Soft-Switching in DC-DC Convertersaboutme.samexent.com/classes/spring09/ee5741/Soft... ·...

31
1 Soft-Switching in DC-DC Converters: Principles, Practical Topologies, Design Techniques, Latest Developments Raja Ayyanar Arizona State University Ned Mohan University of Minnesota Eric Persson International Rectifier © 2002, N. Mohan, R. Ayyanar, E. Persson APEC 2002 Some of the slides in this presentation are used for the course EE5741 Advanced Power Electronics given by Prof Robbins and Prof Mohan at the University of Minnesota

Transcript of Soft-Switching in DC-DC Convertersaboutme.samexent.com/classes/spring09/ee5741/Soft... ·...

1

Soft-Switching in DC-DC Converters: Principles, Practical Topologies,

Design Techniques, Latest Developments

Raja AyyanarArizona State University

Ned MohanUniversity of Minnesota

Eric PerssonInternational Rectifier

©

2002, N. Mohan, R. Ayyanar, E. Persson APEC 2002

Some of the slides in this presentation are used for the course EE5741 Advanced Power Electronics given by Prof Robbins and Prof Mohan at the University of Minnesota

2

Objectives

• What is soft-switching?• Basic principles• Concentration on a few

popular topologies• Design techniques• Computer simulations• New developments

4

What is Soft-Switching

• Switching transitions occur under favorable conditions – device voltage or current is zero

• Reduced switching losses, switch stress, possibly low EMI, easier thermal management

• A must for very high frequency operation, (also medium frequency at high power levels)

• Usually involves compromises in conduction loss, switch rating, passive components etc.

5

Relationship Between Efficiency and Power Density

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

0

50

100

150

200

250

300

350

400

450

500

Pow

er R

atin

g

20lossP W=

10lossP W=

Efficiency0 8. 0 84. 0 88. 0 92. 0 96.

100

200

300

400

500

0

1

out

out loss

out loss

PP P

P P

η

ηη

=+

∴ =−

6

Hard-SwitchingiLiL +

-

+

-Vd

vT

vdiodei IL o≈

iT +

-

+

-Vd

vT

vdiodei IL o≈

iT

+

−gatev

Tv

Ti

lossP

diodei

diodev

( ) ( )on offsw s c cP f t t⎡ ⎤⎣ ⎦∝ +

7

n+p

n−dsCgdC

drain-bodydepletion layer

gsCp n+

gatesource

drain

n+

Cross-sectional view of an n-channel MOSFET

MOSFET CharacteristicsOutput characteristics

Transfer characteristics

8

MOSFET Characteristics

inV

GGV

GRgdC

gsC

fDoI

( )D gsi f V=

MOSFET model valid inactive and cutoff regions

Variation of capacitances with dsV

9 Time

0s 0.5us 1.0us 1.5us 2.0us 2.5us 3.0us 3.5us 4.0usV(M1:d)/4 ID(M1)*2 V(R2:2) V(V3:+)

-10

0

10

200

V150V

80

D2I3

1A

R2

25.0

M1

IRF150

R31m

L2

40nH

Simulation of Hard Switching Converters

DSv

gateinput

DiGSv

Ideal diode

IRF150

10

Simulation of Hard Switching Converters

• Diode reverse recovery

Time

30.9500us 31.0000us 31.0500us 31.1000us30.9154us 31.1299us-I(R3) V(M1:1)/3 V(M1:2) I(I1)

0

20.0

38.5

Time

32.95us 33.00us 33.05us 33.10us 33.15us 33.20us 33.25us 33.30us33.34us-I(R3) V(M1:1)/3 V(M1:2) I(I1)

0

20.0

38.5

V1100

R2

10

M1

MTB

20N

20E

V4

TD = 1u

TF = 1nPW = 2uPER = {1/fs}

V1 = 0

TR = 1n

V2 = 15

PARAMETERS:

fs = 100kR_LOAD = 1

I15A

MU

R20

20R

D5

MTB20N20E

MUR2020R

Time

30.0us 30.4us 30.8us 31.2us 31.6us 32.0us 32.4us 32.8us 33.2us 33.6us 34.0us-I(R3) V(M1:1)/2 V(M1:2) I(I1)

0

20

40

-10

55

dsv

gsv

dsioI

dsv

oIgsvdsi

dsv

dsi oI

gsv

11

Problems of Hard-Switching

Possible Solutions (combination)• Snubbers to reduce di/dt and dv/dt

• Circuit layout to reduce stray inductances• Gate drive

• Soft switching to achieve ZVS and/or ZCS

usually no change in losses (unless loss recovery)

circuit layoutturn on / off speeds

• Switching losses • Device stress, thermal management• EMI due to high di/dt and dv/dt• Energy loss in stray L and C

12

Snubbers• Passive components (R, L, C) and a diode to shape

switching trajectories

Turn-on snubber (seldom used)

i t VL

tTd

s( )=

• low di/dt• lower turn-on losses in the device• low reverse recovery current

At turn-on

Price to be paid at turn-off• 1/2 LI2 energy dissipated during off interval• off interval > 2 to 3 times LS /RS time constant• switch voltage rating increases by RS IO

iT

Ls Rs

Io

+-

vT

t

Vd

vT

iTt0

0

iT

Ls Rs

Io

+-

vT

t

Vd

vT

iTt0

0

13

Turn-off Snubbers

At turn-off• while builds up

• switch turn-off loss decreases• lower dv/dt

i I iT o CS

i DC SS

= −( flows through )

Issues at turn-on• 1/2 CV2 energy dissipated in RS and switch• switch current rating increases by• ON interval > 2 to 3 times RS CS time constant

vT

Vd /R S

iT

Io

+

-vT CS

RS

Vd

DSiCS

iT

Io

+

-vT CS

RS

Vd

DSiCS

vT

iTIo

Vd0

CS1

CS2CS3

0C C CS S S3 2 1

> >

CS =0

vT

iTIo

Vd0

CS1

CS2CS3

0C C CS S S3 2 1

> >

CS =0

14

Soft-Switching

• ZVS (Zero Voltage Switching)• ZCS (Zero Current Switching)

Advantages - Lower losses (may be !) - Low EMI (may be !) - Allows high frequency operation

15

ZVS (Zero Voltage Switching)

Turn OFFTurn ON

• Switch voltage brought to zero before gate voltage is applied

• Ideal, zero-loss transition

• Low-loss transition• Parallel capacitor as a

loss-less snubber

• Preferred scheme for very high frequency applications using MOSFETs

16

ZCS (Zero Current Switching)

Best suited for converters with IGBTs due to tail current at turn-off

• Switch current brought to zero before gate voltage is removed

• Ideal, zero-loss transition

Turn OFF

Turn ON• Low-loss transition• Series inductor as a loss-less snubber• Energy in junction capacitance is lost

17

ZVS and Hard-Switched Waveforms

Zero-voltage switched Hard-switched

gate sourcev −

drain sourcev −

12V−

12V

gate sourcev −

drain sourcev −

0V 0V

12V−

18

An Example: Zero Voltage Transition (ZVT)

At t =0 is turned off, T +

( )( )

0 0

0-

C

dC

v

v V+ =

=

- dC Cv v V+ + =

dV

+

+

−oV

T+

T−

D+

D−

L

Li

C+

-C

Ci +

-Ci

A

Synchronous Buck Converter

Li

0

19

- dC CSince v v V+ + =

0-C C

s s

dv dvC C

dt dt++ =

0-C Ci i+∴ + =

0

-

C

dC

v

v V+∴ =

=0

dV

- LC CAlso, i - i i+ =

2-L

C C

ii -i+∴ = =

• At the end of this charge/discharge interval, positive iL is carried by

• Subsequently, is turned on; iL must reverse direction

D−

T−

dV

+

+

−oV

T+

T−

D+

D−

L

Li

sC+

-sC

Ci +

-Ci

A

Zero Voltage Transition (ZVT)

20

Zero Voltage Transition

dV

+

+

−oV

T+

T−

D+

D−

L

Li

sC+

-sC

Ci +

-Ci

A

ConductingDevices

0t 0’t 0

"t 1t 1’t 2t 3t

dVoV

Li

T+ T−D−

None NoneD+ T+

None

t

t

( )av t

0

0

( )Av t

21 Time

9us 10us 11us 12us 13us 14us 15us 16us 17usV(M2:d)/2 ID(M2)*2 V(M2:g) I(L1)*2 V(V8:+)

-20

-10

0

10

20

0

L1

20uHIC = 2A

V121V

C21000uFIC = 10V

M1

IRF150

M2

IRF150V8

TD = {TDLY2}

V7

TD = {TDLY1}

R7

25

R8

25

PARAMETERS:

PulseWidth = 4.5us

Period = 10us

TDLY1 = 5.5us

TDLY2 = 0.5us

R6

10.0

Simulation of a ZVT Buck Converter

DSv gateinput

Di

GSvLi

ZVT_buck.opj

22

Classification of Soft-Switching Schemes

• Load Resonant Converters• Converters with Resonant Switches (Quasi-

resonant, Multi-resonant)• Resonant Transition Converters

– ZVT and ZCT

47

Makes use of switch capacitances and transformer leakage inductance and magnetizing current

Phase Shift Controlled Full-Bridge Converter (ZVT)

TA+

TA− TB

TB+

Db+

Db−Da

Da+

+−dV oIA

Ba

b

• Poles A & B switched at nearly 50% duty-cycle• Output voltage regulation is achieved by phase

modulating the two pole outputs

48

TA+

TA− TB

TB+

Db+

Db−Da

Da++

−2dV

oIA

B

a

b+−2

dV

DA+

DA−

DB−

DB+

lTL

0ficticious Li

+

inV ABi +− ABv

Switching waveforms

In pole A

ABv =0A A

T to T− + ⇒dV+

ABv =0A A

T to T+ − ⇒d-V

In pole BAB dB B

T to T v V− + ⇒ = +

AB dB BT to T v -V+ − ⇒ =

00

ABv

Bv

Av

ABi

t

49

Transitions - Pole B

T to TB B− +

0AB dv V= +

L oi stays at I

0AB dv -V=•

• L oi stays at - I

TA+

TB−

TB+

Db−

Da+

+−

IoA

Ba

bdV

Li

ABv

ABi

- +B BT to T

+ -B BT to T

t

50

Transitions - Pole A

0ABA AT to T v+ − ⇒ =

d-V

• All four diodes conduct• Leakage inductance resonates with switch capacitance• Determination of Tdel critical for ZVS design• Load dependent ZVS

Db−

Da+

LiTB

+

+−

oI

AB

abdV

TA−

TA+

ABvABi

+ -A AT to T

t

51

Methods to increase ZVS range• Use of external series inductor

DisadvantagesLoss of volt-sec

higher turns-ratio

higher conduction loss increased

VA ratings

Load dependent ZVS

+

Vin

+

VoA B

iAB

Lo

Lseries

+

vrect

iAB

vAB

0

left-leg

vrect

52

Use of magnetizing current

Disadvantageshigher conduction loss due to

• peak circulating current• current through right-leg

MOSFETs• peak magnetizing current

independent of Vin

i iload mag+imag

A B

+

Vin

imagvAB

left leg−2

53

Design of other parameters like Lo, Co, transformer etcidentical to hard switched PWM

Factors Affecting ZVS

Capacitance across MOSFETs– internal and external

Leakage inductanceDelay timeMagnetizing current

ZVS Load Range

54

Designing for ZVS

( ) ( )2

eqds in mag _ pk refl

ds

Lv V I I sin t

Cω= − +

12 eq dsL C

ωπ

=

( )12

eqmag _ pk refl in,max

ds

L. I I V

C+ ≥

2 22delay eq ds. T L . Cπ

=

Conditions for ZVS

MOSFET voltage during critical turn-on transition

dsv

t2

2 Lk dsL Cπ

55

A Possible Design Approach Using MathCAD

• Sweep for all practical values of

• Calculate total losses. Iterate for different ZVS ranges

dsC - based on limiting voltage rise during turn-offdelayT - as a percentage of switching period

mag,pk lkCalculate required I and L for each set

Calculate switch peak current and RMS current

Turn-off loss Conduction loss

Designing for ZVS

56

Designing for ZVS

Total_loss

Total Losses(W)

deli T⇒dsj C⇒

ij