Smith the watershed approach

32
Identifying Nutrient Sources, Flowpaths, and Priority Practices Douglas R. Smith, USDA-ARS

description

69th SWCS International Annual Conference July 27-30, 2014 Lombard, IL

Transcript of Smith the watershed approach

Page 1: Smith   the watershed approach

Identifying Nutrient Sources, Flowpaths, and Priority Practices

Douglas R. Smith, USDA-ARS

Page 2: Smith   the watershed approach

Lake Erie and Harmful Algal Blooms

2011 Central Lake Erie Basin Microcystis-containing bloom

DRP (kg P/ha)

TP (kg P/ha)

Maumee 0.273 1.12Sandusky 0.311 1.41Honey Cr. 0.369 1.29Rock Cr. 0.250 1.38

Page 3: Smith   the watershed approach

Nutrient Budgets, Sources and Pathways

Page 4: Smith   the watershed approach

2010 Field and Watershed Mass Balance

Field 4 – 8.6 ac

Soybean

16.7 lb P/acFertilizer

32.6 lb P/ac Harvest

Field 1 – 5.4 ac

Corn

20.8 lb P/ac Harvest

Field 3 – 9.9 ac

Soybean16.7 lb P/acFertilizer

32.6 lb P/ac Harvest

78.4 lb P/ac Poultry Litter

Field 2 – 6.7 acCorn

78.4 lb P/ac Poultry Litter

20.8 lb P/ac Harvest

Ditch Site 1736 ac

Ditch Site 24,780 ac

Ditch Site 310,600 ac

Stream Site 447,600 ac 0.52 lb P/ac

Lake Erie

Maumee River4,064,000 ac

30.2 in. rain

1 lb P205 = 0.44 lb P

100 lb DAP/ac = 46 lb P205/ac = 20.1 lb P/ac

Page 5: Smith   the watershed approach

2011 Field and Watershed Mass Balance

Field 4 – 8.6 ac

Wheat

18.5 lb P/acFertilizer

17.6 lb P/ac Harvest

Field 1 – 5.4 ac

Soybean

16.8 lb P/ac Harvest

Field 3 – 9.9 ac

Wheat18.5 lb P/acFertilizer

17.6 lb P/ac Harvest

NoFertilizer

Field 2 – 6.7 acSoybean

NoFertilizer

17.1 lb P/ac Harvest

Ditch Site 1736 ac

Ditch Site 24,780 ac

Ditch Site 310,600 ac

Stream Site 447,600 ac 0.68 lb P/ac

Lake Erie

Maumee River4,064,000 ac

36.5 in. rain

1 lb P205 = 0.44 lb P

100 lb DAP/ac = 46 lb P205/ac = 20.1 lb P/ac

Page 6: Smith   the watershed approach

Legacy Phosphorus in Fields Crop roots utilize only a small proportion of the soil volume leading to poor nutrient capture

A large proportion of applied P is immobilized in soils by inorganic and organic processes

Critical soil test P levels vary widely from site to site leading to insurance‐based applications

Soil sampling/analysis is crude, has high uncertainties leading to potential misinterpretation

Contributions from organic P and subsoil P are largely ignored

Courtesy: Paul Withers

Page 7: Smith   the watershed approach

According to the Tri-state Fertility Guide, no P fertilizer application recommended beyond 50 ppm P

Page 8: Smith   the watershed approach

J F M A M J J A S O N D

Volu

met

ric D

epth

(mm

)

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0P re c ip > P E TP E T2 0 0 5 -2 0 1 0 P re c ip

• 25% of cropland in US and Canada could not be farmed without tile drainage (Skaggs et al., 1994):• soils with the greatest inherent production potential

• Tile Drainage (Fausey et al., 1987):• provides trafficable conditions for field operations• promotes root development by preventing exposure of plants to excess water

Drainage and Fertilizer Spreading Season

Page 9: Smith   the watershed approach

Hydrologic Year 2008-2011 Maumee River Soluble Phosphorus Loading

Day of Hydrologic Year (Day 1 = October 1)

0 100 200 300

Tota

l Pho

spho

rus

Load

(kg)

0

200000

400000

600000

800000

HY08 Soluble PHY09 Soluble PHY10 Soluble PHY11 Soluble P

84.6%

61.9%

44.3%

81.1%

Fertilizer Spreading “Season”

Page 10: Smith   the watershed approach

St. Joseph River Watershed

!\

!\

!\ !\

!\

!\

!\

!\

!\

!\

!\

!\ !\

!\!\!\!\!\!\

Matson D

itch

Swartz Ditch

W Smith D

itch

Cedar Creek

Dibbling Ditc

h

Leins Ditch

Hof

feld

er D

itch

Cedar Creek

Matson Ditch

AD

AS2AS1

F34

CME

CLG

BME

BLG

AME

ALG

MI

IN

OH

MI

INOH

MI

Ontario

Tile Drainage

Direct Drainage

Pot-Hole

! LowPoint

¯

0 50 100 150 200 250

Miles0 5 10 15 20 25

Miles

0 0.5 1 1.5 2 2.5Miles

Page 11: Smith   the watershed approach

Nutrient losses were higher from watersheds with more:‒ Direct Drainage‒ Pothole Drainage

Influence of Drainage Class on Nutrient Losses

Page 12: Smith   the watershed approach

2008.0 2009.0 2010.0 2011.0

Tota

l P in

Sur

face

Run

off (

kg P

/ha)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Field 1 Field 2 Field 3 Field 4 Maumee

Total P in Surface Runoff from Fields and Maumee River

Page 13: Smith   the watershed approach

2008 2009 2010 2011

Tota

l P in

Tile

(kg/

ha)

0.0

0.5

1.0

1.5

2.0

2.5

Field 1 Tile Field 2 Tile Field 3 Tile Field 4 Tile Maumee

Total P in Tile Flow from Fields and Maumee River

Page 14: Smith   the watershed approach

Soil Test Phosphorus 0-2" (mg/kg)0 100 200 300 400 500 600

DR

P co

ncen

trat

ion

(mg/

L)

0.0

0.5

1.0

1.5

2.0

DRP concentration rangesite median

Relationship between soil test phosphorus and dissolved phosphorus concentration in tile discharge (UBWC and Upper Wabash watersheds)

What’s Wrong with the Current System?

Courtesy: K. King

Page 15: Smith   the watershed approach

Surface and Tile Discharge – St. Joe

Precip = 0.73 inchSurface Q = 0.03 inchTile Q = 0.16 inch

Precip = 1.56 inchSurface Q = 1.27 inchTile Q = 0.22 inch

Page 16: Smith   the watershed approach

3/2 /12 6:00 3/2 /12 6:00 3/3 /12 6:00 3/3/12 6:00

flow

rate

(lps

)

0

10

20

30

40pr

ecip

itatio

n (m

m)

0

1

2

3

4

5

surface d ischargetile d ischargeprecip ita tion

0

2

4

6

8

10

12

14

16

prec

ipita

tion

(mm

)

0

2

4

6

8

10

12

14

surface runofftile dischargeprecipitation

5/8/12 5/9/12 5/10/12

Dis

char

ge (L

ps)

0

2

4

6

8

10

12

14

160

2

4

6

8

10

12

14

3 /2 /1 2 6 :0 0 3 /2 /1 2 6 :0 0 3 /3 /1 2 6 :0 0 3 /3 /1 2 6 :0 0

flow

rate

(lps

)

0

1 0

2 0

3 0

4 0

prec

ipita

tion

(mm

)

0

1

2

3

4

5

s u r fa c e d is c h a rg et ile d is c h a rg ep re c ip ita t io n

Two different tile: same soil, different responses

0.5 inch rainfall 1.25 inches rainfall

EOF Results – (OH – UW; K. King)

Page 17: Smith   the watershed approach

Watershed Results—2005‐2010 UBWC

Courtesy:  K. King

40% of annual total phosphorus load at EOF from tile discharge (Enright and Madramootoo, 2004)

25% of TP and 50% of soluble P leaving watershed originated in tile drainage (Culleyand Bolton, 1983)

Soluble P Total P2005 0.317 0.2342006 0.346 0.3002007 0.313 0.2642008 0.756 0.7592009 0.591 0.4852010 0.669 0.630

AVG 0.499 0.445

Fraction of annual watershed loading

originating from tile

Watershed Loss (kg)

0 20 40 60 80 100 120 140 160

Ti

le L

osse

s (k

g)

0

20

40

60

80

100

120

140

160

Total PSoluble P

y = 0.457x+0.219R2 = 0.86

y=0.342x+0.173R2=0.72

Page 18: Smith   the watershed approach

LEGACY PHOSPHORUS

Sediment source tracking indicated about

50% of sediment was from field sources and 50% from stream bank.

Roughly ½ of sediment (and by proxy P) is from stream bank or stream

bed

Page 19: Smith   the watershed approach

Conservation Practices

Page 20: Smith   the watershed approach

Ohio P Task Force International Joint Commission

Goals to reduce P loading to Lake Erie by ~40%

Expectations for Water Quality Improvement

Page 21: Smith   the watershed approach

Grassed waterwaysContour filter strips

Conservation cover

Practices for Managing Runoff & Water Quality

Sediment detention basins

Page 22: Smith   the watershed approach

Alternative Surface Drainage

Tile Riser Blind Inlet

Page 23: Smith   the watershed approach

Novel Practices: Re-Saturated Buffer

Page 24: Smith   the watershed approach

In-Channel Phosphorus Retention

Mark Tomer, ARSJoe Magner, Univ. Minn.

Entrained wetlands

Constructed wetlands

Two-stage ditch

Stream restoration/reconnection

Pete Kleinman, ARS

Page 25: Smith   the watershed approach

Decrease P loading to achieve WQ goalsNo single source of P No single pathway of PNo silver bulletWill require an “all of the above” approach to meet WQ goalsHow do we plan for landscape scale conservation???

Conclusions

Page 26: Smith   the watershed approach

?Thank You!

Page 27: Smith   the watershed approach

Total and Soluble Phosphorus Loading

Dave Baker and Pete Richards, Heidelberg University

“Peak” adoption of no‐till

Page 28: Smith   the watershed approach

P Loading to Lake Erie

Municipal Direct15%

Municipal Indirect5%

Industry PS Direct0%

Industry PS Indirect0%

Trib Monitored52%

Trib not Monitored18%

Atmospheric Deposition

6%

Lake Huron4%

P Loading to Lake Erie (1994-2008)

Average Total Phosphorus Loading to Lake Erie is 10,875 ton/year

Dolan and Chapra, 2012

Page 29: Smith   the watershed approach

SP Load by Management

No-Till Rotation Till Conv Till/8yr Rot

SP L

oad

(g h

a-1)

0

100

200

300

400

500

Page 30: Smith   the watershed approach

TP Load by Management

No-Till Rotation Till Conv Till/8yr Rot

TP L

oad

(g h

a-1)

0

200

400

600

800

1000

1200

1400

Page 31: Smith   the watershed approach

Informational Survey of Farmers and CCAs

Manage or advise > 35,000 ha

Asked about N, K and P deficiency

N and K deficiency common

P deficiency only when‒ Sidewall compaction‒Cool/wet post‐emerge‒Herbicide damage

Page 32: Smith   the watershed approach

Hydrologic Year 2008-2011 Maumee River Total Phosphorus Loading

Day of Hydrologic Year (Day 1 = October 1)

0 100 200 300

Tota

l Pho

spho

rus

Load

(kg)

0

1000000

2000000

3000000

4000000

HY08 Total PHY09 Total PHY10 Total PHY11 Total P

86.7%

49.5%

87.4%

45.8%

Fertilizer Spreading “Season”