Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A....

27
Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade de São Paulo, São Paulo, Brazil ***Instituto de Física Teórica, São Paulo, Brazil
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    217
  • download

    1

Transcript of Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A....

Page 1: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

Solitons and shock waves in Bose-Einstein condensates

A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel***

*Institute of Spectroscopy RAS, Troitsk, Russia

**Universidade de São Paulo, São Paulo, Brazil

***Instituto de Física Teórica, São Paulo, Brazil

Page 2: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

Gross-Pitaevskii equation

Dynamics of a dilute condensate is described

by the Gross-Pitaevskii equation

22(r) | |

2 exti V gt m

where

)(2

)r( 222222 zyxm

V zyxext

Page 3: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

sa

,4 2

m

ag s

is the atom-atom scattering length,

,r|| 2 Nd

is number of atoms in the trap.N

Page 4: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

Cigar-shaped trap

zyx 1

z

02Z

or

2a

Page 5: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

If

10

Z

Nas

then transverse motion is “frozen” and the condensate wave function can be factorized

),(),(),r( tzyxt where is a harmonic oscillator ground state function of transverse motion:

( , )x y

.2

exp1

),(22

a

yx

ayx

Page 6: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

The axial motion is described by the equation

2 22 2 2

12

1| |

2 2 z Di m z gt m z

where2

1 2 2

2,

2s

D

agg

a ma

,am

2| | .dz N

Page 7: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

Disc-shaped trap

1,z

(r, ) ( ) ( , , ),t z x y t

2

1/ 4 1/ 2 2

1( ) exp( ),

2z z

zz

a a

22 2 2 2 2

2

1( ) | |

2 2 x y Di m x y gt m

2

2

2 2,

2s

Dzz

agg

maa

2| | .dxdy N

Page 8: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

Quasi-one-dimensional expansion

Hydrodynamic-like variables are introduced by

( , ) ( , ) exp ( ', ) ' ,zi

z t z t v z t dz

where ( , )z t is density of condensate and

( , )v z t is its velocity.

Page 9: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

In Thomas-Fermi approximation the stationarystate is described by the distributions

2

20 0

3( ) 1 ,

4

N zz

Z Z

0v

2 2 1/30 (3 )sZ Na a

where

is axial half-length of the condensate.

Page 10: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

After turning off the axial potential the condensateexpands in self-similar way:

0Z0Z

maxv tmaxv t

0t

1zt

Page 11: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

Analytical solution is given by2

2 2max max

3( , ) 1 ,

4

N zz t

v t v t

1,zt

max 02 zv Z where

has an order of magnitude of the sound velocityin the initial state:

max 12 ,s sv c a nm

2

1 ,n a n

is the density of the condensate.n

Page 12: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

Shock wave in Bose-Einstein condensate

Let the initial state have the density distribution

12 vv

1v

Page 13: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

A formal hydrodynamic solution has wave breaking points:

zTaking into account of dispersion effects leads to generation of oscillations in the regions oftransitions from high density to low density gas.

Page 14: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

Numerical solution of 2D Gross-Pitaevskii equation

Page 15: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

Density profiles at y=0

Page 16: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

Analytical theory of shocks

The region of oscillations is presented as amodulated periodic wave:

21 2 3 4

21 2 3 4 1 3 2 4

1( , ) ( )

4

( )( ) (2 ( )( ) , ),

z t

sn m

where

1 2 3 4( ) ,z t 1 2 3 4

1 3 2 4

( )( ).

( )( )m

Page 17: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

The parameters change( , ), 1, 2,3,4,i i z t i slowly along the shock. Their evolution is described by the Whitham modulational equations

( ) 0,i iit x

( ) 1 ,i ii

LV

L

,ii

,iV 1 3 2 4

( ).

( )( )

K mL

Page 18: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

Solution of Whitham equations has the form

( ) ( ), 1, 2,3,4,i ix t w i

where functions ( )iw are determined by the

Initial conditions. This solution defines implicitly

i as functions of , :x t

t const

Page 19: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

Substitution of ( , )i z t into periodic solution gives

profile of dissipationless shock wave:

Page 20: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

Formation of dark solitons

Let an initial profile of density have a “hole”

Page 21: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

After wave breaking two shocks are formed whichdevelop eventually into two soliton trains:

Page 22: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

Analytical form of each emerging soliton is parameterized by an “eigenvalue” n

2(0) 0

0 2 20

( , ) ,cosh [ ( 2 )]

n

n n

z tz t

where n can be found with the use of the

generalized Bohr-Sommerfeld quantization rule

21 1( ,0) ( ,0) , 0,1,2,...

2 2

n

n

z

n

z

v z z dz n n

Page 23: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

Formation of solitons in BEC with attractive interaction

22| |

2i g

t m

Solitons are formed due to modulational instability.If initial distribution of density has sharp fronts, thenWhitham analytical theory can be developed.

Page 24: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

Results of 3D numerics

Page 25: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

1D cross sections of density distributions

Page 26: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

Whitham theory

Page 27: Solitons and shock waves in Bose-Einstein condensates A.M. Kamchatnov*, A. Gammal**, R.A. Kraenkel*** *Institute of Spectroscopy RAS, Troitsk, Russia **Universidade.

Thank you for your attention!