Solid State Chemistry Meets Physcis: Thermoelectric...

45
Solid State Chemistry Meets Physcis: Thermoelectric Materials AN INTERDISCIPLINARY COLLABORATION KANATZIDIS MSU, CHEMISTRY Solid State Chemistry Synthesis, Discovery KANATZIDIS MSU, CHEMISTRY Solid State Chemistry Synthesis, Discovery Ctirad UHER Univ of Michigan Physics Ctirad UHER Univ of Michigan Physics TIM HOGAN MSU, E. ENGINEERING MEASUREMENTS S. D. MAHANTI MSU, PHYSICS Theory C. KANNEWURF Northwestern Univ E. Engineering H. Schock, T. Shih MSU, Mechanical Engineering Applications

Transcript of Solid State Chemistry Meets Physcis: Thermoelectric...

Page 1: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Solid State Chemistry Meets Physcis: Thermoelectric Materials

Solid State Chemistry Meets Physcis: Thermoelectric Materials

AN INTERDISCIPLINARY COLLABORATION

KANATZIDISMSU, CHEMISTRY

Solid State ChemistrySynthesis, Discovery

KANATZIDISMSU, CHEMISTRY

Solid State ChemistrySynthesis, Discovery

Ctirad UHERUniv of Michigan

Physics

Ctirad UHERUniv of Michigan

Physics

TIM HOGANMSU, E. ENGINEERING

MEASUREMENTS

S. D. MAHANTIMSU, PHYSICS

Theory

C. KANNEWURFNorthwestern Univ

E. Engineering

H. Schock, T. ShihMSU, Mechanical

EngineeringApplications

Page 2: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Michigan State University…Michigan State University…

Page 3: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

THERMOELECTRIC POWER(Seebeck Coefficient)

ΔV Smeasured= ΔVΔT

Smeasured= Ssample-SCu

ΔT

Cu block

Cu blockheater

constantan

sample

zero current technique:extremely useful probefor investigation ofintrinsic conduction in granular or polycrystallinematerials

Page 4: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Thermoelectric ApplicationsThermoelectric Applications

Beverage cooler

Biological samples LASER diodeCooler

MicroprocessorCooler

www.tellurex.com

Page 5: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Heat to Electric EnergyHeat to Electric Energy

Up to 20% conversion efficiency withright materials

Page 6: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Thermoelectric BenefitsThermoelectric Benefits

• TE coolers have no moving parts, need substantially less maintenance.

• Life-testing has shown the capability of TE devices to exceed 200,000 hrs. of steady state operation.

• TE coolers contain no chlorofluorocarbons. • Temperature control to within fractions of a degree can

be maintained using TE devices. • TE coolers function in environments that are too

severe, too sensitive, or too small for conventional refrigeration.

• TE coolers are not position-dependent.

Page 7: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

How does it work?How does it work?

http://www.designinsite.dk

Page 8: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Thermoelectric applicationsThermoelectric applications

• Air conditioning (distributed, environmentally friendly)

• Spot cooling of electronic chips, superconductors etc.

• Thermal suits for fire-fighting, soldier etc• Waste heat recovery (automobiles, utilities

etc)• Geothermal power generation

Page 9: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Figure of MeritFigure of Merit

ZT =σ ⋅ S2

κ total

•T

σ ⋅ S2Power factor

Total thermal conductivity

electrical conductivity thermopower

Page 10: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Today’s situationToday’s situation

• The most efficient materials today is Bi2Te3alloy

• ZT~0.8-1.0• Further improvements on Bi2Te3 are not

expected.• New materials are needed

Page 11: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Thermoelectric Properties of Optimized Bi2Te3(e.g. Bi2-xSbxTe3, Bi2Te3-xSex) at Room Temperature

Thermoelectric Properties of Optimized Bi2Te3(e.g. Bi2-xSbxTe3, Bi2Te3-xSex) at Room Temperature

• S ~ ±220 µV/K• σ ~ 950 S/cm• ρ=1/σ ~ 1.1 mΩ·cm• κ ~ 1.5 W/m·K

• ZT ~ 1 !

ZT~1

T, K

ZT

300 400200

Page 12: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Structure of Bi2Te3 and NaClStructure of Bi2Te3 and NaCl

xy

z

x

z

NaCl Bi2Te3 defect NaCl

Page 13: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

TYPICAL BEHAVIOR OF MATERIALS

S>50 µV/K

S>-50 µV/K

0<S<20 µV/K

-20 µV/K<S<0

T (K)

S (µV/K)S (µV/K)

T (K)

metal-likesemiconductor-like

p-type

n-type n-type

p-type

LARGE

SMALL

Page 14: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Power Factor (S2*σ) vs Carrier Concentration

Power Factor (S2*σ) vs Carrier Concentration

Carrier Concentration, cm-1

1017 1018 1019 1020 1021

S2*σThermopower, Sconductivity

Page 15: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Thermopower and Electronic Structure

• σ(E) is the electrical conductivity determined as a function of band filling or Fermi energy, EF. If the electronic scattering is independent of energy, σ(E)is just proportional to the density of states (DOS) at EF.

• For maximum S, a large asymmetry in the DOS and/or scattering within a few kTabove and below the Fermi energy is required.

S =π2kB

2T3e

d(lnσ(E))dE

E = EFMott Equation

Page 16: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Band structure TypesBand structure Types

k

E

k

E

k

Ef

simple simple complex

Page 17: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

�ZT and Band Structure

B =CT 5 / 2γ mxmym z

μx

κ latt

B- parameter

m= effective massµ= mobilityκlatt= lattice thermal conductivityT = temperatureγ= band degeneracy

High γ comes with(a) high symmetry e.g. rhombohedral, cubic(b) off-center band extrema

ZT

B-parameter

1.0 -

10 –

0.1 -

1.0 100.10.01

Γ X

Ene

rgy

VB

CB

Ef

Page 18: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Desirable characteristicsDesirable characteristics

• Multiple peaks and valleys in valence/conduction band

• Heavy carrier masses• Flat bands

εε

k k

Page 19: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Selection criteria for candidate materials

Selection criteria for candidate materials

• Narrow band-gap semiconductors• For operation at room temperature

• Heavy elements• High mobility, low thermal conductivity

• Large unit cell, complex structure• low thermal conductivity

• Highly anisotropic or highly symmetric• Complex compositions

• low thermal conductivity, electronic structure

Page 20: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Important Issue: Thermal Conductivity

Important Issue: Thermal Conductivity

• Slack’s proposal: Phonon-Glass/ Electron-Crystal (PGEC)• Rattling Ions in the lattice: watch thermal

displacement parameters

o o o o

o o o oo

o

o

o

o

oooo o oooo o o

o o o o o

o

o

Rattling ions in cavities or tunnels scatter heat-carrying phonons

Crystalline solid

Page 21: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Reaction ChemistryReaction Chemistry

• A2Q + PbQ + Bi2Q3 –––––> (A2Q)n(PbQ)m(Bi2Q3)p

A2Q

PbQBi2Q3

A=K, Rb, CsQ=Se, Te

K5Bi17Se28

β-K2Bi8Se13

Rb0.5Bi1.83Te3

Pb5Bi6Se14

A1+xPb4-2xBi7+xSe15

APb2Bi3Te7

Pb6Bi2Se9 Pb5Bi12Se23

Map generates target compounds

CsBi4Te6

Investigating the System:

Phases shownare promising new TEMaterials

Page 22: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

K ions possess ~2x the thermal displacement parameter of the Bi/Se framework

K2Bi8Se13

x y

z

Se

Bi

K

β-K2Bi8Se13this block is a chunk from the NaCl lattice

8,9-coordinate sites K, Bi

Page 23: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

NaCl Structure: The Basic “Raw” Material

NaCl Structure: The Basic “Raw” Material

NaCl Lattice

“Modules” are cut out of NaCl stock

Page 24: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

β-K2Bi8Se13β-K2Bi8Se13

0

20

40

60

80

100

0 50 100 150 200 250 300

Con

duct

ivity

(S/c

m)

Temperature (K)

-400

-300

-200

-100

0

0 50 100 150 200 250 300 350

Ther

mop

ower

(µV

/K)

Temperature (K)

-400

-350

-300

-250

-200

-150

-100

-50

0

0 50 100 150 200 250 300

Ther

mop

ower

(µV

/K)

Temperature (K)

150

200

250

300

350

400

0 50 100 150 200 250 300

Con

duct

ivity

(S/c

m)

Temperature (K)

Sn Doped

Page 25: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

β-K2Bi8Se13 : Room temp ZT=0.9. At 600 K estimated at 1.5 (to be verified)

β-K2Bi8Se13 : Room temp ZT=0.9. At 600 K estimated at 1.5 (to be verified)

10

15

20

25

30

35

40

45

0.45 0.5 0.55 0.6 0.65 0.7 0.75

α/S

(arb

itrar

y un

it)

Eg = 0.59 eV

β-K2Bi

8Se

13

Energy (eV)

-250

-200

-150

-100

-50

0

0 50 100 150 200 250 300

β-K2Bi

8Se

13

Thermopower (μV/K)

Temperature (K)

DY61243 ingot

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300 350

Conductivity (S/cm)

Temperature (K)

0

1

2

3

4

5

6

0 50 100 150 200 250 300

β-K2Bi

8Se

13

κ (W

/m. K

)

Temperature (K)

DY61243 ingot

Uher et al

Page 26: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Sn Doping in β-K2Bi8Se13Sn Doping in β-K2Bi8Se13

-350

-300

-250

-200

-150

-100

-50

0

0 50 100 150 200 250 300

Undoped0.5% Sn1.0% Sn1.5% Sn2.0% Sn3.0% Sn

wer

(µV

/K)

Temperature (K)

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300

Undoped0.5% Sn1.0% Sn1.5% Sn2.0% Sn3.0% Sn

ower

Fac

tor S

2 σ

(µW

/cm

·K

2)

Temperature (K)

0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300

Undoped0.5% Sn1.0% Sn1.5% Sn2.0% Sn3.0% Sn

ZT

Temperature (K)

Page 27: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Michigan State University /Tellurex Corp. Collaboration

Michigan State University /Tellurex Corp. Collaboration

β-K2Bi8Se13

New TE material grown at MSU

New TE material grown at Tellurex

Page 28: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Photo of the first TE module containing 63 couples n-β-K2Bi8Se13/p-Bi2Te3

Photo of the first TE module containing 63 couples n-β-K2Bi8Se13/p-Bi2Te3

UnoptimizedΔT=36 oCTh=50 oCAll materials grownat Tellurex Inc

Page 29: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

�x

y

z xy

z

α-K2Bi8Se13 versus β-K2Bi8Se13α-K2Bi8Se13 versus β-K2Bi8Se13

α-K2Bi8Se13, Eg=0.76 eV β-K2Bi8Se13, Eg=0.59 eV

Mixed K,Bi

Page 30: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

α-, β-K2Bi8Se13 : Electronic structureα-, β-K2Bi8Se13 : Electronic structure

n-type character

Page 31: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Quenched and annealed β-K2Bi8Se13Quenched and annealed β-K2Bi8Se13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Abs

orpt

ion

Energy, eV

after annealingquenched

Eg=0.59 eV

Page 32: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

CsBi4Te6CsBi4Te6

xy

z

C 2/m

51 Å

Page 33: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

“Undoped” as-prepared material“Undoped” as-prepared material

0

20

40

60

80

100

120

0

5

10

15

20

0 50 100 150 200 250 300

S (µ

V/K

) κ (W/m

-K)

Temperature (K)

DY72121

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

dy72121(CsBi4Te6 crystal)

Con

d. (S

/cm

)

Temperature (K)

conductivity thermopower

Thermal conductivity

Page 34: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Crystals of CsBi4Te6Crystals of CsBi4Te6

1 mm1 mm

100 µm

Page 35: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Doped CsBi4Te6Doped CsBi4Te6

0

1000

2000

3000

4000

5000

6000

7000

8000

0

50

100

150

200

0 50 100 150 200 250 300 350

SbI3 doped CsBi

4Te

6

Con

duct

ivity

(S/c

m) S

eebeck (µV/K

)

Temperature (K)

At 260 K: S ~174 µV/KCond. ~1400 S/cm

κ ~14 mW/cm-K

ZTmax

~0.8

Page 36: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Thermal Conductivity of p-type CsBi4Te6

Thermal Conductivity of p-type CsBi4Te6

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 50 100 150 200 250 300 350

κ (W

/m. K

)

Temperature (K)

parallel to needle

perpendicular to needle

Data by Uher et al

Page 37: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Doping with SbI3Doping with SbI3

Page 38: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

CsBi4-xSbxTe6 x = 0.3

SbSbBiBi

Page 39: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

CsBi4Te6CsBi4Te6

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350

Figure of Merit (ZT)

CsBi4Te

6 doped

p-Bi2Te

3 Marlow

ZT

Temperature (K)

Page 40: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

Best TE MaterialsBest TE Materials

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400

n-BiSb �

n-SiGe sintered

CsBi4Te

6

LaFe3CoSb

12

Bi2Te

3

PbTe

ZT

Temperature (K)

RT

Temperature (K)

ZT

Page 41: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

ConclusionsConclusions

• The strategy to search for new materials in the (A2Q)n(PbQ)m(Bi2Q3)p (Q=Se, Te) system is successful

• Many new promising compounds identified• All compounds strongly anisotropic• Doping studies are important in ZT optimization• ZT for β-K2Bi8Se13 ~0.7 at rt, higher at >400K

Page 42: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

ReferencesReferences• “The Role of Solid State Chemistry In The Discovery of New

Thermoelectric Materials” Mercouri G. Kanatzidis, Semiconductors and Semimetals, 2000, 69, 51-100.

• Slack,G. A. “New Materials and Performance Limits for Thermoelectric Cooling” in CRC Handbook of Thermoelectrics" Edited by Rowe, D. M. CRC Press, Boca Raton, 1995, pp. 407-440

• Tritt T. M. "Thermoelectrics run hot and cold", Science. 1996, 272, 5266, 1276-1277.

• Mahan, G. D. “Good thermoelectrics” Solid State Phys: 1998, 51, 81-157. (c) DiSalvo, F. J. "Thermoelectric cooling and power generation", Science. 1999, 285 5428, 703-706

• Thermoelectric Materials 1998- The Next Generation Materials for Small-Scale Refridgeration and Power Generation Applications, edited by Tritt, T. M.; Kanatzidis, M. G.; Mahan, G. D.; Lyon, Jr., H. B. Mat. Res. Soc.Symp. Proc. 1999, Vol. 545, 233-246.

Page 43: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

CollaboratorsCollaborators

Prof. Tim Hogan, Dept of Electrical Engineering, MSUProf. S. D. (Bhanu) Mahanti, Dept. of Physics, MSUProf. Carl R. Kannewurf, Dept of Electrical Engineering, Northwestern Univ.Ctirad Uher, Dept. of Physics, U of MArt Schultz, Argonne NL

Page 44: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

TE Research groupTE Research group

• Dr Duck young Chung• Dr Antje Mrotzek• Dr Kuei fang Hsu• Lykourgos Iordanidis• Kyoung-shin Choi• Jun-Ho Kim• Sandrine Sportouch• Rhonda Patschke

• Tim McCarthy• Dr. Jun-Huan Do

Page 45: Solid State Chemistry Meets Physcis: Thermoelectric Materialschemgroups.northwestern.edu/kanatzidis/old/TE_lecture... ·  · 2006-01-20Solid State Chemistry Meets Physcis: Thermoelectric

AcknowledgementsAcknowledgements• Dr. Antje Mrotzek• Lykourgos Iordanidis• J. A. Aitken• Jun-Ho Kim• Joseph Wachter• Marina Zhuravleva• Xuini Wu• Jim Salvador• Brad Sieve• R G Iyer• Dr. Theodora Kyratsi• Dr. J.-H. Do• Dr. Duck Young Chung• Dr. Servane Coste• Dr. Pantelis Trikalitis• Dr. Susan Latturner• Dr. Kuei-fang Hsu