Solar thermal (Cardiff) April 2012 · CIBSE – Solar Heating – Design and Installation Guide...

98
Aspects of solar thermal hot water hea0ng Professor Tim Dwyer [email protected] Teaching Fellow, UCL CIBSE South Wales – 2 April 2012 Presentation available for download at www.timdwyer.com/presentations/20120402cardiffsolar.pdf

Transcript of Solar thermal (Cardiff) April 2012 · CIBSE – Solar Heating – Design and Installation Guide...

  • Aspects  of  solar  thermal  hot  water  hea0ng  

    Professor  Tim  Dwyer  [email protected]  

    Teaching  Fellow,  UCL  

    CIBSE South Wales – 2 April 2012

    Presentation available for download at www.timdwyer.com/presentations/20120402cardiffsolar.pdf

  • 30  min  of  solar  radia0on  falling  on  earth  is  probably  equal  to  the  world  energy  demand  for  one  year  A  Researcher  

  • Why  more  UK  solar  thermal?  •  almost  no  emissions  

    – some  related  to  pumping/controls  •  life  of  20  to  30  years  •  independence  from  fuel  price  infla0on  •  total  cost  analysis  based  on  known  cost  •  low  maintenance  •  poten0al  for  government  subsidies  •  certainty  of  fuel  supply  •  environmental  cred!!  

  • Solar Trade Association, 2007

  • Monthly solar irradiance (kWh) on a flat plane facing South with a tilt angle of 45° Data BS EN 15316-4-3:2007

  • Solar  Data  for  Coryton  

    Average irradiation kWh/m²·day

    Source: http://re.jrc.ec.europa.eu/pvgis

    Annual H - 1022 kWh/m² N - 1172 kWh/m² V – 821 kWh/m²

    0  

    1  

    2  

    3  

    4  

    5  

    6  

    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  

    Horizontal  

    Normal  

    Ver0cal  

  • Source:CIBSE Solar Heating Design and Installation Guide

  • Viability  of  Solar  Thermal  Systems  Amount  of  annual  sunshine  Required  temperature  of  hot  water  

    Annual  energy  requirement  and  energy  use  profile  

    Capital  cost  of  the  solar  system  

    Prices  of  conven0onal  fuels  

     Fuel  price  infla0on  

    Solar  system  annual  O&M  cost  

    Other  (e.g.  legisla0on,  government  funding)  

  • Typical  Bands  of  Solar  Thermal  

    Low  Temperature  (100°C)  

     Industrial  process  hea0ng    Electricity  genera0on  

    Solar  thermal  and  PV  working  together  

  • Collec0ng  the  heat  

    •  Flat  plate  collectors  – Unglazed  – Glazed  

    •  Evacuated  tubes  – Direct  flow  – Heat  pipe  

  • Unglazed  Collector  •  Low-‐cost  unglazed  collectors  

    •  Summer  pools  in  cold  climates  

    •  Extend  the  season  in  warm  climates  

    •  For  summer  use  on  a  year-‐round  pool  in  cold  climates  

    •  Can  payback  in  few  years  

  • Flat  Plate  Glazed  Collector  

    Solar Thermal Systems, Peuser et al 2002

  • Integrated  

    Solar Thermal Systems, Peuser et al 2002

  • Retrofieed  

  • hep://www.solar-‐ra0ng.org/educa0on/criteria/collector/6_5_12.htm  

  • Framed  installa0ons  

  • But  what  area?  

    Solar Thermal Systems, Peuser et al 2002

  • Evacuated  tubes  

  • Sydney  Tube  

  • Direct  Flow  

    Solar Thermal Systems, Peuser et al 2002

  • Solar Thermal Systems, Peuser et al 2002

  • Solar Thermal Systems, Peuser et al 2002

  • Heat  Pipe  

    http://www.reuk.co.uk/Evacuated-Tube-Solar-Water-Heating.htm http://www.solarpanelsplus.com/thermal-how-it-works/

  • Heat  Pipe  Collector  

    http://www.solarpanelsplus.com/thermal-how-it-works/

  • What  area?  

  • Defining  and  cer0fying  performance  

  • ASHRAE  93  -‐  Methods  of  Tes0ng  to  Determine  Thermal  Performance  of  Solar  Collectors  

  • EN12975-‐2  Thermal  Solar  Systems  and  Components  

  • CIBSE KS15 Capturing Solar Energy 2009

    Conversion factor or Optical Efficiency

    Heat Loss = Useful Gain

  • ASHRAE 93

    EN12975-2

  • 1.74 m2 aperture 1.78 m2 absorber

  • Cer0fica0on  

    Source: Kingspan Thermomax Design Guide

  • 12975  Efficiency  Example  

    A  panel  shown  earlier  has  the  following  characteris0cs  supplied  by  the  test  Efficiency  at  Δt  of  0,  η0  =  0.814  

    Loss  Coefficient:  a1  =  4.954  W/(m2K)  Loss  Coefficient:  a2  =  0.0189  W/(m2K2)    Ambient  temperature  =  20°C  Average  water  temp  [(tin+  tout)/2]  =  70°C  

    Global  irradiance  of  800waes/m2  

  • Solu0on  to  Example  

    Using  η  =  η0  -‐  (a1  x  (tm  –  ta)/G)  -‐  a2  x  (tm  –  ta)2/G)  

  • Solu0on  to  Example  

    Using  η  =  η0  -‐  (a1  x  (tm  –  ta)/G)  -‐  a2  x  (tm  –  ta)2/G)  

    η  =  0.814  -‐  (4.954  x  (70  –  20)/800)  

                     -‐  0.0189  x  (70  –  20)2/800)  

  • Solu0on  to  Example  

    Using  η  =  η0  -‐  (a1  x  (tm  –  ta)/G)  -‐  a2  x  (tm  –  ta)2/G)  

    η  =  0.814  -‐  (4.954  x  (70  –  20)/800)  

                     -‐  0.0189  x  (70  –  20)2/800)  

    =  0.814  –  0.3096    –  0.0024  =  0.502  

    ie  at  these  condi0ons  η=  50%  

    50%  of  the  energy  provided  by  the  sun  is  actually  used  to  heat  the  water  

  • RETScreen  

  • RETScreen  

  • CIBSE KS15 Capturing Solar Energy 2009

  • Key  Types  •  Passive  Systems  (no  pumps)  

    –  Integral  Collector  Storage  – Thermosyphon  

    •  Ac0ve  Systems  (pumps  &  controls)  ….  •  Open  Loop:  

    – Direct  – Drain  Down  

    •  Closed  Loop:  – Drain  Back  – An0freeze  

  • Integrated  Collector  and  Storage  

  • Novel  ICS  System  

  • Parabolic  collector  water  heater  

  • Thermosyphon  System  

    Solar thermal collectors and applications Soteris A. Kalogirou

  • http://picasaweb.google.com/bertmenkveld/REDWHO2008SolarThermal#

  • http://www.p2pays.org/ref/20/19122/HeatCool.html

  • Thermosyphon  Unit  

    www.solarshacksa.com/html/hot_water.html

  • Direct  Circula0on  System  

    Solar  Hea0ng  Guide  –  CIBSE  2007  

  • Drainback  System  

    CORRECTED DIAGRAM BASED ON Solar thermal collectors and applications Soteris A. Kalogirou

    Other drainback (plus other system) illustrations http://greenterrafirma.com/solar_thermal.html http://www.atlassolarinnovations.com/solar-water-heating-choices/

  • EST CE131 - Solar water heating systems – guidance for professionals, conventional indirect models

  • Drain  Back  Advantages  

    •  Gravity  is  fail-‐proof  and  maintenance  free  •  Water,  (or  a  glycol  mixture)  may  be  used  in  the  collector  loop  

    •  System  is  not  damaged  if  the  pump  fails  •  System  cannot  reverse  thermosyphon  at  night  •  Collector  plates  last  up  to  longer  than  in  a  pressurized  glycol  system  

  • Drain  Back  Advantages  

    •  If  used  the  Water/Glycol  Mixture  is  unlikely  to  need  changing  

    •  Less  moving  components  to  fail  (eg.  check-‐valves,  air  vents  and  expansion  tanks)  

    •  Collector  piping  and  system  piping  does  not  scale  if  dis0lled  water  is  used.  

  • Drain  Back  Disadvantages  

    •  Collector(s)  and  all  piping  must  be  above  and  slope  downwards  towards  the  reservoir  

    •  Larger  piping  and  insula0on  must  be  used  •  Large  or  rela0vely  large  pumps  

    – especially  if  the  design  involves  2+  stories  •  System  and  pump  controls  cost  approx  10%  of  savings  

    •  Components  cost  about  10-‐15%  more  than  a  glycol  system  (on  residen0al  system)  

    •  Systems  can  be  noisy  -‐  like  a  coffee  percolator  

  • Indirect  Closed  Water  System  

    Solar  Hea0ng  Guide  –  CIBSE  2007  

    Simplified - No safety/expansion elements shown

  • A  common  closed  system  

    Source: Megaflo

  • Solar  Hea0ng  Guide  –  CIBSE  2007  

  • EST CE131 - Solar water heating systems – guidance for professionals, conventional indirect models

  • www.wagner-‐solar.com  

  • Solar  Hea0ng  Guide  –  CIBSE  2007  

  • Solar  Hea0ng  Guide  –  CIBSE  2007  

  • Likely  losses?  

    Source: EST 131, 2006

  • Effect  of  parasi0c  losses  (shown  in  terms  of  primary  energy)    

    Note: tests undertaken in 2001

    Source: DTI/Pub URN 01/1292

  • Well  performing  domes0c  system  

    Energy Savings Trust: Here comes the sun: a field trial of solar water heating systems

  • Aeributes  of  the  Heat  Transfer  Fluid  

    •  Should  not  deposit  ……  –  limescale  – sludge,  –  ice    – other  solids  

    ……that  could  restrict  circula0on  or  impair  the  rate  of  heat  transfer.    

  • Aeributes  of  the  Heat  Transfer  Fluid  

    Resist  freezing  

    Specially  where  the  liquids  are  maintained  in  loop  all  year  round  

    Usually  60/40  water/an0freeze  

     will  go  down  to  at  least  -‐20  at  SAP  Glycol  ‘creeps’  more  than  water  

    Use  non-‐toxic  propylene  glycol    Glycol  not  compa0ble  with  Zinc  or  certain  seals  

    Most  ‘an0  freezes’  will  have  higher  viscosity  and  small  SHC  

    pressure  drop  of  the  system  will  increase  

  • Aeributes  of  the  Heat  Transfer  Fluid  

    Maintain  integrity  at  high  temperatures  •  during  periods  of  stagnancy  collector  temperatures  can  reach  200°C  in  flat  plates  and  300°C  in  evacuated  tubes  

    •  azer  a  shutdown  other  parts  of  system  may  well  reach  over  160°C+  

    •  in  normal  opera0on  120°C  would  not  be  uncommon  

  • Glycol  Vaporisa0on  Temperatures  

    See Duffie & Beckman, 2nd Edition Appendix E for more detailed data

    Solar Thermal Systems, Peuser et al 2002

  • Aeributes  of  the  Heat  Transfer  Fluid  

    •  Beeer  to  run  at  lower  pressures  and  design  for  vaporisa0on  •  At  300kPa  vaporisa0on  at  140°C  •  Few  molecules  of  fluid  would  be  in  high  temperature  collector  

    as  a  vapour  –  par0cularly  where  long  periods  of  stagnancy  

    •  May  lead  to  par0cles  s0cking  to  flow  channels  –  use  strainers  to  remove  par0culates  

    •  Small  collector  volume  is  best  with  flow  and  return  connec0ons  at  top  –  vaporised  fluid  will  fill  collector  and  not  pass  large  amounts  of  vapour  

    into  remainder  of  system  •  at  150°C,  300kPa  only  5cm3  liquid  is  needed  to  fill  3  litre  collector)  

  • Aeributes  of  the  Heat  Transfer  Fluid  

    •  Important  to  help  prevent  heat  stress  by  unevaporated  fluids  entering  the  stagnant  collector  eg  for  low  lying  or  interconnected  units.  

    •  Normal  opera0ng  condi0ons  above  220°C  need  special  fluids    Unsuitable  fluids  chemically  crack  at  this  temperature  

    •  The  fluid  will  need  replacing  –  Ageing  will  affect  corrosion  resistance    and  freezing  point  

  • Stagna0on  Temperature  

    tstg  =  stagna0on  temperature  °C  tas  =  selected  ambient  temperature  °C  

    Gs  =  selected  solar  irradiance  W/m2  

    Gm  =  solar  irradiance  (from  test  data)  W/m2  

    tsm  =  absorber  temperature  °C  (from  test  data)  

    tam  =  ambient  air  temperature  °C  (from  test)  BS 12975 2001 Capturing Solar Energy 2009

    Assumes ratio (tsm-tm)/Gm approx constant

  • Source: Kingspan Thermomax Design Guide

    Antifreeze that has been at 170°C for extended periods

  • Exacerba0ng  stagna0on  

    Source : Stagnation behaviour of solar systems – IEA SHC Group 26, 2002

    Poor layout

  • Heat  dissipa0on  

    Source: Kingspan Thermomax Design Guide

  • And  don’t  forget  …..Legionella  control    

    Source : Lochinvar Solar Thermal Guide

  • But  how  to  choose  system?  

    •  Es0mate  Daily  Water  Hea0ng  Load  •  Determine  Solar  Resource  •  Calculate  Solar  System  Size  

    –  meet  load  on  sunniest  day  –  undersize  rather  than  oversize    

    •  Calculate  Annual  Energy  Savings  •  Calculate  Annual  Cost  Savings  •  Es0mate  System  Cost  •  Calculate  Payback  Period  

  • Where  to  posi0on?  

    Source: Kingspan Thermomax Design Guide

  • Seasonal  changes  

    Source: Kingspan Thermomax Design Guide

  • Avoid  shading  

    Source: Kingspan Thermomax Design Guide

  • F-‐Chart  

  • Polysun  4  

  • T  Sol  

  • RETScreen  

  • Matched  system  

    Source: Kingspan Thermomax Design Guide

  • Source: http://www.pobsolar.co.uk/

  • Bri0sh  Standards  

    BS  EN  12975-‐1  (2006)  

    Thermal  solar  systems  and  components  —  Solar  collectors  —  Part  1:  General  requirements  

    BS  EN  12975-‐2  2006  

    Thermal  solar  systems  and  components  —  Solar  collectors  —  Part  2:  Test  methods  

    BS  5918  (1989)  

    Solar  hea0ng  systems  for  domes0c  hot  water  

  • References  

    ASHRAE  (2008)  HVAC  Systems  and  Equipment  –  Chapter  36:  Solar  Energy  Equipment  

    ASHRAE  (2007)  Applica0ons  Handbook  –  Chapter  33:  Solar  Energy  Use  

  • Solar water heating systems – guidance for professionals, conventional indirect models Energy Savings Trust CE 131

    Energy Savings Trust - Here comes the sun

    CIBSE – Solar Heating – Design and Installation Guide

    CIBSE – KS15 Capturing solar

    energy

  • Solar Engineering of Thermal Processes, Duffie, & Beckman

    Solar Design: Components, Systems, Economics by Jan F. Kreider

    Solar Thermal Systems - Successful Planning and Construction Peuser, Remmers & Schnauss

    MCS - Microgeneration Installation Standard: MIS 3001

  • Thanks  for  providing  informa0on…  

    •  Lochinvar  •  Baxi  •  Kingspan  •  John  O’Brien  •  Viessmann  

     …..and  to  Ruskin  Air  Management  for  sponsoring  the  event  

    Prof  Tim  Dwyer,  [email protected]  

  • Where  next  …..solar  Cooling  

    Stoecker - Refrigeration and Air Conditioning