUE 1020CUE 1030CUE 1040CUE 1050CUE 1060CUE 1070CUE 1080CUE 1090CUE 1100

r>

CrCCCCCC

SUBROUTINE INPUT (UNI , TEMP, HITEMP, DNS , PHHIT, IEXCH, IC02 ,MIXFLG)

'

This routine reads in one set of data at a time. |

ACTUAL INT Calculated index value |ADEX INT Flag for surface chemistry option |ALK INT Flag for distribution of carbonate speciesAMOL DBL Molality of aqueous/mineral species added |ANALM DBL Analyzed molality of species i |ANS CHA Determines if ion exchange or adsorption |

INP 0010INP 0020

I INP 0030|INP 0040IINP 0050I INP 0060IINP 0070|INP 0080IINP 0090IINP 0100IINP 0110

308

Page 309: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCC

ANSIANS2AVOGCECCOEFCONV1CONV2CPUMINCUNITSDCH4DDCH4DC02DDC02DH2SDDH2SDNH3DDNH3DENSDFRAC1DHADINGDNADNSDPDSEPEHMEHMCEMFZSCFBOILFCCSATFIXITFLAGSGEOTHGFWHIGHKTHITEMPIIBMIXI CCS ATIC02IDDPIDMIXIDNIDSATIEXCHILPILQ ILRIMC03INDEXINFORMINMIXINSPIOPTI PAGEIPGLNI PHASEIPIT

INTINTDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELCHADELDELDELDELDELDELDELDELINTINTDELDELDELINTINTINTINTINTINTINTINTINTINTINT INTINTINTINTINTINTINTINTINTINTINT

Number of complexes for added anion #1 |INP 0120Number of complexes for added anion #2 jINP 0130Avogadro's number jINP 0140Cation exchange capacity |INP 0150Stoichiometric coefficient and ID number |INP 0160Tolerance factor for convergence of anions |INP 0170Tolerance factor for hydronium mass-balance jINP 0180Smallest positive real value program uses jINP 0190Analytical input concentration jINP 0200Concentration of CH4 lost up annulas jINP 0210Concentration of CH4 lost before pH measurement jINP 0220Concentration of C02 lost up annulas |INP 0230Concentration of C02 lost before pH measurement jINP 0240Concentration of H2S lost up annulas |INP 0250Concentration of H2S lost before pH measurement jINP 0260Concentration of NH3 lost up annulas |INP 0270Concentration of NH3 lost before pH measurement jINP 0280Density IINP 0290Smallest fraction of soln 1 mixed with soln 2 jINP 0300Ion size parameter jINP 0310Increment of solution 1 to be added jINP 0320Temporary ion size parameter for added ions |INP 0330Determines if density should be calculated jINP 0340Dissolution/precipitation switch jINP 0350Density of oil at 15 degree C jINP 0360Measured Eh in volts |INP 0370Measured Eh using the Calomel electrode jINP 0380Measured Eh using the Zobell's solution jINP 0390Fraction of solution boiled-off as steam |INP 0400Tolerance factor for pH and C02 options jINP 0410Fixing value in the C02 option |INP 0420Selection flags for calculation of redox equil. |INP 0430Flag to select geothermometer jINP 0440Gram formula weight of aqueous species |INP 0450K(T) at temp 2 for added options jINP 0460In-situ temperature jINP 0470Loop counting variable jINP 0480Switch for mixing option jINP 0490Switch for pH option jINP 0500Switch for C02 option |INP 0510Id number of the mineral to be dissolved/ppt jINP 0520Id number of the aqueous species to be added jINP 0530Id numbers of the ISCOMP components adsorption jINP 0540Id number of the mineral to be equilibrated jINP 0550Switch for exchange option jj INP 0560Index list of the analytical species jINP 0570Index list of the complexing cations jINP 0580Index list of the complexing anions jINP 0590Selects C02 option jj INP 0600Reference index for added ions jINP 0610Flag to print all the log K values in data base jINP 0620Total number of mixtures of two solution mixed jINP 0630Total number of surface sites for adsorption jINP 0640Switch for co2/h option |INP 0650Current page number of output file jINP 0660Current line number of the output file jINP 0670Switch for oil/water/gas calculations jINP 0680Flag to use pitzer activity coefficients jINP 0690

309

Page 310: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ccccccccccccccccccccccccccccccccccccccccccccccccccccccc

-

IPRIN1IPRIN2IRXDPISCHGISCOMPmeITMIXITTJKCH40LKC020LKH2SOLKRXNLINELOWKTMBASEMINCOMININDMINLOGMXMNKMXSPNAMENDUMNMAXNOSENUFLAGNUMCOMNUMINSODUMOKOUTINPAGE1PAGE3PHPHHITPRESSRATIORXDPSAREASPNTAREATCH4MTC02MTEMPTH2SMTICTITLETOFUNIUNITSUNOWROILXDXDUMZ

INTEGER

INTINTINTINTINTINTINTINTINTDBLDBLDBLDBLINTDBLDBLDBLINTDBLINTINTCHAINTINTINTINTINTINTCHAINTCHACHACHADBLINTDBLINTDBLDBLCHADBLDBLDBLDBLDBLDBLCHACHAINTCHAINTDBLDBLDBLINT

NMAX,

Flag for printing iteration of anionsFlag for printing hydronium balanceId number of the aqueous species to be addedCharge of each surface site for adsorptionTotal number of components in dissociationHitemp distribution of carbonate speciesSwitch for the mineral saturation optionNumber of aqueous species to add/sub with waterLoop counting variableHenry's law coefficient! for CH4 in oilHenry's law coefficient for C02 in oilHenry's law coefficient for H2S in oilK for dissociation reaction of surface speciesLine count used for error locationLog K(T) at temp 1 for added optionsEquivalence Mole Fraction (initial) on surfaceStoichiometric coefficient for added mineralsIndex number of the addjed mineralLog K values for added mineralsTotal number of mineral log k valuesTotal number of aqueous speciesName of each complex formed by associationId of mineral/aqueous complex with K(T) changedGeneral array dimension to allow easy expansionNumber of species in the equation

|INP 0700|INP 0710JINP 0720JINP 0730|INP 0740|INP 0750JINP 0760JINP 0770JINP 0780|INP 0790JINP 0800JINP 0810|INP 0820|INP 0830JINP 0840JINP 0850JINP 0860|INP 0870JINP 0880|INP 0890JINP 0900IINP 0910|INP 0920|INP 0930JINP 0940

Sets the activity coefficients of neutral species | INP 0950Number of complex the ion is associated withNumber of minerals addedSwitch to indicate a mineral/aqueous complexError flag for Lagrange interpolation routineName of restart file najneNames of aqueous speciesNames of solubility constantsMeasured pH of the solutionHitemp pH switchTotal pressureFlag for printing activity ratios of elementsMolal amount of the aqueous species addedTotal surface area per kilogram of solventName of each surface species adsorptionSite density per unit area adsorptionMoles CH4 distributed between oil, water, vaporMoles C02 distributed between oil, water, vaporTemperature of the solution when pH was measuredMoles H2S distributed between oil, water, vaporConcentration of total inorganic carbonName of the samplePlaces a form feed in output fileFile unit assigned for input fileUnits of concentrationFile unit assigned for Output fileOil to water weight ratioHolds Log K's for additional anions & cationsNew log K(T) valueCharge of aqueous species

UNO

|INP 0960JINP 0970JINP 0980IINP 0990JINP 1000JINP 1010JINP 1020|INP 1030|INP 1040JINP 1050JINP 1060|INP 1070JINP 1080|INP 1090|INP 1100|INP 1110|INP 1120|INP 1130|INP 1140|INP 1150|INP 1160|INP 1170|INP 1180|INP 1190JINP 1200JINP 1210|INP 1220JINP 1230|INP 1240IINP 1250 INP 1260INP 1270

310

Page 311: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

DOUBLE PRECISION AVOG, CPUMIN

PARAMETER (NMAX - 340, UNO - 6) PARAMETER (AVOG - 6.022D+23, CPUMIN l.OD-35)

INTEGER ACTUAL, ALK, ANSI, ANS2, FLAGS(6), GEOTHINTEGER I, IBMIX, ICCSAT, IC02, IDDP, IDMIX(SO)INTEGER IDN(IO.IO), IDSAT, IEXCH, ISCHG(IO), ILP(33)INTEGER ILQ(15), ILR(13), IMC03, IMIX, INDEX, INFORM, INMIX, INSPINTEGER IOPT, IPAGE, IPGLN, IPHASE, IPIT, IPRIN1, IPRIN2INTEGER IRXDP(IO), ISCOMP(IO), ITIC, ITMIX, ITTINTEGER J, LINE, MININD(8,5), MIXFLG, MXMNK, MXSP, NDUM(12), NOSEINTEGER NUFLAG, NUMCOM, NUMINS, OK, PHHIT, RATIO, UNI, Z(NMAX)

CHARACTER * 1 ADEX, CR, DNS, ODUM(12), TOFCHARACTER * 5 UNITSCHARACTER * 8 NAME, PAGEl(NMAX), PAGE2(NMAX), PAGE3(NMAX)CHARACTER * 10 SPN(IO)CHARACTER * 40 TITMIXCHARACTER * 80 DUMMY, MIXFLE, OUTIN, TITLE

DOUBLE PRECISION ALFA(NMAX), AMOL(50), ANALM(NMAX)DOUBLE PRECISION CEC, COEF(IO.IO), CONV1, CONV2, CUNITS(NMAX)DOUBLE PRECISION DCH4, DC02, DDCH4, DDC02, DDH2S, DDNH3, DEBYEDOUBLE PRECISION DENS, DFRAC1, DH2S, DING, DHA(NMAX), DNA, DNH3DOUBLE PRECISION DP, EHM, EHMC, EMFZSC, FBOIL, FCCSAT, FIXITDOUBLE PRECISION GFW(NMAX), HIGHKT, HITEMP, KCH40L, KC020LDOUBLE PRECISION KH2SOL, KRXN(IO), LOWKTDOUBLE PRECISION M(NMAX), MBASE(IO), MINCO(9,5)DOUBLE PRECISION MINLOG(2,5), PH, PRESS, DSEP, RXDP(IO)DOUBLE PRECISION SAREA, TAREA, TCH4M, TC02M, TEMPDOUBLE PRECISION TH2SM, TIC, WROIL, X, XD(2,45), XDUM(12)

EXTERNAL DEBYE, PAGE

INTRINSIC DABS, IABS

COMMON /AL / COMMON /AMM / COMMON /BASIC /

COMMON /CH / COMMON /DIST /

COMMON /EXCHAN/

COMMON /FLAGCM/

COMMON /FMFD /COMMON /FORM /COMMON /GAS /

COMMON /IMM / COMMON /MOLS / COMMON /NAMESI/ COMMON /NAMES2/

NDUM, XDUMIDMIX, AMOL, ITMIX, INMIX, DFRAC1, DING, FBOILDENS, PRESS, EHM, EHMC, EMFZSC, TIC, FCCSAT, XD,NUMCOM, NUMINS, MINLOG, MINCO, MININD, CONV1,CONV2ODUMTC02M, TCH4M, TH2SM, WROIL, KCH40L, KC020L,KH2SOL, IPHASE, DSEPCOEF, MBASE, KRXN, CEC, TAREA,SAREA, IDN, ISCHG, ISCOMP, INSPALK, ITIC, ICCSAT, IMC03, ITT, ANSI, ANS2,NUFLAG, IPIT, FLAGS, INFORM, RATIO, GEOTH,IPRIN1, IPRIN2TOF, CR, TITMIXIPAGE, IPGLNDC02, DDC02, DH2S, DDH2S, DNH3, DDNH3,DCH4, DDCH4, IOPT, FIXITIBMIX, IMIXPH, ANALM, M, ALFA, CUNITSPAGE1, PAGE2, PAGE3SPN

INP 1280 INP 1290 INP 1300 INP 1310 INP 1320 INP 1330 INP 1340 INP 1350 INP 1360 INP 1370 INP 1380 INP 1390 INP 1400 INP 1410 INP 1420 INP 1430 INP 1440 INP 1450 INP 1460 INP 1470 INP 1480 INP 1490 INP 1500 INP 1510 INP 1520 INP 1530 INP 1540 INP 1550 INP 1560 INP 1570 INP 1580 INP 1590 INP 1600 INP 1610 INP 1620 INP 1630 INP 1640 INP 1650 INP 1660 INP 1670 INP 1680 INP 1690 INP 1700 INP 1710 INP 1720 INP 1730 INP 1740 INP 1750 INP 1760 INP 1770 INP 1780 INP 1790 INP 1800 INP 1810 INP 1820 INP 1830 INP 1840 INP 1850

311

Page 312: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cr

C

-

COMMON /NAMES 3/ MIXFLE, OUTIN, TITLE, UNITS, ADEXCOMMON /SAT / IDDP, IDSAT, DP, RXDP, IRXDPCOMMON /TABCOM/ MXSP r MXMNK, GFW, Z, DHA

DATA ILP /3, 4, 22, 1, 2, 18, 14, 12, 5, 6, 33, 7, 98, 30, 29,136, 32, 31, 26, 15, 25, 27, 16, 23, 21, 13, 28, 169,210, 48, 246, 265, 285/

DATA ILQ /8, 8, 8, 14, 15, 1, 16, 18, 4, 2, 23, 3, 25, 26, 27/DATA ILR /5, 6, 7, 9, 29, 30, 48, 98, 101, 246, 265, 0, O/

Get basic input data^

LINE = 1READ (UNI, 9000, END - 160) TITLE

CALL PAGEWRITE (UNO, 9010) TITLEIPGLN - IPGLN + 1

LINE - LINE + 1READ (UNI, 9020, ERR - 150) TEMP, HITEMP, DENS, PRESS

LINE - LINE + 1READ (UNI, 9020, ERR - 150) PH, EHM, EHMC, EMFZSC, UNITS

Check to make sure the units are correct

OK = 0

DO 1 1=1,5IF (UNITS (I: I). EQ. 'm') UNITS(I: I)-'M'IF (UNITS(I:I).EQ.'g') UNITS(I: I)-'G'IF (UNITS(Irl).EQ.'l') UNITS(I: I)-'L'IF (UNITS(I:I).EQ.'p') UNITS(I: I)-'P'IF (UNITS(I:I).EQ.'o') UNITS(I: I)-'0'IF (UNITS(I:I).EQ.'e') UNITS(I: I)-'E'IF (UNITS(I:I).EQ.'q') UNITS(I : I)-'Q'IF (UNITS(I:I).EQ.'k') UNITS(I:I)-'K'

1 CONTINUE

IF (UNITS .EQ. 'MG/L ') THENOK - 1

ELSE IF (UNITS .EQ. 'PPM ') THENOK - 1

ELSE IF (UNITS .EQ. 'MOL/L') THENOK - 1

ELSE IF (UNITS .EQ. 'MOL/K') THENOK - 1

ELSE IF (UNITS .EQ. 'MEQ/L') THENOK - 1

ELSEOK - 0

INP 1860INP 1870INP 1880INP 1890INP 1900INP 1910INP 1920INP 1930INP 1940INP 1950

-|INP 1960 INP 1970

-| INP 1980 JINP 1990

-| INP 2000INP 2010INP 2020INP 2030INP 2040INP 2050INP 2060INP 2070INP 2080INP 2090INP 2100INP 2110INP 2120INP 2130INP 2140

-| INP 2150 |INP 2160

-| INP 2170INP 2180INP 2190INP 2200INP 2210INP 2220INP 2230INP 2240INP 2250INP 2260INP 2270INP 2280INP 2290INP 2300INP 2310INP 2320INP 2330INP 2340INP 2350INP 2360INP 2370INP 2380INP 2390INP 2400INP 2410INP 2420INP 2430

312

Page 313: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

END IF

IF (OK .NE. 1) THENWRITE (UNO, 9160) TOFWRITE (UNO, '(A,A5,A)') 'Must use proper units. "',

UNITS, '" are not recognized.'STOP

END IF

WRITE (UNO, 9030) ' TEMP', ' HITEMP', ' DENS', ' PRESS 1 WRITE (UNO, 9040) TEMP, HITEMP, DENS, PRESS WRITE (UNO, 9030) ' PH', ' EHM', ' EHMC', ' EMFZSC' WRITE (UNO, 9050) PH, EHM, EHMC, EMFZSC WRITE (UNO, 9060) UNITS IPGLN = IPGLN + 5

Get concentration of species

LINE - LINE + 1READ (UNI, 9070, ERR - 150) (CUNITS(ILP(I)), 1=1, 7)WRITE (UNO, 9080) 'Na ', 'K ', 'Li ', 'Ca

'Mg ', 'Fe ', 'Al ' WRITE (UNO, 9050) (CUNITS(ILP(I)), I - 1, 7) IPGLN = IPGLN + 2

LINE - LINE + 1READ (UNI, 9070, ERR - 150) (CUNITS(ILP(I)), 1=8, 13), TICWRITE (UNO, 9080) 'Si02 ', 'Cl ', 'S04 ', 'H2S

'HC03 ', 'C03 ', 'TIC 'WRITE (UNO, 9050) (CUNITS(ILP(I)), 1=8, 13), TIC IPGLN = IPGLN + 2

LINE = LINE + 1READ (UNI, 9070, ERR = 150) (CUNITS(ILP(I)), I = 14, 20)WRITE (UNO, 9080) 'F ', 'P04 ', 'N03 ', 'NH3

'B ', 'Sr ', 'BaWRITE (UNO, 9050) (CUNITS(ILP(I)), I = 14, 20) IPGLN = IPGLN + 2

LINE = LINE + 1READ (UNI, 9070, ERR = 150) (CUNITS(ILP(I)), I = 21, 26)WRITE (UNO, 9080) 'Pb ', 'Zn ', 'Cu ', 'Mn

'Hg ', 'AgWRITE (UNO, 9050) (CUNITS(ILP(I)), I - 21, 26) IPGLN = IPGLN + 2

LINE = LINE + 1READ (UNI, 9070, ERR = 150) (CUNITS(ILP(I)), I = 27, 29)WRITE (UNO, 9080) 'As ' , 'U ' , 'VWRITE (UNO, 9050) (CUNITS(ILP(I)), 1-27, 29)IPGLN = IPGLN + 2

LINE = LINE + 1READ (UNI, 9070, ERR = 150) (CUNITS(ILP(I)), 1-30, 33) WRITE (UNO, 9080) 'Acetate ', 'Oxalate ', 'Succinate', 'CH4' WRITE (UNO, 9050) (CUNITS(ILP(I)), 1-30, 33)

INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP

- -|INP | INP

- -|INP INP INP INP

' , INP INP INP INP INP INP INP

' , INP INP INP INP INP INP INP

' , INP INP INP INP INP INP INP

' , INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP

2440245024602470248024902500251025202530254025502560257025802590260026102620263026402650266026702680269027002710272027302740275027602770278027902800281028202830284028502860287028802890290029102920293029402950296029702980299030003010

313

Page 314: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

IPGLN - IPGLN + 2

Adjust B and As to the forms the program uses

IF (UNITS .EQ. 'PPM ' .OR. UNITS .EQ. CUNITS(31) = CUNITS(31) * 5.720 CUNITS(28) = CUNITS(28) * 1.668 CUNITS(169) = CUNITS(169) * 1.134 CUNITS(210) - CUNITS(210) * 1.942

END IF

MG/L ') THEN

Carbon, High temperature carbon option

LINE = LINE + 1READ (UNI, 9100, ERR = 150) ALK, ITICWRITE (UNO, 9130) ' ALK ', ' ITICWRITE (UNO, 9110) ALK, ITICIPGLN - IPGLN + 2

Gas addition option

DDC02 =0.0 DC02 - 0.0 DDNH3 =0.0 DNH3 =0.0 DDH2S =0.0 DH2S =0.0 DDCH4 =0.0 DCH4 =0.0

LINE = LINE + 1READ (UNI, 9070, ERR = 150) DDC02, DDH2S, DDNH3, DDCH4WRITE (UNO, 9080) ' DC02 ', ' DH2S ', ' DNH3 ', ' DCH4WRITE (UNO, 9050) DDC02, DDH2S, DDNH3, DDCH4IPGLN = IPGLN + 2

pH and co2 saturation option

LINE = LINE + 1READ (UNI, 9100, ERR = 150) ICCSAT, IMC03, FIXIT, FCCSATWRITE (UNO, 9080) ' ICCSAT ', 'IMC03 ', 'FIXIT ', ' FCCSATWRITE (UNO, 9110) ICCSAT, IMC03, FIXIT, FCCSATIPGLN = IPGLN + 2

IF (IMC03 .EQ. 0) IC02 = 0 IF (IMC03 .GT. 0) IC02 = 1

IF (FCCSAT .LT. CPUMIN) FCCSAT - 2.0D-3 IF (FCCSAT .GT. 0.1) FCCSAT =0.05

INPINP

| INP| INPj INPINPINPINPINPINPINPINPINP

| INP| INPj INPINPINPINPINPINPINPINP

| INPI INPI INPINPINPINPINPINPINPINPINPINPINPINPINPINPINPINP

| INPI INPj INPINPINPINPINPINPINPINPINPINPINPINPINPINP

I INP

3020303030403050306030703080309031003110312031303140315031603170318031903200321032203230324032503260327032803290330033103320333033403350336033703380339034003410342034303440345034603470348034903500351035203530354035503560357035803590

314

Page 315: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

c

cr

Gas-water-oil option

LINE - LINE + 1READ (UNI, 9070, ERR - 150) TC02M, TCH4M, TH2SM, WROIL,

KC020L, KCH40L, KH2SOL, DSEPWRITE (UNO, 9080) 'TC02M ', 'TCH4M ', 'TH2SM ', 'WROIL

'KC020L ', 'KCH40L ', 'KH2SOL ', 'DSEP 'WRITE (UNO, 9050) TC02M, TCH4M, TH2SM, WROIL, KC020L,

KCH40L, KH2SOL, DSEPIPGLN = IPGLN + 2IF (DABS(KC020L) .LT. CPUMIN) KC020L -1.0IF (DABS(KCH40L) .LT. CPUMIN) KCH40L -1.0IF (DABS(KH2SOL) .LT. CPUMIN) KH2SOL =1.0

Read and write data for ion exchange or adsorption

LINE = LINE + 1READ (UNI, 9160, ERR = 150) ADEXWRITE (UNO, '(A, Al)') ' Adsorption/Exchange option (N=no) = ',

ADEXIF (ADEX .EQ. 'a' .OR. ADEX .EQ. 'A') THENADEX - 'A'

ELSE IF (ADEX .EQ. 'e' .OR. ADEX .EQ. '£') THENADEX - 'E'

ELSEADEX - 'N'

END IFX - 0.0IF (ADEX .EQ. 'A') THEN

IEXCH = 1WRITE (UNO, 9220) ' Adsorption (Double layer model)'WRITE (UNO, 9080) ' CEC ', ' TAREA ', ' SAREA ', ' INSP

LINE - LINE + 1READ (UNI, 9150) CEC, TAREA, SAREA, INSPWRITE (UNO, 9240) CEC, TAREA, SAREA, INSP

WRITE (UNO, 9090) ' NAME ', ' CHARGE ',Tract. Surf. Sites '

IPGLN = IPGLN + 4DO 10 I - 1, INSP

LINE - LINE + 1READ (UNI, 9200, ERR - 150) ISCHG(I) , MBASE(I) , SPN(I)LINE - LINE + 1

WRITE (UNO, 9250) SPN(I) , ISCHG(I) , MBASE(I)

LINE - LINE + 1READ (UNI, 9210, ERR = 150) KRXN(I) , ISCOMP(I),

(COEF(I,J), IDN(I.J), J=1,ISCOMP(I))

X - X + MBASE(I)IPGLN - IPGLN + 1IF (IPGLN .GT. 58) CALL PAGE

|INP 3600-JINP 3610

INP 3620INP 3630INP 3640INP 3650

, INP 3660INP 3670INP 3680INP 3690INP 3700INP 3710INP 3720INP 3730INP 3740

-|INP 3750 |INP 3760

-|INP 3770 INP 3780INP 3790INP 3800INP 3810INP 3820INP 3830INP 3840INP 3850INP 3860INP 3870INP 3880INP 3890INP 3900INP 3910INP 3920INP 3930'INP 3940INP 3950INP 3960INP 3970INP 3980INP 3990INP 4000INP 4010INP 4020INP 4030INP 4040INP 4050INP 4060INP 4070INP 4080INP 4090INP 4100INP 4110INP 4120INP 4130INP 4140INP 4150INP 4160INP 4170

315

Page 316: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

10 CONTINUE

IF (DABS(1.0DOO - X) .GT. 0.001) THEN WRITE (UNO, '(A, A, A)')

' ERROR in absorption/ion exchange', ' data. The sum of fraction of, ' surface sites is not 1.0'

STOP END IF

WRITE (UNO, '(11X, A, A)') 'K = 1. ** Coef * ID + .... '

DO 20 I = 1, INSPWRITE (UNO, 9260) KRXN(I), SPN(I), (COEF(I,J), IDN(I,J),

J = 1, ISCOMP(I))IPGLN = IPGLN + 1IF (IPGLN .GT. 57) CALL PAGE

CONTINUEELSE IF (ADEX .EQ. 'E') THEN

IEXCH = 2WRITE (UNO, 9220) 'Ion Exchange: ' WRITE (UNO, 9080) ' CEC ', ' TAREA ', ' SAREA ', ' INSP

20

30

LINE = LINE + 1READ (UNI, 9150) CEC, TAREA, SAREA, INSPWRITE (UNO, 9240) CEC, TAREA, SAREA, INSP

WRITE (UNO, 9090) ' NAME ', ' CHARGE ','Fract. Surf. Sites '

IPGLN = IPGLN + 4 DO 30 I = 1, INSP

LINE = LINE + 1READ (UNI, 9200, ERR = 150) ISCHG(I) , MBASE(I) , SPN(I)LINE = LINE + 1

WRITE (UNO, 9250) SPN(I) , ISCHG(I) , MBASE(I)

X = X + MBASE(I) LINE = LINE + 1READ (UNI, 9210, ERR = 150) KRXN(I) , ISCOMP(I) ,

(COEF(I,J), IDN(I,J), J-1,ISCOMP(I))

IPGLN = IPGLN + 1 IF (IPGLN .GT. 57) CALL PAGE

CONTINUE

IF (DABS(1.0DOO - X) .GT. 0.001) THEN WRITE (UNO, '(A, A, A)')

' ERROR in absorption/ ion exchange' ' data. The sum of fraction of , ' surface sites is not 1.0'

STOP END IF

WRITE (UNO, '(11X, A, A)') 'K = 1. ** Coef * ID

INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP 'INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP

4180419042004210422042304240425042604270428042904300431043204330434043504360437043804390440044104420443044404450446044704480449045004510452045304540455045604570458045904600461046204630464046504660467046804690470047104720473047404750

316

Page 317: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

DO 40 I - 1, INSPWRITE (UNO, 9260) KRXN(I), SPN(I), (COEF(I,J), IDN(I.J),

J - 1, ISCOMP(I)) IPGLN - IPGLN + 1 IF (IPGLN .GT. 57) CALL PAGE

40 CONTINUE

END IFIF (IEXCH .GT. 0) THEN

IF (CEC .LE. CPUMIN) CEC - TAREA * SAREA * 1000.0 / AVOG END IF

Precipitation/mixing/boiling option

IF (MIXFLG .EQ. 0) THEN set all values read equal to zero

IF (IPGLN .GT. 59) CALL PAGE IDDP - 0 IDSAT - 0

LINE - LINE + 1READ (UNI, 9100, ERR - 150) IBMIX, ITMIXIF (IPGLN .GT. 59) CALL PAGEIPGLN - IPGLN + 2WRITE (UNO, 9130) 'IBMIX', 'ITMIX'WRITE (UNO, 9110) IBMIX, ITMIXIF (MIXFLG .NE. 0) THEN

IF (IPGLN .GT. 59) CALL PAGEIPGLN - IPGLN + 2IF (IBMIX .EQ. 1) THENWRITE (UNO, 9710)

ELSE IF (IBMIX .EQ. 2) THENWRITE (UNO, 9720)

ELSE IF (IBMIX .EQ. 3) THENWRITE (UNO, 9730)

END IF END IFIF (IBMIX .EQ. 1) THEN

IF (ITMIX .GT. 0) THEN LINE = LINE + 1 IF (MIXFLG .EQ. 0) THEN WRITE (UNO, 9080) ' IPGLN = IPGLN + 1 IF (IPGLN .GT. 59) CALL PAGE

END IFDO 50 I = 1, ITMIX

LINE - LINE + 1READ (UNI, 9290, ERR - 150) IDMIX(I), AMOL(I) IF (MIXFLG .EQ. 0) THENWRITE (UNO, 9490) PAGE1(IDMIX(I)), AMOL(I) IPGLN = IPGLN + 1 IF (IPGLN .GT. 59) CALL PAGE

ELSEIDMIX(I) = 0 AMOL(I) = 0.0

SPECIES', 'MOLALITY'

INP 4760 INP 4770 INP 4780 INP 4790 INP 4800 INP 4810 INP 4820 INP 4830 INP 4840 INP 4850 INP 4860 INP 4870 INP 4880 |INP 4890 |INP 4900 |INP 4910 |INP 4920 IINP 4930 INP 4940 INP 4950 INP 4960 INP 4970 INP 4980 INP 4990 INP 5000 INP 5010 INP 5020 INP 5030 INP 5040 INP 5050 INP 5060 INP 5070 INP 5080 INP 5090 INP 5100 INP 5110 INP 5120 INP 5130 INP 5140 INP 5150 INP 5160 INP 5170 INP 5180 INP 5190 INP 5200 INP 5210 INP 5220 INP 5230 INP 5240 INP 5250 INP 5260 INP 5270 INP 5280 INP 5290 INP 5300 INP 5310 INP 5320 INP 5330

317

Page 318: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

END IF 50 CONTINUE

ELSE IF (ITMIX .EQ. 0) THEN LINE = LINE + 1READ (UNI, 9270, ERR = 150) IDSAT, IDDP, DP IF (MIXFLG .EQ. 0) THENWRITE (UNO, 9420) PAGE3(IDSAT), IDSAT IPGLN = IPGLN + 1 IF (IPGLN .GT. 59) CALL PAGE

END IFIF (IDDP .EQ. 0) THEN

LINE = LINE + 1READ (UNI, 9280, ERR - 150) ITT IF (MIXFLG .EQ. 0) THEN WRITE (UNO, 9440) IPGLN - IPGLN + 1 IF (IPGLN .GT. 59) CALL PAGE

END IFDO 60 I = 1, ITT

LINE = LINE + 1READ (UNI, 9290, ERR- 150) IRXDP(I), RXDP(I) IF (MIXFLG .EQ. 0) THENWRITE (UNO, 9460) IRXDP(I), PAGE1(IRXDP(I)), RXDP(I) IPGLN = IPGLN + 1 IF (IPGLN .GT. 59) CALL PAGE

END IF 60 CONTINUE

IF (MIXFLG .EQ. 0) THEN WRITE (UNO, 9450) DP IPGLN = IPGLN + 1 IF (IPGLN .GT. 59) CALL PAGE

ELSEIDSAT = 0 IDDP - 0 ITT - 0 DP =0.0

END IF ELSE

IF (MIXFLG .EQ. 0) THENWRITE (UNO, 9430) PAGE3(IDDP), IDDP IPGLN = IPGLN + 1 IF (IPGLN .GT. 59) CALL PAGE

ELSEIDDP = 0

END IF END IF

ELSE IF (ITMIX .LT. 0) THEN LINE - LINE + 1 READ (UNI, 9290, ERR IF (MIXFLG .EQ. 0) THEN WRITE (UNO, 9140) 'IDDP WRITE (UNO, 9410) IDDP, AMOL(l) IPGLN - IPGLN -I- 2 IF (IPGLN .GT. 59) CALL PAGE

ELSEIDDP - 0 AMOL(l) =0.0

END IF

150) IDDP, AMOL(l)

'AMOL(l) '

INP 5340 INP 5350 INP 5360 INP 5370 INP 5380 INP 5390 INP 5400 INP 5410 INP 5420 INP 5430 INP 5440 INP 5450 INP 5460 INP 5470 INP 5480 INP 5490 INP 5500 INP 5510 INP 5520 INP 5530 INP 5540 INP 5550 INP 5560 INP 5570 INP 5580 INP 5590 INP 5600 INP 5610 INP 5620 INP 5630 INP 5640 INP 5650 INP 5660 INP 5670 INP 5680 INP 5690 INP 5700 INP 5710 INP 5720 INP 5730 INP 5740 INP 5750 INP 5760 INP 5770 INP 5780 INP 5790 INP 5800 INP 5810 INP 5820 INP 5830 INP 5840 INP 5850 INP 5860 INP 5870 INP 5880 INP 5890 INP 5900 INP 5910

318

Page 319: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

END IFIF (MIXFLG .EQ. 1) MIXFLG - 0

ELSE IF (IBMIX .EQ. 3) THEN IF (MIXFLG .EQ. 0) THEN

LINE - LINE + 1READ (UNI, 9070, ERR = 150) FBOILWRITE (UNO, 9470) FBOILIPGLN - IPGLN + 1IF (IPGLN .GT. 59) CALL PAGE

ELSEREAD (UNI, '(A80)') DUMMYMIXFLG - 0

END IF

ELSE IF (IBMIX .EQ. 2) THEN IF (MIXFLG .EQ. 0) THEN LINE - LINE + 1READ (UNI, 9290, ERR - 150) INMIX, DFRAC1, DING, MIXFLE IPGLN - IPGLN + 2 IF (IPGLN .GT. 59) CALL PAGE WRITE (UNO, 9480) INMIX, DFRAC1, DING IF (MIXFLE .NE. ' ') THEN

WRITE (UNO, 9481) MIXFLE(1:40) ELSE

WRITE (UNO, 9482) END IF MIXFLG - 1

ELSEREAD (UNI, '(A80)') DUMMY MIXFLG - 0

END IF END IF

Optional user Read in miscellaneous options

LINE - LINE + 1READ (UNI, 9180, ERR - 150) (ODUM(I), NDUM(I), XDUM(I), 1=1,WRITE (UNO, 9340) TEMPWRITE (UNO, 9190) (ODUM(I), NDUM(I), XDUM(I), 1=1, 6)IPGLN - IPGLN + 2IF (IPGLN .GT. 59) CALL PAGE

LINE = LINE + 1READ (UNI, 9180, ERR = 150) (ODUM(I), NDUM(I), XDUM(I), 1=7,WRITE (UNO, 9340) HITEMPWRITE (UNO, 9190) (ODUM(I), NDUM(I), XDUM(I), 1-7, 12)IPGLN = IPGLN + 2IF (IPGLN .GT. 59) CALL PAGE

Read user defined anions

LINE = LINE + 1READ (UNI, 9300, ERR = 150) ANSI, ANS2WRITE (UNO, 9130) 'ANSI', 'ANS2'

INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP

- - - |INP | INP

- - IINP INP INP

6) INP INP INP INP INP INP INP

12)INP INP INP INP INP INP

- -|INP | INP

- - IINP INP INP INP INP

5920593059405950596059705980599060006010602060306040605060606070608060906100611061206130614061506160617061806190620062106220623062406250626062706280629063006310632063306340635063606370638063906400641064206430644064506460647064806490

319

Page 320: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

WRITE (UNO, 9110) ANSI, ANS2IPGLN - IPGLN + 2IF (IPGLN .GT. 59) CALL PAGE

DO 70 I - 1, 45 XD(1,I) = O.ODO XD(2,I) = O.ODO

70 CONTINUE

IF (ANSI .EQ. 0 .AND. ANS2 .NE. 0) THENANSI - ANS2ANS2 - 0

END IF

80

GFW', 'CHARGE', 'DBA'IF (ANSI .GT. 0) THENWRITE (UNO, 9500) 'NAME', 'CONC',LINE - LINE + 1READ (UNI, 9360, ERR - 150) CUNITS(MXSP-H), GFW(MXSP+1),

Z(MXSP+1), DHA(MXSP+1), PAGE1(MXSP+1) WRITE (UNO, 9380) PAGE1(MXSP+1) , CUNITS(MXSP-t-l) , GFW(MXSP+1) ,

Z(MXSP+1), DHA(MXSP+1) IPGLN - IPGLN + 2 IF (IPGLN .GT. 59) CALL PAGE WRITE (UNO, 9400) IPGLN - IPGLN + 1

DO 80 I - 1, ANSI LINE - LINE + 1 READ (UNI, 9370, ERR 150) INDEX, DNA, LOWKT, HIGHKT, NAMEWRITE (UNO, 9390) NAME, INDEX, LOWKT, HIGHKT, DNAIPGLN - IPGLN + 1IF (IPGLN .GT. 59) CALL PAGE

ACTUAL = MXSP + INDEX PAGE1(ACTUAL) - NAME

XD(1,INDEX) - LOWKT XD(2,INDEX) - HIGHKT

END IF

IF (ANS2 .NE. 0) THENWRITE (UNO, 9500) 'NAME', 'CONC', 'GFW' LINE - LINE + 1READ (UNI, 9360, ERR - 150) CUNITS(MXSP+16), GFW(MXSP+16),

Z(MXSP+16), DHA(MXSP+16), PAGE1(MXSP+16)

CHARGE', 'DHA'

INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INP INPINP

GFW(ACTUAL) = GFW(MXSP+1) + GFW(ILQ(INDEX)) INP IF (INDEX .EQ. 3) GFW(ACTUAL) - GFW(ACTUAL) + GFW(ILQ(INDEX)) INP

INPZ(ACTUAL) = Z(MXSP+1) + Z(ILQ(INDEX)) INP IF (INDEX .EQ. 3) Z(ACTUAL) = Z(ACTUAL) + Z(ILQ(INDEX)) INP

INP DHA(ACTUAL) = DEBYE (Z(ACTUAL), DNA) INP

INP CONTINUE INP

INP INP INP INP INP INP INP

WRITE (UNO, 9380) PAGE1(MXSP+16), CUNIfS(MXSP+16), GFW(MXSP+16),INPZ(MXSP+16), DHA(MXSP+16) INP

IPGLN - IPGLN + 2 INP

6500651065206530654065506560657065806590660066106620663066406650666066706680669067006710672067306740675067606770678067906800681068206830684068506860687068806890690069106920693069406950696069706980699070007010702070307040705070607070

320

Page 321: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

IF (IPGLN .GT. 59) CALL PAGEWRITE (UNO, 9400)IPGLN - IPGLN + 1DO 90 I = 1, ANS2

LINE - LINE + 1READ (UNI, 9370, ERR - 150) INDEX, DNA, LOWKT, HIGHKT, NAMEWRITE (UNO, 9390) NAME, INDEX, LOWKT, HIGHKT, DNAIPGLN = IPGLN + 1IF (IPGLN .GT. 59) CALL PAGE

ACTUAL - MXSP + INDEX + 15PAGE1 (ACTUAL) - NAME

XD(1,INDEX+15) - LOWKTXD(2,INDEX+15) - HIGHKT

GFW(ACTUAL) - GFW(MXSP+16) + GFW( ILQ( INDEX) )IF (INDEX .EQ. 3) GFW(ACTUAL) - GFW(ACTUAL) + GFW (ILQ( INDEX) )

Z(ACTUAL) - Z(MXSP+16) + Z(ILQ(INDEX) )IF (INDEX .EQ. 3) Z( ACTUAL) - Z( ACTUAL) + Z(ILQ( INDEX) )

DHA(ACTUAL) - DEBYE (Z (ACTUAL) , DNA)

90 CONTINUEEND IF

r>

C Read user defined cationsr -

LINE - LINE + 1READ (UNI, 9510) NUMCOM, Z(MXSP+31) , DHA(MXSP+31) , GFW(MXSP+31) ,

CUNITS(MXSP+31), PAGE1(MXSP+31)IF (NUMCOM .GT. 0) THENWRITE (UNO, 9520) 'NAME', 'CHARGE', 'DHA' , 'GFW', 'CONC'WRITE (UNO, 9530) PAGE1(MXSP+31) , Z(MXSP+31) , DHA(MXSP+31) ,

GFW(MXSP+31) , CUNITS(MXSP+31)IPGLN = IPGLN + 2IF (IPGLN .GT. 59) CALL PAGEILR(12) = MXSP + 1ILR(13) - MXSP + 16

DO 100 I = 1, NUMCOMWRITE (UNO, 9540) ' NAME', 'DHA', 'LOWKT', 'HIGHKT'READ (UNI, 9550) INDEX, DNA, LOWKT, HIGHKT, NAMEWRITE (UNO, 9560) INDEX, NAME, DNA, LOWKT, HIGHKTIPGLN = IPGLN + 2IF (IPGLN .GT. 59) CALL PAGE

ACTUAL - MXSP + INDEX + 30

PAGE1 (ACTUAL) - NAMEZ(ACTUAL) - Z(MXSP+31) + Z (ILR( INDEX- 1) )

DHA(ACTUAL) - DEBYE (Z (ACTUAL) , DNA)

GFW(ACTUAL) - GFW(MXSP+31) + GFW( ILR( INDEX- 1) )

INP 7080INP 7090INP 7100INP 7110INP 7120INP 7130INP 7140INP 7150INP 7160INP 7170INP 7180INP 7190INP 7200INP 7210INP 7220INP 7230INP 7240INP 7250INP 7260INP 7270INP 7280INP 7290INP 7300INP 7310INP 7320INP 7330INP 7340|INP 7350 |INP 7360JINP 7370INP 7380INP 7390INP 7400INP 7410INP 7420INP 7430INP 7440INP 7450INP 7460INP 7470INP 7480INP 7490INP 7500INP 7510INP 7520INP 7530INP 7540INP 7550INP 7560INP 7570INP 7580INP 7590INP 7600INP 7610INP 7620INP 7630INP 7640INP 7650

321

Page 322: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ACTUAL = 30 + INDEX

XD(1, ACTUAL) = LOWKTXD( 2, ACTUAL) = HIGHKT

100 CONTINUEEND IF

,-1

C Read user defined minerals,-1

LINE = LINE + 1READ (UNI, 9270, ERR - 150) NUMINSIPGLN - IPGLN + 1IF (IPGLN .GT. 59) CALL PAGEWRITE (UNO, *) ' Number of Additional M

DO 120 I - 1, 5MINLOG(1,I) = 999.9MINLOG(2,I) - 999.9DO 110 J = 1, 9

MINCO(J,I) =0.0IF (J .LE. 8) MININD(J,I) = 0

110 CONTINUE120 CONTINUE

DO 140 I - 1, NUMINSLINE - LINE + 1

INP 7660INP 7670INP 7680INP 7690INP 7700INP 7710INP 7720INP 7730

.................----..-. | INP 7740 |INP 7750

......................... | INP 7760 INP 7770INP 7780INP 7790INP 7800

1 INP 7810Lnerals = ' , NUMINS INP 7820

INP 7830INP 7840INP 7850INP 7860INP 7870INP 7880INP 7890INP 7900INP 7910INP 7920INP 7930INP 7940

READ (UNI, 9570, ERR = 150) MINLOG(1,I), MINLOG(2,I), INP 7950MINCO(9,I),

LINE - LINE + 1PAGE3 (MXMNK+I) INP 7960

INP 7970READ (UNI, 9210, ERR = 150) (MINCO(J,I), MININD(J,I), J = 1, 8) INP 7980

IPGLN = IPGLN + 3IF (IPGLN .GT. 59) CALL PAGE

NOSE = 0DO 130 J = 1, 8

IF (MINCO(J,I) .GT. 0) NOSE - NOSE +130 CONTINUE

WRITE (UNO, 9580) PAGE 3 ( MXMNK+I ), 'LogMINLOG(1,I), 'Log K at T2 -

INP 7990INP 8000INP 8010INP 8020INP 8030INP 8040

1 INP 8050INP 8060INP 8070

K at Tl = ' , INP 8080* ' , MINLOG(2,I) INP 8090

WRITE (UNO, 9590) (MINCO(J,I), '*' , PAGEl(MININD(J , I) ) , ' + ', INP 8100J = 1, NOSE), MINCO(9,I) INP 8110

140 CONTINUE

C _________________________

C Assign flags and convergence factorsr. ---___--_____________.____

LINE = LINE + 1READ (UNI, 9300, ERR = 150) NUFLAG, IPITWRITE (UNO, 9310) NUFLAG, IPITWRITE (UNO, 9320) 'Fe', 'Cu', 'Hg' , 'Mn'

(FLAGS(I), I - 1, 6)IPGLN - IPGLN + 2

INP 8120INP 8130

......................... | INp 8140 |INP 8150

......................... | IN? 8160 INP 8170INP 8180

, (FLAGS(I), I = 1, 6) INP 8190INP 8200

, ' U' , ' V , INP 8210INP 8220INP 8230

322

Page 323: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

IF (IPGLN .GT. 59) CALL PAGE

LINE = LINE + 1READ (UNI, 9600, ERR = 150) INFORM, RATIO, GEOTH, IPRINl, IPRIN2,

OUTIN

LINE - LINE + 1READ (UNI, 9070, ERR - 150) CONVl, CONV2

IF (CONV2 .LT. l.OD-08 .OR. CONV2 .GT. l.OD-2) CONV2 - 0.5D-04 IF (CONVl .LT. l.OD-08 .OR. CONVl .GT. l.OD-2) CONVl - 0.5D-04

WRITE (UNO, 9350)WRITE (UNO, 9080) ' INFORM ', ' RATIO ', ' GEOTH ',

' IPRINl ', ' IPRIN2 'WRITE (UNO, 9120) INFORM, RATIO, GEOTH, IPRINl, IPRIN2 IF (OUTIN .NE. ' ') THEN

WRITE( UNO, 9610) OUTINIPGLN - IPGLN + 1

END IFWRITE (UNO, 9330) CONVl, CONV2 IPGLN = IPGLN + 4

Set defaults

IF (DENS .LT. CPUMIN) THENDNS - 'U'DENS - l.ODO

ELSEDNS - 'Y'

END IF

IF (DABS(HITEMP-TEMP) .LE. CPUMIN) HITEMP - O.ODOO IF (HITEMP .GT. CPUMIN) PHHIT - 1

If the gas or co2 option is to be used, initialize this option so that it is performed after the hi-temperature option, if requested, is performed.

IOPT 0

IF (DABS(DDC02) .GT. CPUMIN .OR. DABS(DDNH3) .GT. CPUMIN .OR, DABS(DDH2S) .GT. CPUMIN .OR. DABS(DDCH4) .GT. CPUMIN) IOPT = 2

IF (IC02 .GT. 0 .AND. IMC03 .GT. 0) THENIOPT - 1

ELSEIC02 - 0

END IF

IF (TC02M .GT. CPUMIN .OR. TCH4M .GT. CPUMIN.OR. TH2SM .GT. CPUMIN) IPHASE - 2

INP 8240 INP 8250 INP 8260 INP 8270 INP 8280 INP 8290 INP 8300 INP 8310 INP 8320 INP 8330 INP 8340 INP 8350 INP 8360 INP 8370 INP 8380 INP 8390 INP 8400 INP 8410 INP 8420 INP 8430 INP 8440 INP 8450 INP 8460 |INP 8470 jINP 8480 jINP 8490 INP 8500 INP 8510 INP 8520 INP 8530 INP 8540 INP 8550 INP 8560 INP 8570 INP 8580 INP 8590 INP 8600 |INP 8610 jINP 8620 |INP 8630 |INP 8640 |INP 8650 INP 8660 INP 8670 INP 8680 INP 8690 INP 8700 INP 8710 INP 8720 INP 8730 INP 8740 INP 8750 INP 8760 INP 8770 INP 8780 INP 8790 INP 8800 INP 8810

323

Page 324: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

IPGLN = 60

RETURN

Error Messages

150 CONTINUEWRITE (UNO, 9160) TOF WRITE (UNO, 9170) LINE STOP

Out of dataIf there are no more data sets in file assigned to unit 5, stop

160 CLOSE (UNI) CLOSE (UNO) STOP

C Format r -----------

9000 FORMAT9010 FORMAT9020 FORMAT9030 FORMAT9040 FORMAT9050 FORMAT9060 FORMAT9070 FORMAT9080 FORMAT9090 FORMAT9100 FORMAT9110 FORMAT9120 FORMAT9130 FORMAT9140 FORMAT9150 FORMAT9160 FORMAT9170 FORMAT

.9180 FORMAT9190 FORMAT9200 FORMAT9210 FORMAT9220 FORMAT9230 FORMAT9240 FORMAT9250 FORMAT9260 FORMAT9270 FORMAT9280 FORMAT9290 FORMAT

statements

(A80)(' ****** INPUT DATA ECHO ****** ',//,' TITLE : ' ,A80)(4E10.4, A5)(2X, 6(A10, 2X))(2X, 5(E10.4, 2X), A5)(2X,10(E10.4, 2X))(' CONCENTRATION UNITS :', 2X, A5)(8E10.4)(2X, 10(2X, A, 2X))(2X, 10(2X, A))(212, 2E10.4)(2X,2(3X,I3,4X),E12.5,2X,F12.4)(2X, 6(5X, 12, 5X))(5X, A8, 2X, A8)(A8, 2X, A8)(3E10.4, 13)(Al)(5X,' ERROR IN READING REQUIRED INPUT LINE NO. ', 12,

/, ' Program Stop' )(6(A1, 14, E10.4))(6(1X, Al, IX, 14, IX, E10.4.3X))(14, E10.4, A10)(11(E10.4, 13))(' Surface Chemistry input for ' ,A)(2X, 3(E12.4, 2X), 3X, 13)(2X, 3(E10.4, 2X), 3X, 13)(2X, A10, 6X, 13, 4X, E10.4)(4X, F10.4, 3X, A, 4(5(5X, E12.5, 2X, 13), /))(2I4.E10.4)(I4.F12.0)(14, 2E10.4, A80)

INP 8820 INP 8830 INP 8840 INP 8850 |INP 8860 |INP 8870 |INP 8880 INP 8890 INP 8900 INP 8910 INP 8920 INP 8930 INP 8940 INP 8950 |INP 8960 |INP 8970 |INP 8980 IINP 8990 INP 9000 INP 9010 INP 9020 INP 9030 INP 9040 |INP 9050 |INP 9060 |INP 9070 INP 9080 INP 9090 INP 9100 INP 9110 INP 9120 INP 9130 INP 9140 INP 9150 INP 9160 INP 9170 INP 9180 INP 9190 INP 9200 INP 9210 INP 9220 INP 9230 INP 9240 INP 9250 INP 9260 INP 9270 INP 9280 INP 9290 INP 9300 INP 9310 INP 9320 INP 9330 INP 9340 INP 9350 INP 9360 INP 9370 INP 9380 INP 9390

324

Page 325: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

9300 FORMAT (812, A80) 9310 FORMAT (' FLAG FOR ACTIVITY COEFF OF NEUTRAL SPECIES: ',I2,/,

' FLAG FOR ACTIVITY COEFF BY PITZERS EQUATIONS: ',12) 9320 FORMAT (' FLAGS FOR CALCULATING REDOX SPECIES: ' ,/,

6(2X, A2),/, 6(2X, 12))

9330 FORMAT (' TOLERANCE FACTORS:', 2X, 'CONV1 = ', E12.4, 2X, 'CONV2 = ' , E12.4)

9340 FORMAT (' LOG KT TO BE CHANGED AT TEMP = ', F6.2) 9350 FORMAT (' PRINTING OPTIONS:') 9360 FORMAT (2E10.4, 12, E10.4, A8) 9370 FORMAT (12, 3E10.4, A8) 9380 FORMAT (IX, A8 , 4X, E10.4, 2X, E10.4, 6X, 14, 4X, E10.4) 9390 FORMAT (IX, A8 , 4X, 14, 4X, E10.4, 2X, E10.4, 2X, E10.4)9400 FORMAT (4X, 'NAME', 4X, 'INDEX', 5X, 'LOWKT' , 7X, 'HIGHKT' ,

6X, 'DHA ') 9410 FORMAT (2X, 14, 2X, E10.4) 9420 FORMAT (' MINERAL TO BE DISSOLVED/PRECIPITATED TO SATURATION:',

' ', A8, 5X, ' Index number: ',13) 9430 FORMAT (' MINERAL TO BE DISSOLVED/PRECIPITATED: ' ,15X,

A8, 5X, ' Index number: ',13) 9440 FORMAT (' REACTION FOR SATURATION: ', 3X, 'ID#', 3X,

'Species ', 5X, 'STOICH COEFF' ) 9450 FORMAT (' Step direction/scaling factor - ', E12.5) 9460 FORMAT (' ', 29X, 13, 3X, A8 , 5X, E12.5)9470 FORMAT (' FRACTION OF BOILING: '.F12.4) 9480 FORMAT (IX,' Number of mixtures - ', 13, ' starting at',

' fraction of solution one = ', F12.4, ' using a step increment of: ', F12.4 )

9481 FORMAT (IX, ' and reading the second water composition from' , ' the file ' ,A)

9482 FORMAT (IX, ' and reading the second water composition from' , /,' the data set following this one. ')

9490 FORMAT (3X, A8 , 5X, E12.5) 9500 FORMAT (3X, A4, 8X, A4, 8X, A3, 8X, A6 , 8X, A3)9510 FORMAT (212, 3E10.4, A8) 9520 FORMAT (3X, A4, 7X, A6 , 5X, A3, 5X, A3, 5X, A4) 9530 FORMAT (IX, A8 , 5X, 12, 5X, F4.1, 5X, F8 . 3 , 5X, IP, E10.4) 9540 FORMAT (3X, A6 , 7X, A3, 5X, A5 , 5X, A5) 9550 FORMAT (12, 3E10.4, A8) 9560 FORMAT (IX, 12, 2X, A8 , 3(5X, E10.4)) 9570 FORMAT (3E10.4, A8) 9580 FORMAT (IX, A8 , 5X, A14, F7 . 2 , 5X, A14, F7.2) 9590 FORMAT (IX, 9(F5.2, Al, A8 , A3)) 9600 FORMAT (512, A80) 9610 FORMAT (' Restart information will be written to the file ',

A) 9710 FORMAT (' Because the Mixing option was chosen in the previous'

' data set, ' ,/, ' the DISSOLUTION/PRECIPITATION option will not be', ' performed on this data set.')

9720 FORMAT (' Because the Mixing option was chosen in the previous' ' data set, ' ,/, ' the MIXING information will not be read from this' ' data set. ' )

9730 FORMAT (' Because the Mixing option was chosen in the previous' ' data set, ' ,/, ' the BOILING option will not be performed on this data' ,

INP 9400 INP 9410 INP 9420 INP 9430 INP 9440 INP 9450 INP 9460 INP 9470 INP 9480 INP 9490 INP 9500 INP 9510 INP 9520 INP 9530INP 9540 INP 9550 INP 9560 INP 9570 INP 9580 INP 9590 INP 9600 INP 9610 INP 9620 INP 9630 INP 9640INP 9650 INP 9660 INP 9670 INP 9680 INP 9690 INP 9700 INP 9710 INP 9720 INP 9730 INP 9740INP 9750 INP 9760 INP 9770 INP 9780 INP 9790 INP 9800 INP 9810 INP 9820 INP 9830 INP 9840 INP 9850 INP 9860 INP 9870 INP 9880 INP 9890 INP 9900 INP 9910 INP 9920 INP 9930 INP 9940 INP 9950 INP 9960 INP 9970

325

Page 326: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

set.')END

INP 9980 INP 9990

c c

cccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE INTIAL (OK, ALK, INFORM, RATIO, GAMMA, TEMP, HITEMP, PRESS, HTOTI, OHTOTI, 1C02, IMC03 , IBMIX, FCCSAT, IEXCH, ISAT, IFHNUM, JCCST)

This routine initializes certain values wtien each new data set is read into solmneqf.

._.__.__.__ --_ _ J _- _ -_-ALFAALKCECCOEFCUNITSDCH4DDCH4DC02DDC02DH2SDDH2SDNH3DDNH3DSEPFCCSATGAMMAHITEMPHTOTIIIBMIXIC02IEXCHIMC03INFORMIOPTI PHASEIPHNUMIRXDPISATJCCSTJC03KT1MMBASENDUMNMAXODUMOHTOTIOKPHHITPPHHITPRESSRATIORXDP

DELINTDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLINTINTINTINTINTINTINTINTINTINTINTINTINTDBLDBLDBLINTINTCHADBLINTINTINTDBLINTDBL

1Activity of aqueous species iFlag for distribution of carbonate speciesCation exchange capacityStoichiometric coefficient: and Id numberAnalytical input concentrationConcentration of CH4 lost up annulusConcentration of CH4 lost before pH measurementConcentration of C02 lost up annulusConcentration of C02 lost before pH measurementConcentration of H2S lost up annulusConcentration of H2S lost before pH measurementConcentration of NH3 lost up annulusConcentration of NH3 lost before pH measurementDensity of oil at 15 degree CTolerance factor for pH and C02 optionsActivity coefficientIn- situ temperatureSum of H in systemLoop counting variableSwitch for mixing optionSwitch for co2 optionSwitch for exchange/adsorption optionSelects C02 optionFlag to print all the log K values in data baseSwitch for C02 optionGas/Oil/Water gas redistibutionCounter used in PHCALCId number of the aqueous species to be addedCounter used in C020PTSwitch indicating if PHOPT called Is5 timeSwitch to control printing of some headingsEquilibrium constant of the aqueous reactionsCalculated molality of aqueous speciesEquivalence Mole Fraction (initial) on surfaceId of mineral/aqueous complex with K(T) changedGeneral array dimension to allow easy expansionSwitch to indicate a mineral/aqueous complexSum of hydroxide in systemError flag for Lagrange interpolation routineSwitch for ph iterationSwitch for ph iterationsTotal pressureFlag for printing activity ratios of elementsMolal amount of the aqueous species added

INT 0010 INT 0020 INT 0030

=|INT 0040IINT 0050 IINT ooeo

- | INT 0070IINT oosoIINT 0090IINT 0100IINT 0110IINT 0120IINT 0130IINT ouoIINT oisoIINT 0160IINT 0170|INT 0180IINT 0190IINT 0200IINT 0210IINT 0220IINT 0230IINT 0240IINT 0250IINT 0260IINT 0270IINT 0280IINT 0290IINT 0300IINT 0310IINT 0320IINT 0330IINT 0340IINT 0350IINT 0360IINT 0370IINT 0380IINT 0390IINT 0400IINT 04ioIINT 0420IINT 0430IINT 0440IINT 0450IINT 0460IINT 0470IINT 0480IINT 0490IINT osooIINT osio

326

Page 327: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ccccccc

c

SC02 DBL Sum of C02 speciesTAREA DBL Site density per unit areaTCH4M DBL Moles CH4 distributed between oil, water, vaporTC02M DBL Moles C02 distributed between oil, water, vaporTEMP DBL Temperature of the solution when pH was measuredTH2SM DBL Moles H2S distributed between oil, water, vaporXDUM DBL New log K(T) value

INTEGER NMAXPARAMETER (NMAX - 340)

INTEGER ALK, I, IBMIX, IC02 , IDDP, IDN(10,10), IDSAT, IEXCHINTEGER IMC03, INFORM, INSP, IPHASE, IPHNUM, IOPT, IRXDP(IO)INTEGER ISAT, ISCHG(IO) , ISCOMP(IO) , JC03, NDUM(12) , OKINTEGER PHHIT, PPHHIT, RATIO

CHARACTER * 1 ODUM(12)

DOUBLE PRECISION ALFA ( NMAX ), ANALM(NMAX) , CEC , COEF(10,10)DOUBLE PRECISION CUNITS(NMAX) , DCH4, DDCH4, DC02 , DDC02DOUBLE PRECISION DH2S, DDH2S, DNH3, DDNH3, DP, FCCSAT, FIXITDOUBLE PRECISION GAMMA(NMAX) , HITEMP, HTOT, HTOTI , JCCSTDOUBLE PRECISION KCH40L, KC020L, KH2SOL, KRXN(IO)DOUBLE PRECISION KTl(NMAX) , M(NMAX) , MBASE(IO)DOUBLE PRECISION OHTOT, OHTOTI , PH, PRESS, DSEP, RXDP(IO)DOUBLE PRECISION SAREA, SC02 , TAREA, TCH4M, TC02M, TH2SMDOUBLE PRECISION TEMP, WROIL, XDUM(12)

COMMON /AL / NDUM, XDUMCOMMON /CH / ODUMCOMMON /DIST / TC02M, TCH4M, TH2SM, WROIL, KCH40L, KC020L,

KH2SOL, IPHASE, DSEPCOMMON /EXCHAN/ COEF, MBASE, KRXN, CEC, TAREA, SAREA, IDN,

ISCHG, ISCOMP, INSPCOMMON /GAS / DC02 , DDC02 , DH2S, DDH2S, DNH3 , DDNH3 ,

DCH4, DDCH4, IOPT, FIXITCOMMON /MOLS / PH, ANALM, M, ALFA, CUNITSCOMMON /SAT / IDDP, IDSAT, DP, RXDP, IRXDPCOMMON /TTK / KT1COMMON /ZPH / PHHIT, PPHHIT, JC03 , SC02 , HTOT, OHTOT

HI III III 1 1

IF (IBMIX .LE. 0) THENDO 10 I - 1, 12

ODUM(I) - ' 'NDUM(I) - 0XDUM(I) - O.ODO

10 CONTINUE

DO 20 I - 1, NMAXKT1(I) - O.ODO

20 CONTINUE

JCCST - 0PHHIT - 0

|INT 0520IINT 0530IINT 0540IINT ossoIINT oseoIINT 0570IINT ossoIINT 0590INT 0600INT 0610INT 0620INT 0630INT 0640INT 0650INT 0660INT 0670INT 0680INT 0690INT 0700INT 0710INT 0720INT 0730INT 0740INT 0750INT 0760INT 0770INT 0780INT 0790INT 0800INT 0810INT 0820INT 0830INT 0840INT 0850INT 0860INT 0870INT 0880INT 0890INT 0900INT 0910INT 0920INT 0930|INT 0940INT 0950INT 0960INT 0970INT 0980INT 0990INT 1000INT 1010INT 1020INT 1030INT 1040INT 1050INT 1060INT 1070INT 1080INT 1090

327

Page 328: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

INFORMHITEMPOHTOTIALKTEMPHTOTIRATIOPRESS

END IF

IPHNUM =OKDDC02 =DDH2S =DDNH3 -DDCH4 -DC02DH2SDNH3DCH4IOPTIC02IMC03 =FCCSAT =TC02M =TCH4M =TH2SM =IPHASE =DSEPPPHHIT =JC03I SATIEXCH =CECTAREA =

========

000.0.0.0.0.0.0.0.0000.0.0.0.00.00000.0.

0O.ODOO.ODO0O.ODOO.ODO0O.ODO

ODOODOODOODOODOODOODOODO

05DOODOODOODO

ODO

ODOODO

DO 40 I = 1 CUNITS(I)

ALFA(I) GAMMA(I)

40 CONTINUE

, NMAX = O.ODO = O.ODO = O.ODO - l.ODO

DO 50 I = 1, 10 RXDP(I) = 0.0 IRXDP(I) = 0

50 CONTINUE

RETURN END

INT 1100 INT 1110 INT 1120 INT 1130 INT 1140 INT 1150 INT 1160 INT 1170 INT 1180 INT 1190 INT 1200 INT 1210 INT 1220 INT 1230 INT 1240 INT 1250 INT 1260 INT 1270 INT 1280 INT 1290 INT 1300 INT 1310 INT 1320 INT 1330 INT 1340 INT 1350 INT 1360 INT 1370 INT 1380 INT 1390 INT 1400 INT 1410 INT 1420 INT 1430 INT 1440 INT 1450 INT 1460 INT 1470 INT 1480 INT 1490 INT 1500 INT 1510 INT 1520 INT 1530 INT 1540 INT 1550 INT 1560 INT 1570 INT 1580 INT 1590

C == C

DOUBLE PRECISION FUNCTION KHCH4 (TK, MNACLD, P)

Calculates the henry's law coefficient for methane

328

KH4 0010 |KH4 0020 |KH4 0030

Page 329: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

MNACLD DBL Sum of Molality * charge / 2 P DBL Partial pressure of methane TK DBL Temperature in kelvin

DOUBLE PRECISION MNACLD, TK, INTRINSIC DEXP

KHCH4 - 26.187DO- (26.991D-3 * TK)- (3380. 7DO / TK)- (27.79D-2 / P)- (14.28D-2 * P / TK)

KHCH4 - DEXP(KHCH4)

RETURNEND

P

+ (0.13647D-2 * P)+ (11.69D-2- (24.09D-2+ (19.19D-5+ (27.78D-5

* MNACLD)/ MNACLD)

* P / MNACLD)* TK * MNACLD)

|KH4 0050 |KH4 0060 |KH4 0070

---- |KH4 0080KH4 0090 KH4 0100 KH4 0110

|KH4 0120KH4 0130KH4 0140KH4 0150KH4 0160KH4 0170KH4 0180KH4 0190KH4 0200KH4 0210KH4 0220KH4 0230

DOUBLE PRECISION FUNCTION KHC02 (T, MU)

Calculates the henry's law coefficient for C02

MU T

DBL Ionic strength DBL Temperature in

of solution kelvin

DOUBLE PRECISION MU, T INTRINSIC DEXP, DLOG

KHC02 =

+ +

KHC02 -

RETURN END

20.244DO (1.0312DO * MU) (0.4445DO / MU) + (255.90DO * MU / T) -

DEXP(KHC02)

(0.016323DO * T) (3629.7 / T) (0.12806D-2 * T * MU) (0.16060D-2 * T / MU)

KHC 00101 VV\C flftOfl

IKHC 0030---------- | KHC 0040

|KHC 0050|KHC 0060 i wiir r\r\~jr\KHC 0080 KHC 0090KHC 0100

i wiir m i r\KHC 0120 KHC 0130 KHC 0140 KHC 0150 KHC 0160 KHC 0170 KHC 0180 KHC 0190 KHC 0200 KHC 0210

DOUBLE PRECISION FUNCTION KHH2S (TK, Ml)

Calculates the henry's law coefficient for H2S

Ml DBL Sum of Molality * charge / 2 TK DBL Temperature in kelvin

KHH 0010 = |KHH 0020 |KHH 0030 |KHH 0040 |KHH 0050 |KHH 0060 |KHH 0070

329

Page 330: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

DOUBLE PRECISION TK, Ml INTRINSIC DEXP

KHH2S - 11.416DO + (0.2905DO * Ml) + (.5705DO / Ml) - (46.20DO * Ml / TK)

- (0.007013DO * TK) - (2067. 7DO / TK) - (.0001574DO * TK * Ml) - (.001777DO * TK / Ml)

KHH2S - DEXP(KHH2S)

RETURN END

KHH KHH KHH KHH

| KHH KHH KHH KHH KHH KHH KHH KHH KHH KHH KHH

008000900100011001200130014001500160017001800190020002100220

c

c

f

C _

c

c

c c c c c c c c

DOUBLE PRECISION FUNCTION KHNH3 (TK)

Calculates the henry's law coefficient for ammonia

TK DBL Temperature in kelvin

DOUBLE PRECISION TKINTRINSIC DLOG

KHNH3 - -1816.602DO/TK + 2.27770DO * DLOG(TK) - 73.0179D-4 - 6.4609

KHNH3 - 10 . ODO**KHNH3

RETURNEND

SUBROUTINE LAGINT (XT, YT, X, Y, MAXK, NDIM, OK)

Lagrange interpolation routine.

Variables

C DBL Calculates the interpolation constants CPUMAX DBL Largest positive real value program uses CPUMIN DBL Smallest positive real value program uses DIF INT Difference between upper and lower bound I INT Loop counting variable K INT Fixes the interpolation r^nge LO INT Finds lower bound of interpolation range MAXK INT Total number of values to be found

KHN 0010====== IKHN 0020

IKHN 0030------ | KHN 0040

JKHN 0050

KHN 0070KHN 0080KHN 0090KHN 0100

=====|KHN 0110 KHN 0120

* TK KHN 0130 KHN 0140KHN 0150KHN 0160KHN 0170KHN 0180KHN 0190

LAG 00101 T An 0090 1 j_invj \j\j £f\j

ILAG 0030------ | LAG 0040

(LAG 0050ILAG 0060 JLAG 0070|LAG 0080ILAG 0090 ILAG 0100 ILAG 0110 ILAG 0120 ILAG 0130 ILAG 0140

330

Page 331: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ccccccccccc

/-I

c

MID INT Finds midpoint of interpolation rangeN INT Number of temperature pointsNDIM INT Identifies array dimensionOK INT Error flag for Lagrange interpolation routineUNO INT File unit assigned for output fileUP INT Finds upper bound of interpolation rangeW DBL Holds temperature values around point of interestX DBL The temperature point of interestXT DBL Array of temperature valuesY DBL Final interpolated values at given temperatureYT DBL Data array holding values for temperature point

INTEGER UNODOUBLE PRECISION CPUMINPARAMETER (UNO = 6, CPUMIN = l.OD-35)

INTEGER DIF, I, K, LO, MAXK, MID, N, NDIM, OK, UP

DOUBLE PRECISION C(4) , W(10) , X, XT(ll) , Y(NDIM) , YT (NDIM ,11)

INTRINSIC DABS

N =11LO - 1UP = NMID - 1

DO 10 I = 1, MAXKY(I) = 0.0

10 CONTINUE

IF (X.GT.XT(N) .OR. X.LT.XT(l)) GO TO 90OK = 1

20 CONTINUEDIF - UP - LOIF (DIF .LE .2) GO TO 30MID - (UP + LO + 1) / 2GO TO 40

30 CONTINUEIF (DIF .EQ. 0) GO TO 70MID - LO + 1

40 CONTINUEIF ((DABS (X-XT (MID))) .LT. CPUMIN) GO TO 70IF ((X-XT (MID)) .LT. O.ODO) GO TO 50

X > XT (MID)

LO = MIDGO TO 20

ILAG oisoILAG 0160ILAG 0170JLAG oisoJLAG 0190|LAG 0200ILAG 0210ILAG 0220ILAG 0230ILAG 0240[LAG 0250JLAG 0260LAG 0270LAG 0280LAG 0290LAG 0300LAG 0310LAG 0320LAG 0330LAG 0340LAG 0350LAG 0360LAG 0370ILAG 0380LAG 0390LAG 0400LAG 0410LAG 0420LAG 0430LAG 0440LAG 0450LAG 0460LAG 0470LAG 0480LAG 0490LAG 0500LAG 0510LAG 0520LAG 0530LAG 0540LAG 0550LAG 0560LAG 0570LAG 0580LAG 0590LAG 0600LAG 0610LAG 0620LAG 0630LAG 0640LAG 0650ILAG 0660 ILAG 0670JLAG 0680LAG 0690LAG 0700LAG 0710LAG 0720

331

Page 332: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

50 CONTINUEIF ((DABS(X-XT(MID-1))) .GT. CPUMIN) GO TO 60

X - XT(MID-l)

MID = MID - 1 GO TO 70

60 CONTINUEIF ((XT(MID-l)-X) .LT. CPUMIN) GO TO 70

X < XT(MID-l)

UP = MID GO TO 20

70 CONTINUE K - MID - 2 IF (K .LT. 1) K - 1 IF ((K+3) .GT. N) K - N - 3

W(2) =W(3) =W(4) -W(5) =W(6) -W(7) =W(8) -W(9) =W(10) -

DO 80 I

XXXXXT(K)XT(K)XT(K)XT(K+1)XT(K+1)XT(K+2)

- XT(K)- XT(K+1)- XT(K+2)- XT(K+3)- XT(K+1)- XT(K+2)- XT(K+3)- XT(K+2)- XT(K+3)- XT(K+3)

1, MAXK YT(I,K)

C(2) C(3) C(4)

YT(I,K+2) -YT(I,K+3)

(W(5) (W(5) (W(6) (W(7)

* W(6)* W(8)* W(8)* W(9)

* W(7»* W(9»* W(10))* W(10))

80 CONTINUE

RETURN

C(l) * W(2) * W(3) * W(4) C(3) * W(l) * W(2) * W(4)

C(2) * W(l) C(4) * W(l)

LAGLAGLAG

.................|LAG| LAG| LAGLAGLAGLAGLAGLAGLAGLAG

.................|LAG| LAG | LAG LAG LAG LAG LAG LAG LAG LAG LAG LAG LAG LAG LAG LAG LAG LAG LAG LAG LAG LAG LAG LAG LAG LAG LAG LAG LAG

* W(3) * W(4) + LAG* W(2) * W(3) LAG

LAG LAG LAG LAG

Error messages

90 CONTINUE OK - 0

IF (X .GT. XT(N)) WRITE (UNO, 100) X, XT(N)

100 FORMAT (//, ' ', 'X-OUT IN LAGINT X=', El3.6, 2X,

| LAG | LAG LAG LAG LAG LAG LAG

'XT(N)-' , E13.6)LAG LAG

0730074007500760077007800790080008100820083008400850086008700880089009000910092009300940095009600970098009901000101010201030104010501060107010801090110011101120113011401150116011701180119012001210122012301240125012601270128012901300

332

Page 333: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

IF (X .LT. XT(1)) WRITE (UNO, 110) X, XT(1) 110 FORMAT (//, ' ', 'X-OUT IN LAGINT X-', E13.6, 2X,

RETURN END

LAG 1310'XT(l)-', E13.6)LAG 1320

LAG 1330 LAG 1340 LAG 1350

r\jcccccc

r\J

INTEGER FUNCTION LENGTH (STRING)

Returns the length of the non-blank portion of avariable

L INT Length pointerSTRING CHA Variable for which the length is

INTEGER LCHARACTER * 80 STRING

L - 80

10 CONTINUEIF (L .GT. 1 .AND. STRING(L:L) .EQ. ' ') THENL - L - 1GO TO 10

END IF

IF ( STRING (L:L) .NE. ' ') THENLENGTH = L

ELSELENGTH - 1

END IF

RETURN

END

LEN 0010= 1 LEN 0020

character |LEN 0030JLEN 0040

................. | LEN 0050JLEN 0060

to be determined JLEN 0070................. j LEN 0080

LEN 0090LEN 0100LEN 0110

__________ | LEN 0120 LEN 0130LEN 0140LEN 0150LEN 0160LEN 0170LEN 0180LEN 0190LEN 0200LEN 0210LEN 0220LEN 0230LEN 0240LEN 0250LEN 0260LEN 0270LEN 0280LEN 0290LEN 0300

SUBROUTINE MIXER (TEMP, Ml, PRESS, DENS, ICALL, ISALT, IRUN, MXSP, FCCSAT, PH20, IPRIN2, MXMNK)

Precipitation/dissolution, Mixing, and Boiling options

MIX 0010 MIX 0020

=-|MIX 0030|MIX 0040

.__..__.___.___..__...__.._......_................_._....___...._.j MIX 0050A1MIX DBL HTOT, OHTOT, TIC of first solution/original water(MIX 0060ADD DBL The amount of material being added/subtracted JMIX 0070ADDMIN DBL Record of the amount of mineral added (MIX 0080ADENS DBL Density of first water in mixing JMIX 0090ALFA DBL Activity of aqueous species i JMIX 0100AMOL DBL Amount in moles to be added |MIX 0110ANALM DBL Analyzed molality of species i (MIX 0120ANMMIX DBL Stored values for first water (MIX 0130

333

Page 334: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

ATEMPB2MIXBDENSBNMMIXBTEMPBUFFERCOFFACCPUMINCROSSDELTADENSDFRAC1DIFDINGDONEDPDUM2EQCEQHERROREXELTFBOILFCCSATFFBFMIXHEQIIADDIBOILIBTOTI CALLICDICSIDDPIDMINIDMIXIDSATIHIDINDXINMIXIPGLNIPRIN2IRUNIRXDPI SALTISTFITMIXJJJKKCH4KC02KH2SKNH3LOGKT2MMlMINDIM

DELDELDELDELDELCHADELDELLOGDELDELDELDELDELLOGDELCHADELDELLOGDELDELDELDELDELDELINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTDELDELDELDELDELDELDELINT

Temperature of solution A |MIX 0140HTOT, OHTOT, TIC of second water |MIX 0150Density of second water in mixing |MIX 0160Stored values for second water JMIX 0170Temperature of solution £ |MIX 0180Buffer for Character manipulation JMIX 0190Component Coef. for dissolving phase JMIX 0200Smallest positive real value program uses JMIX 0210Have we crossed the root yet? |MIX 0220Temperary storage to find min. component JMIX 0230Density |MIX 0240Smallest fraction of soln 1 mixed with soln 2 JMIX 0250Difference used in testing |MIX 0260Increment of solution 1 to be added JMIX 0270Are we done? JMIX 0280Dissolution/precipitation switch JMIX 0290Character array with names of gases |MIX 0300Equivalent amount of carbon in 1 mole of comp. JMIX 0310 Equivalent amount of hydrogen in 1 mole of comp. |MIX 0320Is everything ok? JMIX 0330Total mass of components JMIX 0340Fraction of solution boiled-off as steam JMIX 0350Tolerance factor for pH and C02 options JMIX 0360Fraction of boiling (1 / (1-fboil)) |MIX 0370Mixtures to be examined JMIX 0380Coef. for H containing components JMIX 0390Loop variable JMIX 0400Index for positioning in adding mineral arrays JMIX 0410Index of number of boiling points stored JMIX 0420Count for number of boiling iterations JMIX 0430Switch for calling this routine JMIX 0440Index for mineral being dissolved JMIX 0450Index for mineral to saturate with JMIX 0460Id number of the mineral to be dissolved/ppt JMIX 0470Id number of the mineral to be dissolved/ppt JMIX 0480Id number of the aqueous species to be added JMIX 0490Id number of the mineral to be equilibrated JMIX 0500Index of H containing components JMIX 0510Index used for checking components JMIX 0520Total number of mixtures of two solution mixed JMIX 0530Current line number of the output file JMIX 0540Print switch JMIX 0550Keeps track if this is first or second mixture JMIX 0560Id number of the aqueous species to be added [MIX 0570Switch used in mixer to indicate option |MIX 0580Temp, storage used in reading MIX 0590Switch for the mineral saturation option |MIX 0600Loop variable JMIX 0610Loop variable and counter JMIX 0620Loop variable and counter JMIX 0630Henrys law coef for CH4 |MIX 0640Henrys law coef for C02 |MIX 0650Henrys law coef for H2S JMIX 0660Henrys law coef for NH3 JMIX 0670Log K for minerals at specified temperature JMIX 0680Calculated molality of aqueous species JMIX 0690Sum of Molality * charge / 2 |MIX 0700Parameter ... dimension of various arrays JMIX 0710

334

Page 335: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cccccccccccccccccccccccccccccccccccc

ccc

MINDP LOG Switch . . . dissolving a mineral?MINSAT LOG Switch . . . saturating with a mineral?MXMNK INT Total number of mineral log k valuesMXSP INT Total number of aqueous speciesNGAST DEL Values guessed for rootNL DEL Number of moles in liquidNMAX INT General array dimension to allow easy expansionNV DEL Number of moles in vapourPAGE1 CHA Names of aqueous speciesPAGES CHA Names of solubility constantsPH20 DEL Pressure of waterPRESS DEL Total pressureR DEL Gas constantREVERS LOG OK to reverse direction in root finding?RXDP DEL Molal amount of the aqueous species addedSIMIN DEL SI of mineral being saturated with. Tested.STEP DEL Amount of volatile to add/remove from liquidSTEPSZ DEL Scaling factor (parameter) in diss/ppt mineralsSTF DEL Temp, storage used in readingSTOFAC DEL Stoich. Coef . for material being added/removedTEMP DEL Current temperatureTITMIX CHA Title for mixturesTITR DEL Iteration array in DISTRB, used for guessesTK DEL Temperature in KTOP CHA Places a form feed in output fileTOTEL DEL Contains HTOT, OHTOT and Sum C02TRY DEL Next amount of volitiles in h2o (used in boiling)UNO INT File unit assigned for output fileUNR INT Unit to read data fileVDEN DEL Vapour densityVRCH4 DEL Volatility ratio for CH4VRC02 DEL Volatility ratio for C02VRH2S DEL Volatility ratio for H2SVRNH3 DEL Volatility ratio for NH3VRT DEL Used in calculated volatility ratioX DEL Temporary storage

INTEGER MINDIM, NMAX, UNO, UNRDOUBLE PRECISION CPUMIN, R, STEPSZPARAMETER (MINDIM - 20, NMAX - 340, UNO - 6, UNR = 12)PARAMETER (CPUMIN - l.OD-35, R - 83.14241D-3, STEPSZ = l.OD-02)

R is 83.15 (bar cm**3 / deg mole) times divided by 1000(1 kg water). The density of the gas is in cm**3/gram, hense55.51 is implied.

INTEGER I, IADD, IBOIL, IBTOT, ICALL, ICD, ICSINTEGER IDDP, IDMIX(50) , IDMIN(IO) , IDSAT, IDSP(IO)INTEGER IHID(IO), INDX, INMIX, IPAGE, IPGLN, IPRIN2INTEGER IRUN, IRXDP(IO) , I SALT, I STF (10) , ITMIXINTEGER J, JJ, K, MXMNK, MXSP

LOGICAL DONE, MINSAT, MINDP, ERROR, CROSS, REVERS

CHARACTER * 1 TOF, CR

JMIX 0720JMIX 0730JMIX 0740|MIX 0750|MIX 0760|MIX 0770|MIX 0780|MIX 0790JMIX 0800JMIX 0810JMIX 0820JMIX 0830JMIX 0840|MIX 0850JMIX 0860JMIX 0870|MIX 0880|MIX 0890JMIX 0900JMIX 0910JMIX 0920JMIX 0930|MIX 0940JMIX 0950|MIX 0960JMIX 0970|MIX 0980|MIX 0990JMIX 1000IMIX 1010JMIX 1020JMIX 1030IMIX 1040IMIX 1050JMIX 1060IMIX 1070JMIX losoMIX 1090MIX 1100MIX 1110MIX 1120MIX 1130MIX 1140|MIX 1150IMIX 1160IMIX 1170JMIX 1180JMIX 1190MIX 1200MIX 1210MIX 1220MIX 1230MIX 1240MIX 1250MIX 1260MIX 1270MIX 1280MIX 1290

335

Page 336: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

CHARACTER * 5 DUM2(4) MIX 1300CHARACTER * 8 PAGEl(NMAX) , PAGE2(NMAX), PAGE3(NMAX) MIX 1310CHARACTER * 40 TITMIX, BUFFER MIX 1320

MIX 1330DOUBLE PRECISION ATCPRD, ADD, ADDMIN(MINDIM) , ADENS, ALFA(NMAX) MIX 1340DOUBLE PRECISION AMOL(50), ANALM(NMAX) , ANMMIX(NMAX) , ATEMP MIX 1350DOUBLE PRECISION AlMIX(5) , BDENS, BNMMIX(^MAX) , BTEMP, B2MIX(5) MIX 1360DOUBLE PRECISION COFFAC(IO) , CUNITS(NMAX) MIX 1370DOUBLE PRECISION DELTA, DENS, DFRAC1 , DIF(4,9), DING, DP MIX 1380DOUBLE PRECISION EQC, EQH, EXELT(35) MIX 1390DOUBLE PRECISION FBOIL, FCCSAT, FFB, FMIX(IO) MIX 1400DOUBLE PRECISION HEQ(IO) , LOGKTl(NMAX) , L(DOUBLE PRECISION KCH4, KHCH4, KC02 , KHC02DOUBLE PRECISION KNH3 , KHNH3 , M(NMAX) , MlDOUBLE PRECISION PH, PH20, PRESS, RXDP ( 10 ]DOUBLE PRECISION SIMIN(MINDIM) , STEP(4) , !

)GKT2(NMAX) MIX 1410KH2S, KHH2S MIX 1420NGAST(9), NL(4), NV(4) MIX 1430

MIX 14405TF(10), STOFAC(IO) MIX 1450

DOUBLE PRECISION TEMP, TITR(ll) , TK, TOTEL(5) , TRY(4,9) MIX 1460DOUBLE PRECISION VDEN, VRT, VRCH4, VRC02 , VRH2S, VRNH3, X MIX 1470

MIX 1480EXTERNAL ATCPRD, DPVT, GUESS, KHCH4, KHC02 , KHH2S , KHNH3 , SORTA MIX 1490EXTERNAL PAGE

INTRINSIC DABS, INDEX, LEN, MIN

COMMON /ALOGK / LOGKTl, LOGKT2COMMON /AMM / IDMIX, AMOL, ITMIX, INMIXCOMMON /EXTOT / EXELT, TOTEL, TITRCOMMON /FMFD / TOF, CR, TITMIXCOMMON /FORM / I PAGE, IPGLNCOMMON /MM / ANMMIX, A1MIX, B2MIX, FMD

ATEMP, BTEMP

MIX 1500MIX 1510MIX 1520MIX 1530MIX 1540

DFRAC1, DING, FBOIL MIX 1550MIX 1560MIX 1570MIX 1580

:, BNMMIX, ADENS, BDENS, MIX 1590MIX 1600

COMMON /MOLS / PH, ANALM, M, ALFA, CUNITS MIX 1610COMMON /NAMES I/ PAGE1, PAGE2 , PAGE3 MIX 1620COMMON /SAT / IDDP, IDSAT, DP, RXDP, IRXDP MIX 1630

SAVE ADDMIN, COFFAC, CROSS, DIF, DONESAVE IADD, IBOIL, IBTOT, ICS , ICD, IDMIN,SAVE MINDP, MINSAT, NGAST, NL, NV, REVERSSAVE TRY, VRCH4, VRC02 , VRH2S, VRNH3

DATA HEQ /l.O, 1.0, -1.0, 4.0, 2.0, -3.0

MIX 1640MIX 1650

IDSP MIX 1660SIMIN, STEP, STOFAC MIX 1670

MIX 1680MIX 1690

-1.0, 2.0, 1.0, O.O/ MIX 1700DATA IHID / 7, 8, 9, 12, 28, 31, 32, 33, 49, O/ MIX 1710

C

CCC

DATA DUM2 /' C02 ' , ' NH3', ' H2S', '

Store solution parameters if first call

CH4'/ MIX 1720MIX 1730

a = 1 MTY 1 7 h.0| H-L.A. J. / *+VJ

MIX 1750........................ | MIX 1760

JMIX 1770totel: (1) = htot; (2) = ohtot; (3) = tic (MIX 1780

IF (ICALL .EQ. 1) THENDO 10 I - 1, 5AIMIX(I) - TOTEL(I)

10 CONTINUE

DO 20 I - 1, MXSP + 44ANMMIX(I) - ANALM(I)

.................. ......\ MIX 1790MIX 1800MIX 1810MIX 1820MIX 1830MIX 1840MIX 1850MIX 1860MIX 1870

336

Page 337: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cccccc

20 CONTINUE

ADENS - DENSATEMP = TEMP

END IF

icall = 1; isalt = 0 -- first call for mixing two solutionsicall = 1; isalt = 1 -- first call for mixing speciesicall = 1; isalt - 2 -- first call for boiling a solutionicall = 1; isalt = 3 -- first call for diss/precip. of a mineral

IF (ICALL .EQ. 1 .AND. ISALT .EQ. 0) THENIF (IPGLN .GT. 55) CALL PAGEIPGLN = IPGLN + 4WRITE (UNO, 1250)IRUN = 1RETURN

ELSE IF (ICALL .EQ. 1 .AND. ISALT .EQ. 1 .AND. ITMIX .GT. 0) THENIF (IPGLN .GT. (59-8-ITMIX)) CALL PAGEIPGLN - IPGLN + 5WRITE (UNO, 1070)DO 40 I - 1, ITMIX

INDX - IDMIX(I)IF (INDX .EQ. 11) INDX - 12EQH - O.ODOODO 30 J - 1,9

IF (INDX .EQ. IHID(J)) EQH - HEQ(J)30 CONTINUE

IF (DABS(EQH) .GT. CPUMIN) TOTEL(l) = TOTEL(l) +(EQH * AMOL(I))

EQC =0.0IF (INDX .EQ. 7) EQC - 1.0IF (INDX .EQ. 98) EQC - 1.0IF (INDX .EQ. 207) EQC = 1.0IF (INDX .EQ. 208) EQC - 2.0IF (INDX .EQ. 209) EQC - 3.0IF (DABS (EQC) .GT. CPUMIN) TOTEL(3) - TOTEL(3) +

(EQC * AMOL(I))

ANALM(INDX) = ANALM(INDX) + AMOL(I)IPGLN - IPGLN + 1WRITE (UNO, 1080) INDX, PAGEl(INDX) , AMOL(I) , EQH, EQC

IF (ANALM(INDX) .LT. 0.0 .AND. ANMMIX(INDX) .GT. 0.0) THENWRITE (UNO, 1100) PAGEl(INDX), AMOL(I) , ANMMIX(INDX)STOP

END IF

40 CONTINUEIPGLN - IPGLN + 3WRITE (UNO, 1090)ICALL = 3J = 0

DO 50 I - 1, 28

MIX 1880MIX 1890MIX 1900MIX 1910MIX 1920MIX 1930|MIX 1940JMIX 1950JMIX 1960|MIX 1970|MIX 1980JMIX 1990MIX 2000MIX 2010MIX 2020MIX 2030MIX 2040MIX 2050MIX 2060MIX 2070MIX 2080MIX 2090MIX 2100MIX 2110MIX 2120MIX 2130MIX 2140MIX 2150MIX 2160MIX 2170MIX 2180MIX 2190MIX 2200MIX 2210MIX 2220MIX 2230MIX 2240MIX 2250MIX 2260MIX 2270MIX 2280MIX 2290MIX 2300MIX 2310MIX 2320MIX 2330MIX 2340MIX 2350MIX 2360MIX 2370MIX 2380MIX 2390MIX 2400MIX 2410MIX 2420MIX 2430MIX 2440MIX 2450

337

Page 338: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ccc

ccccc

cccccc

J - J + 1IF (J .EQ. 8) J - 12IF (J .EQ. 17) J - 18IF (J .EQ. 19) J - 21IF (J .EQ. 24) J - 25IF (J .EQ. 34) J - 48IF (J .EQ. 49) J - 169IF (J .EQ. 170) J - 210EXELT(I) - ANALM(J)

50 CONTINUE

EXELT(29) - ANALM(7)EXELT(30) - ANALM(246)EXELT(31) - ANALM(265)EXELT(32) - ANALM(136)EXELT(33) - ANALM(MXSP+1)EXELT(34) - ANALM(MXSP+16)EXELT(35) - ANALM(MXSP+31)

TITR( 1) - EXELT(29)TITR( 2) - EXELT( 6)TITR( 3) - EXELT(22)TITR( 4) - EXELT(21)TITR( 5) - EXELT( 5)TITR( 6) - EXELT(26)TITR( 7) - EXELT(25)TITR( 8) - EXELT(30)TITR( 9) - EXELT(31)TITR(IO) - EXELT(33)TITR(ll) - EXELT(34)

RETURNEND IF

Precipitation / dissolution of a mineral

MIX 2460MIX 2470MIX 2480MIX 2490MIX 2500MIX 2510MIX 2520MIX 2530MIX 2540MIX 2550MIX 2560MIX 2570MIX 2580MIX 2590MIX 2600MIX 2610MIX 2620MIX 2630MIX 2640MIX 2650MIX 2660MIX 2670MIX 2680MIX 2690MIX 2700MIX 2710MIX 2720MIX 2730MIX 2740MIX 2750MIX 2760MIX 2770MIX 2780MIX 2790

1 MTV 1 Of\f\________________________| Ml A zoUU

(MIX 2810i MTV i o on____________________.___| Ml A ZoZU

MIX 2830L _______________________ | MIX 2840

On first call, read the dissolution reactions of the minerals, |MIX 2850one at a time, and store the one required. If we are dissolving JMIX 2860/ppt a fixed amount of mineral, this will be the only call. (MIX 2870

1 MTV OQQft____________-___________| Ml A ZooU

MIX 2890i MTV oonn________________________| Ml A z.y(J(J

The following open statement have been changed out by |MIX 2910Ernie Perkins (ORSD, ARC) in order to allow an command JMIX 2920proceedure under VMS 4.5 on DEC VAX's toexternal to the program.

assign the files |MIX 2930JMIX 29401 MTV OQ^ft________________________| Ml A z.yD(J

MIX 2960IF ((ISALT .EQ. 3 .OR. (ISALT .EQ. 1 .AND. ITMIX ,LT. 0)) .AND. MIX 2970

C

ICALL .EQ. 1) THENANMMIX(7) - TOTEL(3)OPEN (UNR, FILE - 'RXN.TBL' , STATUS -

MIX 2980MIX 2990

'OLD', IOSTAT - K) MIX 3000OPEN (UNR, STATUS - 'OLD', shared, readonly, IOSTAT - K) MIX 3010

IF (K .NE. 0) THENIF (IPGLN .GE. 55) CALL PAGE

MIX 3020MIX 3030

338

Page 339: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

IPGLN - IPGLN + 4WRITE (UNO, 1030)STOP

END IF

MINSAT - .FALSE.MINDP = .FALSE.IF (IDDP .EQ. 0) MINDP - .TRUE.IF (IDSAT .EQ. 0) MINSAT - .TRUE.

ERROR - .FALSE.DO 80 J - 1, MXMNK

READ (UNR, 1000, IOSTAT=K) I, (STF(JJ) , ISTF(JJ) , JJ-1,10)IF (K .NE. 0) THEN

IF (IPGLN .GT. 55) CALL PAGEIPGLN - IPGLN + 5WRITE (UNO, 1040) JSTOP

END IFIF (.NOT. MINSAT) THEN

IF (IDSAT .EQ. I) THENMINSAT = .TRUE.ICS = 0DO 60 K = 1, 10

IDSP(K) = ISTF(K)COFFAC(K) = STF(K)IF (DABS(COFFAC(K)) .GT. CPUMIN) ICS = K

60 CONTINUEIF (STF(l) .GT. 900.) THENERROR = .TRUE.IF (IPGLN .GT. 56) CALL PAGEIPGLN = IPGLN + 3WRITE (UNO, 1050) PAGE3(I)

END IFEND IF

END IFIF (.NOT. MINDP) THEN

IF (IDDP .EQ. I) THENMINDP = .TRUE.ICD = 0DO 70 K - 1, 10

IDMIN(K) - ISTF(K)STOFAC(K) = STF(K)IF (DABS(STOFAC(K)) .GT. CPUMIN) ICD=K

70 CONTINUEIF (STF(l) .GT. 900.) THENERROR = .TRUE.IF (IPGLN .GT. 56) CALL PAGEIPGLN - IPGLN + 3WRITE (UNO, 1050) PAGE3(I)

END IFEND IF

END IF

C -----------------------.-.-._.............C In the absence of an ANSI standard WHILE statement

MIX 3040MIX 3050MIX 3060MIX 3070MIX 3080MIX 3090MIX 3100MIX 3110MIX 3120MIX 3130MIX 3140MIX 3150MIX 3160MIX 3170MIX 3180MIX 3190MIX 3200MIX 3210MIX 3220MIX 3230MIX 3240MIX 3250MIX 3260MIX 3270MIX 3280MIX 3290MIX 3300MIX 3310MIX 3320MIX 3330MIX 3340MIX 3350MIX 3360MIX 3370MIX 3380MIX 3390MIX 3400MIX 3410MIX 3420MIX 3430MIX 3440MIX 3450MIX 3460MIX 3470MIX 3480MIX 3490MIX 3500MIX 3510MIX 3520MIX 3530MIX 3540MIX 3550MIX 3560MIX 3570

-|MIX 3580 |MIX 3590

- |MIX 3600MIX 3610

339

Page 340: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cccccccccccc

ccccc

IF (MINSAT .AND. MINDP) GO TO 9080 CONTINUE

IF (.NOT. MINSAT) THENIF (IPGLN .GT. 54) CALL PAGEIPGLN = IPGLN + 5WRITE (UNO, 1010) IDSAT

END IF

IF (.NOT. MINDP) THENIF (IPGLN .GT. 54) CALL PAGEIPGLN = IPGLN + 5WRITE (UNO, 1020) IDDP

END IF

IF ((.NOT. MINDP .OR. .NOT. MINSAT) .OR. ERROR) STOP

90 CONTINUEIF (IDSAT .EQ. 0) MINSAT = .FALSE.IF (IDDP .EQ. 0) MINDP = .FALSE.

CLOSE (UNR)

END IF

The appropriate reactions have been found. Make titles.Prepare the first step/take the first step

IDDP > 0 IDSAT > 0 ITMIX = 0 Dissolve/ppt IDDP til saturationwith IDSAT

IDDP = 0 IDSAT > 0 ITMIX = 0 dissolve/remove aqueous componentstil saturation with IDSAT

IDDP > 0 IDSAT = 0 ITMIX < 0 dissolve a specified amount ofIDSAT (note that this is specifiedby I CALL-1, I SALT-1, and ITMIX<0)

IF (ISALT .EQ. 3 .AND. ITMIX .EQ. 0 .AND. MINSAT.AND. ICALL .EQ. 1 .AND. MINDP ) THEN

IF (DP .LT. (CPUMIN * (-1.0))) THENTITMIX = PAGE3(IDDP)//' PRECIPITATED

ELSE IF (DP .GT. CPUMIN) THENTITMIX = PAGE3(IDDP)//' DISSOLVED

ELSETITMIX = PAGE3(IDDP)//' PPT/DISS

END IFELSE IF (ISALT .EQ. 3 .AND. ITMIX .EQ. 0 .AND. MINSAT

.AND. ICALL .EQ. 1 .AND. .NOT. MINDP) THEN

If we are adding components, make up name, use * fornon- trivial blanks, remove all other blaflks , thenchange * to blank

K =1ICD = 0

MIX 3620MIX 3630MIX 3640MIX 3650MIX 3660MIX 3670MIX 3680MIX 3690MIX 3700MIX 3710MIX 3720MIX 3730MIX 3740MIX 3750MIX 3760MIX 3770MIX 3780MIX 3790MIX 3800MIX 3810MIX 3820MIX 3830MIX 3840MIX 3850MIX 3860|MIX 3870|MIX 3880JMIX 3890|MIX 3900(MIX 3910(MIX 3920JMIX 3930(MIX 3940|MIX 3950|MIX 3960(MIX 3970|MIX 3980MIX 3990MIX 4000MIX 4010MIX 4020MIX 4030MIX 4040MIX 4050MIX 4060MIX 4070MIX 4080MIX 4090MIX 4100MIX 4110|MIX 4120JMIX 4130(MIX 4140(MIX 4150|MIX 4160MIX 4170MIX 4180MIX 4190

340

Page 341: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

DO 130 I - 1, 10IF (IRXDP(I) .NE. 0) THEN

IDMIN(I) - IRXDP(I) ICD = ICD + 1 STOFAC(I) = RXDP(I)

END IFIF (IRXDP(I) .NE. 0 .AND. K .LE. LEN(TITMIX)) THEN

IF (K .NE. 1) THENBUFFER(1:1) - '*'

ELSEBUFFER(1:1) = ' '

END IFWRITE (BUFFER(2:11), '(F10.3)') RXDP(I) BUFFER(12:22) - ' ( '

100

110

PAGE1(IRXDP(I) )

CONTINUEJJ = INDEX(BUFFER,'0IF (JJ .NE. 0) THENBUFFER(JJ:JJ) - 'GO TO 100

END IF CONTINUEJJ = INDEX(BUFFER,'. IF (JJ .NE. 0) THENBUFFER(JJ:JJ) - 'GO TO 110

END IF DO 120 JJ = 1, 22

IF (BUFFER(JJ:JJ) K

.NE. ' ' .AND.LE. LEN(TITMIX)) THEN

120

130

140

TITMIX(K:K) - BUFFER(JJ:JJ) K = K + 1

ELSE IF (K .GT. LEN(TITMIX)) THEN K = LEN(TITMIX) TITMIX(K-2:K) = K = K + 10 GO TO 110

END IF CONTINUE

END IF CONTINUE

DO 140 I = 1, KIF (TITMIX(I:I) .EQ. '*') TITMIX(I:I)

CONTINUE

ELSE IF (ITMIX .LT. 0 .AND. ICALL .EQ. 1IF (IPGLN .GT. (59-8-ITMIX)) CALL PAGEIPGLN = IPGLN + 5WRITE (UNO,1110) PAGE3(IDDP)DO 160 I = 1, 10

INDX = IDMIN(I) IF (INDX .LE. 0) GO TO 160 IF (INDX .EQ. 11) INDX = 12

.AND. ISALT .EQ,

EQH = O.ODOO DO 150 J = 1, 9

IF (INDX .EQ. IHID(J)) EQH HEQ(J)

MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX

1 ) THENMIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX

4200421042204230424042504260427042804290430043104320433043404350436043704380439044004410442044304440445044604470448044904500451045204530454045504560457045804590460046104620463046404650466046704680469047004710472047304740475047604770

341

Page 342: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

150 CONTINUEIF (DABS(EQH) .GT. CPUMIN) TOTEL(l)

160

170

TOTEL(l) + (AMOL(l) * STOFAC(I) *EQC)

EQC - 0.0 IF (INDX .EQ. IF (INDX .EQ. IF (INDX .EQ. IF (INDX .EQ. IF (INDX .EQ

7) EQC98) EQC

207) EQC208) EQC209) EQC

1.0 2.0 3.0

IF (DABS(EQC) .GT. CPUMIN) TOTEL(3) = TOTEL(3) + (AMOL(l) *STOFAC(I) * EQC)

ANALM(INDX) = ANALM(INDX) + (AMOL(l) * STOFAC(I)) IPGLN - IPGLN + 1WRITE (UNO,1080) INDX, PAGEl(INDX), (AMOL(1)*STOFAC(I)),

EQH, EQC

IF (ANALM(INDX) .LT. 0.0 .AND. ANMMIX(INDX) .GT. 0.0) THEN WRITE (UNO, 1100) PAGEl(INDX), (AtyOL(I) * STOFAC(I)),

ANMMIX(INDX) STOP

END IF

CONTINUEIPGLN = IPGLN + 3 WRITE (UNO,1090) ICALL = 3

J = 0DO 170 I -

J = J + 1IF (J IF (J IF (J IF (J IF (J IF (J

EQ. EQ. EQ. EQ. EQ. EQ. EQ.

EXELT(I) CONTINUE

28

8) J17) J19) J24) J34) J49) J

IF (J 170) J ANALM(J)

1218212548169210

EXELT(29) EXELT(30) EXELT(31) EXELT(32) EXELT(33) EXELT(34) EXELT(35)

TITR( 1) TITR( 2) TITR( 3) TITR( 4) -TITR( 5) TITR( 6) -TITR( 7) -TITR( 8) -

= ANALM(7)- ANALM(246)- ANALM(265) = ANALM(136) = ANALM(MXSP+1) = ANALM(MXSP+16)- ANALM(MXSP+31)

EXELT(29) EXELT( 6) EXELT(22) EXELT(21) EXELT( 5) EXELT(26) EXELT(25) EXELT(30)

MIX 4780 MIX 4790 MIX 4800 MIX 4810 MIX 4820 MIX 4830 MIX 4840 MIX 4850 MIX 4860 MIX 4870 MIX 4880 MIX 4890 MIX 4900 MIX 4910 MIX 4920 MIX 4930 MIX 4940 MIX 4950 MIX 4960 MIX 4970 MIX 4980 MIX 4990 MIX 5000 MIX 5010 MIX 5020 MIX 5030 MIX 5040 MIX 5050 MIX 5060 MIX 5070 MIX 5080 MIX 5090 MIX 5100 MIX 5110 MIX 5120 MIX 5130 MIX 5140 MIX 5150 MIX 5160 MIX 5170 MIX 5180 MIX 5190 MIX 5200 MIX 5210 MIX 5220 MIX 5230 MIX 5240 MIX 5250 MIX 5260 MIX 5270 MIX 5280 MIX 5290 MIX 5300 MIX 5310 MIX 5320 MIX 5330 MIX 5340 MIX 5350

342

Page 343: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

TITR( 9) - EXELT(31)TITR(IO) - EXELT(33)TITR(ll) - EXELT(34)RETURN

ELSE IF (ICALL .EQ. 1 .AND. ISALT .EQ. 3) THENIF (IPGLN .GT. 55) CALL PAGE

IPGLN - IPGLN + 4WRITE (UNO, 1060) ITMIX, IDSAT, IDDPSTOP

END IF

IF (IDDP .NE. 0 .AND. IPRIN2 .NE. 0) THENIF (IPGLN .GT. 56) CALL PAGEIPGLN - IPGLN + 2WRITE (UNO, 1120) PAGE3(IDDP), TITMIX(9:25)

END IF

C Prepare first steps ....

IF (ISALT .EQ. 3 .AND. ITMIX .EQ. 0 .AND. ICALL .EQ. 1) THENIADD - 1JJ - 1SIMIN(IADD) - ATCPRD (ICS, IDSP, COFFAC, ALFA)SIMIN(IADD) - SIMIN(IADD) - LOGKT2 (IDSAT)ADDMIN(IADD) - 0.0IF (DABS (SIMIN( IADD)) .LT. FCCSAT) THEN

ICALL - 1IF (IPGLN .GT. 55) CALL PAGEIPGLN - IPGLN + 3WRITE (UNO, 1150) TITMIX, ADDMIN(IADD)RETURN

END IFJ - 0DELTA - 1000.0DO 190 I - 1, 10

IF (IDSP(I) .NE. 0) THENIF (M(IDSP(I)) .LT. DELTA .AND.

M(IDSP(I)) .GT. CPUMIN) THENDO 180 K - 1, 10

IF (IDMIN(K) .EQ. IDSP(I)) THENIF (STOFAC(K) .GT. 0) THEN

J - 1ELSE

J - -1END IFDELTA - M(IDSP(I))

END IF180 CONTINUE

END IFEND IF

190 CONTINUE

IF (DABS (DP) .GT. CPUMIN) THENADD - STEPSZ * DPREVERS - .FALSE.

ELSE IF ((SIMIN(IADD) .LT. 0.0 .AND. J .GE. 0) .OR.

MIX 5360MIX 5370MIX 5380MIX 5390MIX 5400MIX 5410MIX 5420MIX 5430MIX 5440MIX 5450MIX 5460MIX 5470MIX 5480MIX 5490MIX 5500MIX 5510MIX 5520

i MTV > <>^n- - | nlA jj j(J |MIX 5540

--|MIX 5550MIX 5560MIX 5570MIX 5580MIX 5590MIX 5600MIX 5610MIX 5620MIX 5630MIX 5640MIX 5650MIX 5660MIX 5670MIX 5680MIX 5690MIX 5700MIX 5710MIX 5720MIX 5730MIX 5740MIX 5750MIX 5760MIX 5770MIX 5780MIX 5790MIX 5800MIX 5810MIX 5820MIX 5830MIX 5840MIX 5850MIX 5860MIX 5870MIX 5880MIX 5890MIX 5900MIX 5910MIX 5920MIX 5930

343

Page 344: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

.GT. 0.0ADDREVERS

ELSEADDREVERS

END IFIF (DABS(DP) .LT. CPUMIN) DP ADDMIN(IADD+1) = ADD CROSS = .FALSE.

(SIMIN(IADD) = STEPSZ = .TRUE.

STEPSZ * (-1.0) .TRUE.

.AND. J .LT. 0)) THEN

1.ODOO

ELSE IF (ISALT .EQ. 3 .AND. ICALL .GT. 1) THEN IADD = IADD + 1SIMIN(IADD) = ATCPRD (ICS, IDSP, COFFAC, ALFA) SIMIN(IADD) = SIMIN(IADD) - LOGKT2(IDSAT) IF (DABS(SIMIN(IADD)) .LT. FCCSAT) THE1*

ICALL = 1IF (IPGLN .GT. 55) CALL PAGEIPGLN = IPGLN + 3WRITE (UNO,1150) TITMIX, ADDMIN(IADD)RETURN

END IF

IF (.NOT. CROSS) THENIF ((SIMIN(IADD) * SIMIN(IADD-l)) .LT. 0.0) THEN

CROSS = .TRUE.ELSE IF (DABS(SIMIN(IADD)) .LT. DABS(SIMIN(IADD-1))) THEN ADD = ADDMIN(IADD) * 10.0 REVERS = .FALSE.

ELSE IF (REVERS) THEN ADD = ADD * (-0.5) IF ((DABS(ADD - ADDMIN(IADD))) .LT. l.OE-12) THENWRITE (UNO, 1140) PAGE3(IDSAT), StlMIN(IADD), ADDMIN(IADD) STOP

END IF ELSEADD = (ADDMIN(IADD) - ADDMIN(IADD-l)) / 2.0IF ((DABS (ADD) - DABS(ADDMIN( IADD) ):) .LT. l.OE-12) THENWRITE (UNO, 1140) PAGE3(IDSAT), SIMIN(IADD), ADDMIN(IADD) STOP

END IF END IF

END IF JJ = IADD IF (CROSS) THENCALL SORTA(ADDMIN, SIMIN, IADD, JJ)

DO 200 I - 2, IADD J - I - 1IF ((SIMIN(I) * SIMIN(J))

200 CONTINUE

ELSEJ - 6

END IF210 IF (IADD .GT. 6) THEN

IF (J .GT. 3) THEN DO 220 I - 1, IADD-1

.LT. 0.0) GO TO 210

MIX 5940 MIX 5950 MIX 5960 MIX 5970 MIX 5980 MIX 5990 MIX 6000 MIX 6010 MIX 6020 MIX 6030 MIX 6040 MIX 6050 MIX 6060 MIX 6070 MIX 6080 MIX 6090 MIX 6100 MIX 6110 MIX 6120 MIX 6130 MIX 6140 MIX 6150 MIX 6160 MIX 6170 MIX 6180 MIX 6190 MIX 6200 MIX 6210 MIX 6220 MIX 6230 MIX 6240 MIX 6250 MIX 6260 MIX 6270 MIX 6280 MIX 6290 MIX 6300 MIX 6310 MIX 6320 MIX 6330 MIX 6340 MIX 6350 MIX 6360 MIX 6370 MIX 6380 MIX 6390 MIX 6400 MIX 6410 MIX 6420 MIX 6430 MIX 6440 MIX 6450 MIX 6460 MIX 6470 MIX 6480 MIX 6490 MIX 6500 MIX 6510

344

Page 345: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

SIMIN(I) - SIMIN(I+1)ADDMIN(I) - ADDMIN(I+1)

220 CONTINUEJJ = JJ - 1J - J - 1

END IFIADD = IADD - 1

END IFIF (CROSS) THEN

CALL GUESS(ADDMIN, SIMIN, ADD, IADD)X - DABS(ADDMIN(J) - ADDMIN(J+1)) / 10000. ODOOIF (DABS (ADDMIN(J) - ADD) .LT. X .OR.

DABS (ADDMIN(J+1) - ADD) .LT. X ) THENADD = (ADDMIN(J) + ADDMIN(J+1)) / 2.0

END IFEND IFADDMIN(IADD+1) = ADD

END IF

C Change the original solution parameters for the new step andC go back to calculate species distribution

IF (ISALT .EQ. 3) THEN230 CONTINUE

EQC =0.0EQH =0.0ANALM(7) - TOTEL(3)ANALM(98) =0.0IF (DABS (DP) .LT. CPUMIN) DP - l.ODOODO 240 I = 1, ICD

J - IDMIN(I)IF (J .EQ. 0) GO TO 240IF (J .EQ. 11) J = 12IF ( J .EQ. 7 .OR. J .EQ. 8 .OR. J .EQ. 49) THEN

EQH = EQH + (STOFAC(I) * ADD)ELSE IF (J .EQ. 28 .OR. J .EQ. 33 .OR. J .EQ. 97) THEN

EQH - EQH + (STOFAC(I) * ADD * 2. ODOO)ELSE IF (J .EQ. 12) THEN

EQH - EQH + (STOFAC(I) * ADD * 4. ODOO)ELSE IF (J .EQ. 32 .OR. J .EQ. 9) THEN

EQH = EQH - (STOFAC(I) * ADD)ELSE IF (J .EQ. 31) THEN

EQH = EQH - (STOFAC(I) * ADD * 3. ODOO)END IF

IF (J .EQ. 7) EQC = (ADD * STOFAC(I) ) + EQCIF (J .EQ. 97) EQC - (ADD * STOFAC(I) ) + EQCIF (J .EQ. 98) EQC = (ADD * STOFAC(I) ) + EQCIF (J .EQ. 207) EQC = (ADD * STOFAC(I) ) + EQCIF (J .EQ. 208) EQC = (ADD * STOFAC(I) * 2.0) + EQCIF (J .EQ. 209) EQC - (ADD * STOFAC(I) * 3.0) + EQCIF (J .EQ. 97 .OR. J .EQ. 98 .OR. J .EQ. 207 .OR.

J .EQ. 208 .OR. J .EQ. 209) J - 7

ANALM(J) - ANMMIX(J) + (ADD * STOFAC(I))

MIX 6520MIX 6530MIX 6540MIX 6550MIX 6560MIX 6570MIX 6580MIX 6590MIX 6600MIX 6610MIX 6620MIX 6630MIX 6640MIX 6650MIX 6660MIX 6670MIX 6680MIX 6690MIX 6700

--|MIX 6710 |MIX 6720|MIX 6730

--[MIX 6740MIX 6750MIX 6760MIX 6770MIX 6780MIX 6790MIX 6800MIX 6810MIX 6820MIX 6830MIX 6840MIX 6850MIX 6860MIX 6870MIX 6880MIX 6890MIX 6900MIX 6910MIX 6920MIX 6930MIX 6940MIX 6950MIX 6960MIX 6970MIX 6980MIX 6990MIX 7000MIX 7010MIX 7020MIX 7030MIX 7040MIX 7050MIX 7060MIX 7070MIX 7080MIX 7090

345

Page 346: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

240

250

IF (J .NE. 8 .AND. J .NE. 9 .AND. J .NE. 10 .AND. (ADD * STOFAC(I)) .LT. 0.0 .AND.

ANMMIX(J) .LE. CPUMIN) THEN WRITE (UNO, 1160) STOP

END IF IF (J .NE. 8 .AND. J .NE. 9 .AND. J .NE. 10

.AND. ANALM(J) .LE. 0.6) THEN ADD = (ANMMIX(J) / STOFAC(I)) * (^1.0) ADD = ADD - (ADD / (DABS(DP) * 10^0**(IADD+3))) ADDMIN(IADD+1) = ADD GO TO 230

END IF

CONTINUETOTEL(l) = AlMIX(l) + EQHTOTEL(3) = A1MIX(3) + EQCIF (TOTEL(3) .GT. CPUMIN) THENANALM(7) = TOTEL(3)ANALM(98) =0.0

ELSE IF (A1MIX(3) .GT. CPUMIN) THENADD - ADD / 0.9ADDMIN(IADD+1) - ADDGO TO 230

END IF ICALL - 3

IF (IPRIN2 .NE. 0) THENIF (IPGLN .GT. 55) CALL PAGEIPGLN = IPGLN + 3IF (IDDP .NE. 0) THENWRITE (UNO,1130) PAGE3(IDSAT)

ELSEWRITE (UNO,1130) PAGE3(IDSAT)

END IF END IF

SIMIN(JJ), TITMIX(1:40),

SIMIN(JJ), TITMIX(1:40),

J = 0DO 250 I - :

J - J + 128

IF (JIF (JIF (JIF (JIF (JIF (JIF (J

.EQ.

.EQ. EQ, ,EQ, ,EQ, .EQ. .EQ.

8) 17) J 19) J 24) J 34) J

J -

49) 170)

1218212548169210

EXELT(I) CONTINUE

EXELT(29) EXELT(30) EXELT(31) EXELT(32) EXELT(33) EXELT(34) EXELT(35)

ANALM(J)

ANALM(7)ANALM(246)ANALM(265)ANALM(136)ANALM(MXSP+1)ANALM(MXSP+16)ANALM(MXSP+31)

MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX

ADD MIX MIX

ADD MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX

7100711071207130714071507160717071807190720072107220723072407250726072707280729073007310732073307340735073607370738073907400741074207430744074507460747074807490750075107520753075407550756075707580759076007610762076307640765076607670

346

Page 347: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ccc

ccc

TITR( 1) - EXELT(29)TITR( 2) - EXELT( 6)TITR( 3) - EXELT(22)TITR( 4) - EXELT(21)TITR( 5) = EXELT( 5)TITR( 6) = EXELT(26)TITR( 7) = EXELT(25)TITR( 8) = EXELT(30)TITR( 9) = EXELT(31)TITR(IO) = EXELT(33)TITR(ll) = EXELT(34)RETURN

END IF

Boiling routine -- Icall = 1 on the first call only

IF (ISALT .EQ. 2) THENFFB = 1.0 - FBOILIF (ICALL .EQ. 1) THENWRITE (BUFFER, 1230) FBOILREAD (BUFFER, '(A)') TITMIXIF (IPGLN .GT. 53) CALL PAGEIPGLN = IPGLN 4- 4WRITE (UNO, 1170) FBOIL

Calculate the concentration of non-volatile species after boiling

DO 260 I = 1, MXSP+30ANALM(I) = ANMMIX(I) / FFB

260 CONTINUE

J = 0DO 270 I = 1, 28

J = J + 1IF (J .EQ. 8) J = 12IF (J .EQ. 17) J = 18IF (J .EQ. 19) J = 21IF (J .EQ. 24) J = 25IF (J .EQ. 34) J = 48IF (J .EQ. 49) J - 169IF (J .EQ. 170) J = 210EXELT(I) = ANALM(J)

270 CONTINUE

EXELT(29) = ANALM(7)EXELT(30) = ANALM(246)EXELT(31) = ANALM(265)EXELT(32) = ANALM(136)EXELT(33) = ANALM(MXSP+1)EXELT(34) = ANALM(MXSP+16)EXELT(35) = ANALM(MXSP+31)

TITR( 1) - EXELT(29)TITR( 2) - EXELT( 6)

MIX 7680MIX 7690MIX 7700MIX 7710MIX 7720MIX 7730MIX 7740MIX 7750MIX 7760MIX 7770MIX 7780MIX 7790MIX 7800MIX 7810|MIX 7820JMIX 7830JMIX 7840MIX 7850MIX 7860MIX 7870MIX 7880MIX 7890MIX 7900MIX 7910MIX 7920MIX 7930MIX 7940|MIX 7950|MIX 7960[MIX 7970MIX 7980MIX 7990MIX 8000MIX 8010MIX 8020MIX 8030MIX 8040MIX 8050MIX 8060MIX 8070MIX 8080MIX 8090MIX 8100MIX 8110MIX 8120MIX 8130MIX 8140MIX 8150MIX 8160MIX 8170MIX 8180MIX 8190MIX 8200MIX 8210MIX 8220MIX 8230MIX 8240MIX 8250

347

Page 348: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

r1

cr1

r1

Cr1\j -

Ccr1

TITR( 3) = EXELT(22)TITR( 4) - EXELT(21)TITR( 5) - EXELT( 5)TITR( 6) = EXELT(26)TITR( 7) = EXELT(25)TITR( 8) - EXELT(30)TITR( 9) = EXELT(31)TITR(IO) = EXELT(33)TITR(ll) = EXELT(34)

If steam is being added, change appropri

IF (FBOIL .LT. O.DO) THENTOTEL(l) = TOTEL(l) / FFBTOTEL(2) = TOTEL(2) / FFBTOTEL(3) = TOTEL(3) / FFBANALM(7) = TOTEL(3)ANALM(98) =0.0EXELT(29) = ANALM(7)TITR( 1) = EXELT(29)I CALL - 3RETURN

END IF

MIXMIXMIXMIXMIXMIXMIXMIXMIXMIX

.....-----..----------.-- | MIXate parameters, quit JMIX------------------------- | MIX

MIXMIXMIXMIXMIXMIXMIXMIXMIXMIXMIXMIXMIX

------------------------- j MIXCalculate the partitioning of volatile species (co2 ,nh3 ,h2s ,ch4) |MIX

TK = TEMP + 273.15KH2S = KHH2S(TK, Ml)KNH3 = KHNH3(TK)KC02 = KHC02(TK, Ml)IF (PRESS .LT. PH20) PRESS = PH20

X - l.ODOOKCH4 = KHCH4(TK, Ml, X)

----------.----.--------- j MIXMIXMIXMIXMIXMIXMIXMIXMIXMIXMIX

.-...--------.--------.-. | MIXCalculate vapor density (routine taken from drummond's program) |MIXCalculate volatility ratios

Ml - Ml - l.ODOOCALL DPVT (TEMP, Ml, PRESS, VDEN)Ml - Ml + l.ODOO

VRT = VDEN * R * (TEMP + 273.15)VRC02 = KC02 / VRTVRNH3 = KNH3 / VRTVRH2S = KH2S / VRTVRCH4 - KCH4 / VRTIF (IPGLN .GT. 51) CALL PAGEIPGLN = IPGLN + 6WRITE (UNO, 1190) ' KH2S - ', KH2S ,

' KC02 = ' , KC02 ,' VRC02 = ' , VRC02 ,

|MIX..-.----------.--------.. j MIX

MIXMIXMIXMIXMIXMIXMIXMIXMIXMIXMIXMIX

' KNH3 = ' , KNH3 , MIX' KCH4 = ' , KCH4 , MIX' VRNH3 = ' , VRNH3 , MIX

8260827082808290830083108320833083408350836083708380839084008410842084308440845084608470848084908500851085208530854085508560857085808590860086108620863086408650866086708680869087008710872087308740875087608770878087908800881088208830

348

Page 349: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

VRH2S - ', VRH2S, ' VRCH4 - ', VRCH4, VRT - ', VRT, ' VDEN - ', VDEN

280

IBTOT - 1 IBOIL - 1

DO 280 I - 1, 4NV(I) = 0.0NL(I) = 0.0STEP(I) - 0.0

CONTINUE

IF (A1MIX(3) .GT. CPUMIN) THENTRY(1,IBOIL)NL(1)NV(1)DIF(1,IBOIL)STEP(l)NL(1)

TOTEL(3)TOTEL(3)VRC02 * (M(97) / FFB) * FBOILA1MIX(3) - (TOTEL(3) * FFB + NV(1))A1MIX(3) / ((TOTEL(3) * FFB)(STEP(l) - l.ODOO) * NL(1)

IF (NL(1) .LT. CPUMIN) THENNL(1) =0.1 * TRY(1,IBOIL) STEP(l) - NL(1) - TRY(1,IBOIL)

END IF

IF (NL(1) .GT. A1MIX(3) * FFB) THEN NL(1) =0.9 * A1MIX(3) * FFB STEP(l) - NL(1) - TRY(1,IBOIL)

END IF END IF

IF (ANMMIX(32) TRY(2,IBOIL) NL(2) NV(2)DIF(2,IBOIL) STEP(2) NL(2)

.GT. CPUMIN) THEN ANALM(32) ANALM(32) VRNH3 * (M(147) / FFB) * FBOIL ANMMIX(32) - (ANALM(32) * FFB + ANMMIX(32) / ((ANALM(32) * FFB) (STEP(2) - l.ODOO) * NL(2)

NV(2)) + NV(2))

IF (NL(2) NL(2) STEP(2)

END IF

.LT. CPUMIN) THEN =0.1 * TRY(2,IBOIL) - NL(2) - TRY(2,IBOIL)

IF (NL(2) .GT. (ANMMIX(32) * FFB)) THEN NL(2) =0.9 * ANMMIX(32) * FFB STEP(2) = NL(2) - TRY(2,IBOIL)

END IF END IF

IF (ANMMIX(33) TRY(3,IBOIL) NL(3) NV(3)DIF(3,IBOIL) STEP(3) NL(3)

.GT. CPUMIN) THEN ANALM(33) ANALM(33)VRH2S * (M(33) / FFB) * FBOIL ANMMIX(33) - (ANALM(33) * FFB + NV(3)) ANMMIX(33) / ((ANALM(33) * FFB) + NV(3)) (STEP(3) - l.ODOO) * NL(3)

MIX 8840 MIX 8850 MIX 8860 MIX 8870 MIX 8880 MIX 8890 MIX 8900 MIX 8910 MIX 8920 MIX 8930 MIX 8940 MIX 8950 MIX 8960 MIX 8970 MIX 8980 MIX 8990 MIX 9000 MIX 9010 MIX 9020 MIX 9030 MIX 9040 MIX 9050 MIX 9060 MIX 9070 MIX 9080 MIX 9090 MIX 9100 MIX 9110 MIX 9120 MIX 9130 MIX 9140 MIX 9150 MIX 9160 MIX 9170 MIX 9180 MIX 9190 MIX 9200 MIX 9210 MIX 9220 MIX 9230 MIX 9240 MIX 9250 MIX 9260 MIX 9270 MIX 9280 MIX 9290 MIX 9300 MIX 9310 MIX 9320 MIX 9330 MIX 9340 MIX 9350 MIX 9360 MIX 9370 MIX 9380 MIX 9390 MIX 9400 MIX 9410

349

Page 350: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

290300

IF (NL(3) NL(3) STEP(3)

END IF

.LT. CPUMIN) THEN =0.1 * TRY(3,IBOIL) = NL(3) - TRY(3,IBOIL)

IF (NL(2) .GT. (ANMMIX(33) * FFB)) THEN NL(3) =0.9 * ANMMIX(33) * FFB STEP(3) = NL(3) - TRY(3,IBOIL)

END IF END IF

IF (ANMMIX(285) .GT. CPUMIN) THENTRY(4,IBOIL)NL(4)NV(4)DIF(4,IBOIL)STEP(4)NL(4)

ANALM(285)ANALM(285)VRCH4 * (M(285) / FFB) * FBOILANMMIX(285) - (ANALM(285)*FFB + NV(4))ANALM(285) / ((ANMM]JX(285) * FFB) + NV(4))(STEP(4) - l.ODOO) * NL(4)

IF (NL(4) .LT. CPUMIN) THENNL(4) =0.1 * TRY(4,IBOIL)STEP(4) = NL(4) - TRY(4,IBOIL)

END IF

IF (NL(4) .GT. (ANMMIX(285) * FFB)) THEN NL(4) =0.9 * ANMMIX(285) * FFB STEP(4) = NL(4) - TRY(4,IBOIL)

END IF END IF

END IF

IF (ICALL .EQ. 3) THEN IBOIL = IBOIL + 1 IBTOT = IBTOT + 1 IF (IBTOT .GT. 3) THEN

IBOIL = 3 DO 300 J = 1, 4

DO 290 I = 2, IBOIL TRY(J,I-1) = TRY(J.I) DIF(J,I-1) = DIF(J.I)

CONTINUE CONTINUE

END IF

TRY(1,IBOIL) = TOTEL(3)NV(1) = VRC02 * M(97) * FBOILDIF(1,IBOIL) = A1MIX(3) - ((TOTEL(3) * FFB) + NV(1))

TRY(2,IBOIL) NV(2) DIF(2,IBOIL)

ANALM(32)VRNH3 * M(147) * FBOILANMMIX(32) - ((ANALM(32) FFB) + NV(2))

TRY(3,IBOIL) = ANALM(33)NV(3) = VRH2S * M(33) * FBOILDIF(3,IBOIL) = ANMMIX(33) - ((ANALM(33) * FFB) + NV(3))

TRY(4,IBOIL) NV(4)

ANALM(285)VRCH4 * M(285) * FBOIL

MIX 9420MIX 9430MIX 9440MIX 9450MIX 9460MIX 9470MIX 9480MIX 9490MIX 9500MIX 9510MIX 9520MIX 9530MIX 9540MIX 9550MIX 9560MIX 9570MIX 9580MIX 9590MIX 9600MIX 9610MIX 9620MIX 9630MIX 9640MIX 9650MIX 9660MIX 9670MIX 9680MIX 9690MIX 9700MIX 9710MIX 9720MIX 9730MIX 9740MIX 9750MIX 9760MIX 9770MIX 9780MIX 9790MIX 9800MIX 9810MIX 9820MIX 9830MIX 9840MIX 9850MIX 9860MIX 9870MIX 9880MIX 9890MIX 9900MIX 9910MIX 9920MIX 9930MIX 9940MIX 9950MIX 9960MIX 9970MIX 9980MIX 9990

350

Page 351: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

310

DIF(4,IBOIL) - ANMMIX(285) - ((ANALM(285) * FFB) + NV(4))

DONE - .TRUE.

DO 310 I - 1, 4 IF (I .EQ. 1) THENX - A1MIX(3)

ELSE IF (I .EQ. 2) THENX - ANMMIX(32)

ELSE IF (I .EQ. 3) THENX - ANMMIX(33)

ELSE IF (I .EQ. 4) THENX - ANMMIX(285)

END IF

IF (X .GT. CPUMIN) THENIF (DABS(DIF(I,IBOIL) / X ) .GT. 0.01 .AND.

DABS(STEP(I)) .GT. (X * 0.01) .AND. IBTOT .LT. 20) DONE - .FALSE.

IF ((DIF(I.IBOIL) * DIF(I,(IBOIL-1))) .LT. 0.0) THENSTEP(I) - STEP(I) * (-0.5)

ELSE IF (DABS(DIF(I,IBOIL)) .GT. DABS(DIF(I,(IBOIL-1))))THENSTEP(I) - STEP(I) * (-0.8)

END IF

IF ((NL(I) + STEP(I)) .LE. 0.0) THENSTEP(I) - NL(I) * (-0.90)

ELSE IF ((NL(I) + STEP(I)) .GE. (X/FFB)) THENSTEP(I) - ((X/FFB) - NL(I)) * 0.90

END IF

NL(I) NV(I)

END IF CONTINUE

NL(I) + STEP(I) X - (NL(I) * FFB)

IF (DONE) THENNGAST(l) - A1MIX(3) NGAST(2) - ANMMIX(32) NGAST(3) - ANMMIX(33) NGAST(4) - ANMMIX(285)

NL(1) NL(2) NL(3) NL(4)

ANALM(7) ANALM(32) ANALM(33) ANALM(285)

IF (IPGLN .GT. 48) CALL PAGE IPGLN - IPGLN + 10 WRITE (UNO,1180) FBOIL WRITE (UNO,1210)

DO 320 I - 1, 4IF (NGAST(I) .GT. CPUMIN) THEN NV(I) - NGAST(I) - (NL(I) * FFB) X - NV(I) * 100.00 / NGAST(I)

MIX10000 MIX10010 MIX10020 MIX10030 MIX10040 MIX10050 MIX10060 MIX10070 MIX10080 MIX10090 MIX10100 MIX10110 MIX10120 MIX10130 MIX10140 MIX10150 MIX10160 MIX10170 MIX10180 MIX10190 MIX10200 MIX10210 MIX10220 MIX10230 MIX10240 MIX10250 MIX10260 MIX10270 MIX10280 MIX10290 MIX10300 MIX10310 MIX10320 MIX10330 MIX10340 MIX10350 MIX10360 MIX10370 MIX10380 MIX10390 MIX10400 MIX10410 MIX10420 MIX10430 MIX10440 MIX10450 MIX10460 MIX10470 MIX10480 MIX10490 MIX10500 MIX10510 MIX10520 MIX10530 MIX10540 MIX10550 MIX10560 MIX10570

351

Page 352: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ELSEX = 0.0NL(I) = 0.0NV(I) - 0.0

END IFWRITE (UNO, 1220) DUM2(I), NGAST(I), (NL(I) * FFB),

NL(I), NV(I), X320 CONTINUE

I CALL - 1RETURN

END IFEND IF

IF (IPRIN2 .NE. 0) THENIF (IPGLN .GT. 50) CALL PAGEIPGLN - IPGLN + 10WRITE (UNO, 1200)

NV(1), (NL(1)*FFB), NL(1), PAGE1(97) , M(97) ,NV(2), (NL(2)*FFB), NL(2) , PAGE1(147) , M(147),NV(3), (NL(3)*FFB), NL(3) , PAGE1(33) , M(33),NV(4), (NL(4)*FFB), NL(4) , PAGE1(285), M(285)

END IF

TOTEL(l) = (AlMIX(l) - (NV(1) * 2.0)- (NV(3) * 2.0)) / FFB

TOTEL(2) = (A1MIX(2) - NV(2)) / FFBTOTE1X3) - NL(1)ANALM(32) = NL(2)ANALM(33) = NL(3)ANALM(285) = NL(4)ANALM(7) = TOTEL(3)ANALM(98) =0.0

EXELT(24) = ANALM(32)EXELT(25) = ANALM(33)EXELT(29) = ANALM(7)

TITR( 1) = EXELT(29)TITR( 7) = EXELT(25)

I CALL = 3RETURN

END IF

C The following routine is for mixing two solutionsC Store the parameters of the second solution

~

IF (ICALL .EQ. 2) THENDO 330 I = 1, 10

FMIX(I) = O.ODOIF (I .LE. 5) B2MIX(I) - TOTEL(I)

330 CONTINUE

DO 340 I = 1, MXSP+30BNMMIX(I) = ANALM(I)

340 CONTINUE

MIX10580MIX10590MIX10600MIX10610MIX10620MIX10630MIX10640MIX10650MIX10660MIX10670MIX10680MIX10690MIX10700MIX10710MIX10720MIX10730MIX10740MIX10750MIX10760MIX10770MIX10780MIX10790MIX10800MIX10810MIX10820MIX10830MIX10840MIX10850MIX10860MIX10870MIX10880MIX10890MIX10900MIX10910MIX10920MIX10930MIX10940MIX10950MIX10960MIX10970MIX10980MIX10990MIX11000MIX11010

- - |MIX110zO IMIX11030|MIX11040

--|MIX11050MIX11060MIX11070MIX11080MIX11090MIX11100MIX11110MIX11120MIX11130MIX11140MIX11150

352

Page 353: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

BDENS - DENSBTEMP - TEMP

---------------------------------------------------------------------C Calculate the no. of mixtures to be processed and theC proportions of the two solutions in each of the mixtures

IF (INMIX .LE. 0) INMIX - 1IF (DABS (DING) .LT. CPUMIN) DING - DFRAC1

INMIX - MIN( INMIX, 10)DO 350 I - 1, INMIX

IF (I .EQ. 1) THENFMIX(I) - DFRAC1

ELSEFMIX(I) - FMIX(I-l) + DING

END IFIF (FMIX(I) .LT. 0.0 .OR. FMIX(I) .GT. l.OODOO) THEN

INMIX - I - 1GO TO 360

END IF350 CONTINUE

360 CONTINUEIRUN - 0CALL PAGEIPGLN - IPGLN + 7WRITE (UNO, 1240) DFRAC1 , INMIX, DING

END IF

I CALL - 3

RETURN

1000 FORMAT(I3,/,10(F10.4,I4))1010 FORMAT(//,' ***** Mineral with i.d. number - ',I4,/,

' which will be dissolved/precipitated,',/,' could not be found in the reaction file.')

1020 FORMAT(//,' ***** Mineral with i.d. number - ',I4,/,' which the solution will be brought to' ,

' equilibrium with' ,/,' could not be found in the reaction file.')

1030 FORMAT(//,' ***** OPEN failed for phase reactions file',' (often called RXN.TBL or something similar)',

/,' in routine MIXER. Check that the file ',' exists ... ')

1040 FORMAT(//,' ***** ERROR reading the reaction data file in ','routine MIXER. The error occurred while',

/,' trying to read the ',I5,'th line. Either the file',' is corrupted or the end of file was reached' ,

/,' without having found the minerals to dissolve', ' or precipitate. ')

1050 FORMAT (//,' ***** No reaction data for ',A8, '******',' Correct and rerun')

1060 FORMAT(//,' ***** Illegal values of ITMIX, IDSAT, IDDP passed',/ , ' to MIXER when IBMIX - 0 . Values are ' ,

MIX11160MIX11170MIX11180MIX11190

-|MIX11200|MIX11210|MIX11220

- JMIX11230MIX11240MIX11250MIX11260MIX11270MIX11280MIX11290MIX11300MIX11310MIX11320MIX11330MIX11340MIX11350MIX11360MIX11370MIX11380MIX11390MIX11400MIX11410MIX11420MIX11430MIX11440MIX11450MIX11460MIX11470MIX11480MIX11490MIX11500MIX11510MIX11520MIX11530MIX11540MIX11550MIX11560MIX11570MIX11580MIX11590MIX11600MIX11610MIX11620MIX11630MIX11640MIX11650MIX11660MIX11670MIX11680MIX11690MIX11700MIX11710MIX11720MIX11730

353

Page 354: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

1070

108010901100

11201130

1140 FORMAT(//,

3(12,IX), 'respectively.') MIX11740FORMAT(//, '*** Net amount of salt/(aqueous component) to be', MIX11750

' added the solution *****', //, MIX11760' SP # MOLALITY EQH EQC') MIX11770

FORMAT(I4,2X,A,2X,D16.8,2X,F5.2,2X,F5.2) MIX11780FORMAT(' **********************************************,//) MIX11790FORMAT(//,' *********ERROR*********ERROR**********', MIX11800

/,4X, A, ' was removed from the solution (',E12.5, MIX11810') but this drove the moles negative.', MIX11820

/,' In this solution, no more than ', E12.5, MIX11830' moles can be removed. ') MIX11840

1110 FORMAT(//, '*** Net amount of mineral ',A,' to be', MIX11850' added the solution ... modeled using *****', //, MIX11860' SP # MOLALITY EQH EQC') MIX11870

FORMAT(/,2X,A8,' will be ',A13,' to saturation ') MIX11880FORMAT(/,' Saturation Index (SI) - (',A,') - ',E10.4, MIX11890

/.' Reaction Step (moles of ',A,') = ',E10.4) MIX11900*** Saturation with ',A,' not possible. ', MIX11910

/,' SI minimum found at SI - ',£12.5, MIX11920/,' At last try, there was ',E12.5, MIX11930

' moles of material added.', MIX11940/,' This may also be caused by specifying DP', MIX11950/,' to be negative when only a positive value', MIX11960 /,' works (or vice versa) or DP was too small of, MIX11970/,' a value.') MIX11980

1150 FORMAT(/,' Total moles of ',A25,' to achieve saturation: ',£10.4, MIX11990/) MIX12000

1160 FORMAT(/,' Attempt to have a negative amount of a component', MIX12010 /,' Check what is being added/removed from the water .') MIX12020

1170 FORMAT(//,' **** This solution is to be boiled off ****', MIX12030/,' Fraction of boiling = ',F7.2) MIX12040

******* BOILING CALCULATIONS ******* ',//, MIX120505X, 'Fraction of solution lost by boiling: ',F5.2) MIX12060' Parameters used in Boiling ..... ' , MIX12070

/,4(5X,A,E12.5), /,4(5X,A,E12.5), /,2(5X,A,E12.5)) MIX120801200 FORMAT(/,' For the next step, projected amount in the', MIX12090

17X,'using the current values in the', MIX12100/,10X,'vapour',11X,'liquid',11X,'liquid', MIX12110

10X,'aqueous solution of the spfecies' MIX12120/,10X,'(moles)',10X,'(moles)',9X/(molality)', MIX12130

23X,'(molality)', MIX12140/,' C02 = ',3(E12.5,5X),2X,A8,7X,E12.5, MIX12150/,' NH3 = ',3(E12.5,5X),2X,A8,7X,E12.5, MIX12160/,' H2S = ',3(E12.5,5X),2X,A8,7X,E12.5, MIX12170/,' CH4 = ',3(E12.5,5X),2X,A8,7X,E12.5, MIX12180/) MIX12190

1210 FORMAT(/, 14X,' Gas species', 5X,'Total Moles ', MIX122005X,'Moles in Liquid', 3X,'Molality in Liquid', MIX122104X,'Moles in Vapour', MIX122204X,'% Lost in Vapour', /) MIX12230

1220 FORMAT(20X, A5, 5(5X,E12.5,3X),5X,F12.5) MIX122401230 FORMAT( '(fraction of boiling :- ',2X,F4.2,')') MIX122501240 FORMAT(//, ' **** Mixing of the two previous solutions in', MIX12260

' the following proportions: ', /, MIX122705X,' Initial fraction of solution 1 = ',F7.4,/, MIX12280

17X,' Number of mixtures - ',I3,/^ MIX12290' and the increment between solutions = ',F7.4,/) MIX12300

1250 FORMAT(//, ' *****This solution is to be mixed with the', MIX12310

1180 FORMAT( '

1190 FORMAT(//,

354

Page 355: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

' nevt: solution. ....'. /^

c ==cc

ccccccccccccccccccccccccccccccccccccccccccccc

END

SUBROUTINE NACALC (TC, CM, PE, RLG, P, GLO)

Program chaos 2 .f4-a routine for calculating thermo. propertiesof nacl(aq) using pitzer's new model. 0.0-osmotic;

ACALPHAANAPAVNBOBlBETALBKCCCCICMCNDCDCDTDWEF1IF2IF3IF4IGLOIPPOPEPHIPIPXRLGSCITTCVF1VF2VF3XPOXP1XP2XP3XP4XP5XP6XP7

DELDELDELDELDELDELDELDBLDELDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLINTDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBL

Charge of the anionsCoefficient of thermal expansionNumber of anionsDebye-huckel osmotic parameterAvogadro's numberBeta zero parameterBeta one parameterCoefficient of compressibilityBoltzmann's constant in erg/degC sub fee parameterCharge of the cationsIonic StrengthSum of Molality * charge / 2Number of cationsDielectric constant of waterDerivative of dielectic constant water TDensity of waterElectron charge in esuIntermediate storage variableIntermediate storage variableIntermediate storage variableIntermediate storage variableGibbs free energy per moleLoop variableFit constantsVapor pressurePressure in barsOsmotic coefficientThe constant PiCalculated pressure of waterNatural log of the activity coefficientSquare root of the ionic strengthTemperature in kelvinTemperature in celciusIntermediate storage variableIntermediate storage variableIntermediate storage variableIntermediate storage variableIntermediate storage variableIntermediate storage variableIntermediate storage variableIntermediate storage variableIntermediate storage variableIntermediate storage variableIntermediate storage variable

MIX12320 MIX12330 MIX12340

NAG 0010 -|NAC 0020|NAC 0030|NAC 0040

-| NAG 0050INAC 0060INAC 0070|NAC 0080INAC 0090INAC 0100|NAC 0110|NAC 0120|NAC 0130INAC 0140INAC oiso|NAC 0160INAC 0170|NAC 0180|NAC 0190INAC 0200|NAC 0210|NAC 0220INAC 0230INAC 0240|NAC 0250|NAC 0260JNAC 0270|NAC 0280|NAC 0290INAC 0300|NAC 0310|NAC 0320|NAC 0330|NAC 0340INAC 0350|NAC 0360INAC 0370INAC 0380|NAC 0390INAC 0400|NAC 0410|NAC 0420JNAC 0430|NAC 0440|NAC 0450|NAC 0460|NAC 0470|NAC 0480|NAC 0490INAC 0500

355

Page 356: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ccc

=====

c

c

c

c

c

XP8 DEL Intermediate storage vaiXP9 DBL Intermediate storage vaiXS DBL Intermediate storage vai

INTEGER I

DOUBLE PRECISION AC, ALPHA, AN, AP, AVNDOUBLE PRECISION BO, Bl, BETAL, BKDOUBLE PRECISION C, CC, CI, CM, CNDOUBLE PRECISION DC, DCDT, DW, EDOUBLE PRECISION F1I , F2I, F3I, F4I , GLCDOUBLE PRECISION P(60) , PO, PE, PI, PHIDOUBLE PRECISION RLG, SCI, T, TCDOUBLE PRECISION VF1, VF2 , VF3 , XSDOUBLE PRECISION XPO, XP1 , XP2 , XP3 , XP^

EXTERNAL PS AT, WAPVT, WDBP

INTRINSIC DABS, DEXP, DLOG, DSQRT

DATA AVN, BK, E, PI /6 .022510+23 , 1.380!4.80298D-10, 3.141!

CC & AC = Cation and anion charge

CC - P(54)AC - P(55)

CN & AN - Number of cations and anions

CN = P(56)AN = P(57)

TC = Temp(C); CM = Molality; CI - Ionic

T - TC + 273.15D+0CI = (CC**2 * CN + AC**2 * AN) * CM / 2

Calculate saturation vapor pressure, PO

CALL PSAT (TC, PO)

If desired, set PE = PO

IF (PE .LT. 1.0) PE = PO

riable |NACriable |NACriable |NAC.......................... \ NAG

NAGNAGNAGNAGNAGNAGNAG

) NAGPX NAG

NAGNAG

., XP5, XP6, XP7, XP8, XP9 NAGNAGNAGNAGNAGNAG

>4D-16, NAG>926D+0/ NAG

NAG1 NAT1 lNr\L<

NAG - _______________ | NAG

INAC......................... | NAG

NAGNAGNAGNAG

......................... |NACINAC

, - ---._______________- | NAGNAGNAGNAGNAG

k ......................... | NAGStrength JNAC._.___________________.___j NAG

NAGNAG

0 NAGNAG

._________________________! MAG| iirVw

INAC. - _ _________________ | NAG

NAGNAGNAG

k ......................... | NAGINAC

---- ____________ ____ 1 NACNAGNAC

05100520053005400550056005700580059006000610062006300640065006600670068006900700071007200730074007500760077007800790080008100820083008400850086008700880089009000910092009300940095009600970noonuyou0990100010101020103010401050106010701080

356

Page 357: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

c

ccc

ccc

ccc

cc

cc

Set PE = One bar. if temp, less than 100C

IF (TC .LT. 100.1) PE = 1.0

XPO - P(18) + (P(19) * PE) + (P(20) * PE**2) + (P(21) * PE**3)XP1 - P(23) + (P(24) * PE) + (P(25) * PE**2) + (P(26) * PE**3)XP2 = P(27) + (P(28) * PE) + (P(29) * PE**2)XP3 = P(30) + (P(31) * PE) + (P(32) * PE**2) + (P(33) * PE**3)XP4 = P(34) + (P(35) * PE) + (P(36) * PE**2) + (P(37) * PE**3)XP5 = P(43) + (P(44) * PE)XP6 = P(46) + (P(47) * PE)XP7 - P(48) + (P(49) * PE)XP8 - P(50) + (P(51) * PE)XP9 = P(52) + (P(53) * PE)

Initialize loop to calculate density, DW

DW = 1.0PX = 1.0DO 10 I = 1, 100

CALL WAPVT (TC, DW, PX, BETAL, GLO, ALPHA)XS = DWDW = DW / DEXP(BETAL * (PX - PE))IF (DABS((DW-XS)/XS) .LT. l.OD-10) GO TO 20

10 CONTINUE

Calculate dielectric properties of water^

20 CONTINUECALL WDBP (TC, PE, DC, DCDT)

AP = Debye-huckel osmotic parameter

AP - (1.0 / 3.0) * DSQRT(2.0 * PI * AVN * DW / 1000.0) *(E**2 / (DC * BK * T))**1.5

Calculate functions of ionic strength

SCI - DSQRT(CI)F1I = DEXP(-2.0 * SCI)

Is RLG a heat quantity ?

F2I = SCI / (1.0 + 1.2 * SCI)F3I = (2.0 / 1.2) * DLOGU.O + 1.2 * SCI)

NAG 1090--(NAG 1100

INAC 1110--INAC 1120

NAG 1130NAG 1140NAG 1150NAG 1160NAG 1170NAG 1180NAG 1190NAG 1200NAG 1210NAG 1220NAG 1230NAG 1240NAG 1250NAG 1260

--(NAG 1270INAC 1280

--INAC 1290NAG 1300NAG 1310NAG 1320NAG 1330NAG 1340NAG 1350NAG 1360NAG 1370NAG 1380NAG 1390

--(NAG 1400INAC I4io

- - | NAG 1420NAG 1430NAG 1440NAG 1450NAG 1460

- (NAG 1470INAC 1480

-INAC 1490NAG 1500NAG 1510NAG 1520NAG 1530

- | NAG 1540(NAG 1550

- INAC 1560NAG 1570NAG 1580NAG 1590NAG 1600

-INAC 1610INAC 1620

-INAC 1630NAG 1640NAG 1650NAG 1660

357

Page 358: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

c

C _

c c cC _

C _

c

C _

c

F4I - (1.0 - (1.0 + 2.0 * SCI - 4.0 * CI / 2.0) * F1I) / (4.0 * CI)

Calculate valence factors

VF1 - CC * AC VF2 =2.0*CN*AN/ (CN + AN) VF3 - 2.0 * (CN * AN)**1.5 / (CN + AN)

BO, Bl, & C are parameters BETAO, BETA1, & C( superscript phi) in pitzer's equations. BO, Bl, & C are calculated as functions of temp. In terms of the adjustable parameters, P(I)

BO - P(17) / T + XPO + P(22) * DLOG(T) + XP1 * T + XP2 * T**2 + XP3 / (T - 227.0) + XP4 / (680.0 - T)

Bl - P(38) / T + P(39) + P(40) * T + P(4l) / (T - 227.0) C - P(42) / T + XP5 + P(45) * DLOG(T) + XP6 * T + XP7 * T**2 +

XP8 / (T - 227.0) + XP9 / (680.0 - T)

PHI - Osmotic Coefficient

PHI - 1.0 - VF1 * AP * F2I + CM * VF2 * (BO + Bl * F1I) + CM**2 * VF3 * C

RLG = Ln Gamma

RLG - -VF1 * AP * (F2I + F3I) + CM * 2.0 * VF2 * (BO + Bl * F4I) + 1.5 * CM**2 * VF3 * C

RETURN END

NAG 1670 NAG 1680 NAG 1690 |NAC 1700INAC 1710 INAC 1720NAG 1730 NAG 1740 NAG 1750 NAG 1760 NAG 1770 (NAG 1780INAC 1790 INAC isoo INAC isio INAC 1820NAG 1830 NAG 1840 NAG 1850 NAG 1860 NAC 1870 NAG 1880 NAC 1890

|NAC 1900INAC 1910

INAC 1920NAC 1930 NAC 1940 NAC 1950 NAC 1960 (NAG 1970INAC i960 INAC 1990NAC 2000 NAC 2010 NAC 2020 NAC 2030 NAC 2040 NAC 2050

C === C C

C C C C

SUBROUTINE PAGE

Writes a form feed into output file, increments page number, resets line count

IPAGE INT Current page number of output file IPGLN INT Current line number of the output file TOF CHA Places a form feed in output file UNO INT File unit assigned for output file

INTEGER UNO PARAMETER (UNO - 6)

PAG 0010 =====|PAG 0020 and |PAG 0030

IPAG 0040. .... j PAG 0050

IPAG ooeo|PAG 0070IPAG ooso IPAG 0090

- - - - - 1 PAG 0100 PAG 0110 PAG 0120 PAG 0130 PAG 0140

358

Page 359: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

INTEGER IPAGE, IPGLN

CHARACTER * 1 TOF, CR CHARACTER * 40 TITMIX

COMMON /FMFD/ TOF, CR, TITMIX COMMON /FORM/ IPAGE, IPGLN

IPAGE - IPAGE + 1WRITE (UNO, 100) TOF, IPAGEIPGLN - 4

RETURN

100 FORMAT (A1,60X,' PAGE - ',14,' - ',///)

END

PAG 0150 PAG 0160 PAG 0170 PAG 0180 PAG 0190 PAG 0200 PAG 0210 PAG 0220 |PAG 0230 PAG 0240 PAG 0250 PAG 0260 PAG 0270 PAG 0280 PAG 0290 PAG 0300 PAG 0310 PAG 0320 PAG 0330

SUBROUTINE PCLOGK (TCENT, PS, PRES, MXAQK, MXPC) PCL 0010

Cc

ccccccccccccccccccccccccccccc

Determines the pressure correction on log K values if pressure is greater than vapor pressure of water

AAHIALALOWBBOBlB2B4BBBBOBEETO

BETBETAO

BHIBLOWCCHICLOWCPUMINDDELKDELKHIDELKLODELVRDELWDLRRO

DBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBL

DBLDBL

DBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBLDBL

Fit constantsPressure correction fit parameterFit constantPressure correction fit parameterIntermediate storage variableFit constantFit constantFit constantFit constantIntermediate storage variableFit constantCoefficient of isothermal compressibility ofwater at temperature T

Fit constantCompressibility of water at 5 degree increments

starting a 5 deg. along the saturation curvePressure correction fit parameterPressure correction fit parameterFit constantPressure correction fit parameterPressure correction fit parameterSmallest positive real value program usesFit constantCorrection factor to log K of aqueous speciesAdjusted log k at 1000 barsAdjusted log k at 500 barsChange in volume at 25 degreesLog K adjustment to water reactionIntermediate storage variable

= | r\;Li \j\j£\jIPCL 0030 IPCL 0040

- | PCL 0050|PCL 0060JPCL 0070JPCL 0080IPCL 0090IPCL 0100IPCL 0110IPCL 0120IPCL 0130IPCL 0140JPCL oisoIPCL 0160IPCL 0170IPCL oisoIPCL 0190IPCL 0200IPCL 0210JPCL 0220JPCL 0230JPCL 0240JPCL 0250IPCL 0260|PCL 0270IPCL 0280|PCL 0290IPCL 0300JPCL 0310|PCL 0320JPCL 0330|PCL 0340

359

Page 360: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cccccccccccccccccccccccccccccccccccccc

DPR DEL Intermediate storage variableE DBL Fit constantER DBL Intermediate storage variableGAM DBL Fit constantI INT Loop variableICOUNT INT Keeps track of number of times density is calc.IDBO INT Temperature pointer to compressibility constantJ INT Loop variableLOGKP DBL Correction factor to log K for the mineralsLOGKT1 DBL Log K for aqueous species at specified temp.LOGKT2 DBL Log K for minerals at specified temperatureMXAQK INT Total number of aqueous Icfg k valuesMXPC INT Total number of mineral pressure constantsN INT Loop variableNH20 DBL Number of water ionization reactionsNMAX INT General array dimension to allow easy expansionP DBL Intermediate storage variablePADJ DBL Adjusted pressure (Total press. - Sat. press.)PPP DBL Intermediate storage variablePR DBL Intermediate storage variablePRES DBL Total pressurePS DBL Saturation pressureR DBL Gas constant in cm**3 * bar / gram * deg. KRO DBL Density of water at T along the saturation curveRCAL DBL Gas constant in therm cal / mole * deg. KRH DBL Intermediate storage variableRHN DBL Intermediate storage variableRHO DBL Density of water at P, TS DBL Intermediate storage variableT DBL Temperature in degrees KTAU DBL T / T criticalTCENT DBL Temperature in degrees CTEST1 DBL Test to check for proper densityTEST2 DBL Test to check for proper pressureUNO INT File unit assigned for output file

|PCL 0350|PCL 0360|PCL 0370|PCL 0380|PCL 0390IPCL 0400|PCL 0410|PCL 0420|PCL 0430|PCL 0440|PCL 0450|PCL 0460|PCL 0470|PCL 0480|PCL 0490|PCL 0500IPCL 0510|PCL 0520|PCL 0530|PCL 0540|PCL 0550|PCL 0560|PCL 0570|PCL 0580|PCL 0590|PCL 0600IPCL 0610|PCL 0620|PCL 0630|PCL 0640|PCL 0650|PCL 0660|PCL 0670JPCL 0680|PCL 0690

VH20 DBL Change change of water at the saturation pressure | PCL 0700VRIC DBL Isocoulombic volume change for the reactionY DBL Intermediate storage variable

INTEGER NMAX, UNODOUBLE PRECISION CPUMINPARAMETER (NMAX = 340, UNO = 6, CPUMIN = l.OD-35)

INTEGER I, ICOUNT, IDBO, J, MXAQK, MXPC, N

DOUBLE PRECISION A(9,7), AHI(200), AL, ALOW(200)DOUBLE PRECISION B, BO, Bl, B2 , B4, BB, BBO, BEETO, BETDOUBLE PRECISION BETAO(70) , BHI(200), BLOW(200)DOUBLE PRECISION C, CHI(200), CLOW(200)DOUBLE PRECISION D, DELK, DELKHI(200), DELKLO(200) , DELVR(NMAX)DOUBLE PRECISION DELW, DLRRO, DPR, E, ER, GAMDOUBLE PRECISION LOGKP, LOGKTl(NMAX) , LOGKT2(NMAX)DOUBLE PRECISION NH20(NMAX)DOUBLE PRECISION P, PADJ, PPP, PR, PRES, PSDOUBLE PRECISION R, RO, RCAL, RH, RHN, RHODOUBLE PRECISION S, T, TAU, TCENT, TEST1, TEST2DOUBLE PRECISION VH20, VRIC, Y

IPCL 0710|PCL 0720 IPCL 0730 PCL 0740PCL 0750PCL 0760PCL 0770PCL 0780PCL 0790PCL 0800PCL 0810PCL 0820PCL 0830PCL 0840PCL 0850PCL 0860PCL 0870PCL 0880PCL 0890PCL 0900PCL 0910PCL 0920

360

Page 361: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

INTRINSIC DABS, DEXP, DLOG, DLOG10

COMMON /ALOGK/ LOGKT1, LOGKT2COMMON /PTK / DELVR, NH20, ALOW, BLOW, CLOW, AMI, BHI, CHI

DATA AL, BET, GAM /ll.O, 44.3333333, 3.5/DATA BO, C, D /.747862916, -.354078223, .007159876/DATA E / -.003528426/DATA BBO, Bl, B2 /I.127833441, -.594400123, -5.010995915/DATA B4 / 0.636842555/DATA R, RCAL, VH20 /4.61518, 1.9872, 21.I/

DATA A /O.O, 0.0, 68833.257944332, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -5306.2968529023, 178638.32875422,-2563743.6613260 46561826.115608 22744.901424408-21734810.110373

PCL PCL PCL PCL PCL PCL PCL PCL PCL PCL PCL PCL PCL PCL PCL

-31377774.947767, PCL 0.0, 6962522.0862664, PCL 4821257.5981415, PCL-72752773.275387, PCL

11797433.655832,-31555231.392127,-395147.31563338, 52911910.757704,

47929666.384584, 0.0, -10834900.096447, -26627.944829770, PCL 0.0, 217572.45522644, 0.0, -707304.18082074, 0.0, 0.0, PCL 0.0, 0.0, 7877.9333020687, 338038.84280753, PCL-3418301.6969660, 10829952.168620, -13802577.177877, PCL 4177424.6148294, 4091266.4781209 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0-698.30527374994, -138550.50202703-2544199.8064049, -2510991.4369001-13626369.388386, 0.0,

DATA BETAO /49.4S, 48.26, 47.19, 46.3344.46, 44.35, 44.36, 44.4845.89, 46.46, 47.10, 47.8251.50, 52.62, 53.83, 55.1261.28, 63.09, 65.03, 67.1076.96, 79.89, 83.04, 86.43

104.12, 108.80, 113.48, 120.78149.96, 162.28, 174.59, 186.91258.55, 282.05, 305.55551.93, 607.65

0.0, -2272282.7401688, PCL 0.0, 0.0, PCL 1222315.6417448, PCL 14016358.244614, PCL 3836548.6000660/ PCL

PCL45.60, 45.06, 44.69,PCL44.69, 45.01, 45.41,PCL48.62, 49.50, 50.46,PCL56.51, 57.99, 59.58,PCL69.32, 71.69, 74.24,PCL90.09, 94.77, 99.45,PCL

128.07, 135.37, 142.46,PCL199.22, 211.54, 235.04,PCL

IDBO - TCENT / 5BEETO - BETAO(IDBO) / 10.0**6.0T - TCENT + 273.15TAU = T / 647.073ICOUNT - 1P - PS

10 CONTINUEB - BO + C * DLOG(TAU) + D / TAU**3 + E / TAU**5BB = BBO + Bl / TAU + B2 / TAU**2 + B4 / TAU**4RH = 1.0IF (P .LT. PS) RH = 0.001PPP - P - l.ODOIF(DABS(PPP) .LT. l.OD-10

DO 40 I - 1, 100

329.06, 384.78, 440.50, 496.21,PCL 825.89,1044.13,1262.37,1480.61,1698.85/PCL

PCL

PCL PCL PCL PCL PCL PCL PCL PCL PCL PCL PCL PCL PCL PCL

.AND. T .GT. 647.25) RH = 0.001 PCLPCL PCL

0930094009500960097009800990100010101020103010401050106010701080109011001110112011301140115011601170118011901200121012201230124012501260127012801290130013101320133013401350136013701380139014001410142014301440145014601470148014901500

361

Page 362: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

20

30

Y - RH * B / 4.0ER - DEXP(-RH)PR =0.0DPR =0.0DO 30 N = 1, 9

S = A(N,1)DO 20 J = 2, 7

S = S + A(N,J) / TAU**(J-1)CONTINUEPR - PR + S * (1DPR - DPR + S * (1

(1 - ER)) CONTINUE PR -

ER)**(N-1) ER)**(N-1) * (2 + RH * (N * ER - 1) /

* Y + * Y * (BB / B - GAM))

LT. l.OD-5) GO TO 50

RH**2 *ER*PR +RH*R*T*((1+ AL*Y+BET * Y**2) / (1-Y)**3 + 4 * Y * (BB / B - GAM))

DPR - RH * ER * DPR + R * T * ((1 + 2 * AL * Y + 3 * BET * Y**2) / (1-Y)**3 + 3 * Y * (1 + AL

BET * Y**2) / (1-Y)**4 + 8 RHN - RH + (P - PR) / DPR TEST1 - DABS((RHN - RH) / RHN) TEST2 - DABS((P - PR) / P) IF (TEST1 .LT. l.OD-6 .AND. TEST2 RH = RHN

40 CONTINUE

WRITE (UNO, 100) T, P, RHN RETURN

50 CONTINUEIF (ICOUNT .EQ. 1) THENRO = RHNP - PRESICOUNT = ICOUNT + 1GO TO 10

END IF

RHO - RHN

Calculate the effect of pressure on logk of water

DLRRO = DLOG10(RHO / RO) DELW - -19.0DO * DLRRO LOGKT1(2) - LOGKT1(2) - DELW

Adjust the logk of other species for the effect of pressure

DLRRO - DLRRO / (RCAL * T * BEETO)

DO 60 I - 1, MXAQKIF (DABS(DELVR(I) - O.DO) .LT. l.OD-10) GO TO 60 VRIC - DELVR(I) + NH20(I) * VH20DELK - (VRIC /(-41.84DO) * DLRRO) - NH20(I) * DELW LOGKTl(I) - LOGKTl(I) + DELK

60 CONTINUE

PCL 1510 PCL 1520 PCL 1530 PCL 1540 PCL 1550 PCL 1560 PCL 1570 PCL 1580 PCL 1590 PCL 1600 PCL 1610 PCL 1620 PCL 1630 PCL 1640 PCL 1650 PCL 1660 PCL 1670 PCL 1680 PCL 1690 PCL 1700 PCL 1710 PCL 1720 PCL 1730 PCL 1740 PCL 1750 PCL 1760 PCL 1770 PCL 1780 PCL 1790 PCL 1800 PCL 1810 PCL 1820 PCL 1830 PCL 1840 PCL 1850 PCL 1860 PCL 1870 PCL 1880 |PCL 1890 |PCL 1900 |PCL 1910 PCL 1920 PCL 1930 PCL 1940 PCL 1950 PCL 1960 |PCL 1970 |PCL 1980 |PCL 1990 PCL 2000 PCL 2010 PCL 2020 PCL 2030 PCL 2040 PCL 2050 PCL 2060 PCL 2070 PCL 2080

362

Page 363: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

r ...............C Adjust the r _.__. .........

PADJ = PRESDO 90 I - 1

DELKLO(I)DELKHI(I)

IF ((500.LOGKP -

.ELSELOGKP -

END IF

LOGKT2(I)90 CONTINUE

RETURN

100 FORMAT (/,.

END

logk of minerals using helgeson's data

- PS, MXPC= ALOW(I) + BLOW(I) * TCENT + CLOW(I) * TCENT**6- AHI(I) + BHI(I) * TCENT + CHI(I) * TCENT**6

ODO-PADJ) .LT. CPUMIN) THENDELKLO(I) + ((DELKHI(I) - DELKLO(I)) *(PADJ - 500. ODO)) / 500. ODO

DELKLO(I) * PADJ / 500. ODO

- LOGKT2(I) + LOGKP

' ** CONVERGENCE ON DENSITY NOT ACHIEVED ***' , /,PRESSURE CORRECTION FOR AQUEOUS AND SOLID',

' EQUILIBRIA WILL NOT BE IMPLEMENTED ' )

PCL 2090 i PPT oi nri|PCL 2110I TJPT 01 9ft rLiLi ZIZU

PCL 2130PCL 2140PCL 2150PCL 2160PCL 2170PCL 2180PCL 2190PCL 2200PCL 2210PCL 2220PCL 2230PCL 2240PCL 2250PCL 2260PCL 2270PCL 2280PCL 2290PCL 2300PCL 2310PCL 2320PCL 2330PCL 2340PCL 2350

C == C

CCCCCCCCCCCCCCCCCCCCC

SUBROUTINE PHCALC (TEMP, HITEMP, CONV2 , ITIC , ITWR, ISALT, IPHNUM, IPRIN2, *, *, *, *)

Calculates pH when ever conditions change

ALFAC02FCONV2CROSSCUNITSDC02DH2SDIFTRYDNH3DONEHITEMPHTOTHTOTIIIIIOPTIPGLNIPHNUMIPRIN2ISALTITIC

DBLDBLDBLLOGDBLDBLDBLDBLDBLLOGDBLDBLDBLINTINTINTINTINTINTINTINT

Activity of aqueous species iSum of C02 plus C02 lost from solutionConvergence testHave we crossed root yet?Analytical input concentrationConcentration of C02 lost before pH measurementConcentration of H2S lost before pH measurementDifference from rootConcentration of NH3 lost before pH measurementAre we done yet?In- situ temperatureTotal hydroniumInitial total hydroniumLoop counterCounter and pointerSwitch for C02 optionCurrent line number of the output fileCounter used in PHCALCFlag for printing hydronium balanceSwitch for what optionHitemp distribution of carbonate species

PHC 0010 PHC 0020

=|PHC 0030 |PHC 0040 i PUT nn^fi- | i.n\j \J\Jj\J|PHC 0060IPHC 0070|PHC 0080|PHC 0090|PHC 0100|PHC 0110IPHC 0120IPHC 0130IPHC 0140|PHC 0150IPHC 0160|PHC 0170|PHC 0180|PHC 0190JPHC 0200|PHC 0210|PHC 0220|PHC 0230JPHC 0240|PHC 0250IPHC 0260

363

Page 364: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cccccccccccccccccccQ

-

ITWR INT Switch to control printing of some headingsJC03 INT Switch to control printing of some headingsJJ INT Pointer to last point(s) calculatedM DBL Calculated molality of aqueous speciesNDIM INT Identifies array dimensionNMAX INT General array dimension to allow easy expansionOHTOT DBL Current sum of all OH- in solutionOHTOTI DBL Target sum of all OH- in solutionPH DBL Measured pH of the solutionPHHIT INT HITEMP switch, used to control PHCALCPHINC DBL Parameter. Used to scale size of stepPHTRY DBL Values of pH triedPPHHIT INT Switch to control calling! PHCALCSC02 DBL Sum of C02 speciesTEMP DBL Temperature of the solution when pH was measuredTESTl DBL Current Hydronium-hydroxide balanceTEST2 DBL H - OH balance to shoot forTEST3 DBL Test of how far are we from rootTOTEL DBL Contains HTOT, OHTOT and Sum C02UNO INT File unit assigned for output file

INTEGER NDIM, NMAX, UNODOUBLE PRECISION PHINCPARAMETER (NDIM = 5, NMAX = 340, UNO = 6, PHINC -1.0)

INTEGER I, II, IOPT, IPAGE, IPGLN, IPHNUM, IPRIN2, ISALTINTEGER ITIC, ITWR, JC03 , J J , PHHIT, PPHHIT

LOGICAL CROSS, DONE

CHARACTER * 1 TOF, CRCHARACTER * 40 TITMIX

DOUBLE PRECISION ALFA ( NMAX ), ANALM(NMAX) , C02F, CONV2DOUBLE PRECISION CUNITS(NMAX) , DCH4, DDCH4, DC02 , DDC02DOUBLE PRECISION DH2S , DDH2S , DNH3 , DDNH3 , DIFTRY(NDIM)DOUBLE PRECISION EXELT(35), FIXIT, HITEMP, HTOT, HTOTIDOUBLE PRECISION M(NMAX) , OHTOT, OHTOTI, PH, PHTRY(NDIM)DOUBLE PRECISION SC02 , TEMP, TESTl, TEST2 , TEST3DOUBLE PRECISION TITR(ll) , TOTEL(5)

EXTERNAL GUESS, PAGE, SORTA

INTRINSIC DABS, DLOG10, DSIGN

COMMON /EXTOT / EXELT, TOTEL, TITRCOMMON /FMFD / TOF, CR, TITMIXCOMMON /FORM / IPAGE, IPGLNCOMMON /GAS / DC02 , DDC02 , DH2S, DDH2S, DNH3 , DDNH3 ,

DCH4, DDCH4, IOPT, FIXITCOMMON /MOLS / PH, ANALM, M, ALFA, CUNITSCOMMON /TOTALS/ C02F, HTOTI, OHTOTICOMMON /ZPH / PHHIT, PPHHIT, JC03 , SC02, HTOT, OHTOT

SAVE CROSS, DIFTRY, J J , PHTRY

|PHC 0270JPHC 0280IPHC 0290IPHC 0300JPHC 0310|PHC 0320|PHC 0330|PHC 0340|PHC 0350JPHC 0360|PHC 0370JPHC 0380|PHC 0390IPHC 0400IPHC 0410|PHC 0420JPHC 0430|PHC 0440|PHC 0450|PHC 0460JPHC 0470PHC 0480PHC 0490PHC 0500PHC 0510PHC 0520PHC 0530PHC 0540PHC 0550PHC 0560PHC 0570PHC 0580PHC 0590PHC 0600PHC 0610PHC 0620PHC 0630PHC 0640PHC 0650PHC 0660PHC 0670PHC 0680PHC 0690PHC 0700PHC 0710PHC 0720PHC 0730PHC 0740PHC 0750PHC 0760PHC 0770PHC 0780PHC 0790PHC 0800PHC 0810PHC 0820PHC 0830

c =====

364

Page 365: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ccc

ccc

cc -

DONE - .FALSE.IF (PPHHIT .NE. 1 .AND. PHHIT .EQ. 1) THEN

IF (IPHNUM .LE. 0) THENCROSS - .FALSE.

END IF

If this is the first round of Hi-T, initialize, and exit tore -calculate the log K values and to setup the mass -balancecriteria.

IF (DABS (TEMP - HITEMP) .GT. l.OD-10) THENTEMP - HITEMPHTOTI - HTOTOHTOTI - OHTOTTOTEL(l) = HTOTITOTEL(2) = OHTOTITOTEL(3) - C02FIF (ITIC .EQ. 1) ITIC = 2RETURN 1

END IF

ITWR - 1

Get and test for convergence.Use a difference if solution is neutral to avoida divide by zero .

TEST1 - HTOT - OHTOTTEST2 - HTOTI - OHTOTI + (2. DO * DC02) + (2.0DO * DH2S) - DNH3TEST3 - TEST1 - TEST2IF (DABS(TEST2) .GT. l.OD-10 .AND. DABS(TESTl) .GT. l.OD-10)THENTEST3 - TESTS / TEST2

ELSEIF (DABS(TESTl) .GT. l.OD-10) THEN

TEST3 - TEST3 / TEST1ELSE IF (DABS(TEST2) .GT. l.OD-35) THEN

TEST3 - TEST3 / DSIGN(l.OD-H) , TEST2)ELSE

TESTS - TEST3 / l.OD-10END IF

END IF

IPHNUM - IPHNUM + 1JJ = IPHNUMIF (IPHNUM .EQ. 0) THENALFA(8) = 10.0DOO**(-PH)RETURN 2

END IF

Store Values and Check if root has been found or crossed.

PHC 0850PHC 0860PHC 0870PHC 0880PHC 0890PHC 0900PHC 0910

|PHC 0930JPHC 0940|PHC 0950( "DUf1 C\Q£.C\JrlTL* Uj/OU

PHC 0970PHC 0980PHC 0990PHC 1000PHC 1010PHC 1020PHC 1030PHC 1040PHC 1050PHC 1060PHC 1070PHC 1080PHC 1090PHC 1100

I pur* 1 1 1 fi | ftl\j 1J.J.U

JPHC 1120JPHC 1130JPHC 1140i pur i 1 «;n 1 rnLi IIDU PHC 1160PHC 1170PHC 1180PHC 1190PHC 1200PHC 1210PHC 1220PHC 1230PHC 1240PHC 1250PHC 1260PHC 1270PHC 1280PHC 1290PHC 1300PHC 1310PHC 1320PHC 1330PHC 1340PHC 1350PHC 1360PKC 1370PHC 1380PHC 1390

-| PHC 1400|PHC 1410

. i PHr lAon

365

Page 366: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PHTRY( IPHNUM) - - DLOG10(ALFA(8))DIFTRYC IPHNUM) - TESTS

PHCPHCPHCPHC

IF (DABS(TEST2) .GT. l.OD-08 .AND. DABS(TESTl) .GT. l.OD-08) PHC

r>{j

ccV_i

THENIF (DABS (DIFTRY( IPHNUM)) .LT. CONV2)

ELSEIF ((DABS(DIFTRY(IPHNUM))*1.0D-08) .

END IF

IF (IPHNUM .GT. 1 .AND. .NOT. CROSS) TIIF ((DIFTRY( IPHNUM) * D I FTRY( IPHNUM -

CROSS = .TRUE.END IF

If root has been found, sort into order

IF (CROSS) THEN

PHCDONE - .TRUE. PHC

PHC_T. l.OD-09) DONE - .TRUE. PHC

PHCPHC

IEN PHC.)) -LT. 0.0) PHC

PHCPHCPHC

1 PHf1 JL 11U

IPHC_____ _ 1 PHf

PHCPHC

CALL SORTA (PHTRY, DIFTRY, IPHNUM, JJ) PHCIF (.NOT. DONE .AND. JJ .GT. 1) THEN PHC

IF ((DIFTRY(JJ) * DIFTRY(JJ-l)) .LT. 0.0) THEN PHCIF (DABS(PHTRY(JJ) - PHTRY(JJ-l)) .LT. 5.0E-4) PHCDONE = .TRUE.

END IFEND IF

IF (.NOT. DONE .AND. JJ .LT. IPHNUM)

PHCPHCPHCPHC

THEN PHCIF ((DIFTRY(JJ) * DIFTRY(JJ+1)) .LT. 0.0) THEN PHC

CCC

IF (DABS(PHTRY(JJ) - PHTRY(JJ+1)DONE = .TRUE.

END IFEND IF

END IF

) .LT. 5.0E-4) PHCPHCPHCPHCPHCPHC

1 Pur*1 JL 11 oDue to small size only keep last NDIM-1 points |PHC

IF (IPHNUM .EQ. NDIM .AND. .NOT. DONE)IF (.NOT. CROSS) THEN

IPHNUM = (NDIM-1)DO 100 I - 1, (NDIM-1)

PHTRY(I) - PHTRY (1+1)DIFTRY(I) - DIFTRY(I+1)

100 CONTINUEJJ - JJ - 1

END IF

IF (CROSS) THENDO 110 I - 1, (IPHNUM - 1)

I pur1I Jt 14 O

PHCTHEN PHC

PHCPHCPHCPHCPHCPHCPHCPHCPHCPHCPHC

IF ((DIFTRY(I) * DIFTRY(I+1)) .LT. 0.0) II - I PHC110 CONTINUE

IF (II .GT. (IPHNUM / 2) .AND. JJDO 120 I - 1, (NDIM-1)

PHCPHC

.NE. 1) THEN PHCPHC

1430144014501460147014801490150015101520153015401550156015701580159016001610162016301640165016601670168016901700171017201730174017501760177017801790180018101820183018401850186018701880189019001910192019301940195019601970198019902000

366

Page 367: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PHTRY(I) - PHTRY(I+1) PHC 2010DIFTRY(I) - DIFTRY(I+1) PHC 2020

120 CONTINUE PHC 2030JJ - JJ - 1 PHC 2040IPHNUM - NDIM - 1 PHC 2050

ELSE PHC 2060IPHNUM - NDIM - 1 PHC 2070

END IF PHC 2080END IF PHC 2090

END IF PHC 2100PHC 2110

C --.----..--...--.-....-.............-....-...-..--.....--.---.--.--.-|PHC 2120C If root not yet crossed, keep trucking JPHC 2130C ---------------------------------------------------------------------j PHC 2140

PHC 2150IF ( .NOT. DONE .AND. .NOT. CROSS) THEN PHC 2160

PH - PHTRY(IPHNUM) PHC 2170IF (IPHNUM .EQ. 1) THEN PHC 2180

PH - PH - (DSIGN(1.0DOO, (TEST2 - TEST1)) * PHINC) PHC 2190ELSE PHC 2200

IF (DABS(DIFTRY(IPHNUM)) .GT. DABS(DIFTRY(IPHNUM-1))) THEN PHC 2210PH - DIFTRY(IPHNUM) PHC 2220DIFTRY(IPHNUM) - DIFTRY(IPHNUM-1) PHC 2230DIFTRY(IPHNUM-1) - PH PHC 2240PH - PHTRY(IPHNUM) PHC 2250PHTRY(IPHNUM) - PHTRY(IPHNUM-1) PHC 2260PHTRY(IPHNUM-1) - PH PHC 2270PH - (2.0 * PHTRY(IPHNUM)) - PHTRY(IPHNUM-1) PHC 2280JJ - IPHNUM -1 PHC 2290

ELSE PHC 2300PH - (2.0 * PHTRY(IPHNUM)) - PHTRY(IPHNUM-l) PHC 2310

END IF PHC 2320END IF PHC 2330ALFA(8) - 10.0DOO**(-PH) PHC 2340

END IF PHC 2350PHC 2360

C -------------------------------------------------_--.----_-----.-----|PHC 2370C If root has been crossed, get new value of pH JPHC 2380C .....................................................................j PHC 2390

PHC 2400IF ( .NOT. DONE .AND. CROSS) THEN PHC 2410CALL GUESS (PHTRY, DIFTRY, PH, IPHNUM) PHC 2420ALFA(8) - 10.0DOO**(-PH) PHC 2430

END IF PHC 2440PHC 2450

C ---------------..--...-..........................................._..|PHC 2460C Go and try again. Print if necessary JPHC 2470C .....................................................................|PHC 2480

PHC 2490IF ( .NOT. DONE) THEN PHC 2500

IF (IPRIN2 .NE. 0) THEN PHC 2510IF (IPGLN .GT. 56) CALL PAGE PHC 2520WRITE (UN0.1000) TEST2, TESTl, (TEST1 - TEST2), DIFTRY(JJ), PHC 2530

PHTRY(JJ), PH, (PH - PHTRY(JJ)) PHC 2540IPGLN - IPGLN + 3 PHC 2550

END IF PHC 2560RETURN 2 PHC 2570

END IF PHC 2580

367

Page 368: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

PHC 2590

c- - -

- - -

c

1000

1010

Root has been found. Update appropriate variables and exit

PH = PHTRY(JJ)IPHNUM = 0IF (JC03 .EQ. 1 .AND. IOPT .NE. 0) RETURNIF (ISALT .GE. 2) RETURN 4PPHHIT - 1

END IF

IF (PPHHIT .EQ. 1) THENIF (IOPT .EQ. 1) RETURNTEST1 - HTOT - OHTOTTEST2 - HTOTI - OHTOTI + (2. DO * DC02) + (2.0DO * DH2S) - DNH3IF (IPRIN2 .NE. 0) THEN

IF (IPGLN .GT. 53) CALL PAGEWRITE (UNO, 1010) PH, TEST2 , TEST1 , (TEST2 - TEST1)IPGLN = IPGLN + 5

END IFIF (JC03 .EQ. 1) THENTOTEL(l) - TOTEL(l) + 2.0*DC02TOTEL(3) = TOTEL(3) + DC02

END IFRETURN 3

END IF

Store some parameters for use in mixing / printing

IF (HTOTI .LT. l.D-35) THENTOTEL(l) - HTOTTOTEL(2) = OHTOT

ELSETOTEL(l) = HTOTITOTEL(2) - OHTOTI

END IF

TOTEL(3) = SC02TOTEL(4) = PH

IF (JC03 .EQ. 1) THENTOTEL(l) = TOTEL(l) + 2 . 0*DC02TOTEL(3) - TOTEL(3) + DC02RETURN 2

END IF

RETURN

FORMAT (/, ' (HTOTI-OHTOTI) -',D16.8,' (HTOT-OHTOT) -',016.8,' Difference - ',D16.8,' Test - ',D16.8,

/, ' pH was: ', F8.4, ' New pH is : ', F8.4,Change - ' , E12.5)

FORMAT (//,' **** Convergence Achieved at pH-' , F8.4,/,' (HTOTI-OHTOTI) - ',D16.8,

' (HTOT-OHTOT) - ' , D16.8,

| rno t.\j\j\j

|PHC 26101 PHC 2620PHC 2630PHC 2640PHC 2650PHC 2660PHC 2670PHC 2680PHC 2690PHC 2700PHC 2710PHC 2720PHC 2730PHC 2740PHC 2750PHC 2760PHC 2770PHC 2780PHC 2790PHC 2800PHC 2810PHC 2820PHC 2830PHC 2840PHC 2850PHC 2860

I TDU /" O Q "7 r\rnL. Zo/U |PHC 2880

I DU/"1 O Q OHrno ZobJUPHC 2900PHC 2910PHC 2920PHC 2930PHC 2940PHC 2950PHC 2960PHC 2970PHC 2980PHC 2990PHC 3000PHC 3010PHC 3020PHC 3030PHC 3040PHC 3050PHC 3060PHC 3070PHC 3080PHC 3090PHC 3100PHC 3110PHC 3120PHC 3130PHC 3140PHC 3150PHC 3160

368

Page 369: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

Difference D16.8, //)

END

PHC 3170 PHC 3180 PHC 3190

SUBROUTINE PHOPT (ICCSAT, FCCSAT, ITWR, JCCST, *) PHO 0010u == CCc

ccccccccccccccccccccccccccccccccr\J

The following routine achieves CALCITE, DOLOMITE or SIDERITEsaturation by adjusting pH. "ICCSAT" is equivalent to "IPHSAT"in the manual .

ALFA DBL Activity of aqueous species iCROSS LOG Have we crossed root yet?FCCSAT DBL Zero testHFAC DBL Number of hydrogen ions in reaction from mineral

to dominate speciesI INT Loop Variable and pointerICCSAT INT Switch for pH optionIDK INT Index for log K of mineral (Cal, Dol, Sid)IID INT Index of dominate carbonate speciesIPGLN INT Current line number of the output fileITWR INT Switch to control printing of some headingsJCCST INT Switch indicating if PHOPT called 1st timeJJ INT Pointer to last value calculatedKTF DBL Number of Carbonate groups in reactionLOGKT1 DBL Log K for aqueous species at specified temp.LOGKT2 DBL Log K for minerals at specified temperatureLTTIAP DBL Log of activity productM DBL Calculated molality of aqueous speciesMAXC02 DBL Temp storage to determinate domin. Garb, speciesNMAX INT General array dimension to allow easy expansionNUM INT Number of SI/ pH points in arraysPH DBL Measured pH of the solutionPHTRY DBL Values of pH triedREVERS LOG Do we need to reverse to find root?SATNAM CHA Name of mineral to be saturated withSI DBL Current SI valueSITRY DBL Values of Sis obtainedSTEP DBL Value used to change pH byTO FAR LOG Have we gone too far?TTIAP DBL Activity productTTKT DBL Log K for reactionUNO INT File unit assigned for output file

INTEGER NMAX, UNOPARAMETER (NMAX - 340, UNO = 6)

INTEGER I, IAQ, ICCSAT, IDK, IID, IPAGE, IPGLN, ITWRINTEGER JJ, JCCST, NUM

LOGICAL CROSS, TOFAR, REVERS

CHARACTER * 8 SATNAM(3)

- 1 rn\j w£.v

PHO 0030PHO 0040PHO 0050JPHO 0060IPHO 0070JPHO oosoJPHO 0090JPHO 0100IPHO 0110IPHO 0120PHO 0130JPHO ouoIPHO oisoJPHO 0160|PHO 0170JPHO oisoIPHO 0190JPHO 0200IPHO 0210|PHO 0220JPHO 0230|PHO 0240JPHO 0250|PHO 0260PHO 0270JPHO 0280JPHO 0290JPHO 0300PHO 0310PHO 0320|PHO 0330JPHO 0340IPHO 0350JPHO 0360|PHO 0370JPHO 0380I pun n"5onrriu ujyu PHO 0400PHO 0410PHO 0420PHO 0430PHO 0440PHO 0450PHO 0460PHO 0470PHO 0480PHO 0490PHO 0500

369

Page 370: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

DOUBLE PRECISION ALFA(NMAX), ANALM(NMAX), CUNITS(NMAX), FCCSAT DOUBLE PRECISION HFAC, RTF, LOGKTl(NMAX), LOGKT2(NMAX), LTTIAP DOUBLE PRECISION M(NMAX), MAXC02, PH, PHTRY(5), SI, SITRY(5) DOUBLE PRECISION STEP, TTIAP, TTKT

EXTERNAL GUESS, PAGE, SORTA

INTRINSIC DABS, DLOG10, DSIGN

COMMON /ALOGK/ LOGKT1, LOGKT2COMMON /FORM / IPAGE, IPGLNCOMMON /MOLS / PH, ANALM, M, ALFA, CUNITS

SAVE CROSS, NUM, PHTRY, REVERS, SITRY, STEP, TOFAR

DATA SATNAM / 'CALCITE ', 'DOLOMITE', 'SIDERITE'/

Scan for the most abundant C02 species

MAXC02 - M(7) HFAC - ALFA(8) IID - 7

DO 10 IAQ - 97, 98IF (M(IAQ) .GT. MAXC02) THEN

IF (IAQ .EQ. 97) HFAC = ALFA(8) ** 2.0 IF (IAQ .EQ. 98) HFAC -1.0 MAXC02 = M(IAQ) IID = IAQ

END IF 10 CONTINUE

ICCSAT = 1 for Calcite; = 2 for Dolomite; 3 for Siderite

Assign the appropriate SI based on ICCSAT AND the most abundant C02 species

IF (ICCSAT .EQ. 1) THENTTIAP - ALFA(l) * ALFA(IID) / HFACLTTIAP = DLOG10(TTIAP)IDK - 24RTF -1.0

ELSE IF (ICCSAT .EQ. 2) THENTTIAP - ALFA(l) * ALFA(2) * ALFA(IID)**2 / HFAC**2LTTIAP - DLOG10(TTIAP)IDK - 41RTF - 2.0

ELSETTIAP - ALFA(18) * ALFA(IID) / HFACLTTIAP - DLOG10(TTIAP)IDK - 146RTF -1.0

PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO

= | PHO PHO

| PHO | PHO | PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO

| PHO | PHO I PHO | PHO | PHO | PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO

0510052005300540055005600570058005900600061006200630064006500660067006800690070007100720073007400750076007700780079008000810082008300840085008600870088008900900091009200930094009500960097009800990100010101020103010401050106010701080

370

Page 371: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cc

ccp

END IF

IF (IID .EQ. 98) TTKT - LOGKT2(IDK)IF (IID .EQ. 7) TTKT - LOGKT2(IDK) - KTF * LOGKTl(l)IF (IID .EQ. 97) TTKT - LOGKT2(IDK) - KTF * LOGKTl(l)

- KTF * LOGKT1(72)

First time here, initialize various switches, and get firststep.

IF (JCCST .LT. 1) THENWRITE (UNO, 1001) SATNAM(ICCSAT)IPGLN = IPGLN + 3IF (IPGLN .GT. 57) CALL PAGENUM - 0STEP = -0.5CROSS = .FALSE.TOFAR = .FALSE.REVERS = .FALSE.JCCST = 1IF (IID .EQ. 98) THEN

STEP =0.5IF ((LTTIAP - TTKT) .GE. 0.0) STEP = -1.0

ELSEKTF =1.0IF (IID .EQ. 97) KTF = 2.0

IF (IDK .EQ. 24) THENSTEP = TTKT - DLOG10(ALFA(1)) - DLOG10(ALFA(IID) )STEP = STEP - (KTF * PH)STEP - STEP * 1.01 / KTF

ELSE IF (IDK .EQ. 41) THENSTEP - TTKT - DLOG10(ALFA(1)) - DLOG10(ALFA(2) )

- (2.0 * DLOG10(ALFA(IID)))STEP = STEP - (2.0 * KTF * PH)STEP - STEP * 1.01 / (KTF * 2.0)

ELSE IF (IDK .EQ. 146) THENSTEP = TTKT - DLOG10(ALFA(18)) - DLOGlO(ALFA(IID) )STEP = STEP - (KTF * PH)STEP = STEP * 1.01 / KTF

END IFEND IF

END IF

Check for saturation using the SIIf saturation not achieved, adjust pH

SI - LTTIAP - TTKTIF (DABS (SI) .GT. FCCSAT) THENNUM = NUM + 1PHTRY(NUM) = PHSITRY(NUM) = SIJJ = NUM

PHO 1090PHO 1100PHO 1110PHO 1120PHO 1130PHO 1140PHO 1150

i pun 1 1 artIPHO 1170IPHO 1180i pun 1 1 onPHO 1200PHO 1210PHO 1220PHO 1230PHO 1240PHO 1250PHO 1260PHO 1270PHO 1280PHO 1290PHO 1300PHO 1310PHO 1320PHO 1330PHO 1340PHO 1350PHO 1360PHO 1370PHO 1380PHO 1390PHO 1400PHO 1410PHO 1420PHO 1430PHO 1440PHO 1450PHO 1460PHO 1470PHO 1480PHO 1490PHO 1500PHO 1510PHO 1520PHO 1530PHO 1540

---|PHO 1550 JPHO 1560|PHO 1570i pun 1 "^on- - - | JrnU J.DOU PHO 1590PHO 1600PHO 1610PHO 1620PHO 1630PHO 1640PHO 1650PHO 1660

371

Page 372: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

IF (NUM .GT. 1 .AND. .NOT. CROSS) THENIF ((SI * SITRY(NUM-l)) .LT. 0.0) CROSS

END IF, TRUE.

IF ( .NOT. CROSS) THEN IF (NUM .GT. 1) THEN

IF (DABS(SI) - DABS(SITRY(NUM-1)) .LE. 0.0) THENSTEP = STEP * 1.5REVERS = .FALSE.

ELSEPH = PHTRY(NUM-l)SI = SITRY(NUM-l)PHTRY(NUM-l) = PHTRY(NUM)SITRY(NUM-l) - SITRY(NUM)PHTRY(NUM) = PHSITRY(NUM) = SIJJ = NUM - 1

IF ( REVERS ) THENSTEP = STEP * (-0.3)

ELSEIF (NUM .EQ. 2) THEN

STEP = STEP * (-1.0) ELSE

STEP = STEP * (0.5) END IF

END IF

REVERS END IF

END IF

.TRUE.

IF (DABS(STEP) .GT. 1.5) STEP - DSIGN(1.5DOO, STEP) PH = PHTRY(NUM) + STEP

IF (TOFAR) THENWRITE (UNO,1002) SATNAM(ICCSAT), PHIPGLN - IPGLN + 3IF (IPGLN .GT. 57) CALL PAGERETURN

END IF

IF (DABS(STEP) .LT. 0.01) THENWRITE (UNO,1003) SATNAM(ICCSAT), PHIPGLN = IPGLN + 3IF (IPGLN .GT. 57) CALL PAGERETURN

END IF

IF (PH .LT. 0.1) THENPH = 0.1TOFAR = .TRUE.

END IF

IF (PH .GT. 13.9) THENPH = 13.9TOFAR = .TRUE.

END IF

PHO 1670 PHO 1680 PHO 1690 PHO 1700 PHO 1710 PHO 1720 PHO 1730 PHO 1740 PHO 1750 PHO 1760 PHO 1770 PHO 1780 PHO 1790 PHO 1800 PHO 1810 PHO 1820 PHO 1830 PHO 1840 PHO 1850 PHO 1860 PHO 1870 PHO 1880 PHO 1890 PHO 1900 PHO 1910 PHO 1920 PHO 1930 PHO 1940 PHO 1950 PHO 1960 PHO 1970 PHO 1980 PHO 1990 PHO 2000 PHO 2010 PHO 2020 PHO 2030 PHO 2040 PHO 2050 PHO 2060 PHO 2070 PHO 2080 PHO 2090 PHO 2100 PHO 2110 PHO 2120 PHO 2130 PHO 2140 PHO 2150 PHO 2160 PHO 2170 PHO 2180 PHO 2190 PHO 2200 PHO 2210 PHO 2220 PHO 2230 PHO 2240

372

Page 373: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

20

30

40

.LT. 0.0) THEN

IF (NUM .EQ. 4) THEN DO 20 I - 2, 5

PHTRY(I-l) - PHTRY(I) SITRY(I-l) - SITRY(I)

CONTINUE NUM - NUM - 1 JJ - JJ - 1

END IF END IF

IF ( CROSS ) THENCALL SORTA (PHTRY, SITRY, NUM, JJ) IF (NUM .GT. 3) THEN

IF ((SITRY(3) * SITRY(4)) DO 30 I - 2, 4

SITRY(I-l) - SITRY(I) PHTRY(I-l) - PHTRY(I)

CONTINUE NUM - NUM - 1 JJ - JJ - 1

ELSE IF ((SITRY(l) * SITRY(2)) .LT. 0.0) THENNUM - NUM -1

ELSE IF (DABS(SITRY(1)) .GT. DABS(SITRY(4))) THEN DO 40 I - 2, 4

SITRY(I-l) = SITRY(I) PHTRY(I-l) - PHTRY(I)

CONTINUE NUM - NUM - 1 JJ - JJ - 1

ELSENUM - NUM - 1

END IF END IF

CALL GUESS (PHTRY, SITRY, PH, NUM)

END IF

ALFA(8) - 10.0**(-PH)WRITE (UNO,1004) SATNAM(ICCSAT), SITRY(JJ), PHTRY(JJ), PH IPGLN - IPGLN + 3 IF (IPGLN .GT. 57) CALL PAGE ITWR - 1 RETURN 1

END IF

RETURN

1001 FORMAT (/ ,1002 FORMAT (//,

1003 FORMAT (//,

1004 FORMAT (/

END

Begining ',A8,' saturation by adjusting pH ',/)***** ',A8,' saturation NOT POSSIBLE for PH', between 0.1 and 13.9; Last pH tried - ',F6.3)***** ',A8,' saturation NOT POSSIBLE for pH', of ',F6.3,' as a staddle point seems to have', been reached here.')Log SI (',A8,') - ',E13.4,' at a pH of ',F6.3, Trying a new pH of ',F6.3,/)

PHO 2250 PHO 2260 PHO 2270 PHO 2280 PHO 2290 PHO 2300 PHO 2310 PHO 2320 PHO 2330 PHO 2340 PHO 2350 PHO 2360 PHO 2370 PHO 2380 PHO 2390 PHO 2400 PHO 2410 PHO 2420 PHO 2430 PHO 2440 PHO 2450 PHO 2460 PHO 2470 PHO 2480 PHO 2490 PHO 2500 PHO 2510 PHO 2520 PHO 2530 PHO 2540 PHO 2550 PHO 2560 PHO 2570 PHO 2580 PHO 2590 PHO 2600 PHO 2610 PHO 2620 PHO 2630 PHO 2640 PHO 2650 PHO 2660 PHO 2670 PHO 2680 PHO 2690 PHO 2700 PHO 2710 PHO 2720 PHO 2730 PHO 2740 PHO 2750 PHO 2760 PHO 2770 PHO 2780 PHO 2790 PHO 2800 PHO 2810 PHO 2820

373

Page 374: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

r>Li

C

c

cccccc

c

c

cccccccccccccccccccccccccccccccccc

SUBROUTINE PITZER (A, MU, MXSP, TEMPI, PGDCA, PGDNA, PG, TEMP,PALFA, C02TIT, Z, FLAG1)

This routine calculates the pitzer activity coefficients.

Local constants

CPUMIN DBL Smallest value machine can representNANI INT Number of AnionsNCAT INT Number of CatibnsNMAX INT Number of aqueous species declaritonNTEM INT Number of TemperaturesUNP INT File unit of Pitzer Data

Declare constants

INTEGER NANI, NCAT, NMAX, NTEM, UNPDOUBLE PRECISION CPUMINPARAMETER (NCAT = 10, NANI - 5, NMAX = 340, NTEM = 11, UNP - 7)PARAMETER (CPUMIN = l.OD-35)

Local variables

A DBL Molal debeye-huckel coefficientALFA DBL Activity of aqueous species iANALM DBL Analyzed molality of species iANI INT Selects anions with pitzer dataB DBL B coefficientBO DBL Beta zero parameter for current tempBOO DBL Array of BO's for all tempsBl DBL Beta one parameter of current tempBll DBL Array of Bl's for all tempsBFEE DBL B sub fee coefficientBP DBL B prime coefficientBZ DBL Charge coefficientC DBL C coefficientCAT INT Selects cations with pitzer dataC02TIT DBL Analyzed molality of C03 + HC03CP DBL C sub fee parameter for current tempCPP DBL Array of CP's for all tempsDIFF DBL Difference value for activitiesDONE INT Switch to determine when DIFF is OKETHTA DBL E theta function for anionsETHTAP DBL E theta prime function for anionsETHTC DBL E theta function for cationsETHTCP DBL E theta prime function for cationsF DBL Debye-huckel interaction termFEE DBL Osmotic coefficientFLAG1 INT Water calculation flagG DBL Function to calculate coefficient valuesGP DBL Primed function to calculate coefficient valuesI INT Cation 1 loop variableII INT Cation loop variableITER INT Iteration counterJ INT Cation 2 loop variableK INT Anion 1 loop variableKK INT Anion loop variable

PIT 0010PIT 0020

-IPTT 0030I i i X V/V/Jw

[PIT 0040-IPIT 0050[PIT 0060[PIT 0070[PIT 0080|PIT 0090IPIT 0100IPIT 0110IPIT 0120JPIT 0130

-1 PIT 0140 |PIT 0150I T3TT m df\ rll UloU

PIT 0170PIT 0180PIT 0190PIT 0200PIT 0210

- |PIT 0220(PIT 0230JPIT 0240JPIT 0250|PIT 0260|PIT 0270JPIT 0280JPIT 0290IPIT 0300[PIT 0310|PIT 0320[PIT 0330JPIT 0340|PIT 0350|PIT 0360[PIT 0370|PIT 0380[PIT 0390IPIT 0400IPIT 0410[PIT 0420|PIT 0430|PIT 0440JPIT 0450JPIT 0460[PIT 0470|PIT 0480|PIT 0490JPIT 0500IPIT 0510|PIT 0520|PIT 0530|PIT 0540|PIT 0550[PIT 0560|PIT 0570|PIT 0580

374

Page 375: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cccccccccccccccccccccccccccccccccccccccccccccccccc

cc

KT1LLINELNGALNGCLNGDCALNGDNALOOPMMAMCMUMXSPOHAPALFAPGPGAMAPGAMCPGDCAPGDNAPHIAPHIAPPHICPHICPPSIAPSIAAPSICPSICCSUM1SUM2SUM2ASUM3SUM4SUMSSUM6SUM6ASUM?SUM7ASUMSTEMPTEMPITHTATHTAATHTCTHTCCTPXZZAZC

Declare

INTEGERINTEGERINTEGER

DELINTCHADELDELDELDELINTDELDELDELDELINTDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELINTDELINTINTINT

Equilibrium constants for specified tempAnion 2 loop variableRead in lines which contain no informationLn an ion gammaLn cation gammaLn gamma for divalent ions with no pitzer dataLn gamma for monovalent ions with no pitzer dataLoop VariableCalculated molality of aqueous species iMoles of AnionMoles of CationIonic strength of aqueous solutionTotal number of aqueous speciesHydroxide ActivityPitzer activitiesPitzer gammasPitzer Gammas for AnionsPitzer Gammas for CationsGamma for divalent ions with no pitzer dataGamma for monovalent ions with no pitzer dataPhi anion coefficientPhi prime anion coefficientPhi cation coefficientPhi prime cation coefficientPsi Anion-Anion- Cation parameterArray of PSIA for all TempsPsi Cation- Cation-Anion parameterArray of PSIC for all TempsInternal sum for In gamma calculationsInternal sum for In gamma calculationsInternal sum for In gamma calculationsInternal sum for In gamma calculationsInternal sum for In gamma calculationsInternal sum for osmotic calculationsInternal sum for osmotic calculationsInternal sum for osmotic calculationsInternal sum for osmotic calculationsInternal sum for osmotic calculationsInternal sum for osmotic calculationsArray of 11 TemperaturesTemperature of InterestPitzer theta anion parameterArray of THTA for all tempsPitzer theta cation parameterArray of THTC for all tempsInteger equivalient to temp(i)Independent variable in the G functionsCharge of Aqueous Species iCharge of the anionsCharge of the cations

variables

ANI(NANI), CAT(NCAT), DONE, FLAG1I, II,MXSP,

CHARACTER * 1

ITER, J, K, KK, L, LOOPTP, Z(NMAX), ZA(NANI), ZC(NCAT)

LINE

|PIT|PIT(PITIPITIPITIPITJPITIPITIPITIPITIPITIPITIPITIPITIPITIPITIPIT|PITIPITIPITIPITIPITIPITIPITIPITIPITIPIT(PITIPITIPITIPITJPITIPITIPITIPITIPITIPITIPITIPITIPITIPITIPITIPITIPITIPITIPIT|PITIPITIPITIPITI T3TTrll

IPITIPITPITPITPITPITPIT

059006000610062006300640065006600670068006900700071007200730074007500760077007800790080008100820083008400850086008700880089009000910092009300940095009600970098009901000101010201030104010501060107010801090 1100111011201130114011501160

375

Page 376: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

DOUBLE PRECISION A, ALFA(NMAX) , ANALM(NMAX) , B(NCAT,NANI)PIT 1170PIT 1180

DOUBLE PRECISION BO (NCAT , NANI ), BOO (NCAT, NANI , NTEM) , Bl (NCAT, NANI) PIT 1190

CC

C

CC

DOUBLE PRECISION Bl 1 (NCAT, NANI , NTEM) , BFEE( NCAT, NANI)DOUBLE PRECISION BP (NCAT, NANI ), BZDOUBLE PRECISION C(NCAT,NANI) , C02TIT, CP(NCAT,NANI)DOUBLE PRECISION C PP( NCAT, NANI , NTEM) , CUNITS(NMAX) , DIFFDOUBLE PRECISION ETHTA ( NANI , NANI) , ETHTAP( NANI, NANI)DOUBLE PRECISION ETHTC( NCAT, NCAT) , ETHTOP (NCAT, NCAT ), F, FEEDOUBLE PRECISION G, GP, KTl(NMAX) , LNGA(NANI)DOUBLE PRECISION LNGC(NCAT), LNGDCA, LNC1DNA, M(NMAX) , MA(NANI)DOUBLE PRECISION MC(NCAT), MU, OHA, PALFA(NMAX)DOUBLE PRECISION PG(NMAX) , PGAMA(NANI) , PGAMC(NCAT), PGDCA, PGDNADOUBLE PRECISION PH, PHI A ( NANI , NANI) , PtflAP (NANI , NANI)DOUBLE PRECISION PHI C( NCAT, NCAT ), PHICP^NCAT,NCAT)DOUBLE PRECISION PS I A (NANI , NANI, NCAT) , FSIAA(NANI , NANI , NCAT, NTEM)DOUBLE PRECISION PS 1C (NCAT, NCAT, NANI ), £SICC (NCAT, NCAT, NANI , NTEM)DOUBLE PRECISION SUM1, SUM2, SUM2A, SUM^B, SUM2C, SUM3 , SUM4DOUBLE PRECISION SUM4B, SUM4C, SUMS, SUM6 , SUM6A, SUM7, SUM7ADOUBLE PRECISION SUMS, TEMP (NTEM) , TEMPIDOUBLE PRECISION THTA ( NANI , NANI) , THTAA(NANI , NANI , NTEM)DOUBLE PRECISION THTC( NCAT, NCAT) , THTCC (NCAT, NCAT, NTEM ), X

EXTERNAL PTZINT

INTRINSIC DABS, DEXP, DLOG, DSQRT, IABS

COMMON /MOLS / PH, ANALM, M, ALFA, CUNlfTSCOMMON /TTK / KT1

DATA ANI /5, 6, 7, 98, 9/DATA CAT /3, 4, 1, 2, 26, 15, 8, 14, 23, 27/

Open data table of pitzer coefficients

OPEN (UNP, FILE = 'PIT.TBL', STATUS - 'OLD')OPEN (UNP, STATUS = 'OLD', shared, readonly)

Initialize arrays of parameters and coefficients

DO 10 I = 1, NMAXPG(I) - O.ODO

10 CONTINUE

DO 40 I - 1, NCATDO 30 K - 1, NANI

BO(I,K) - O.ODOB1(I,K) - O.ODOCP(I,K) - O.ODO

DO 20 TP - 1, NTEMBOO(I,K,TP) - O.ODO

PIT 1200PIT 1210PIT 1220PIT 1230PIT 1240PIT 1250PIT 1260PIT 1270PIT 1280PIT 1290PIT 1300PIT 1310PIT 1320PIT 1330PIT 1340PIT 1350PIT 1360PIT 1370PIT 1380PIT 1390PIT 1400PIT 1410PIT 1420PIT 1430PIT 1440PIT 1450PIT 1460PIT 1470PIT 1480PIT 1490(PIT 1500 PIT 1510|PIT 1520 JPIT 1530(PIT 1540PIT 1550PIT 1560PIT 1570PIT 1580(PIT 1590 |PIT 1600|PIT 1610PIT 1620PIT 1630PIT 1640PIT 1650PIT 1660PIT 1670PIT 1680PIT 1690PIT 1700PIT 1710PIT 1720PIT 1730PIT 1740

376

Page 377: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

20

B11(I,K,TP) - O.ODO CPP(I,K,TP) - O.ODO

CONTINUE

30 CONTINUE 40 CONTINUE

DO 70 I = 1, NCAT DO 60 J - 1, NCAT

THTC(I,J) - O.ODO

50

DO 50 TP = 1, NTEMTHTCC(I,J,TP) - O.ODO

CONTINUE

60 CONTINUE 70 CONTINUE

DO 100 K - 1, NANI DO 90 L - 1, NANI

THTA(K,L) - O.ODO

80

DO 80 TP - 1, NTEMTHTAA(K,L,TP) - O.ODO

CONTINUE

90 CONTINUE 100 CONTINUE

DO 140 1=1, NCAT DO 130 J - 1, NCAT

DO 120 K = 1, NANI PSIC(I,J,K) - O.ODO

110

120130

DO 110 TP = 1, NTEMPSICC(I,J,K,TP) = O.ODO

CONTINUE

CONTINUE CONTINUE

140 CONTINUE

DO 180 K - 1, NANI DO 170 L = 1, NANI

DO 160 I - 1, NCAT PSIA(K,L,I) = O.ODO

150

160170

DO 150 TP - 1, NTEMPSIAA(K,L,I,TP) - O.ODO

CONTINUE

CONTINUE CONTINUE

180 CONTINUE

DO 190 I - 1, NCAT LNGC (I) - O.ODO IF (I .LE. NANI) LNGA (I) - O.ODO

PIT 1750 PIT 1760 PIT 1770 PIT 1780 PIT 1790 PIT 1800 PIT 1810 PIT 1820 PIT 1830 PIT 1840 PIT 1850 PIT 1860 PIT 1870 PIT 1880 PIT 1890 PIT 1900 PIT 1910 PIT 1920 PIT 1930 PIT 1940 PIT 1950 PIT 1960 PIT 1970 PIT 1980 PIT 1990 PIT 2000 PIT 2010 PIT 2020 PIT 2030 PIT 2040 PIT 2050 PIT 2060 PIT 2070 PIT 2080 PIT 2090 PIT 2100 PIT 2110 PIT 2120 PIT 2130 PIT 2140 PIT 2150 PIT 2160 PIT 2170 PIT 2180 PIT 2190 PIT 2200 PIT 2210 PIT 2220 PIT 2230 PIT 2240 PIT 2250 PIT 2260 PIT 2270 PIT 2280 PIT 2290 PIT 2300 PIT 2310 PIT 2320

377

Page 378: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

190 CONTINUE

C «

C Read in data

DO 195 I - 1, 3READ (UNP, '(Al)') LINE

195 CONTINUE

DO 220 I - 1, 6DO 210 TP - 1, NTEMREAD (UNP, 200) (BOO(I ,K,TP) , B11(I

K - 1, 4)200 FORMAT (12(F10.5))210 CONTINUE

DO 215 J - 1, 4READ (UNP, '(Al)') LINE

215 CONTINUE220 CONTINUE

DO 240 I = 7, 10DO 230 TP = 1, 2READ (UNP, 200) (BOO(I ,K,TP) , Bll(I

K = 1, 4)230 CONTINUE

DO 235 J = 1, 4READ (UNP, '(Al)') LINE

235 CONTINUE240 CONTINUE

DO 260 LOOP - 1, 9READ (UNP, 250) I, J, (THTCC(I , J ,TP) ,

250 FORMAT (2(12), IX, 11(F10.5))260 CONTINUE

DO 265 I - 1, 3READ (UNP, '(Al)') LINE

265 CONTINUE

DO 270 LOOP =1,9READ (UNP, 250) K, L, (THTAA(K,L,TP) ,

270 CONTINUE

DO 275 I - 1, 3READ (UNP, '(Al)') LINE

275 CONTINUE

DO 290 LOOP - 1, 19READ (UNP, 280) I, J, K, (PSICC(I,J,K

280 FORMAT (3(12), IX, 11(F10.5))290 CONTINUE

DO 295 I - 1, 3READ (UNP, '(Al)') LINE

295 CONTINUE

DO 300 LOOP - 1, 20

PIT 2330 PIT 2340

.......................... | PIT 2350 (PIT 2360

.......................... j PIT 2370PIT 2380PIT 2390PIT 2400PIT 2410PIT 2420PIT 2430PIT 2440

,K,TP), CPP(I,K,TP), PIT 2450PIT 2460PIT 2470PIT 2480PIT 2490PIT 2500PIT 2510PIT 2520PIT 2530PIT 2540PIT 2550

,K,TP), CPP(I,K,TP), PIT 2560PIT 2570PIT 2580PIT 2590PIT 2600PIT 2610PIT 2620PIT 2630PIT 2640

TP - 1, 11) PIT 2650PIT 2660PIT 2670PIT 2680PIT 2690PIT 2700PIT 2710PIT 2720PIT 2730

TP - 1, 11) PIT 2740PIT 2750PIT 2760PIT 2770PIT 2780PIT 2790PIT 2800PIT 2810

,TP), TP - 1, 11) PIT 2820PIT 2830PIT 2840PIT 2850PIT 2860PIT 2870PIT 2880PIT 2890PIT 2900

378

Page 379: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

c

c

c

c LICc

READ (UNP, 280) K, L, I, (PSIAA(K,L, I ,TP) , TP - 1, 11)300 CONTINUE

CLOSE (UNP)

Interpolate values from table to proper temperature

CALL PTZINT (TEMP, TEMPI, BO, BOO, Bl, fill, CP, CPP, THTC,THTA, THTAA, PSIC, PSICC, PSIA, PSIAA)

Initialize E sub theta functions

DO 320 I - 1, NCATDO 310 J - 1, NCAT

ETHTC(I.J) - O.ODOETHTCP(I,J) - O.ODO

310 CONTINUE320 CONTINUE

DO 340 K - 1, NANIDO 330 L - 1, NANI

ETHTA(K,L) - O.ODOETHTAP(K,L) - O.ODO

330 CONTINUE340 CONTINUE

Initialize moles and charge for anions and cations

DO 350 I - 1, NCATMC(I) - O.ODOZC(I) - 0IF (I .LE. NANI) THENMA(I) - O.ODOZA(I) - 0

END IF350 CONTINUE

To avoid zerodivide the molality of unknown components inpitzer is set - 0.001 mole

DO 360 I - 1, NCATZC(I) - Z(CAT(I))MC(I) - ANALM(CAT(I))IF (FLAGl .NE. 1 .AND. I .EQ. 7) MC(I) - ALFA(8)IF (MC(I) .LT. CPUMIN) MC(I) = l.OD-3

360 CONTINUE

DO 370 K - 1, NANIZA(K) - Z(ANI(K))MA(K) - ANALM(ANI(K))

PIT 2910PIT 2920PIT 2930PIT 2940PIT 2950

1 DTT 0 Q£ A

|PIT 29701 DTT OQftH

PIT 2990THTCC, PIT 3000

PIT 3010PIT 3020

------- |PIT 3030 |PIT 3040

------ -| PIT 3050 PIT 3060PIT 3070PIT 3080PIT 3090PIT 3100PIT 3110PIT 3120PIT 3130PIT 3140PIT 3150PIT 3160PIT 3170PIT 3180PIT 3190PIT 3200

------ -| PIT 3210|PIT 3220

------- JPIT 3230PIT 3240PIT 3250PIT 3260PIT 3270PIT 3280PIT 3290PIT 3300PIT 3310PIT 3320PIT 3330

....... [PIT 3340 |PIT 3350|PIT 3360

....... [PIT 3370PIT 3380PIT 3390PIT 3400PIT 3410PIT 3420PIT 3430PIT 3440PIT 3450PIT 3460PIT 3470PIT 3480

379

Page 380: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

370

C

380

C

IF (FLAG1 .NE. 1 .AND. K .EQ. 5)MA(K) = KT1(2) * ALFA(IO) / ALFA(8)

IF (MA(K) .LT. CPUMIN) MA(K) - l.OD-3CONTINUE

Determine ionic strength

MU = O.ODOBZ = O.ODO

DO 380 I = 1, MXSP + 44MU = MU + ANALM(I) * Z(I)**2IF (Z(I) .NE. 0) BZ = BZ + ANALM(I) *

CONTINUE

MU - 0.5 * MU

PIT 3490PIT 3500PIT 3510PIT 3520PIT 3530

.......................... | PIT 3540 |PIT 35501 PTT "\G.£>r\

PIT 3570PIT 3580PIT 3590PIT 3600PIT 3610PIT 3620

IABS(Z(I)) PIT 3630PIT 3640PIT 3650PIT 3660PIT 3670

.___ ___ __ 1 DTT QCQfi

Calculate g functions assuming alpha = 2.0 | PIT 3690

X = 2 * DSQRT(MU)

,--.__---_---_-----------. | PIT 3700 PIT 3710PIT 3720

G = 2 * (1 - (1 + X) * DEXP(-X)) / (X**2) PIT 3730

CC - - -

GP - -2 * (1 - (1 + X + (0.5 * X**2)) * DEXP(-X)) / X**2 PIT 3740PIT 3750

1 DTT 1~7C.r\...._..__...-..._..._..._..._. ....................................Ij-j^ _>/uw

Determine B, B' , and C coefficients assuming beta(2)MX = 0.0 (PIT 3770

DO 400 1=1, NCATDO 390 K - 1, NANI

C(I,K) = O.ODOB(I,K) = O.ODOBP(I,K) = O.ODO

IF (MC(I) .LT. CPUMIN) GO TO 400IF (MA(K) .LT. CPUMIN) GO TO 390B(I,K) - BO(I,K) + B1(I,K) * GBP(I,K) - B1(I,K) * GP / MU

IF (ZC(I) .EQ. 0) GO TO 400IF (ZA(K) .EQ. 0) GO TO 390

1 DTT "l~7ttf\..___.___._--_-__-_--_-_-_ | Jfll J/OU

PIT 3790PIT 3800PIT 3810PIT 3820PIT 3830PIT 3840PIT 3850PIT 3860PIT 3870PIT 3880PIT 3890PIT 3900PIT 3910PIT 3920

C(I,K) = CP(I,K) / (2 * ((IABS(ZC(I) * ZA(K) ) )**0 . 5) ) PIT 3930390400

p

C

CONTINUECONTINUE

PIT 3940PIT 3950PIT 3960

1 DTT O C\~lf\.-___-____-______________________..________________________________| jrjLi jy / \j Determine Phi and Phi' cation coefficients j PIT 3980

DO 420 1=1, NCATDO 410 J = 1, NCAT

PHIC(I.J) = O.ODOPHICP(I.J) = O.ODO

IF (MC(I) .LT. CPUMIN) GO TO 420

.......................... j PIT 3990PIT 4000PIT 4010PIT 4020PIT 4030PIT 4040PIT 4050PIT 4060

380

Page 381: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

410420

IF (MC(J) .LT. CPUMIN) GO TO 410

PHIC(I,J) - THTC(I.J) + ETHTC(I.J) PHICP(I.J) - ETHTCP(I.J)

CONTINUE CONTINUE

Determine Phi and Phi' anion coefficients

DO 440 K - 1, NANI DO 430 L - 1, NANI

PHIA(K,L) - O.ODO PHIAP(K.L) - O.ODO

IF (MA(K) .LT. CPUMIN) GO TO 440 IF (MA(L) .LT. CPUMIN) GO TO 430

430440

PHIA(K.L) PHIAP(K.L)

CONTINUE CONTINUE

THTA(K.L) + ETHTA(K.L) ETHTAP(K.L)

Determine first summation term to solve equation for F

SUM1 - O.ODO

DO 460 I - 1, NCAT DO 450 K = 1, NANI

SUM1 - SUM1 + MC(I) * MA(K) * BP(I,K) 450 CONTINUE 460 CONTINUE

Determine second summation term to solve equation for F

SUM2 - O.ODO

DO 480 1=1, (NCAT-1) DO 470 J - (1+1), NCAT

SUM2 = SUM2 + MC(I) * MC(J) * PHICP(I.J) 470 CONTINUE 480 CONTINUE

Determine third summation term to solve equation for F

SUM3 = O.ODO

DO 500 K - 1, (NANI-1) DO 490 L = (K+l), NANI

SUM3 - SUM3 + MA(K) * MA(L) * PHIAP(K,L) 490 CONTINUE

PIT 4070 PIT 4080 PIT 4090 PIT 4100 PIT 4110 PIT 4120 PIT 4130 |PIT 4140 I PIT 4150 |PIT 4160 PIT 4170 PIT 4180 PIT 4190 PIT 4200 PIT 4210 PIT 4220 PIT 4230 PIT 4240 PIT 4250 PIT 4260 PIT 4270 PIT 4280 PIT 4290 PIT 4300 PIT 4310 PIT 4320 PIT 4330 PIT 4340 PIT 4350 PIT 4360 PIT 4370 PIT 4380 PIT 4390 PIT 4400 PIT 4410 PIT 4420 PIT 4430 PIT 4440 PIT 4450 PIT 4460 PIT 4470 PIT 4480 PIT 4490 PIT 4500 PIT 4510 PIT 4520 PIT 4530 PIT 4540 PIT 4550 PIT 4560 PIT 4570 PIT 4580 PIT 4590 PIT 4600 PIT 4610 PIT 4620 PIT 4630 PIT 4640

381

Page 382: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

500 CONTINUE

Solve for F

F = -0.768 * A * ((DSQRT(MU) / (1 + 1.2 * DSQRT(MU))) +(2 / 1.2) * DLOG(1 + 1.2 * DSQRT(MU))) + SUM1 + SUM2 + SUMS

Start to solve for In activity coefficient of the cations

ITER - 1

DO 620 II - 1, NCAT 520 CONTINUE

IF (FLAG1 .EQ. 1 .AND. II .EQ. 7 .AND. ITER .EQ. 1)M(8) - ALFA(8)

IF (MC(II) .LT. CPUMIN) GO TO 610

First summation term for cation activity coefficients

SUM1 = O.ODO

DO 530 K - 1, NANISUM1 = SUM1 + MA(K) * (2 * B(II,K) + BZ * C(II,K))

530 CONTINUE

Second summantion term for cation activity coefficients

SUM2 - O.ODO SUM2B - O.ODO SUM2C = O.ODO

DO 550 J = 1, NCATIF (II .EQ. J) GO TO 550 SUM2A = O.ODO

DO 540 K - 1, NANIIF (MC(J) .LT. CPUMIN) GO TO 540 SUM2A - SUM2A + MA(K) * PSIC(II,J,K)

540 CONTINUE

SUM2 - SUM2 + MC(J) * (2 * PHIC(II,J) + SUM2A)

IF (J .EQ. 1 .OR. J .EQ. 3) THENSUM2B - SUM2 + l.OD-3 * (2 * PHIC(II,J) + SUM2A) SUM2C - SUM2 + l.OD-3 * (2 * PHIC(II,J) + SUM2A)

ELSESUM2B - SUM2 + MC(J) * (2 * PHIC(II,J) + SUM2A) SUM2C = SUM2 + MC(J) * (2 * PHIC(i;i,J) + SUM2A)

END IF

PITPIT

| PIT(PIT| PITPITPITPITPIT

| PIT| PIT| PITPITPITPITPITPITPITPITPITPIT(PIT| PIT| PITPITPITPITPITPITPITPIT

| PIT| PIT| PITPITPITPITPITPITPITPITPITPITPITPITPITPITPITPITPITPITPITPITPITPITPITPITPIT

4650466046704680469047004710472047304740475047604770478047904800481048204830484048504860487048804890490049104920493049404950496049704980499050005010502050305040505050605070508050905100511051205130514051505160517051805190520052105220

382

Page 383: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

550 CONTINUE PIT 5230PIT 5240

C ------.--------..---..--.....---....---------------------------------(PIT 5250C Third summantion term for cation activity coefficients (PIT 5260 C ------.-------.......-..............-.-------------------------------j PIT 5270

PIT 5280SUMS - O.ODO PIT 5290

PIT s^oo DO 570 K - 1, (NANI-1)

DO 560 L - (K+l), NANI r-.x .,-..-SUMS - SUMS + MA(K) * MA(L) * PSIA(K,L,II) PIT 5330

560 CONTINUE PIT 5340570 CONTINUE PIT 5350

PIT 5360 C ...._.................................-------------------------------|PIT 5370C Fourth summantion term for cation activity coefficients JPIT 5380 C --------------------------------------------------------------------- I PIT 5390

PIT 5400SUM4 - O.ODO PIT 5410 SUM4B - O.ODO PIT 5420 SUM4C - O.ODO PIT 5430

PIT 5440DO 590 I - 1, NCAT PIT 5450

DO 580 K - 1, NANI PIT 5460SUM4 - SUM4 + MC(I) * MA(K) * C(I,K) PIT 5470IF (I .EQ. 1 .OR. I .EQ. 3) THEN PIT 5480

SUM4B - SUM4 + l.OD-3 * MA(K) * C(I,K) PIT 5490SUM4C - SUM4 + l.OD-3 * MA(K) * C(I,K) PIT 5500

C ELSE PIT 5510C SUM4B = SUM4 + MC(I) * MA(K) * C(I,K) PIT 5520C SUM4C = SUM4 + MC(I) * MA(K) * C(I,K) PIT 5530

END IF PIT 5540580 CONTINUE PIT 5550590 CONTINUE PIT 5560

PIT 5570IF (II .EQ. 1) THEN PIT 5580LNGDNA - F + SUM1 + SUM2C + SUM3 + SUM4C PIT 5590PGDNA - DEXP(LNGDNA) PIT 5600

ELSE IF (II .EQ. 3) THEN PIT 5610LNGDCA - 4 * F + SUM1 + SUM2B + SUM3 + 2*SUM4B PIT 5620PGDCA - DEXP(LNGDCA) PIT 5630

END IF PIT 5640PIT 5650

C ----------------------------------_--------------.._....._..._..._...| PIT 5660C Add up components to solve for activity coefficient for the cation |PIT 5670 C ----------------------------------.___-----.__......_......_._..._...I PIT 5680

PIT 5690LNGC(II) - ZC(II)**2 * F + SUM1 + SUM2 + SUM3 + PIT 5700

IABS(ZC(II)) * SUM4 PIT 5710PGAMC(II) - DEXP(LNGC(II)) PIT 5720PALFA(CAT(II)) = MC(II) * PGAMC(II) PIT 5730

PIT 5740 IF (FLAG1 .NE. 1) GO TO 610 PIT 5750

PIT 5760DONE - 1 PIT 5770 M(8) - ALFA(8) / PGAMC(7) PIT 5780 DIFF - PALFA(CAT(7)) - ALFA(8) PIT 5790

PIT 5800

383

Page 384: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

IF ((DABS(DIFF)-(5.0D-3*ALFA(8))) .LT. CPUMIN) GO TO 600

DONE - 0ITER = ITER + 1

600 CONTINUEIF (DONE .NE. 1) GO TO 520OHA = KT1(2) * ALFA(IO) / ALFA(8)M(9) = OHA

610 CONTINUEPG(CAT(II)) - PGAMC(II)

620 CONTINUE

Start to solve for In activity coefficient of the anions

KK = 1 630 CONTINUE

IF (MA(KK) .LT. CPUMIN) GO TO 720

First summation term for anion activity coefficients

SUM1 - O.ODO

DO 640 I = 1, NCATSUM1 = SUM1 + MC(I) * (2 * B(I,KK) + BZ * C(I,KK))

640 CONTINUE

Second summation term for anion activity coefficients

650

660

SUM2 = O.ODO

DO 660 L - 1, NANIIF (L .EQ. KK) GO TO 660

SUM2A - O.ODO

DO 650 I = 1, NCATIF (MA(L) .LT. CPUMIN) GO TO 650 SUM2A - SUM2A + MC(I) * PSIA(KK,L,I)

CONTINUE

SUM2 = SUM2 + MA(L) * (2 * PHIA(KK,L) + SUM2A) CONTINUE

Third summation term for anion activity coefficients __«______ ________________.

SUM3 - O.ODO

DO 680 I - 1, (NCAT-1)

PITPITPITPITPITPITPITPITPITPITPITPITPITPIT

| PIT| PIT(PITPITPITPITPITPIT

| PIT| PITI PITPITPITPITPITPITPITPIT

| PIT| PIT| PITPITPITPITPITPITPITPITPITPITPITPITPITPITPITPITPIT

| PITI PIT| PITPITPITPITPIT

5810582058305840585058605870588058905900591059205930594059505960597059805990600060106020603060406050606060706080609061006110612061306140615061606170618061906200621062206230624062506260627062806290630063106320633063406350636063706380

384

Page 385: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

c

r>Vj

C

DO 670 J - (1+1), NCATSUM3 - SUM3 + MC(I) * MC(J) * PSIC(I,J,KK)

670 CONTINUE680 CONTINUE

Fourth summation term for anion activity coefficients

SUM4 - O.ODO

DO 700 I - 1, NCATDO 690 K - 1, NANI

SUM4 - SUM4 + MC(I) * MA(K) * C(I,K)690 CONTINUE700 CONTINUE

Add up components to solve for activity coefficient for the anion

LNGA(KK) - ZA(KK)**2 * F + SUM1 + SUM2 + SUM3 +IABS(ZA(KK)) * SUM4

PGAMA(KK) - DEXP(LNGA(KK))PALFA(ANI(KK)) - MA(KK) * PGAMA(KK)

IF (FLAG1 .NE. 1) GO TO 720

DONE - 1M(9) - OHA / PGAMA(5)DIFF - PALFA(ANI(5)) - OHA

IF ((DABS(DIFF)-(5.0D-3*OHA)) .LT. CPUMIN) GO TO 710

DONE - 0

710 CONTINUE

IF (DONE .NE. 1) GO TO 630

720 CONTINUE

IF (KK .EQ. 4 .AND. C02TIT .GT. CPUMIN) THENMA(3) - C02TIT / (1 + 2 * (KT1(1) * PGAMA(3)) /

(PGAMA(4)*ALFA(8)))MA(4) - 5.0D-1 * (C02TIT - MA(3))

IF (DABS(PALFA(ANI(3))-MA(3)*PGAMA(3)) .GT.5.0D-3*PALFA(ANI(3))) KK - 3

IF (KK .EQ. 3) GO TO 630IF (DABS(PALFA(ANI(4))-MA(4)*PGAMA(4)) .GT.

5.0D-3*PALFA(ANI(4))) GO TO 630END IF

PG(ANI(KK)) - PGAMA(KK)KK - KK + 1IF (KK .LE. 5) GO TO 630

PIT 6390PIT 6400PIT 6410PIT 6420PIT 6430

-| PIT 6440 (PIT 6450

-| PIT 6460 PIT 6470PIT 6480PIT 6490PIT 6500PIT 6510PIT 6520PIT 6530PIT 6540PIT 6550

1 T3TT £ <^£O 1 rll ODOU

(PIT 6570I TJTT £^QOrll ODoU

PIT 6590PIT 6600PIT 6610PIT 6620PIT 6630PIT 6640PIT 6650PIT 6660PIT 6670PIT 6680PIT 6690PIT 6700PIT 6710PIT 6720PIT 6730PIT 6740PIT 6750PIT 6760PIT 6770PIT 6780PIT 6790PIT 6800PIT 6810PIT 6820PIT 6830PIT 6840PIT 6850PIT 6860PIT 6870PIT 6880PIT 6890PIT 6900PIT 6910PIT 6920PIT 6930PIT 6940PIT 6950PIT 6960

385

Page 386: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

o ---------------------------------------------

C Calculate the osmostic coefficient

DO 750 I = 1, NCATDO 740 K = 1, NANI

BFEE(I,K) = BO(I,K) + B1(I,K) * DEXP(740 CONTINUE750 CONTINUE

SUMS - O.ODO

DO 770 I = 1, NCATDO 760 K = 1, NANI

|PIT 6980..........------.---..-- j PIT 6990

PIT 7000PIT 7010PIT 7020

-2.0 * DSQRT(MU)) PIT 7030PIT 7040PIT 7050PIT 7060PIT 7070PIT 7080PIT 7090PIT 7100

SUMS = SUMS + (MC(I) * MA(K)) * (BFEE^I,K) + BZ * C(I,K)) PIT 7110760 CONTINUE770 CONTINUE

SUM6 - O.ODO

DO 800 I - 1, (NCAT-1)DO 790 J = (1+1) , NCAT

SUM6A - O.ODODO 780 K = 1, NANI

SUM6A - SUM6A + MA(K) * PSIC(I,J,K)780 CONTINUE

PIT 7120PIT 7130PIT 7140PIT 7150PIT 7160PIT 7170PIT 7180PIT 7190PIT 7200PIT 7210PIT 7220

SUM6 = SUM6 + (MC(I) * MC(J)) * (PHIC(I,J) + SUM6A) PIT 7230790 CONTINUE800 CONTINUE

SUM7 = O.ODO

DO 830 K - 1, (NANI-1)DO 820 L = (K+l) , NANI

SUM7A - O.ODODO 810 1=1, NCAT

SUM7A = SUM7A + MC(I) * PSIA(K,L,I)810 CONTINUE

PIT 7240PIT 7250PIT 7260PIT 7270PIT 7280PIT 7290PIT 7300PIT 7310PIT 7320PIT 7330PIT 7340

SUM7 = SUM7 + (MA(K) * MA(L)) * (PHIA(K,L) + SUM7A) PIT 7350820 CONTINUE830 CONTINUE

SUMS = O.ODO

DO 840 I = 1, NCATSUMS = SUM8 + MC(I)

840 CONTINUE

DO 845 I = 1, NANISUMS = SUMS + MA(I)

845 CONTINUE

PIT 7360PIT 7370PIT 7380PIT 7390PIT 7400PIT 7410PIT 7420PIT 7430PIT 7440PIT 7450PIT 7460PIT 7470PIT 7480

FEE = (-0.768 * A * MU) / (1 + 1.2 * DSQRT(MU)) PIT 7490FEE = FEE + SUMS + SUM6 + SUM7FEE - 1.0 + (2.0 * FEE) / SUMS

C Calculate the activity of water

PIT 7500PIT 7510PIT 7520

........................ | PIT 7530|PIT 7540

386

Page 387: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

C ------...............-.........-------.------------------------------1 PIT 7550PIT 7560

ALFA(IO) = 10**(-0.007823 * SUMS * FEE) PIT 7570PIT 7580

C ------........---.....---.-....-------.------------------------------|PIT 7590C At this time pitzer data calculated for only (na,k,ca,mg,cl,so4) JPIT 7600C ---------------------------------------------------------------------j PIT 7610

PIT 7620DO 850 I = 7, NMAX PIT 7630

PALFA(I) = O.ODO PIT 7640PG(I) - O.ODO PIT 7650

850 CONTINUE PIT 7660PIT 7670

RETURN PIT 7680END PIT 7690

C =CCCC

rLl

SUBROUTINE POLY (A, B, C, E, D, G, J, ROOT) == - ,.,

This routine solves the cubic equation which describes thepartitioning between gas, oil, and water.Values defined in calling routine

INTEGER UNODOUBLE PRECISION CPUMINPARAMETER (UNO =6)PARAMETER (CPUMIN = l.OD-35)

DOUBLE PRECISION A, B, C, D, E, Fl, F2 , F3 , G, J, PDOUBLE PRECISION Q, R, S, ROOT, T, X, Z, Zl , Z2 , Z3

INTRINSIC DABS, DAGOS, DCOS , DMAX1, DSIN, DSQRT

X = (l.ODOO / 3.0DOO)

Z1=D+G+J-A-B-CZl = Zl / E

Z2 = (D * G) + (D * J) + (G * J) - (A * G) - (A * J) - (B * D)- (B * J) - (C * D) - (C * G)

Z2 = Z2 / (E**2)

Z3 - (D * G * J) - (A * G * J) - (B * D * J) - (C * D * G)Z3 - Z3 / (E**3)

Q = ((3.0 * Z2) - (Zl**2)) / 9.00DOO

R = (9.0DOO * Zl * Z2) - (27.00DOO * Z3) - (2.0DOO * Zl**3)R = R / 54.0DOO

p = Q**3 + R**2

POL 0010«| POL 0020

|POL 0030IPOL 0040IPOL 0050

---JPOL 0060POL 0070POL 0080POL 0090POL 0100POL 0110POL 0120POL 0130POL 0140POL 0150POL 0160POL 0170

===|POL 0180POL 0190POL 0200POL 0210POL 0220POL 0230POL 0240POL 0250POL 0260POL 0270POL 0280POL 0290POL 0300POL 0310POL 0320POL 0330POL 0340POL 0350POL 0360POL 0370POL 0380

387

Page 388: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

IF (DABS(P) .LT. CPUMIN) THENFl = (2.0DOO * (R**X))Fl - Fl - ( X * Zl)F2 = (-1.0DOO) * (R**X) - (X * Zl)F3 = F2

ELSE IF (P .GT. O.ODOO) THENS - (R + DSQRT(Q**3 + R**2))**XT - (R - DSQRT(Q**3 + R**2))**XFl - S + T - (X * Zl)F2 - FlF3 = Fl

ELSE IF (P .LT. O.ODOO) THENZ - DACOS(R / (DSQRT(-1.0 * Q**3)))Z - Z / 3.0DOOFl - (2.0DOO * DSQRT(-1.0 * Q) * DCOS(F2 - ((-1.0) * DSQRT(-1.0 * Q) * DCOS(

+ (DSQRT(-3.0 * Q) * DSIN(

POLPOLPOLPOLPOLPOLPOLPOLPOLPOLPOLPOLPOLPOL

Z)) - (X * Zl) POLZ)) - (X * Zl) POLZ)) POL

F3 = ((-1.0) * DSQRT(-1.0 * Q) * DCOS(Z)) - (X * Zl) POL- (DSQRT(-3.0 * Q) * DSIN(Z)) POL

END IF

ROOT = DMAX1(F1, F2 , F3)

IF (ROOT .LE. 0.0) THENWRITE (UNO, 1001)STOP

END IF

RETURN

FORMAT( //, 57('*'),/» ' *',56X,'*' ,/,'E.H. Perkins , with complete

POLPOLPOLPOLPOLPOLPOLPOLPOLPOLPOL

' * ERROR .... Call ' , POLproblem *',/, POL

' *' ,13X, 'details. Error occurred during volatile *' ,/ POL' *' ,13X, 'fractionation between water, oil and gas *' ,/, POL' *' ,13X, 'phases. ',34X, '*',/, '

END

*',56X, '*',/, 57('*'),//) POLPOLPOL

0390040004100420043004400450046004700480049005000510052005300540055005600570058005900600061006200630064006500660067006800690070007100720073007400750

SUBROUTINE PRATIO (TITLE, PRESS, TEMP, DENS, UNITS, PC02, GEOTH,RATIO)

This routine prints mole ratios, log of active ratios, etc.

AlA2A3A4ALFAANALMCOCPUMINCRCUNITSDENS

DELDELDELDELDELDELDELDELCHADELDEL

Temperary storage for intermediate valuesTemperary storage for intermediate valuesTemperary storage for intermediate valuesTemperary storage for intermediate valuesActivity of aqueous species iAnalyzed molality of species iHold intermediate calculationsSmallest positive real value program usesInserts carriage returns in outputAnalytical input concentrationDensity

PRA 0010 PRA 0020 |PRA 0030 |PRA 0040 |PRA 0050 |PRA 0060 |PRA 0070 |PRA 0080 |PRA 0090 IPRA 0100 |PRA 0110 IPRA 0120 |PRA 0130 |PRA 0140 |PRA 0150 IPRA 0160

388

Page 389: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

C DUM DEL Array to hold results for printingC EXELT DEL Moles of componentsC FD5 DEL Number of Hydrogens in various activity ratiosC GEOTH INT Flag to print geothermometersC I INT Loop variable/pointerC ID1 INT Index of species to make ratiosC ID2 INT Index of species to make ratiosC IDS INT Index of species to make ratiosC ID4 INT Index of species to make ratiosC IPGLN INT Current line number of the output fileC NMAX INT General array dimension to allow easy expansionC PC02 DEL Partial Pressure of Carbon DioxideC PF DEL Holds intermediate calculationsC PH DEL Measured pH of the solutionC PRESS DEL Total pressureC RATIO INT Flag for printing activity ratios of elementsC RMG DEL Holds intermediate calculationsC RMGD DEL Holds intermediate calculationsC SUET DEL Array to hold calculated geothermometersC TEMP DEL Temperature of the solution when pH was measuredC TITLE CHA Name of the sampleC TITMIX CHA TITLE for mixturesC TITR DEL Iteration array in DISTRB, used for guessesC TOTEL DEL Contains HTOT, OHTOT and Sum C02C UNITS CHA Units of concentrationC UNO INT File unit assigned for output fileC .....................................................................

DOUBLE PRECISION CPUMININTEGER NMAX, UNOPARAMETER (CPUMIN «= l.OD-35, UNO -= 6)PARAMETER (NMAX = 340)

INTEGER I, IDl(lO), ID2(10), ID3(10), ID4(6), IPAGE, IPGLN INTEGER GEOTH, RATIO

CHARACTER * 1 TOF, CR CHARACTER * 5 UNITS CHARACTER * 40 TITMIX CHARACTER * 80 TITLE

DOUBLE PRECISION Al, A2, A3, A4, ALFA(NMAX), ANALM(NMAX)DOUBLE PRECISION CO, C02F, CUNITS(NMAX)DOUBLE PRECISION DENS, DUM(IO)DOUBLE PRECISION HTOTI, EXELT(35), FD5(6), M(NMAX), OHTOTIDOUBLE PRECISION PC02, PF, PH, PRESS, RMG, RMGD, SUBT(21)DOUBLE PRECISION TEMP, TITR(ll), TOTEL(5)

INTRINSIC DABS, DLOG10, DSQRT EXTERNAL PAGE

COMMON /EXTOT / EXELT, TOTEL, TITRCOMMON /FMFD / TOF, CR, TITMIXCOMMON /FORM / IPAGE, IPGLNCOMMON /MOLS / PH, ANALM, M, ALFA, CUNITSCOMMON /TOTALS/ C02F, HTOTI, OHTOTI

DATA ID1 / 1, 2, 3, 4, 14, 18, 6, 7, 1, I/

|PRAIPRA|PRAIPRA IPRA JPRAJPRA |PRAIPRAI PRAIPRA IPRA|PRAJPRA JPRA IPRA|PRA |PRA I PRAIPRA IPRA|PRAIPRA|PRAIPRA|PRA |PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA PRA

0170018001900200021002200230024002500260027002800290030003100320033003400350036003700380039004000410042004300440045004600470048004900500051005200530054005500560057005800590060006100620063006400650066006700680069007000710072007300740

389

Page 390: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

DATA ID2 / 32, 22, 4, 2, 26, 15, 6, 7,DATA ID3 / 3, 3, 3, 1, 1, 1, 20, 20, 2DATA ID4 / 1, 2,3,4, 14, 18/ DATA FD5 / 2.0, 2.0, 1.0, 1.0, 3.0, 2.0/

DO 10 I = 1, 10DUM(I) =0.0

10 CONTINUE

IF (RATIO .EQ. 1) THENCALL PAGEWRITE (UNO, 1000) TITLE, TEMP, TITMIXWRITE (UNO, 1010) CRWRITE (UNO, 1020) CR

IF (EXELT(5) .GT. CPUMIN) THENDO 20 I = 1, 8

8 16/ PRA 07500, 20/ PRA 0760

PRA 0770 PRA 0780 PRA 0790

====== = 1 PRA OROO

PRA 0810PRA 0820PRA 0830PRA 0840PRA 0850PRA 0860PRA 0870PRA 0880PRA 0890PRA 0900PRA 0910PRA 0920PRA 0930

IF (ANALM(ID1(I)) .GT. CPUMIN) DUM(I) - EXELT(5) / PRA 0940

20 CONTINUEEND IF

IF (ANALM(2) .GT. CPUMIN) THENDUM(9) = ANALM(l) / ANALM(2)

ANALM(ID1(I» PRA 0950PRA 0960PRA 0970PRA 0980PRA 0990PRA 1000

IF (ANALM(3) .GT. CPUMIN) DUM(IO) - DS^RT(ANALM(1) ) / ANALM(3)PRA 1010END IF

WRITE (UNO, 1030) (DUM(I) , 1=1, 10)WRITE (UNO, 1040)WRITE (UNO, 1050) CRIPGLN = IPGLN + 3

DO 25 I - 1, 10DUM(I) = O.ODOO

25 CONTINUE

DO 30 I - 1, 6IF (ANALM(ID2(I)) .GT. CPUMIN .AND.

ANALM(ID3(I)) .GT. CPUMIN)

PRA 1020PRA 1030PRA 1040PRA 1050PRA 1060PRA 1070PRA 1080PRA 1090PRA 1100PRA 1110PRA 1120PRA 1130PRA 1140PRA 1150

DUM(I) - ANALM(ID2(I)) / ANALM(ID3(I) ) PRA 116030 CONTINUE

IF (EXELT(5) .GT. CPUMIN) THEN

PRA 1170PRA 1180PRA 1190PRA 1200

IF (ANALM(6) .GT. CPUMIN) DUM(7) - ANALM(6) / EXELT(5) PRA 1210IF (ANALM(7) .GT. CPUMIN) DUM(8) - ANALM(7) / EXELT(5) PRA 1220IF (EXELT(22).GT. CPUMIN) DUM(9) - EXELT(22) / EXELT(5) PRA 1230IF (EXELT(23).GT. CPUMIN) DUM(IO) - EXELT(23) / EXELT(5) PRA 1240

END IF

WRITE (UNO, 1060) (DUM(I), I-l, 10)WRITE (UNO, 1070) CRWRITE (UNO, 1080)WRITE (UNO, 1090) CRIPGLN - IPGLN + 7

PRA 1250PRA 1260PRA 1270PRA 1280PRA 1290PRA 1300PRA 1310PRA 1320

390

Page 391: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

DO 40 I - 1, 6DUM(I) - O.DOIF (ALFA(ID4(I)) .GT. CPUMIN) DUM(I) - DLOGIO ( ALFA (ID4(I) ))

+ (FD5(I) * PH)40 CONTINUE

DUM(7) - O.DODUM(8) - O.DO

IF (ALFA(l) .GT. CPUMIN .AND. ALFA(2) .GT. CPUMIN)DUM(7) - DLOGIO (ALFA(l) / ALFA(2))

IF (ALFA(3) .GT. CPUMIN .AND. ALFA(4) .GT. CPUMIN)DUM(8) - DLOGIO (ALFA( 3) / ALFA(4))

WRITE (UNO, 1100) (DUM(I), I - 1, 8)IPGLN - IPGLN + 1

END IF

IF (GEOTH .EQ. 1 .OR. RATIO .EQ. 1) THENRMG - O.ODORMGD - O.ODOCO - O.ODOAl - O.ODOA2 - O.ODOA3 - O.ODOA4 - O.ODO

IF (ANALM(2) .GT. CPUMIN) RMG - ANALM(2) * 2 * 100 /(ANALM(2) * 2 + ANALM(l) * 2 + ANALM(4))

IF (ANALM(l) .GT. CPUMIN) Al - DLOGIO (ANALM( 1) )IF (ANALM(3) .GT. CPUMIN) A3 - DLOGIO (ANALM( 3))IF (ANALM(4) .GT. CPUMIN) A4 - DLOGIO (ANALM(4))

Al - 0.5 * AlA2 - Al

IF (DABS(Al) .GT. CPUMIN .OR. DABS (A3) .GT. CPUMIN.OR. DABS(A4) .GT. CPUMIN) THEN

Al - A3 - A4 + (l.DO / 3. DO) * (Al - A3)A2 - A3 - A4 + (4. DO / 3. DO) * (A2 - A3)

IF (RATIO .EQ. 1) THENWRITE (UNO, 1110) Al, A2IPGLN - IPGLN + 5

END IFEND IF

END IF

A3 - O.ODOA4 - O.ODO

IF (GEOTH .EQ. 1) THENIF (UNITS .EQ. 'MOL/L' .OR. UNITS .EQ. 'MOL/K') THENWRITE (UNO, 1120)RETURN

END IF

PRA 1330PRA 1340PRA 1350PRA 1360PRA 1370PRA 1380PRA 1390PRA 1400PRA 1410PRA 1420PRA 1430PRA 1440PRA 1450PRA 1460PRA 1470PRA 1480PRA 1490PRA 1500PRA 1510PRA 1520PRA 1530PRA 1540PRA 1550PRA 1560PRA 1570PRA 1580PRA 1590PRA 1600PRA 1610PRA 1620PRA 1630PRA 1640PRA 1650PRA 1660PRA 1670PRA 1680PRA 1690PRA 1700PRA 1710PRA 1720PRA 1730PRA 1740PRA 1750PRA 1760PRA 1770PRA 1780PRA 1790PRA 1800PRA 1810PRA 1820PRA 1830PRA 1840PRA 1850PRA 1860PRA 1870PRA 1880PRA 1890

. IPP^ i onn

391

Page 392: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cc

cr\j

Calculation of the subsurface temperature "subt" of the samplefrom the chemical data.

IF (RATIO .NE. 1) CALL PAGE

DO 50 I - 1, 21SUBT(I) - O.DO

50 CONTINUE

IF (CUNITS(12) .LT. CPUMIN) GO TO 60

IF (UNITS .EQ. 'MG/L ') THENCO - DLOG10(CUNITS(12) / DENS)

ELSE IF (UNITS .EQ. 'PPM ') THENCO - DLOG10(CUNITS(12))

END IF

SUBT( 1) = 1.309D3 / (5.19DO - CO) - 273.16DOSUBT( 2) = 1.522D3 / (5.75DO - CO) - 273.16DOSUBT( 3) = 0.731D3 / (4.52DO - CO) - 273.16DOSUBT( 8) = 1.032D3 / (4.69DO - CO) - 273.16DOSUBT(IO) = 1.000D3 / (4.78DO - CO) - 273.16DO

PF - 1.00 - 7.862D-5 * 2.718**(3.61D-3 * TEMP) * PRESSCO - DLOG10(PF * ALFA(ll) / ALFA(10)**:>)

SUBT(16) - 1309. ODOO /( 0.41 - CO) - 273.16DOSUBT(17) - 1522. ODOO /( 0.97 - CO) - 273.16DOSUBT(18) - 1032. ODOO / (-0.09 - CO) - 273.16DOSUBT(19) - -1000. ODOO / CO - 273.16DO

CO - PF * ALFA(ll)SUBT(21) - 731. ODOO / (-0.26 - DLOGIO(CO)) - 273.16DO

60 CONTINUEIF (CUNITS(3) .GT. O.ODO .AND. CUNITS(^) .GT. O.ODO)

SUBT(4) - 1.217D3 / (1.483DO + DLOG10((CUNITS(3) /CUNITS(4)))) - 273.16DO

Calculation of paces geothermometer.

IF (PC02 .GT. l.OD-6) THENA4 - A2 - (-1.36 - 0.253 * DLOG10(ltC02) )SUBT(12) - 1.647D3 / (2.24DO -I- A4) - 273.16

END IF

IF (Al .GT. CPUMIN .AND. A2 .GT. CPUMIN) THENSUBT(5) = 1.647D3 / (2.240DO -I- Al) - 273.16SUBT(6) = 1.647D3 / (2.240DO -I- A2) - 273.16

END IF

IF (RMG .LT. 0.5) THENSUBT(14) - SUBT(5)GO TO 70

END IF

|PRAIPRA

- 1 PRAI A rvf\

PRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRA

- 1 PRA

IPRA- 1 PRA

PRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRA

19101920193019401950196019701980199020002010202020302040205020602070208020902100211021202130214021502160217021802190220022102220223022402250226022702280229023002310 23202330t~ ~j *j\j

234023502360237023802390240024102420243024402450246024702480

392

Page 393: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

70

80

IF (RMG .GT. 50.0 .OR. SUBT(6) .LT. 70.0) GO TO 70

IF (SUBT(6) .LT. 100) THENRMGD = SUBT(6)

ELSERMGD = SUBT(5)

END IF

IF (RMG .LT. SUBT(14) =

ELSESUBT(14)

END IF

5.0) THENRMGD - (-1.03 + 59.971 * DLOGIO(RMG) + 145.05 * (DLOG10(RMG))**2 - 36711 * (DLOGIO(RMG))**2 / (RMGD + 273.16DO) - 1.67D7 * DLOGIO(RMG) / (RMGD + 273.16DO)**2)

RMGD - (10.66 - 4.74 * RMG + 325.87 * DLOG10(RMG)**2 - (1.032D5 * DLOG10(RMG)**2) / (RMGD + 273.16DO) - (1.968D7 * DLOG10(RMG)**2 / (RMGD + 273.16DO)**2) + ((1.605D7 * DLOG10(RMG)**3) / (RMGD + 273.16DO)**2))

CONTINUEIF (CUNITS(2) .GT. CPUMIN .AND. CUNITS(22) .GT. CPUMIN) THEN

IF (UNITS .EQ. 'MG/L ') A3 - DSQRT(CUNITS(2)) / CUNITS(22)IF (UNITS .EQ. 'PPM ')A3 = DSQRT(CUNITS(2) / DENS) / CUNITS(22)

SUBT(7) - 2.2D3 / (5.47 + DLOG10(A3)) - 273.16DO END IF

IF (CUNITS(3) .GT. CPUMIN .AND. CUNITS(22) .GT. CPUMIN)SUBT(9) = 1.59D3 / (DLOG10(CUNITS(3) / CUNITS(22)) + 0.779)

273.16DO

DO 80 I = 1, 21IF (SUBT(I) .LT. CPUMIN) SUBT(I)

CONTINUE999.0

SUBT(2), SUBT(17)SUBT(IO), SUBT(19)SUBT(4), SUBT(5)

WRITE (UNO, 1130) CR, CRWRITE (UNO, 1140) SUBT(l), SUBT(16)WRITE (UNO, 1150) SUBT(8), SUBT(18)WRITE (UNO, 1160) SUBT(3), SUBT(21)WRITE (UNO, 1170) SUBT(6), SUBT(12)WRITE (UNO, 1180) SUBT(14), SUBT(7), SUBT(9)

END IF

IF (GEOTH .EQ. 1) GEOTH - 2

RETURN

1000 FORMAT (' SAMPLE IDENT - ', A80, 4X, 'TEMPERATURE - ', F8.2, /, 20X, A40)

1010 FORMAT (//, ' MOLE RATIOS (USING ANALYTICAL MOLALITY)', /, Al, 39('_') f //, 8X, ' CL/CA', 8X, 'CL/MG', 8X, 'CL/NA', 8X, 'CL/K', 8X, 'CL/AL', 8X, 'CL/FE', 7X, 'CL/S04', 6X, 'CL/HC03', 5X, 'CA/MG', 7X, 'SQRT(CA)/NA')

1020 FORMAT (Al, 3(8X, '____'), 8X, '___', 2(8X, '____'), 7X, '____', 6X, '_____', 5X, '____',

PRA 2490 PRA 2500 PRA 2510 PRA 2520 PRA 2530 PRA 2540 PRA 2550 PRA 2560 PRA 2570 PRA 2580 PRA 2590 PRA 2600 PRA 2610 PRA 2620 PRA 2630 PRA 2640 PRA 2650 PRA 2660 PRA 2670 PRA 2680 PRA 2690 PRA 2700 PRA 2710 PRA 2720 PRA 2730 PRA 2740 PRA 2750 PRA 2760 PRA 2770 PRA 2780 PRA 2790 PRA 2800 PRA 2810 PRA 2820 PRA 2830 PRA 2840 PRA 2850 PRA 2860 PRA 2870 PRA 2880 PRA 2890 PRA 2900 PRA 2910 PRA 2920 PRA 2930 PRA 2940 PRA 2950 PRA 2960 PRA 2970 PRA 2980 PRA 2990 PRA 3000 PRA 3010 PRA 3020 PRA 3030 PRA 3040 PRA 3050 PRA 3060

393

Page 394: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

7X, '_________') PRA 30701030 FORMAT (IX, 10E13.4) PRA 30801040 FORMAT (/, 8X, 'NH3/NA', 8X, 'LI/NA', 8X, 'K/NA', 8X, 'MG/CA', PRA 3090

8X, 'SR/CA', 8X, 'BA/CA', 8X, 'S04/CL', 8X, 'HC03/CL', PRA 31008X, 'F/CL', 8X, 'B/CL') PRA 3110

1050 FORMAT (Al, 8X, '____', 8X, '____', 8X, '___', 8X, '____', PRA 31208X, '____', 8X, '____', 8X, '____', 8X, '_____',PRA 31308X, '___', 8X, '___') PRA 3140

1060 FORMAT (2X, 6E13.4, 2E14.4, 2E12.4) PRA 31501070 FORMAT (///, ' LOG OF ACTIVITY RATIOS', /, Al, 22('_')) PRA 31601080 FORMAT (8X, 'CA/H2', 8X, 'MG/H2', 9X, 'NA/H', 10X, 'K/H', PRA 3170

8X, 'AL/H3', 8X, 'FE/H2', 8X, 'CA/MG', 9X, 'NA/K', Al) PRA 31801090 FORMAT (Al, 8X, '____', 8X, '____', 9X, '___', 10X, '__', PRA 3190

8X, '____', 8X, '____', 8X, '____', 9X, '___') PRA 32001100 FORMAT (8E13.4) PRA 32101110 FORMAT (/, ' LOG(NA/K)+1/3(LOG(SQRT(CA)/NA)) -', E10.3, /, PRA 3220

' LOG(NA/K)+4/3(LOG(SQRT(CA)/NA)) -', E10.3, //) PRA 32301120 FORMAT (//, ' NO TEMP. DATA IN MOL/L') PRA 32401130 FORMAT (//, ' CHEMICAL GEOTHERMOMETER TEMPERATURES (IN DEGREES', PRA 3250

' CENTIGRADE)', /, Al, 60('_'), /, 2X, PRA 3260'("999.0" INDICATES THAT A VALUE GREATER THAN 0.0 ', PRA 3270'WAS NOT CALCULATED)', //, 45X, PRA 3280'TEMP. WITH PRESSURE', /, ' TEMPERATURE', 29X, PRA 3290'AND/OR ACTIVITY CORRECTION', /, Al, 62('_'), /) PRA 3300

1140 FORMAT (IX, F10.1, ' : QUARTZ (CONDUCTIVE) : ', PRA 3310A. IF THE WATER IS BOILING OR STEAM', PRA 3320IS LOST DURING', /, PRA 3330: QUARTZ (ADIAB^TIC) : ', PRA 3340

THE SAMPLING OF GROUNDWATERS', PRA 3350' THEN USE THE QUARTZ', /, PRA 3360

T70, ' ADIABATIC TEMPERATURE.') PRA 3370' : CHALCEDONY WITH SI02 : ', PRA 3380

IX, F10.1, T70, ' B. IF THERE IS NO STEAM LOSS THEN', PRA 3390' USE THE QUARTZ', /, PRA 3400

T70, ' CONDUCTIVE TEMPERATURE.', /, PRA 3410' : ALFA CRISTOBALITE WITH SI02 : ', PRA 3420' C. The Amorphous Silica Temperature', PRA 3430' Should Be Considered', /, PRA 3440' When The Sample Is Saturated With', PRA 3450' Amorphous Silica^') PRA 3460' : Amorphous Silica With Si02 : ', PRA 3470

(THE DELTA G OF MINERAL NO. 275 IS', PRA 3480' POSITIVE).', /, PRA 3490' D. IF THE IN SITU TEMPERATURE EXCEEDS', PRA 3500' 150 DEGREES', /, PRA 3510

THEN THE NA/K TEMPERATURE MAY BE', PRA 3520' USED.', /, PRA 3530' : LOG (NA/K)', PRA 3540

T70, ' E. ALTHOUGH THE 4/3 LOG TEMPERATURE IS',PRA 3550' GENERALLY USED', /, PRA 3560' : LOG (NA/K) + 1/3 LOG(SQRT(CA)/NA)', PRA 3570

T70, ' WHEN THE TEMPERATURE IS LESS THAN', PRA 3580' 100 DEGREES IT IS') PRA 3590' : LOG (NA/K) + 4/3 LOG(SQRT(CA)/NA)', PRA 3600

T70, ' CONSIDERED LESS RELIABLE THAN THE', PRA 3610' 1/3 LOG TEMPERATURE.', /, PRA 3620

IX, F10.1, ' : LOG (NA/K) + 4^3 LOG(SQRT(CA)/NA)', PRA 3630T70, ' F. THE ACTIVITIES OF H4SI04 AND', PRA 3640

IX, F10.1, T70,

IX, F10.1,IX, F10.1, T70,

1150 FORMAT (IX, F10.1,

IX, F10.1,IX, F10.1, T70,

T70,

(IX, F10.1, IX, F10.1, T70,

T70,

T70,

1160 FORMAT

IX, F10.1,

IX, F10.1,

1170 FORMAT (IX, F10.1,

394

Page 395: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

1180

Pv_< Ccp

cccccccccccccccccccccccccccc

24X

.

FORMAT (IX

.

m

IX.

,

IX

.

END

SUBROUTINE

.

1

, F10.

, F10.

, F10.

WATER WILL BE COMPUTED' , /,+ 1.36+0.253*LOG(PC02)',

T70, AT THE SURFACE TEMPERATURE ONLY IF',THE HITEMP' ,/,

T70, OPTION IS SELECTED.')1, : MG CORRECTED 1/3 (NA-K-CA)',

T70, G. THE ORDER OF RELIABILITY OF THE' ,CATION GEOTHERMOMETERS : ' , / ,

T70, MG-LI>MG- CORRECTED NA-K-CA>NA-LI>' ,OTHERS ' , / ,

1, : LOG (SQRT(MG)/LI)' ,T70, H. DETAILS OF THE EQUATIONS AND',

PARAMETERS CAN BE', /,1, : LOG (NA/LI)' ,

T70, FOUND IN KHARAKA AND MARINER, ' ,1988). ',/)

PRINTR (TITLE, EHM, UNITS, DENS, PRESS, GFW, TEMP, Z,GAMMA, PH20, PC02 , TDS , MU, MNACLD, SC02 ,HTOT, OHTOT, MXSP)

This routine prints the results of the iterations and thedistribution of

ALFAALK1ALK2ALK3ALK7ANALMClCAR1CAR4CFLGCPUMINCRCUCUNITSDENSDUM1DUM2DUM3DUM4EHMEXELTGAMMAGFWHTOTIIPGLNMMNACLD

DELDELDELDELDELDELDELDELDELDELDELCHADELDELDELDELDELDELDELDELDELDELDELDELINTINTDELDEL

species.

Activity of aqueous species iVarious forms of Alkalinity (different units)

HiiH

Analyzed molality of species i

PRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRAPRA

PRIPRIPRI

1 PRT1 t.S\L

IPRIIPRI1 PRT1 t.l\L

IPRIIPRIIPRIIPRIIPRIJPRIPRI

Various forms of total/partial Carbon in solution | PRIHH

Smallest positive real value program usesInserts carriage returns in outputConversion factor between unitsAnalytical input concentrationDensityDummy variable for printing/storageDummy variable for printing/storageDummy variable for printing/storageDummy variable for printing/storageMeasured Eh in voltsMoles of componentsActivity coefficientsGram formula weight of aqueous speciesSum of the hydronium in solutionLoop variableCurrent line number of the output fileCalculated molality of aqueous speciesSum of Molality * charge / 2

IPRIIPRIJPRIIPRIIPRIJPRIJPRIIPRIIPRIIPRIIPRIIPRIJPRIJPRIJPRIIPRIIPRIIPRIIPRIIPRI

365036603670368036903700371037203730374037503760377037803790380038103820

00100020003000400050006000700080009001000110012001300140015001600170018001900200021002200230024002500260027002800290030003100320033003400350

395

Page 396: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cccccccccccccccccccccccccc

-

MU DBL Ionic strength of aqueous solutionMXSP INT Total number of aqueous speciesNMAX INT General array dimension to allow easy expansionOHTOT DBL Sum of OH in the solutionPAGE1 CHA Names of aqueous speciesPCH4 DBL (Partial) pressure of CH4 . . calculatedPC02 DBL (Partial) pressure of C02 . . calculatedPH DBL Measured pH of the solutionPH2O DBL Pressure of H20 (saturation curve)PH2S DBL (Partial) pressure of H2S .. calculatedPNH3 DBL (Partial) pressure of NH3 . . calculatedPRESS DBL Total pressurePSS DBL Total Pressure for printingSC02 DBL TICSUM2 DBL Storage for printingSUM3 DBL Storage for printingT DBL Temperature in KTDS DBL Total Dissolved Solids (UNITS = KG/L)TEMP DBL Temperature of the solution when pH was measuredTITLE CHA Name of the sampleTITMIX CHA Title for mixing runsTITR DBL Iteration array in DISTRB, used for guessesTOTEL DBL Contains HTOT, OHTOT and Sum C02UNITS CHA Units of concentrationUNO INT File unit assigned for output fileZ INT Charge of aqueous species

INTEGER NMAX, UNODOUBLE PRECISION CPUMINPARAMETER (NMAX = 340, UNO - 6, CPUMIN = l.OD-35)

INTEGER I, IPAGE, IPGLN, MXSP, Z(NMAX)

DOUBLE PRECISION GAMMA(NMAX) , GFW(NMAX) , T

CHARACTER * 1 CR, TOFCHARACTER * 5 UNITSCHARACTER* 8 PAGE 1( NMAX ), PAGE2(NMAX) , PAGE3(NMAX)CHARACTER * 40 TITMIXCHARACTER * 80 TITLE

DOUBLE PRECISION ALFA ( NMAX ), ALK1, ALK2 , ALK3DOUBLE PRECISION ALK7 , ANALM(NMAX) , ClDOUBLE PRECISION CAR1 , CAR4, CFLGDOUBLE PRECISION CU, CUNITS(NMAX) , DENSDOUBLE PRECISION DUM1 , DUM2 , DUM3DOUBLE PRECISION EHM, EXELT(35) , HTOTDOUBLE PRECISION KHCH4, KHC02, KHH2S, KHNH3 , M(NMAX) , MNACLDDOUBLE PRECISION MU, OHTOT, PC02 , PCH4, PH, PH20, PH2S, PNH3DOUBLE PRECISION PRESS, PSS, SC02, SUM2 , SUM3DOUBLE PRECISION TDS, TEMP, TITR(ll) , TOTEL(5)

EXTERNAL KHC02 , KHCH4, KHH2S , KHNH3 , PAGE

INTRINSIC DMAX1, DLOG10

COMMON /EXTOT / EXELT, TOTEL, TITR

396

|PRI|PRI|PRIJPRI|PRI|PRIIPRIJPRIIPRIIPRIIPRIIPRIIPRIIPRIJPRIJPRIIPRI|PRI|PRI|PRIIPRI|PRI|PRIJPRIJPRIIPRII OD TrKl PRIPRIPRIPRIPRIPRIPRIPRIPRIPRIPRIPRIPRIPRIPRIPRIPRIPRIPRIPRIPRIPRIPRIPRIPRIPRIPRIPRIPRIPRIPRI

0360037003800390040004100420043004400450046004700480049005000510052005300540055005600570058005900600061006200630064006500660067006800690070007100720073007400750076007700780079008000810082008300840085008600870088008900900091009200930

Page 397: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

c

cL< Ccc

cc

ccc

COMMON /FMFD / TOF, CR, TITMIXCOMMON /FORM / IPAGE, IPGLNCOMMON /MOLS / PH, ANALM, M, ALFA, CUNITSCOMMON /NAMES1/ PAGE1 , PAGE2 , PAGES

ii i n in i

T = TEMP + 273.15

TOTEL(l) - HTOTTOTEL(2) = OHTOTTOTEL(3) - SC02

CALL PAGEWRITE (UNO, 1060) TITLE, TITMIXWRITE (UNO, 1070)WRITE (UNO, 1080) CRIPGLN = IPGLN + 4

Calculation of analytical cation- anion balance.Printing of pH, Eh, temperature, and balance

DUM1 - O.ODODUM2 = O.ODODO 50 I - 1, MXSP + 44

IF (Z(I) .GT. 0) THENDUM1 - DUM1 + (Z(I) * ANALM(I))

ELSEDUM2 - DUM2 - (Z(I) * ANALM(I))

END IF50 CONTINUE

DUM1 - DUM1 * (DENS - TDS) * 1.0D03DUM2 = DUM2 * (DENS - TDS) * 1.0D03

WRITE (UNO, 1090) PH, EHM, TEMP, DUM1 , DUM2 , (DUM1 - DUM2)IPGLN - IPGLN + 1

Calculation of partial pressures

PC02 - O.ODOPNH3 - O.ODOPCH4 = O.ODOPH2S - O.ODO

IF (M(97) .GE. CPUMIN) PC02 - M(97) * KHC02(T, MNACLD)IF (M(33) .GE. CPUMIN) PH2S - M(33) * KHH2S(T, MNACLD)IF (M(285) .GE. CPUMIN) PCH4 = M(285) * KHCH4(T, MNACLD, l.ODOO)IF (M(147) .GE. CPUMIN) PNH3 = M(147) * KHNH3(T)

PSS = DMAX1( l.ODOO, PH20, PRESS)

Recalculation of cation- anion balance.

PRI 0940PRI 0950PRI 0960PRI 0970PRI 0980

=|PRI 0990PRI 1000PRI 1010PRI 1020PRI 1030PRI 1040PRI 1050PRI 1060PRI 1070PRI 1080PRI 1090PRI 1100PRI 1110PRI 1120|PRI 1130IPRI 1140IPRI 1150IPRI 1160PRI 1170PRI 1180PRI 1190PRI 1200PRI 1210PRI 1220PRI 1230PRI 1240PRI 1250PRI 1260PRI 1270PRI 1280PRI 1290PRI 1300PRI 1310PRI 1320

IPRI 1330|PRI 1340

| PRI 1350 PRI 1360PRI 1370PRI 1380PRI 1390PRI 1400PRI 1410PRI 1420PRI 1430PRI 1440PRI 1450PRI 1460PRI 1470PRI 1480

| PRI 1490|PRI 1500

. i PRT i sin

397

Page 398: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

DUM1 - O.ODO DUM2 - O.ODO

DO 10 I - 1, MXSP + 44 IF (M(I) .LT. CPUMIN) M(I) - 0.0 IF (Z(I) .LT. 0.0) THEN

DUM2 - DUM2 - (Z(I) * M(I)) ELSE

DUM1 ~ DUM1 + (Z(I) * M(I)) END IF

10 CONTINUE

C ----------------.----.-............................................C Print total inorganic carbon as mg/1, ppm, and molality

--------------------------------------------i-______________________

DUM1 - DUM1 * (DENS - TDS) * 1.0D03DUM2 - DUM2 * (DENS - TDS) * 1.0D03WRITE (UNO, 1100) DUM1, DUM2 , (DUM1 - DUM2) ,

HTOT, OHTOT, (HTOT - OHTOT)WRITE (UNO, 1000)WRITE (UNO, 1010)WRITE (UNO, 1190) CRWRITE (UNO, 1020) DENS, (TDS * 1.0D6), MU, ALFA(IO) , PSS,

PH20, PC02, PH2S, PCH4, PNH3IPGLN - IPGLN + 5

SUM2 - M(7) + M(52) + M(56) + M(121) + M(132) + M(139)+ M(156)

SUM3 = M(98) + M(51) + M(55) + M(114) -I- M(120) + M(138)+ M(140) + M(155) + M(207) -f- 2*M(208) + 3*M(209)

DUM2 = SUM2 * 6.102D4 * (DENS - TDS)DUM3 - SUM3 * 6.001D4 * (DENS - TDS)DUM1 - DUM2 / DENSALK7 = M(9) + M(28) + 3.0*M(29) + M(38) +

2.0*M(39) + 4.0*M(40) + M(48) + 3.0*M(50) +M(53) + M(57) + M(69) + M(75) +

2.0*M(76) + M(77) + M(85) + 2.0*M(86) +3.0*M(87) + 4.0*M(88) + M(89) + 2.0*M(90) +

M(91) + 2.0*M(92) + 2.0*M(93) + M(94) +2.0*M(99)

ALK7 - ALK7 +M(100) + M(101) + 2.0*M(102) + M(103) +M(118) + M(123) + M(135) + M(147) +M(154) + M(165) + 2.0*M(166) + M(170) +

2.0*M(171) + 3.0*M(172) + 4.0*M(173) + 5.0*M(174) +2.0*M(182) + 4.0*M(183) + 6.0*M(184) + 8.0*M(185) +

15.0*M(188) + M(189) + 2.0*M(190) + 2.0*M(191) +5.0*M(192) + 7.0*M(193)

ALK7 - ALK7 +M(201) + 2.0*M(202) + 2.0*M(203) + M(204) +

2.0*M(205) + 3.0*M(206) + 4.0*M(212) + 3.0*M(213) +2.0*M(214) + M(215) + 3.0*M(217) + M(220) +

M(221) + 3.0*M(222) + M(223) + M(234) +M(239) + 2.0*M(240) + M(243) + M(245) +M(246) + ,M(250) + M(258) + 2.0*M(259)

PRI 1520 PRI 1530 PRI 1540 PRI 1550 PRI 1560 PRI 1570 PRI 1580 PRI 1590 PRI 1600 PRI 1610 PRI 1620 PRI 1630 PRI 1640

--IPRI 1650 |PRI 1660

--|PRI 1670 PRI 1680PRI 1690PRI 1700PRI 1710PRI 1720PRI 1730PRI 1740PRI 1750PRI 1760PRI 1770PRI 1780PRI 1790PRI 1800PRI 1810PRI 1820PRI 1830PRI 1840PRI 1850PRI 1860PRI 1870PRI 1880PRI 1890PRI 1900PRI 1910PRI 1920PRI 1930PRI 1940PRI 1950PRI 1960PRI 1970PRI 1980PRI 1990PRI 2000PRI 2010PRI 2020PRI 2030PRI 2040PRI 2050PRI 2060PRI 2070PRI 2080PRI 2090

398

Page 399: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Or-ic

Mco<

finvo»^o

ooN

Or-ic

Mco-tfin

vo»^o

ooN

Or-ic

Mco-d

-invor^o

ooN

Or-ic

Mco-d

-invo»^o

ooN

OCM

CM

CM

CM

CM

CM

CM

gg

gg

gg

g

+x-x

ON

00

CM

+

+

a

^~^ ^"^ ^"^m

ON CMC

O

CO

<

t

P-I P-I P-I

CO CO

CO+

fxd

fxd ^<J

a a aON m

a a a

vO

ON

-X -X

CM

CM

O O

x_x x_x

. .

a a

CM CM

+

+

+x-x x-x x-x<t oo o

+

+ co co <

t"4*

"4~ "f°

x-x

x-x

P-i

P-l

P-l

VO <

t CO

CO CO

VO

ON

^<J ^<J

^<JCM CM a a aa a

a a

a0

+

+

CM

x-x x-x

+

+

+

+ co <t

x-x

x-x

P

-I P

-Im

co co co

CM

CM

S S

x_x x_x x_x x_x

a a

a a

r- o

r- o o

\y

. K

y .

.p

CM

P

CO

CM

1 1

\y

Ky

. .

. .

CM

CM

CM

CM

»»»»

coaCO CO

CO*

Q Q

0

H H

CM

i i

+

CO

CO

§5?J w

Q Q

x_x x

_x

CM

* *

ap

o o

CO

o

o

o o

o

m+

r-l

X "X

CM

r-l

0 0

r-l 0

* *

sy Ky

sy3

n

n

i i i i i i

i ii

»-^ r-l

CM

3 33

CM

CM

CM

CM

*.,

COQH'COwQ XOOo

m^c00

ooor-<31coH

CM

CM

CM

CM

CM

CM

CM

CO

CO

CO

CO

CO

CO

CO

CO

CO

C

MC

MC

MC

MC

MC

MC

MC

MC

MC

MC

MC

MC

MC

MC

MC

M

Bl"1 =

x-x

CO

Q

HiCO

CO

WQ

Q

EH s

-'

i )<

CO O

§.

oQ

0x_x Or-l

)CC

MO

*-*

CO O

Nx_x

* i?co

Of^Q *

co r*^

ON

CM

s ̂r-i a

1 1

r-l >

^

< <

u o

(04J(0 a<u4J

r-loCO4J C

H

COPJ

QO.

CMJ.

CMQ

.r^3Uco coKX

ap

p

<! Q.

.CM

CM

<Q t

M

1 t

^

o! ffS

3 §o

u

^3 u

o o

o o

o

or-l

CM

C

O

-d1

in

VO

r-l r-l

r-l i 1

i 1 i 1

r-l r-l

r-l r-l

r-l r-l

O O

O

O

O

O

P P

P

P

P

P

H H

H

H H

H

Pj4

P

j4

pj

Pj4

p

j p

j

co<t<r<t<t<t-<j-<i-o

-C

MC

MC

MC

MC

MC

MC

MC

MC

M

»5

»5

»5

(ai»

;»5

06

5c

e5

copQO.

CM^r-|

Q

.r^<co co

< Q.

.CM

r-l

^ ^

<: QM M

i t -3"

3 ^^3 O

CO CO

CO CO

CO CO

w w

w w

w w

o

x^

/-^ /-^

x^

x^

/-^ |^^r-|

r-l CM

CO

r-l

-Jt CO

<3 <3 <3

U U

Q

S

111111

wr-l

CM CO

r-l S

t CO

H

Ky Ky

Ky rv* iv*

*r* u-i

3333||

g

st st mCM

CM

CM

04 o5 04P-I

P-I P-I

.CM

CO

0 §U

P

CO CO

.

.x

-x C

Mo aCM

CO

r*~ ~

KZ x-s

<3 O

N2x^

.

O

X-N

coCM a"s^ pr^ coKy

^cH

-4 C

O

N-X

CM+

.

r^ CM

as<3 cox

-x

o00r-l

1-1o"x_x

p^

in m

in in

in in

inCM

CM

CM

CM

CM

CM

CM

o5 04 o5 04 »5 »5 »5C

H

PLI PLI

P-I

PL) P

-i P

-i

04CJ

OO

x

-x x

-x x

-x ^

O O

O+

C

O O

r-l

+O

C

M

CM

g ^

^j

P-i O

O

O

P-i

1 x ' v~

x v~

' 1

3W

W

W

SS

H H

H 3

PL, p4

p4 p

i p-i

m m

vo voCM

CM

CM

CM

04 04 04 04PLI

PLI P

-i P

-i

OCMOH0x-x

ap?1E-i ^x-x

r-lx_x

a §.<t

a<

t M

+

|X

-X p

L|

P-I M

U

CO v

^X

J CO

a H HM

iJ

V "3r-l

U

O

1-5 CM

fti

fti U

M

O

VO

VO

VO

CM

CM

CM

04 04 04P-i

P-i PH

x-x

x-x

Mx_x

sI_J

x_x

o

l-lo3Qi|

r-lux-x

53MP-I.

O O

x-x

Q Q

MC

5 ^5

v*-/

C5

^5

P^

1 1 <1

1

**l

oB

S

VO

VO

vO

CM

CM

CM

# ff5

#

P-l P

^ P-l

aW

ON

H

00x

-x<*I-)

W O

g?

x-x

«

53 c_yM

W

[3P-l CO

vO r iM

C3

x_x

3fcCl> ^M

Page 400: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

CU = CFLG / DENS ELSE IF (UNITS .EQ. 'PPM ') THEN

CU - CFLGCFLG = CFLG * DENS

ELSECU - 1.0E3 * ANALM(I) * GFW(I) * (DENS-TDS) / DENSCFLG = CU * DENS

END IF END IF

DUM2 - 1.0E3 * M(I) * GFW(I) * (DENS-TDS) DUM1 = DUM2 / DENS

IF (IPGLN .GT. 59) THENCALL PAGEWRITE (UNO, 1030)WRITE (UNO, 1200)WRITE (UNO, 1210) CRIPGLN - IPGLN + 3

END IF

IF(I .EQ. 12 .OR. I .EQ. 32) THENWRITE (UNO, 1040) I, PAGEl(I), CU, CFLG, ANALM(I)

ELSE IF(ANALM(I) .GT. CPUMIN) THENWRITE (UNO, 1040) I, PAGEl(I), CU, CFLG, ANALM(I),

DUM1, DUM2, M(I), ALFA(I), GAMMA(I), Cl ELSEWRITE (UNO, 1050) I, PAGEl(I), DUM1, D^JM2, M(I), ALFA(I),

GAMMA(I), Cl END IF

IPGLN - IPGLN + 1 20 CONTINUE

RETURN

1000 FORMAT (/, 58X, 28('-'), 'PRESSURE', 28('-'), /,2X, 'DENSITY AT',2X,'TOTAL DISSOLVED', 5X, 'IONIC', 7X, 'ACTIVITY', 4X, 'P TOTAL', 7X, 'PH20', 7X, 'PC02', 7X, 'PH2S', 7X, 'PCH4', 7X, 'PNH3')

1010 FORMAT (4X, 'INPUT T', 4X, 'SOLIDS (MG/L)', 5X, 'STRENGTH',5X, 'OF WATER', 5X, '(BARS)', 6X, '(BARS)', 5X, '(BARS)', 5X, '(BARS)', 5X, '(BARS)', 5X, '(BARS)', Al)

1020 FORMAT (2X, F9.4, 5X, F12.2, F13.5, 2X, F11.4, 3X, F10.4,3X, E10.4, 4(1X, E10.4))

1030 FORMAT (19X, '-----------------ANALYZED-----------',3X, '---------------CALCULATED-----------',

17X, 'ACTIVITY', 5X, '-LOG10')1040 FORMAT (2X, 13, 2X, A8, IX, 2F13.4, 5E13.4, F12.4, F11.4) 1050 FORMAT (2X, 13, 2X, A8, 40X, 4E13.4, F12.4, F11.4) 1060 FORMAT (' SAMPLE IDENT:- ', A80, /, 20X, A40) 1070 FORMAT (/, 4X, 'PH', 9X, 'EH', 7X, 'TEMP', 18X, 'CATIONS',

6X, 'ANIONS', 2X, 'DIFFERENCE (MEQ/L)', 12X, '--- H - OH BALANCE (MOLES) -------')

1080 FORMAT (Al, 2X, '___', 6X, '____', 5X, '____', 13X,

'___________________________________')1090 FORMAT (IX, F6.2, 2X, F10.4, 2X, F8.2, 8X, 'ANAL-', IX,

F10.4, 2X, F10.4, 2X, F10.4, 20X, 'HTOT', 8X,

PRI 2680 PRI 2690 PRI 2700 PRI 2710 PRI 2720 PRI 2730 PRI 2740 PRI 2750 PRI 2760 PRI 2770 PRI 2780 PRI 2790 PRI 2800 PRI 2810 PRI 2820 PRI 2830 PRI 2840 PRI 2850 PRI 2860 PRI 2870 PRI 2880 PRI 2890 PRI 2900 PRI 2910 PRI 2920 PRI 2930 PRI 2940 PRI 2950 PRI 2960 PRI 2970 PRI 2980 PRI 2990 PRI 3000 PRI 3010 PRI 3020 PRI 3030 PRI 3040 PRI 3050 PRI 3060 PRI 3070 PRI 3080 PRI 3090 PRI 3100 PRI 3110 PRI 3120 PRI 3130 PRI 3140 PRI 3150 PRI 3160 PRI 3170 PRI 3180 PRI 3190 PRI 3200 PRI 3210 PRI 3220 PRI 3230 PRI 3240 PRI 3250

400

Page 401: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

'OHTOT', 5X, 'DIFFERENCE')1100 FORMAT (37X, 'CALC=', IX, F10.4, 2X, F10.4, 2X, F10.4,

18X, E10.4, 2X, E10.4, 2X, E10.4) (/, 72X, 'Dissolved Inorganic Carbon') (Al, 71X, '_____________________')

1110 FORMAT 1120 FORMAT 1130 FORMAT

1140 FORMAT 1150 FORMAT

1160 FORMAT 1170 FORMAT 1180 FORMAT 1190 FORMAT

(21X, 'Total Alkalinity as', 20X, 'as', 8X, 'HC03-',7X, 'H2C03', 5X, ' Sum of , 5X, ' Sum of)

(Al, 20X, '_______________')(17X, 'HC03-', 5X, 'C03-', 7X, 'CaC03', 17X, 'TIC',

5X, 'Alkalinity', 3X, 'species', 5X, 'HC03-', 6X, 'C03-')

(7X, '(MG/L)-', 3(E10.4,1X), 10X, 5(E10.4, IX)) (8X, '(PPM)=', 3(E10.4,1X), 10X, 5(E10.4, IX)) (3X, '(MOLALITY)=', 3(E10.4,1X), 10X, 5(E10.4, IX)) (Al, 3X,'_____', 4X,'__________', 5X,'______

___', 3X,'_____5X,' ', 2X,'

1200 FORMAT (7X, 'SPECIES', 9X, 'PPM', 9X, 'MG/L', 7X, 'MOLALITY', 8X, 'PPM', 9X, 'MG/L', 7X, 'MOLALITY', 5X, 'ACTIVITY' 7X, 'COEFF.', 3X, 'ACTIVITY')

1210 FORMAT (Al, 6X, '_____', 5X, '________', 2X, ' 3X, '________ 3X, '________ 3X, '______']

END

3X, 3X,

3X, ', 4X,

PRI 3260 PRI 3270 PRI 3280 PRI 3290 PRI 3300 PRI 3310 PRI 3320 PRI 3330 PRI 3340 PRI 3350 PRI 3360 PRI 3370 PRI 3380 PRI 3390 PRI 3400 PRI 3410 PRI 3420 PRI 3430 PRI 3440 PRI 3450 PRI 3460 PRI 3470 PRI 3480 PRI 3490 PRI 3500 PRI 3510

SUBROUTINE PRNTAB (TITLE, TEMP, MXAQK)C ==CC - CCCCCCCCCCC -

Print out of tables.

I INT Loop variableLOGKT1 DEL Log K for aqueous species at specified temp.MXAQK INT Total number of aqueous log k valuesNMAX INT General array dimension to allow easy expansionPAGE1 CHA Names of aqueous speciesPAGE2 CHA Names of equilibrium constantsTEMP DEL Temperature of the solution when pH was measuredTITLE CHA Name of the sampleTOF CHA Places a form feed in output fileUNO INT File unit assigned for output file

INTEGER NMAX, UNOPARAMETER (NMAX - 340, UNO = 6)

INTEGER I, IPAGE, IPGLN, J, MXAQK

CHARACTER * 1 TOF, CRCHARACTER* 8 PAGEl(NMAX), PAGE2(NMAX), PAGE3(NMAX)CHARACTER * 40 TITMIXCHARACTER * 80 TITLE

DOUBLE PRECISION LOGKTl(NMAX), LOGKT2(NMAX)

PRN<|PRN

j PRN| PRNj PRNj PRNI PRN| PRNI PRN| PRNj PRNj PRNj PRNI PRN| PRNPRNPRNPRNPRNPRNPRNPRNPRNPRNPRNPRNPRN

001000200030004000500060007000800090010001100120013001400150016001700180019002000210022002300240025002600270

401

Page 402: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

DOUBLE PRECISION TEMP

EXTERNAL PAGE

COMMON /ALOGK / LOGKT1, LOGKT2 COMMON /FMFD / TOF, CR, TITMIX COMMON /NAMESI/ PAGE1, PAGE2, PAGE3 COMMON /FORM / IPAGE, IPGLN

J - ((MXAQK - 1) / 3) + 1

DO 10 I - 1, JIF (I .EQ. 1 .OR. IPGLN .GT. 57) THENCALL PAGEWRITE (UNO, 110) TITLE, TEMPWRITE (UNO, 120)WRITE (UNO, 130)IPGLN - IPGLN + 9

END IF IPGLN - IPGLN + 1

IF ((I+J+J) .LE. MXAQK) THENWRITE (UNO, 140) I, PAGE2(I), LOGKTl(I),

I+J, PAGE2(I+J), LOGKT1(I+J), I+J+J, PAGE2(I+J+J), LOGKT1(I+J+J)

ELSE IF ((I+J) .LE. (MXAQK - (J - 1))) THENWRITE (UNO, 140) I, PAGE2(I), LOGKTl(I),

I+J, PAGE2(I+J), LOGKT1(I+J) ELSEWRITE (UNO, 140) I, PAGE2(I), LOGKTl(I)

END IF

10 CONTINUE

RETURN |

110 FORMAT (' SAMPLE IDENT:- ', A80, /, ' TEMPERATURE - ',F6.2,' C') 120 FORMAT (//,5X,'**TABLE OF LOG(KT) FOR THIS AQUEOUS COMPLEXES**',/) 130 FORMAT (/, 3(3X, 'I '/SPECIES', 11X, 'LOCK ',10X),/) 140 FORMAT (IX,3(13, 2X, A8, 3X, F12.4, 12X))

END

PRN 0280 PRN 0290 PRN 0300 PRN 0310 PRN 0320 PRN 0330 PRN 0340 PRN 0350 PRN 0360 |PRN 0370 PRN 0380 PRN 0390 PRN 0400 PRN 0410 PRN 0420 PRN 0430 PRN 0440 PRN 0450 PRN 0460 PRN 0470 PRN 0480 PRN 0490 PRN 0500 PRN 0510 PRN 0520 PRN 0530 PRN 0540 PRN 0550 PRN 0560 PRN 0570 PRN 0580 PRN 0590 PRN 0600 PRN 0610 PRN 0620 PRN 0630 PRN 0640 PRN 0650 PRN 0660 PRN 0670 PRN 0680 PRN 0690 PRN 0700 PRN 0710

C __

C C

C C C C

SUBROUTINE PSAT (TC, PS)

Calculates the saturation pressure for water (Keenan and others, 1969)

F DBL Fit Coefficients I INT Loop index PCRT DBL Critical pressure (bars!) PS DBL Saturation pressure

PSA 0010 j_ j/^ \J\J c.\J

IPSA 0030 IPSA 0040

----- IPSA ooso|PSA 0060IPSA 0070 IPSA ooso IPSA 0090

402

Page 403: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

S DEL Temperary storage TC DEL Temperature in deg. C TCRT DEL Critical Temperature (deg C) TR DEL 1.0 / Termperature in deg K

INTEGER I

DOUBLE PRECISION F(8) , PCRT, PS, S, TC, TCRT, TR

INTRINSIC DEXP

PARAMETER (TCRT=374. 136DOO , PCRT=220 . 88DOO)

DATA F /-741.9242DO, -29.721DO, -11.55286DO, -8 . 685635D-1, 1.094098D-1, 4.3999D-1, 2.520658D-1, 5.218684D-2/

TR = 1.0D03 / (TC + 273.15DOO)

S = O.ODODO 10 I = 1, 8

S = S + F(I) * (0.65 - 0.01 * TC)**(I-1) 10 CONTINUE

PS = PCRT * DEXP(1.0D-5 * TR * (TCRT - TC) * S)

RETURNEND

IPSA 0100 IPSA 0110 IPSA 0120 JPSA 0130

---IPSA ouoPSA 0150PSA 0160 PSA 0170PSA 0180 PSA 0190PSA 0200 PSA 0210PSA 0220 PSA 0230PSA 0240 PSA 0250 PSA 0260

===|PSA 0270 PSA 0280PSA 0290 PSA 0300PSA 0310PSA 0320 PSA 0330 PSA 0340PSA 0350PSA 0360 PSA 0370PSA 0380PSA 0390

C == C C C

SUBROUTINE PTZINT (TEMP, TEMPI, BO, BOO, Bl, Bll, CP, CPP, THTC,THTCC, THTA, THTAA, PSIC, PSICC, PSIA, PSIAA)

This routine calculates the interpolated values of the pitzer coeffiencients for routine pitzer. It uses the routine tluv to calculate the actual value.

Future Modifications

If and when more cation and anion data are incorporated into the data tables the values of the parameters neat and nani will need to be increased.

History

J.D. DeBraal 06/87 Initial Coding

Local Constants

NANI INTNCAT INTNT EM INT

Number of Anions Number of Cations Number of Temperatures

PTZ 0010 PTZ 0020

I PTZ 0030 |PTZ 0040 |PTZ 0050 |PTZ 0060 |PTZ 0070 |PTZ 0080 IPTZ 0090 |PTZ 0100 |PTZ 0110 jPTZ 0120 |PTZ 0130 |PTZ 0140 |PTZ 0150 |PTZ 0160 |PTZ 0170 |PTZ 0180 |PTZ 0190 |PTZ 0200 |PTZ 0210 |PTZ 0220 IPTZ 0230

403

Page 404: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

c Declare

INTEGER

Constants

NANIPARAMETER (NANI

cC

CCcccccccccccccccccccccccccccc

c

c

c

NCAT , NTEM- 5, NCAT - 10, NTEM - 11)

Local Variables

BOBOOBlBllCPCPPIJKLOKPSIAPSIAAPSICPSICCTBOTB1TCPTEMPTEMPITHTATHTAATHTCTHTCCTMPTPTPSIATPSICTTHTATTHTC

Declare

INTEGER

DOUBLEDOUBLEDOUBLEDOUBLEDOUBLEDOUBLEDOUBLEDOUBLEDOUBLEDOUBLEDOUBLEDOUBLE

(i,k)(i.k.t)(i.k)(i.k.t)(I,k)(i,k,t)

(k,l,i)(k,l,i,t)(i,j,k)(i,j,k,t)(k,t)(k,t)(k,t)(t)

(i,k)(i,k,t)(I,k)(i,k,t)(t)

(I,t)(k,t)d,t)(j,t)

Variables

I, J, K,

PRECISIONPRECISIONPRECISIONPRECISIONPRECISIONPRECISIONPRECISIONPRECISIONPRECISIONPRECISIONPRECISIONPRECISION

DBL Beta zero parameter for current tempDBL Array of BO for all tempsDBL Beta one parameter for current tempDBL Array of Bl for all tempsDBL C super phi parairDBL Array of CP for <)INT Cation 1 loop varINT Cation 2 loop vaiINT Anion 1 loop vari

leter for current temp11 tempsiableiableable

INT Anion 2 loop variableINT Error flag used in LAGINTDBL PSI anion- anion- cat ion parameterDBL Array of PSIA for all tempsDBL PSI cation- cation- anion parameterDBL Array of PSIC for all tempsDBL Temporary BO array with cation constantDBL Temporary Bl array with cation constantDBL Temporary CP array with cation constantDBL Array of 11 temperaturesDBL Temperature of interestDBL Pitzer theta anicDBL Array of THTA forDBL i Pitzer theta catiDBL Array of THTC forDBL Interpolated valuINT Temperature loopDBL Temporary PSIA wiDBL Temporary PSIC wiDBL Temporary THTA wiDBL Temporary THTC wi

n parameterall tempson parameterall temps

e from LAGINTvariableth anions constantth cations constantth anion 1 constantth cation 1 constant

L, OK, TP

BO (NCAT , NANI ) , BOO (NCAT , NANI , NTEM)Bl (NCAT, NANI), Bl 1( NCAT, NANI , NTEM)CP (NCAT, NANI), CPP (NCAT, NANI , NTEM)PSIA(NANI , NANI , NCAT) , PSIAA(NANI , NANI , NCAT , NTEM)PSIC (NCAT, NCAT, NANI), PS ICC (NCAT, NCAT, NANI , NTEM)TBO (NANI, NTEM), TB1 (NANI , NTEM) , TCP (NANI , NTEM)TEMP (NTEM), TEMPITHTA(NANI , NANI ) , THTAA(NANI , NANI , NTEM)THTC (NCAT , NCAT) , THTCC (NCAT , NCAT , NTEM)TMP (NCAT)TPSIA(NCAT,NTEM) , TPS 1C (NANI , NTEM)TTHTA (NANI , NTEM) , TTHTC (NCAT , NTEM)

Routines

LAGINT SUB Calculate a Value for Desired Temp

|PTZPT7| JT X f*f

PTZPTZ

1 PT7

IPTZJPTZJPTZIPTZIPTZIPTZIPTZIPTZJPTZJPTZJPTZJPTZJPTZJPTZJPTZJPTZIPTZIPTZ|PTZIPTZJPTZJPTZIPTZJPTZIPTZIPTZIPTZJPTZIPTZIPTZIPTZIPTZPT71 i i £4

IPTZ1 PT71 JL J. 4L*

PTZPTZPTZPTZPTZPTZPTZPTZPTZPTZPTZPTZPTZPTZ

1 PT7\ J. Hi

IPTZ1 PT7| J- J. £*»

IPTZ

0240025002600270noonUZou0290030003100320033003400350036003700380039004000410042004300440045004600470048004900500051005200530054005500560057005800590060006100620r\f\"\r\06400650066006700680069007000710072007300740075007600770f\~JO(\

0790fiorin0810

404

Page 405: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

L.

C

cC

c

EXTERNAL LAGINT

Initialize Variables

DATA TMP /NCAT*0.0/

DO 40 I - 1, NCATDO 20 K - 1, NANI

DO 10 TP - 1, NTEMTBO(K,TP) - BOO(I,K,TP)

10 CONTINUE20 CONTINUE

CALL LAGINT (TEMP, TBO , TEMPI, TMP, NANI, NANI, OK)

DO 30 K = 1, NANIBO(I,K) - TMP(K)

30 CONTINUE40 CONTINUE

DO 80 I - 1, NCATDO 60 K = 1, NANI

DO 50 TP = 1, NTEMTBl(K.TP) - B11(I,K,TP)

50 CONTINUE60 CONTINUE

CALL LAGINT (TEMP, TB1 , TEMPI, TMP, NANI, NANI, OK)

DO 70 K = 1, NANIBl(I.K) = TMP(K)

70 CONTINUE80 CONTINUE

DO 120 I = 1, NCATDO 100 K = 1, NANI

DO 90 TP = 1, NTEMTCP(K.TP) = CPP(I,K,TP)

90 CONTINUE100 CONTINUE

CALL LAGINT (TEMP, TCP, TEMPI, TMP, NANI, NANI, OK)

DO 110 K = 1, NANICP(I,K) = TMP(K)

110 CONTINUE120 CONTINUE

DO 160 I = 1, NCATDO 140 J = 1, NCAT

DO 130 TP = 1, NTEMTTHTC(J,TP) = THTCC(I,J,TP)

130 CONTINUE140 CONTINUE

CALL LAGINT (TEMP, TTHTC, TEMPI, TMP, NCAT, NCAT, OK)

--------- | JC J.<J \JO£.\J

PTZ 08301 DT"7 fiQ/ifi--------- | r 1£ UoM-U

|PTZ 0850 |PTZ 0860 PTZ 0870

1 T>T"7 fiQQfi

PTZ 0890PTZ 0900PTZ 0910PTZ 0920PTZ 0930PTZ 0940PTZ 0950PTZ 0960PTZ 0970PTZ 0980PTZ 0990PTZ 1000PTZ 1010PTZ 1020PTZ 1030PTZ 1040PTZ 1050PTZ 1060PTZ 1070PTZ 1080PTZ 1090PTZ 1100PTZ 1110PTZ 1120PTZ 1130PTZ 1140PTZ 1150PTZ 1160PTZ 1170PTZ 1180PTZ 1190PTZ 1200PTZ 1210PTZ 1220PTZ 1230PTZ 1240PTZ 1250PTZ 1260PTZ 1270PTZ 1280PTZ 1290PTZ 1300PTZ 1310PTZ 1320PTZ 1330PTZ 1340PTZ 1350PTZ 1360PTZ 1370PTZ 1380PTZ 1390

405

Page 406: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

DO 150 J - 1, NCATTHTC(I.J) - TMP(J)

150 CONTINUE 160 CONTINUE

DO 200 K - 1, NANI DO 180 L - 1, NANI

DO 170 TP - 1, NTEMTTHTA(L.TP) - THTAA(K,L,TP)

CONTINUE CONTINUE

170180

190

CALL LAGINT (TEMP, TTHTA, TEMPI, TMP,

DO 190 L - 1, NANITHTA(K.L) - TMP(L)

CONTINUE

NCAT, NCAT, OK)

200 CONTINUE

DO 250 I - 1, NCAT DO 240 J - 1, NCAT

DO 220 K - 1, NANI DO 210 TP - 1, NTEM

TPSIC(K,TP) - PSICC(I,J,K,TP) CONTINUE

CONTINUE210220

CALL LAGINT (TEMP, TPSIC, TEMPI, TMP, NANI, NANI, OK)

DO 230 K - 1, NANIPSIC(I,J,K) - TMP(K)

CONTINUE CONTINUE

230 240 250 CONTINUE

260270

280290

DO 300 K - 1, NANI DO 290 L - 1, NANI

DO 270 I - 1, NCAT DO 260 TP - 1, NTEM

TPSIA(I.TP) - PSIAA(K,L,I,TP) CONTINUE

CONTINUE

CALL LAGINT (TEMP, TPSIA, TEMPI, TMP, NCAT, NCAT, OK)

DO 280 I - 1, NCATPSIA(K,L,I) - TMP(K)

CONTINUE CONTINUE

300 CONTINUE

RETURN END

PTZ 1400 PTZ 1410 PTZ 1420 PTZ 1430 PTZ 1440 PTZ 1450 PTZ 1460 PTZ 1470 PTZ 1480 PTZ 1490 PTZ 1500 PTZ 1510 PTZ 1520 PTZ 1530 PTZ 1540 PTZ 1550 PTZ 1560 PTZ 1570 PTZ 1580 PTZ 1590 PTZ 1600 PTZ 1610 PTZ 1620 PTZ 1630 PTZ 1640 PTZ 1650 PTZ 1660 PTZ 1670 PTZ 1680 PTZ 1690 PTZ 1700 PTZ 1710 PTZ 1720 PTZ 1730 PTZ 1740 PTZ 1750 PTZ 1760 PTZ 1770 PTZ 1780 PTZ 1790 PTZ 1800 PTZ 1810 PTZ 1820 PTZ 1830 PTZ 1840 PTZ 1850 PTZ 1860 PTZ 1870 PTZ 1880 PTZ 1890 PTZ 1900 PTZ 1910 PTZ 1920 PTZ 1930

406

Page 407: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

DOUBLE PRECISION FUNCTION SEXP10 (X)

If a number is too small to be raised to the power of ten, return zero, else raise it.

DOUBLE PRECISION X, CPUMIN, CPUMAXPARAMETER (CPUMIN - l.OD-35, CPUMAX - l.OD+35)INTRINSIC DLOG10

IF (X .GT. DLOG10(CPUMIN) .AND. X .LT. DLOG10(CPUMAX)) THENSEXP10 - 10.0DOO**X

ELSESEXP10 = O.ODOO

END IF

RETURN END

SEX 0010|SEX 0020jSEX 0030jSEX 0040JSEX 0050SEX 0060SEX 0070SEX 0080SEX 0090SEX 0100|SEX 0110SEX 0120SEX 0130SEX 0140SEX 0150SEX 0160SEX 0170SEX 0180SEX 0190SEX 0200

DOUBLE PRECISION FUNCTION SLOGIO(X)

If a number is too small to have it's log taken, return -999

DOUBLE PRECISION X, CPUMIN PARAMETER (CPUMIN = l.OD-35) INTRINSIC DLOG10

IF (X .GT. CPUMIN) THEN SLOG10 = DLOGIO(X)

ELSESLOG10 = -999.9DOO

END IF

RETURN END

SLO 0010|SLO 0020|SLO 0030|SLO 0040SLO 0050SLO 0060SLO 0070SLO 0080SLO 0090|SLO 0100SLO 0110SLO 0120SLO 0130SLO 0140SLO 0150SLO 0160SLO 0170SLO 0180SLO 0190

SUBROUTINE SORTA (A, B, INUM, IPOINT)

A utility routine to sort arrays before using GUESS

A DEL Array to be sorted based on matching value in BB DEL Sort this array (smallest to largest)I INT Index counterINUM INT Number of points to sortIPOINT INT Pointer to specific entry ... return

SOR 0010SOR 0020|SOR 0030|SOR 0040SOR 0050SOR 0060SOR 0070SOR 0080SOR 0090

407

Page 408: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ccc

.-,

new positionJ INT Index counterX DBL Temporary storage

INTEGER INUM, IPOINT, I, JDOUBLE PRECISION A(*) , B(*) , X

IF (INUM .LE. 1) RETURN

DO 200 I - 1, (INUM-1)DO 100 J - (1+1), INUM

IF (B(I) .GT. B(J)) THENX - A(J)A(J) = A(I)A(I) - XX - B(J)B(J) - B(I)B(I) = XIF (IPOINT .EQ. I) THEN

IPOINT - JELSE IF (IPOINT .EQ. J) THEN

IPOINT = IEND IF

END IF100 CONTINUE200 CONTINUE

RETURNEND

|SOR 0100JSOR 0110ISOR 0120

........................ | SOR 0130SOR 0140SOR 0150SOR 0160SOR 0170

i COD ni pn=g=======t=:==t^ mjma=.s==ca.a====s | Jj (Jft_ U 1 O U

SOR 0190SOR 0200SOR 0210SOR 0220SOR 0230SOR 0240SOR 0250SOR 0260SOR 0270SOR 0280SOR 0290SOR 0300SOR 0310SOR 0320SOR 0330SOR 0340SOR 0350SOR 0360SOR 0370SOR 0380SOR 0390SOR 0400SOR 0410

SUBROUTINE STORE (TEMP, HITEMP) STO 0010

C-

ccccccccccccccccc

Writes out current data values to create a restart file

AD EXALFAALKAMOLANALMANSIANS2CECCOEFCONV1CONV2CPUMINCUNITSDCH4DDCH4DC02DDC02

INTDBLINTDBLDBLINTINTDBLDBLDBLDBLDBLDBLDBLDBLDBLDBL

Flag for surface chemistry optionActivity of aqueous species iFlag for distribution of carbonate speciesMolality of aqueous/mineral species addedAnalyzed molality of species iNumber of complexes for added anion #1Number of complexes for added anion #2Cation exchange capacityStoichiometric coefficient and Id numberTolerance factor for convergence of anionsTolerance factor for hydronium mass -balanceSmallest positive real value program usesAnalytical input concentrationConcentration of CH4 lost up annulasConcentration of CH4 lost before pH measurementConcentration of C02 lost up annulasConcentration of C02 lost before pH measurement

= | D JLU UU/1U

|STO 0030|STO 0040ISTO 0050ISTO 0060JSTO 0070JSTO 0080|STO 0090|STO 0100ISTO 0110ISTO 0120ISTO 0130ISTO 0140JSTO 0150ISTO 0160ISTO 01701 STO 0180ISTO 0190ISTO 0200|STO 0210

408

Page 409: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DH2SDDH2SDNH3DDNH3DENSDFRAC1DHADINGDPDSEPEHMEHMCEMFZSCEXELTFBOILFCCSATFIXITFLAGSGEOTHGFWHITEMPIIBMIXICC SATIDDPIDMIXIDNIDSATIMC03IMIXINFORMINMIXINSPIOPTI PAGEIPGLNI PHASEIPITIPRIN1IPRIN2IRXDPISCHGISCOMPITICITMIXITTJKCH40LKC020LKH2SOLKRXNMBASEMINCOMININDMINLOGMXMNKMXSPNDUM

DELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELDELINTINTDELDELINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTINTDELDELDELDELDELDELINTDELINTINTINT

Concentration of H2S lost up annulas |STO 0220Concentration of H2S lost before pH measurement jSTO 0230Concentration of NH3 lost up annulas |STO 0240Concentration of NH3 lost before pH measurement jSTO 0250Density ISTO 0260Smallest fraction of soln 1 mixed with soln 2 jSTO 0270Ion size parameter |STO 0280Increment of solution 1 to be added jSTO 0290Dissolution/precipitation switch jSTO 0300Density of oil at 15 degree C jSTO 0310Measured Eh in volts jSTO 0320Measured Eh using the Calomel electrode JSTO 0330Measured Eh using the Zobell's solution j| STO 0340Moles of components jSTO 0350Fraction of solution boiled-off as steam jSTO 0360Tolerance factor for pH and C02 options jSTO 0370Fixing value in the C02 option jSTO 0380Selection flags for calculation of redox equil. |STO 0390Flag to select geothermometer |STO 0400Gram formula weight of aqueous species j STO 0410In-situ temperature jSTO 0420Loop counting variable |STO 0430Switch for mixing option jSTO 0440Switch for pH option jSTO 0450Id number of the mineral to be dissolved/ppt j STO 0460Id number of the aqueous species to be added |STO 0470Id numbers of the ISCOMP components adsorption j STO 0480Id number of the mineral to be equilibrated jSTO 0490Selects C02 option jSTO 0500Switch used in MIXER routines jSTO 0510Flag to print all the log K values in data base jSTO 0520Total number of mixtures of two solution mixed jSTO 0530Total number of surface sites for adsorption j| STO 0540Switch for co2/h option jSTO 0550Current page number of output file jSTO 0560Current line number of the output file jSTO 0570Switch for oil/water/gas calculations jSTO 0580Flag to use pitzer activity coefficients jSTO 0590Flag for printing iteration of anions JSTO 0600Flag for printing hydronium balance j STO 0610Id number of the aqueous species to be added |STO 0620Charge of each surface site for adsorption JSTO 0630Total number of components in dissociation JSTO 0640Hitemp distribution of carbonate species |STO 0650Switch for the mineral saturation option j STO 0660Number of aqueous species to add/sub with water JSTO 0670Loop counting variable j STO 0680Henry's law coefficient for CH4 in oil JSTO 0690Henry's law coefficient for C02 in oil |STO 0700Henry's law coefficient for H2S in oil JSTO 0710K for dissociation reaction of surface species JSTO 0720Equivalence Mole Fraction (initial) on surface JSTO 0730Stoichiometric coefficient for added minerals JSTO 0740Index number of the added mineral JSTO 0750Log K values for added minerals JSTO 0760Total number of mineral log k values JSTO 0770Total number of aqueous species JSTO 0780Id of mineral/aqueous complex with K(T) changed j STO 0790

409

Page 410: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cccccccccccccccccccccccccccccc

-

NMAX INT General array dimension to allow easy expansionNUFLAG INT Sets the activity coefficients of neutral speciesNUMCOM INT Number of complex the ion is associated withNUMINS INT Number of minerals addedODUM CHA Switch to indicate a mineral/aqueous complexOUTIN CHA Name of restart file namePAGE1 CHA Names of aqueous speciesPAGES CHA Names of solubility constantsPH DBL Measured pH of the solutionPRESS DBL Total pressurePTR INT Points to index number of the analytical speciesRATIO INT Flag for printing activity ratios of elementsRXDP DBL Molal amount of the aqueous species addedSAREA DBL Total surface area per kilogram of solventSPN CHA Name of each surface species adsorptionTAREA DBL Site density per unit area adsorptionTCH4M DBL Moles CH4 distributed bejtween oil, water, vaporTC02M DBL Moles C02 distributed between oil, water, vaporTEMP DBL Temperature of the solution when pH was measuredTH2SM DBL Moles H2S distributed between oil, water, vaporTIC DBL Concentration of total inorganic carbonTITLE CHA Name of the sampleTITR DBL Iteration array in DISTRB, used for guessesTOTEL DBL Contains HTOT, OHTOT and Sum C02UN INT File unit assigned for Output fileUNITS CHA Units of concentrationWROIL DBL Oil to water weight ratioXD DBL Holds Log K's for additional anions & cationsXDUM DBL New log K(T) valueZ INT Charge of aqueous specieis

INTEGER NMAXDOUBLE PRECISION CPUMINPARAMETER (CPUMIN = l.OD-35, NMAX = 340)

INTEGER ALK, ANSI, ANS2, FLAGS(6), GEOTH, GETUNT, IINTEGER IBMIX, ICCSAT, IDDP, IDMIX(50)INTEGER IDN(IO.IO), IDSAT, IMC03 , IMIXINTEGER INFORM, INMIX, INSP, IOPT, IPHASE, IPITINTEGER IPRIN1, IPRIN2, IRXDP(IO), ISCHG(IO)INTEGER ISCOMP(IO), ITIC, ITMIX, ITT, JINTEGER MININD(8, 5), MXSP, MXMNK, NDUM(12), NUFLAGINTEGER NUMCOM, NUMINS, PTR(33), RATIO, .UN, Z(NMAX)

CHARACTER * 1 ADEX, ODUM (12)CHARACTER * 5 UNITSCHARACTER * 8 PAGEl(NMAX), PAGE2(NMAX), PAGE3(NMAX)CHARACTER * 10 SPN (10)CHARACTER * 80 MIXFLE, OUTIN, TITLE

DOUBLE PRECISION ALFA ( NMAX ), AMOL(50) , ANALM(NMAX) , CECDOUBLE PRECISION COEF(10,10), CONV1, CONV2DOUBLE PRECISION CUNITS(NMAX) , DCH4, DC02 , DH2S, DNH3DOUBLE PRECISION DDCH4, DDC02 , DDH2S, DDNH3DOUBLE PRECISION DENS, DFRAC1 , DHA(NMAX) , DINGDOUBLE PRECISION DP, DSEP, EHM, EHMC, EXELT(35)DOUBLE PRECISION EMFZSC, FBOIL, FCCSAT, flXITDOUBLE PRECISION GFW(NMAX) , HITEMP

|STO 0800ISTO 0810|STO 0820JSTO 0830JSTO 0840JSTO 0850JSTO 0860JSTO 0870JSTO 0880JSTO 0890JSTO 0900ISTO 0910JSTO 0920JSTO 0930JSTO 0940JSTO 0950JSTO 0960|STO 0970JSTO 0980ISTO 0990JSTO 1000ISTO 1010ISTO 1020JSTO 1030JSTO 1040JSTO 1050JSTO 1060ISTO 1070ISTO losoJSTO 1090i <;TO 1 1 no1 O J. \J J-JLww

STO 1110STO 1120STO 1130STO 1140STO 1150STO 1160STO 1170STO 1180STO 1190STO 1200STO 1210STO 1220STO 1230STO 1240STO 1250STO 1260STO 1270STO 1280STO 1290STO 1300STO 1310STO 1320STO 1330STO 1340STO 1350STO 1360STO 1370

410

Page 411: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

DOUBLE PRECISION KCH40L, KC020L, KH2SOLDOUBLE PRECISION KRXN(IO), M(NMAX), MBASE(IO), MINCO(9,5)DOUBLE PRECISION MINLOG(2,5), PH, PRESSDOUBLE PRECISION RXDP(IO), SAREA, TAREA, TCH4MDOUBLE PRECISION TC02M, TEMP, TH2SM, TITR(ll), TOTEL(5), TICDOUBLE PRECISION WROIL, XD(2,45), XDUM(12)

INTRINSIC DABS

EXTERNAL GETUNT

COMMON /AL / NDUM, XDUMCOMMON /AMM / IDMIX, AMOL, ITMIX, INMIX, DFRAC1, DING, FBOILCOMMON /BASIC / DENS, PRESS, EHM, EHMC, EMFZSC, TIC, FCCSAT, XD,

NUMCOM, NUMINS, MINLOG, MINCO, MININD, CONV1,CONV2

COMMON /CH / ODUM COMMON /DIST / TC02M, TCH4M, TH2SM, WROIL, KCH40L, KC020L,

KH2SOL, IPHASE, DSEPCOEF, MBASE, KRXN, CEC, TAREA, SAREA, IDN,ISCHG, ISCOMP, INSP

COMMON /EXTOT / EXELT, TOTEL, TITR COMMON /FLAGCM/ ALK, ITIC, ICCSAT, IMC03, ITT, ANSI, ANS2,

NUFLAG, IPIT, FLAGS, INFORM, RATIO, GEOTH,IPRIN1, IPRIN2DC02, DDC02, DH2S, DDH2S, DNH3, DDNH3,DCH4, DDCH4, IOPT, FIXIT

COMMON /IMM / IBMIX, IMIX COMMON /MOLS / PH, ANALM, M, ALFA, CUNITS COMMON /NAMES1/ PAGE1, PAGE2, PAGE3 COMMON /NAMES2/ SPNCOMMON /NAMES3/ MIXFLE, OUTIN, TITLE, UNITS, ADEX COMMON /SAT / IDDP, IDSAT, DP, RXDP, IRXDP COMMON /TABCOM/ MXSP, MXMNK, GFW, Z, DHA

COMMON /EXCHAN/

COMMON /GAS /

DATA PTR /3, 4, 22, 1, 2, 18, 14, 12, 5, 6, 33, 7, 98, 30, 29, & 136, 32, 31, 26, 15, 25, 27, 16, 23, 21, 13, 28, 169, & 210, 48, 246, 265, 285/

C ======

IF (OUTIN .EQ. ' ') THENRETURN

ELSEUN = GETUNT (OUTIN)

END IF

UNITS = 'MOL/K'

TIC = TOTEL(3)IF (TIC .GT. CPUMIN) THEN ANALM(7) = O.ODOO ANALM(98) = O.ODOO

ELSETIC = O.ODOO

END IF

STO 1380 STO 1390 STO 1400 STO 1410 STO 1420 STO 1430 STO 1440 STO 1450 STO 1460 STO 1470 STO 1480 STO 1490 STO 1500 STO 1510 STO 1520 STO 1530 STO 1540 STO 1550 STO 1560 STO 1570 STO 1580 STO 1590 STO 1600 STO 1610 STO 1620 STO 1630 STO 1640 STO 1650 STO 1660 STO 1670 STO 1680 STO 1690 STO 1700 STO 1710 STO 1720 STO 1730 STO 1740 STO 1750 STO 1760 STO 1770 |STO 1780 STO 1790 STO 1800 STO 1810 STO 1820 STO 1830 STO 1840 STO 1850 STO 1860 STO 1870 STO 1880 STO 1890 STO 1900 STO 1910 STO 1920 STO 1930 STO 1940 STO 1950

411

Page 412: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

WRITEWRITEWRITEWRITEWRITEWRITEWRITEWRITEWRITEWRITEWRITEWRITEWRITE

6e

(UN,(UN,(UN,(UN,(UN,(UN,(UN,(UN,(UN,(UN,(UN,(UN,(UN,

9010)9030)9030)9080)9080)9080)9080)9080)9080)9100)9080)9100)9080)

TITLETEMP, HITEMP, DENS, PRESSPH, EHM, EHMC, EMFZSC, UNITS(ANALM(PTR(I)), I (ANALM(PTR(I)), I (ANALM(PTR(I)), I (ANALM(PTR(I)), I (ANALM(PTR(I)), I (ANALM(PTR(I)), I ALK, ITICDC02, DH2S, DNH3, DCH4 ICCSAT, IMC03, FIXIT, FCCSAT TC02M, TCH4M, TH2SM, WROIL,

1, 7)8, 13), TIC

14, 20)21, 26)27, 29)30, 33)

KC020L, KCH40L, KH2SOL, DSEP

WRITE (UN, 9160) ADEXIF (ADEX .EQ. 'A' .OR. ADEX .EQ. 'E') THEN WRITE (UN, 9150) CEC, TAREA, SAREA, INSP DO 30 I = 1, INSPWRITE (UN, 9200) ISCHG(I), MBASE(I), SPN(I) WRITE (UN, 9210) KRXN(I), ISCOMP(I), (COEF(I,J),

& IDN(I,J), J - 1, ISCOMP(I)) 30 CONTINUE

END IF

I - 0WRITE (UN, 9100) I, I

WRITE (UN, 9180) (ODUM(I), NDUM(I), XDUM(I), 1=1, 6) WRITE (UN, 9180) (ODUM(I), NDUM(I), XDUM(I), 1-7, 12)

WRITE (UN, 9290) ANSI, ANS2 IF (ANSI .GT. 0) THENWRITE (UN, 9350) ANALM(MXSP+1), GFW(MXSP+1), Z(MXSP+1),

& DHA(MXSP+1), PAGE1(MXSP+1) DO 60 I = 2, 15

IF (DABS(XD(1,I)) .GT. CPUMIN .OR. & DABS(XD(2,I)) .GT. CPUMIN) THEN

WRITE (UN, 9360) I, DHA(MXSP+I), XD(1,I), XD(2,I), & PAGE1(MXSP+I)

END IF60 CONTINUE

END IF IF (ANS2 .GT. 0) THENWRITE (UN, 9350) ANALM(MXSP+16), GFW(MXSP+16), Z(MXSP+16),

& DHA(MXSP+16), PAGE1(MXSP+16) DO 70 I - 2, 15

IF (DABS(XD(1,1+15)) .GT. CPUMIN .OR. & DABS(XD(2,1+15)) .GT. CPUMIN) THEN

WRITE (UN, 9360) 1+15, DHA(MXSP+I+15), XD(1,I+15), fie XD(2,I+15), PAGE1(MXSP+15+I)

END IF70 CONTINUE

END IF

IF (NUMCOM .GT. 0) THENWRITE (UN, 9500) NUMCOM, Z(MXSP+31), DHA(MXSP+31),

& GFW(MXSP+31), ANALM(MXSP+31), PAGE1(MXSP+31)

STO 1960 STO 1970 STO 1980 STO 1990 STO 2000 STO 2010 STO 2020 STO 2030 STO 2040 STO 2050 STO 2060 STO 2070 STO 2080 STO 2090 STO 2100 STO 2110 STO 2120 STO 2130 STO 2140 STO 2150 STO 2160 STO 2170 STO 2180 STO 2190 STO 2200 STO 2210 STO 2220 STO 2230 STO 2240 STO 2250 STO 2260 STO 2270 STO 2280 STO 2290 STO 2300 STO 2310 STO 2320 STO 2330 STO 2340 STO 2350 STO 2360 STO 2370 STO 2380 STO 2390 STO 2400 STO 2410 STO 2420 STO 2430 STO 2440 STO 2450 STO 2460 STO 2470 STO 2480 STO 2490 STO 2500 STO 2510 STO 2520 STO 2530

412

Page 413: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

DO 80 I = 2, 14IF (DABS (XD(1, 1+30)) .GT. CPUMIN .OR.

& DABS (XD( 2, 1+30)) .GT. CPUMIN) THENWRITE (UN, 9360) 1+30, DHA(MXSP+I+30) , XD(1,I+30),

& XD(2,I+30), PAGE1(MXSP+30+I)END IF

80 CONTINUEELSEWRITE (UN, 9500) NUMCOM

END IF

WRITE (UN, 9360) NUMINSDO 90 I - 1, NUMINS

IF (DABS(MINLOG(1,I)) .GT. CPUMIN .OR. DABS(MINLOG(2 , I) ).GT. CPUMIN) THENWRITE (UN, 9560) MINLOG(1,I), MINLOG(2,I),

MINCO(9,I), PAGE3(MXMNK+I)WRITE (UN, 9210) (MINCO(J,I), MININD(J,I), J = 1, 8)

END IF90 CONTINUE

WRITE (UN, 9290) NUFLAG, IPIT, (FLAGS(I), 1=1, 6)IF (GEOTH .GT. 0) GEOTH - 1WRITE (UN, 9300) INFORM, RATIO, GEOTH, IPRINl, IPRIN2WRITE (UN, 9080) CONV1, CONV2

RETURN

r ____________________________--------------------------------- C Format Statementsr __________-----------

9010 FORMAT (A80)9030 FORMAT (4E10.4, A5)9080 FORMAT (8E10.4)9100 FORMAT (212, 2E10.4)9150 FORMAT (3E10.4, 13)9160 FORMAT (Al)9180 FORMAT (6(Al, 14, E10.4))9200 FORMAT (14, E10.4, AlO)9210 FORMAT (11(E10.4, 13))9270 FORMAT (214, E10.4)9280 FORMAT (14, 2E10.4)9290 FORMAT (812)9300 FORMAT (512, A80)9350 FORMAT (2E10.4, 12, ElO.4, A8)9360 FORMAT (12, 3E10.4, A8)9500 FORMAT (212, 3E10.4, A8)9560 FORMAT (5E10.4, A8)

END

STO 2540STO 2550STO 2560STO 2570STO 2580STO 2590STO 2600STO 2610STO 2620STO 2630STO 2640STO 2650STO 2660STO 2670STO 2680STO 2690STO 2700STO 2710STO 2720STO 2730STO 2740STO 2750STO 2760STO 2770STO 2780STO 2790STO 2800STO 2810

----|STO 2820|STO 2830|STO 2840STO 2850STO 2860STO 2870STO 2880STO 2890STO 2900STO 2910STO 2920STO 2930STO 2940STO 2950STO 2960STO 2970STO 2980STO 2990STO 3000STO 3010STO 3020STO 3030STO 3040

C ==SUBROUTINE TABLES (MXAQK, BOAT, TK, TC02, MXPC)

413

TAB 0010 |TAB 0020

Page 414: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cp\J

c c c c c c cccccccccccccccccccccccc

-

This routine reads in all required tables.

AHI DBL Pressure correction fit parameter ALOW DBL Pressure correction fit parameter BOAT DBL B-dot as a function of temperature BHI DBL Pressure correction fit parameter BLOW DBL Pressure correction fit parameter CHI DBL Pressure correction fit parameter CLOW DBL Pressure correction fit parameterDELVR DBL Change in volume at 25 degDHA DBL Ion size parameterGFW DBL Gram formula weight of aqtI INT Loop variableJ INT Loop variableLKT1 DBL Log K for aqueous speciesLKT2 DBL Log K for minerals with teMXAQK INT Total number of aqueous Ic

rees

ecus species

with temperaturemperatureg k values

MXMNK INT Total number of mineral log k valuesMXPC INT Total number of mineral pressure constantsMXSP INT Total number of aqueous speciesN INT Index numberNH20 DBL Number of water ionization reactionsNMAX INT General array dimension to allow easy expansionPAGE1 CHA Names of aqueous speciesPAGE2 CHA Names of equilibrium constPAGE3 CHA Names of solubility constaTC02 DBL Activity coefficients of CTK DBL Temperature steps used byTOF CHA Places a form feed in outpUND INT File unit assigned for datUNO INT File unit assigned for outZ INT Charge of aqueous species

INTEGER NMAX, UND, UNOPARAMETER (NMAX = 340, UND = 10, UNO = 6)

INTEGER I, J, N, MXSP, MXAQK, MXMNK, MXPC,

CHARACTER * 1 TOF, CR

antsnts02 with temperatureprogramut filea tablesput file

Z(NMAX)

CHARACTER* 8 PAGEl(NMAX) , PAGE2(NMAX), PAGE3(NMAX)CHARACTER * 40 TITMIX

DOUBLE PRECISION AHI (200), ALOW ( 200 ), BDAT(IO) , BHI(200)DOUBLE PRECISION BLOW (200) , CHI(200), CLOW(200) , DELVR(NMAX)DOUBLE PRECISION DHA(NMAX) , GFW(NMAX)DOUBLE PRECISION LKT1(NMAX, 11) , LKT2(NMAX, 11) , NH20(NMAX)DOUBLE PRECISION TC02(10) , TK(ll)

COMMON /FMFD / TOF, CR, TITMIXCOMMON /KK / LKT1, LKT2COMMON /NAMES1/ PAGE1 , PAGE 2 , PAGE3COMMON /PTK / DELVR, NH20, ALOW, BLOW, CLOW, AHI, BHI, CHICOMMON /TABCOM/ MXSP, MXMNK, GFW, Z, DHA

OPEN (UND, FILE = 'DATA.TBL', STATUS = 'OLD')

|TAB 0030 - | TAB 0040 |TAB 0050JTAB 0060 JTAB 0070|TAB 0080JTAB 0090 JTAB 0100|TAB 0110JTAB 0120ITAB 0130[TAB 0140JTAB 0150JTAB 0160|TAB 0170JTAB oisoJTAB 0190ITAB 0200JTAB 0210ITAB 0220ITAB 02 30JTAB 0240JTAB 0250JTAB 0260JTAB 0270JTAB 0280JTAB 0290ITAB 0300JTAB 0310ITAB 0320ITAB 0330JTAB 0340

-| TAB 0350TAB 0360TAB 0370TAB 0380TAB 0390TAB 0400TAB 0410TAB 0420TAB 0430TAB 0440TAB 0450TAB 0460TAB 0470TAB 0480TAB 0490TAB 0500TAB 0510TAB 0520TAB 0530TAB 0540TAB 0550TAB 0560TAB 0570

i TA u r\ R o r\= 1 lAJD U JoU TAB 0590TAB 0600

414

Page 415: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

OPEN (UNO, STATUS = 'OLD', shared, readonly)

READ (UNO, 1000) MXSP, MXAQK, MXMNK, MXPC

DO 10 I = 1, MXSPREAD (UNO, 1010, END = 70) N, PAGEl(I) , Z(I) , DHA(I) , GFW(I)

10 CONTINUE

DO 20 I = 1, MXAQKREAD (UNO, 1020, END = 80) N, PAGE2(I) , (LKT1(I,J), J = 1, 11)

20 CONTINUE

DO 30 I = 1, MXMNKREAD (UND, 1020, END = 90) N, PAGE3(I), (LKT2(I,J), J - 1, 11)

30 CONTINUE

READ (UND, 1030, END = 100) (BDAT(I) , 1=1, 10)

READ (UND, 1040, END = 110) (TK(I) , 1=1, 11)

READ (UND, 1050, END = 120) (TC02(I), 1=1, 10)

DO 40 I = 1, MXPCREAD (UND, 1060, END = 130) ALOW(I) , BLOW(I) , CLOW(I) ,

AHI(I), BHI(I), CHI(I)BLOW(I) = BLOW(I) * l.OD-4BHI(I) = BHI(I) * l.OD-4CLOW(I) = CLOW(I) * l.OD-16CHI(I) = CHI(I) * l.OD-16

40 CONTINUE

DO 50 I = 1, MXAQKDELVR(I) = O.ODONH20(I) = O.ODOREAD (UND, 1070, ERR = 140, END = 60) J, DELVR(J) , NH20(J)

50 CONTINUE

60 CONTINUECLOSE (UND)RETURN

70 CONTINUEWRITE (UNO, 1080) TOFWRITE (UNO, 1090)STOP

80 CONTINUEWRITE (UNO, 1080) TOFWRITE (UNO, 1100)STOP

90 CONTINUEWRITE (UNO, 1080) TOFWRITE (UNO, 1110)STOP

TAB 0610TAB 0620TAB 0630TAB 0640TAB 0650TAB 0660TAB 0670TAB 0680TAB 0690TAB 0700TAB 0710TAB 0720TAB 0730TAB 0740TAB 0750TAB 0760TAB 0770TAB 0780TAB 0790TAB 0800TAB 0810TAB 0820TAB 0830TAB 0840TAB 0850TAB 0860TAB 0870TAB 0880TAB 0890TAB 0900TAB 0910TAB 0920TAB 0930TAB 0940TAB 0950TAB 0960TAB 0970TAB 0980TAB 0990TAB 1000TAB 1010

1 TAR 10901 JLr\IJ l.\J Z.\J

TAB 1030TAB 1040TAB 1050TAB 1060TAB 1070TAB 1080TAB 1090TAB 1100TAB 1110TAB 1120TAB 1130TAB 1140TAB 1150TAB 1160TAB 1170TAB 1180

415

Page 416: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

100 CONTINUEWRITE (UNO, 1080) TOP WRITE (UNO, 1120) STOP

110 CONTINUEWRITE (UNO, 1080) TOP WRITE (UNO, 1130) STOP

120 CONTINUEWRITE (UNO, 1080) TOP WRITE (UNO, 1140) STOP

130 CONTINUEWRITE (UNO, 1080) TOP WRITE (UNO, 1150) STOP

140 CONTINUEWRITE (UNO, 1160) TOP STOP

10001010102010301040105010601070108010901100111011201130114011501160

FORMATFORMATFORMATFORMATFORMATFORMATFORMATFORMATFORMATFORMATFORMATFORMATFORMATFORMATFORMATFORMATFORMAT

(414)(13,(13,(10(F(F3.1(F3.1(5(F8(14,(Al)(5X, '(5X,'(5X,'!(5X,'(5x, ':(5X,':(5X, '(Al,

IX, A8, IX, 12, IX, F3.1, IX, F8.3)IX, A8, 7(1X, F7.2) / 13X, 4(F7.2, IX))5.3, IX)), 3(1X, F4.1), 7(1X, F5.1)), 2(1X, F4.1), 7(1X, F5.1)).3, IX), F8.3)2F8.3)

ERROR IN READING TABLE-PAGEl', /, ' ProgramERROR IN READING TABLE-PAGE2', /, ' ProgramERROR IN READING TABLE-PAGES', /, ' ProgramERROR IN READING TABLE-BOAT ', /, ' ProgramERROR IN READING TABLE-TK ', /, ' ProgramERROR IN READING TABLE-TC02 ', /, ' ProgramERROR IN READING TABLE - PRE S SJ', /, ' Program5X, 'ERROR IN READING TABLE-PRESS (IONS) ', /,

' Program Stop')

Stop' Stop' Stop' Stop' Stop' Stop'

Stop'

END

TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB

11901200121012201230124012501260127012801290130013101320133013401350136013701380139014001410142014301440145014601470148014901500151015201530154015501560157015801590160016101620

C =cCc c c c c

SUBROUTINE WAPVT (TC, X, P, BETA, G, ALPHA)

Routine to calculate the properties of pure water from the steam tables of keenan et al (1969)

A DBL Fit coefficents A(i,j) AF DBL Helmholtz free energy as a function of AFO DBL Intermediate storage variable ALPHA DBL Coefficient of thermal expansion

WAP 0010 =========== |WAP 0020

IWAP 0030|WAP 0040l wr\i \j\j j\j

IWAP 0060rho and T JWAP 0070

JWAP 0080IWAP 0090

416

Page 417: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

ccccccccccccccccccccccccccccccccccccccc

BETA DBL Coefficient of compressibilityC DBL Fit coefficients C(i)DIDX DBL First derivative of SI with respect to densityDIDX2 DBL Second derivative of SI with respect to densityDKDX DBL First derivative of SK with respect to densityDKDX2 DBL Second derivative of SK with respect to densityDPDT DBL Derivative of pressure with respect to temp.DPDTR DBL Derivative of Q by tau with constant rhoDPDX DBL Derivative of pressure by density at constant TDQDTR DBL Intermediate storage variableDQDX DBL First derivative of Q by density at constant TDQDX2 DBL Second derivative of Q by density at constant TDTDTR DBL First derivative of TJ with respect to TauDTRDT DBL Derivative of TR with respect to temperatureE DBL Fit constantFK DBL Intermediate storage variableG DBL Gibbs Free Energy in joules per moleI INT Loop variableJ INT Loop variableMW DBL Molecular weight of waterP DBL Pressure (bar)Q DBL Intermediate storage variableRC DBL R in j/ g KRP DBL R in bar cm(3)/g KSC DBL Intermediate storage variableSI DBL Sum of A(i,j) * TI(i), 1-1,8 in QSK DBL Sum of A(i,j), i=9 , 10 in QT DBL Temperature in deg KTC DBL Temperature in deg CTCR DBL 1000 / critical temperature of water in kelvinTF DBL Intermediate storage variableTI DBL Array of XTs to the (i-l)th powerTJ DBL Intermediate storage variableTP DBL Tau(a.j)TR DBL 1000 / current temperature of water in kelvinTT DBL Intermediate storage variableX DBL Density (g/cm3)XP DBL Density (a, j)XT DBL Intermediate storage variable

DOUBLE PRECISION MWPARAMETER (MW = 18.0153DOO)

INTEGER I, J

DOUBLE PRECISION A(10, 7), AF, AFO , ALPHA, BETA, C(8)DOUBLE PRECISION DIDX, DIDX2 , DKDX, DKDX2 , DPDT, DPDTR, DPDXDOUBLE PRECISION DQDTR, DQDX, DQDX2 , DTDTR, DTRDTDOUBLE PRECISION E, FK, G, P, QDOUBLE PRECISION RC , RP, SC, SI, SKDOUBLE PRECISION T, TC , TCR, TF, TI(8) , T J , TP, TR, TTDOUBLE PRECISION X, XP, XT

INTRINSIC DEXP, DLOG

DATA TCR, E, RP/ 1.544912D+0, 4.8D+0, 4.6151D+0/DATA C /1.857065D+3, 3.22912D+3, -4.19465D+2, 3.66649D+1,

-2.05516D+1, 4.85233D+0, 4.6D+1, -1.011249D+3/

|WAP 0100IWAP 0110JWAP 0120IWAP 0130IWAP 0140IWAP oisoJWAP 0160IWAP 0170IWAP oisoIWAP 0190IWAP 0200JWAP 0210|WAP 0220|WAP 0230|WAP 0240JWAP 0250JWAP 0260JWAP 0270JWAP 0280|WAP 0290IWAP 0300JWAP 0310JWAP 0320|WAP 0330JWAP 0340|WAP 035u|WAP 0360|WAP 0370JWAP 0380IWAP 0390IWAP 0400JWAP 0410IWAP 0420JWAP 0430JWAP 0440JWAP 0450JWAP 0460JWAP 0470JWAP 0480JWAP 0490WAP 0500WAP 0510WAP 0520WAP 0530WAP 0540WAP 0550WAP 0560WAP 0570WAP 0580WAP 0590WAP 0600WAP 0610WAP 0620WAP 0630WAP 0640WAP 0650WAP 0660WAP 0670

417

Page 418: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

c

ccc

DATA A /2. 949293 7D+13.4218431D+2-4.1030848D+2-3.3301902D-KL1.3746153D+26.8335354D+00 . OD+0 ,-1.3746618D+2-9.2734289D+00 . OD+0 ,-6.3972405D+00 . OD+0 ,1.3687317D+2-2.9142470D+10 . OD+0 ,-6.9048554D-10 . OD+0 ,1.3041253D+1

RC - RP / 10. OD+0T - TC + 273.15DOOTR = l.OD+3 / TTF - TR - TCRFK = DEXP(-E * X)SC - O.OD+0

Calculate psi sub 0

DO 10 I - 1, 6

, -1., -2., -4., -1., 1., -2.

0., -7., 4.

0., 2.

0., 6., 2.

0., 2.

0., 7.

3213917D+2,4450042D+2 ,1605860D+2,6254622D+1,5597836D+2,6149751D+1,OD+0,3396848D+2,3125840D+0,OD+0,6409282D+1,OD+0,4581880D+2,9568796D+1,OD+0,7407416D+0,OD+0,1531353D+1/

2.1.

-5.-1.3.6.0.

-1.0.6.

-4.0.

-3.0.7.

-5.0.

7464632D+2,5518535D+2,1985860D+0,7731074D+2,3731180D+2,5326396D+1,OD+0,564104D-1,OD+0,7874983D+0,7740374D+1,OD+0,9661401D+0,OD+0,9$47970D+1,l(p28070D+0,OD+0,

-3.6093828D+2,5.9728487D+0,7.7779182D+0,1.2748742D+2,-2.0988866D+2,-2.6181978D+1,0 . OD+0 ,-7.2546108D-1,0 . OD+0 ,1.0401717D+1,5.6323130D+1,0 . OD+0 ,1.5453061D+1,0 . OD+0 ,3.9917570D+2,3.9636085D+0,0 . OD+0 ,

===============

SC - SC + C(I) / TR**(I-1)

CCC

10 CONTINUE

AFO = SC + C(7) *

Calculate Q term by

Q - O.OD+0DQDX - O.OD+0DQDX2 = O.OD+0DPDTR = O.OD+0DQDTR = O.OD+0

DO 50 J - 1, 7IF (J .GT. 1) THEN

TP - 2.5D+0XP - l.OD+0

ELSETP = TCRXP - 0.634D+0

END IF

DLOG(T) + C(8) *

term

DLOC?(T / TR)

WAPWAPWAPWAPWAPWAPWAPWAPWAPWAPWAPWAPWAPWAPWAPWAPWAPWAPWAPWAP|WAPWAPWAPWAPWAPWAPWAPWAPWAP|WAPIWAP1 WAPWAPWAPWAPWAPWAPWAPWAP|WAP|WAP|WAPWAPWAPWAPWAPWAPWAPWAPWAPWAPWAPWAPWAPWAPWAPWAPWAP

0680069007000710072007300740075007600770078007900800081008200830084008500860087008800890090009100920093009400950096009700980099010001010102010301040105010601070108010901100111011201130114011501160117011801190120012101220123012401250

418

Page 419: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

30 CONTINUEXT - X - XP TT - TR - TP TI(1) - l.OD+0

DO 40 I - 2, 8TI(I) - TI(I-l) * XT

40 CONTINUE

SI - A(1,J) + A(2,J) * TI(2) + A(3,J) * TI(3) + A(4,J) * TI(4) A(5,J) * TI(5) + A(6,J) * TI(6) + A(7,J) * TI(7) A(8,J) * TI(8)

DIDX - A(2,J) + 2.0*A(3,J) * TI(2) + 3.0*A(4,J) * TI(3) + 4.0*A(5,J) * TI(4) + 5.0*A(6,J) * TI(5) + 6.0*A(7,J) * TI(6) + 7.0*A(8,J) * TI(7)

DIDX2 - 2.0*A(3,J) + 6.0*A(4,J) * TI(2) + 12.0*A(5,J) * TI(3)20.0*A(6,J) * TI(4) + 30.0*A(7,J) * TI(5) 42.0*A(8,J) * TI(6)

SK = FK * (A(9,J) + A(10,J) * X)DKDX = FK * A(10,J) - E * SKDKDX2 - -E * FK * A(10,J) - E * DKDX

TJ - TT**(J-2)DTDTR - (J-2) * TT**(J-3)

Q - Q + TJ * (SI + SK) DQDX = DQDX + TJ * (DIDX + DKDX) DQDX2 - DQDX2 + TJ * (DIDX2 + DKDX2) DPDTR = DPDTR + DTDTR * (SI + SK) DQDTR = DQDTR + DTDTR * (DIDX + DKDX)

50 CONTINUE

DPDTR - Q + TF * DPDTRDQDTR - DQDX + TF * DQDTRQ = TF * QDQDX - TF * DQDXDQDX2 - TF * DQDX2DTRDT - -l.OD+3 / T**2DPDT = DTRDT * (DPDTR + DQDTR * X)

AF = AFO + RC * T * (DLOG(X) + X * Q)

P=X*RP*T* (l.OD+0 + X * Q + X**2 * DQDX)

DPDX =P/X+X*RP*T* (Q + 3.0 * X * DQDX + X**2 * DQDX2)

BETA = 1.0 / (X * DPDX)

ALPHA - BETA * (P / T + T * RP * DPDT * X**2)

G = (AF + (P / X) * (RC / RP)) * MW

RETURN END

WAP WAP WAP WAP WAP WAP WAP WAP WAP +WAP +WAP WAP WAP WAP WAP

+ WAP + WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP WAP

1260127012801290130013101320133013401350136013701380139014001410142014301440145014601470148014901500151015201530154015501560157015801590160016101620163016401650166016701680169017001710172017301740175017601770178017901800

419

Page 420: SOLMINEQ.88: A COMPUTER PROGRAM FOR · PDF filePREFACE This report describes the theoretical aspects, the modeling capabilities and the limitations of the geochemical computer code

cCCccc

-

ccccccccccccc

SUBROUTINE WDBP (TC, P, DC, DCDT)

Routine to calculate the dielectric constant of waterbased on eq (1) of Bradley and Pitzer (1979)This equation is only valid for temperatures of 0-350 Cand pressures up to 2000 bar at 70 C and lower and up to5000 bar greater than 70 C

B DBL Intermediate storage variableC DBL Intermediate storage variableDC DBL Dielectric constant of waterDCDT DBL Derivative of dielectic constant wrt TDCO DBL Intermediate storage variableDT1 DBL Intermediate storage variableDT2 DBL Intermediate storage variableDT3 DBL Intermediate storage variableP DBL Pressure in barsT DBL Temperature in deg kTC DBL Temperature in deg cU DBL Fit constants

DOUBLE PRECISION B, C, DC, DCDT, DCO, DT1, DT2 , DT3DOUBLE PRECISION P, T, TC, U(9)

INTRINSIC DEXP, DLOG

DATA U/ 3.4279D+2, -5.0866D-3, 9.46900*7, -2.05250+0,3.1159D+3, -1.8289D+2, -8.0325D+3, 4.2142D+6,2.1417D+0 /

T - TC + 273.15D+00DCO - U(l) * DEXP(U(2)*T + U(3)*T**2)C - U(4) + (U(5) / (U(6) + T))B - U(7) + (U(8) / T) + (U(9) * T)DC - DCO + (C * DLOG((B + P) / (B + l.OD+3)))DT1 - U(l) * (U(2) + (2''.0 * U(3) * T))

* (DEXP((U(2) * T) + (U(3) * T**2)))DT2 - (U(5) / (U(6) + T)**2) * DLOG((B+P) / (B + l.OD+3))DT3 - (C * (l.OD+3 - P) * (U(9) - (U(8)/T**2)))

/ ((B + P) * (B + l.OD+3))DCDT - DT1 - DT2 + DT3

.RETURNEND

WDB 0010 =|WDB 0020

|WDB 0030|WDB 0040|WDB 0050|WDB 0060|WDB 0070

---|WDB 0080JWDB 0090|WDB 0100|WDB 0110|WDB 0120IWDB 0130JWDB 0140IWDB oisoJWDB 0160JWDB 0170|WDB 0180JWDB 0190JWDB 0200

---|WDB 0210WDB 0220WDB 0230WDB 0240WDB 0250WDB 0260WDB 0270WDB 0280WDB 0290WDB 0300WDB 0310

=|WDB 0320WDB 0330WDB 0340WDB 0350WDB 0360WDB 0370WDB 0380WDB 0390WDB 0400WDB 0410WDB 0420WDB 0430WDB 0440WDB 0450WDB 0460WDB 0470

alJ.S. GOVERNMENT PRINTING OFFICE: 1989-686-54V 19066

420