Smart Light Stanford University EE380€¢ “Wavelength division multiplexing (WDM) is superior to...

of 42 /42
Terabit An Ultrafast Optical Digital Technology 2.28.07 Terabit Corporation Smart Light Stanford University EE380

Embed Size (px)

Transcript of Smart Light Stanford University EE380€¢ “Wavelength division multiplexing (WDM) is superior to...

  • Terabit

    An Ultrafast Optical Digital Technology

    2.28.07

    Terabit Corporation

    Smart Light

    Stanford University EE380

  • Terabit

    Overview Background What and How

    methodologyoptical state machines

    Whysmartspeedpowersizecost

    Historical PerspectiveSummary

    Overview

  • Terabit

    Overview Background What and How

    methodologyoptical state machines

    Whysmartspeedpowersizecost

    Historical PerspectiveSummary

    Background

  • Terabit

    Background - Starlite Packet Switch

    Pipelined State Machine Architecture (Batcher / Banyan)

    32 inputs each at 100 Mb/s (1982)

    evolved into AT&Ts First Broadband ATM Switch (1987)

    927

    92 7

    92 7

    927

  • Terabit

    Background - Free Space Optical Switching / Computing at Bell Labs

    4 Gates @ 10 KHz 216 sq. ft. (1984) 48 Gates @ 2 MHz 1 sq. ft. (1985)

    4x48 Gates @ 2 MHz 4 sq. ft. (1986) 6x1024 Gates @ 50 MHz (1987)

  • Terabit

    Technology - Beyond Electronics

  • Terabit

    Sagnac Logic Gate

    Input A

    Output Y

    Output X

    Input Bpolarization coupler

    fiber loop

    counter propagating pulse streams

    50/50 coupler

    3 db coupler

    Output C

    polarization coupler

  • Terabit

    Sagnac Logic Gate

    1.6 Tb/s digital oscillator (Bell Labs 1993)2.5 Gb/s digital loop (Bell Labs 1993)

    0-200 200

    relative delay (ps.)

    100

    % tr

    ansm

    issi

    on

    Jitter Tolerance (Bell Labs 1992)

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    0 0.5 1 1.5 2 2.5 3 3.5

    Intensity

    Non-linear Transfer Function (Bell Labs 1990)

  • Terabit

    Ultrafast All-Optical Time Division Multiplexing

  • Terabit

    Overview Background What and How

    methodologyoptical state machines

    Whysmartspeedpowersizecost

    Historical PerspectiveSummary

    What and How?

  • Terabit

    Methodology - Device

    Application

    State Machine

    Device

    Introduction to VLSI Systems by Mead and Conway

  • Terabit

    Device Sagnac Logic Gate

    Input A

    Output Y

    Output X

    Input Bpolarization coupler

    fiber loop

    counter propagating pulse streams

    50/50 coupler

    3 db coupler

    Output C

    polarization coupler

  • Terabit

    Methodology State Machines

    Application

    State Machine

    Device

  • Terabit

    Optical State Machine

    electronic optical

  • Terabit

    Pipelined WDM Optical State Machine

  • Terabit

    Pipelined WDM Relay-Logic Optical State Machine

  • Terabit

    Plumbing Simulations

  • Terabit

    Logic Simulations

  • Terabit

    Logic, plumbing, and juggling

    PSPICE model

  • Terabit

    power supply

    D

    D

    X

    Y

    A

    B

    Time

    0s 5ns 10ns 15ns 20ns 25ns 30ns 35ns 40ns 45ns 50nsV(Sagnac1:out_pwr)

    -100mV

    0V

    100mV

    200mV

    300mV

    400mV

    500mV

    600mV

    Time

    0s 20ns 40ns 60ns 80ns 100ns 120ns 140ns 160nsV(Sagnac1:out_pwr) V(ABM12:OUT)

    -100mV

    0V

    100mV

    200mV

    300mV

    400mV

    500mV

    Example: Analog Simulation of Optical Memory Loop

  • Terabit

    Example: Analog Simulation of Sagnac Divide by 4 Circuit

  • Terabit

    Minard Napoleons Moscow Campaign(The Visual Display of Quantitative Information, Tufte)

    How? Power vs. Time design methodology

    Power vs. Time diagram for an interlaced optical state machine

    optic

    al p

    ower

    Lcirculator Lsplitter Lcoupler Lfiber_loop Lcoupler Lsplitter

    input(0 1 2 3)(8 9 10)

    noiseASEdependent loss

    Ldelay

    Pclock_laser

    Dcirculator Dsplitter Dcoupler Dfiber_loop Dcoupler Dsplitter

    jitter tolerance

    inputlclock

    input(0 1 2 3)(8 9 10)noiseASE

    outputvariable

    S

    DOR_module DLCAD_moduleDclock_module

    Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0

    outputvariable

    C

    optic

    al p

    ower

    input Adependent

    lossLfiber_loopLcirculator Lsplitter Lcoupler

    Lmux

    Lcoupler Lsplitter Lcirculator

    Ldemux

    Lisolator

    Lfiber_loopLcirculator Lsplitter Lcoupler

    Lmuxinput B

    dependentlossLcoupler Lsplitter Lcirculator

    Ldemux

    Lfiber_loopLcirculator Lsplitter Lcoupler

    Lmux

    feedbackvariable Cdependent

    lossLcoupler Lsplitter Lcirculator

    Dfiber_loopDcoupler Dcoupler Dsplitter Dcirculatoror

    Ddelay

    DdemuxDfiber_loopDmux Dcirculator Dsplitter Dcoupler Dcoupler Dsplitter Dcirculatoror

    Ddelay

    DdemuxDisolator Dmux Dcirculator Dsplitter Dmux Dcirculator DsplitterDfiber_loopDcoupler Dcoupler Dsplitter Dcirculatoror

    Ddelay

    Ddemux

    jitter tolerance jitter tolerance jitter tolerance

    DAND_moduleDAND_moduleDsource_module DAND_module

    input01238910

    inputvariable

    A

    inputvariable

    B

    inputvariable

    C

    Psource_laser

    DOR_module

    GOR_amp

    DOR_amp

    output(0 1 2 3)(8 9 10)noiseASE

    LdemuxLmux

    Dmux

    noiseASE

    Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0 Ddelay_D0

    Hetch Hetchy Hydraulical Map

  • Terabit

    Methodology Applications

    Application

    State Machine

    Device

  • Terabit

    How? matching the speed of electronics to optics interlacing

  • Terabit

    How? Optical Buffer algorithm

    S0

    M

    P

    S1

    HD FIFOElement

    S0

    M

    P

    S1

    HD FIFOElement

    S0

    M

    P

    S1

    HD FIFOElement

    ...

    B C

    DA

    input output

  • Terabit

    Logic Simulations

  • Terabit

    T

    framesync

    shutterSagnac

    wavelengthconverterSagnac

    wavelength todelay converter

    t0 data out01

    n

    ...

    t1

    tn

    0

    1

    n

    t0t1tn

    T T T01n

    t0t1tn

    0

    1

    n

    t0

    t1

    tn

    Multiplexer and Demultiplexer

    Multiplexer

    Demultiplexer

    fra m es yn c

    w a v e le n g thc o n v e r te r

    S a g n a c

    d e la y tow a v e le n g th

    c o n v e r te r

    0

    1

    n

    ...d a ta in

    sh u t te rS a g n a c

    t0t1tn

    0

    t0t1tn

    1

    t 0t1tn

    n

    t0

    t1

    tn 0

    1

    n

    ...

    0

    1

    n

    t0t1tn

    T T T

    t0t1tn

    0

    t 0t1tn

    1

    t0t1tn

    n

    t n

    0

    t1

    1

    t0

    n

  • Terabit

    Overview Background What and How

    methodologyoptical state machines

    Whysmartspeedpowersizecost

    Historical PerspectiveSummary

    Why?

  • Terabit

    Why? Smart

    State Machines = Logic + Delay = Logic + Memory

  • Terabit

    Why? Speed Greater than 1 Tb/s

    electronics 50 Gb/s

    optics 1,250 Gb/s

    optics = 25 x electronics

    1.28 Tbit/s-70km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator, M. Nakazawa, T. Yamamoto, and K.R. Tamura, Electronics Letters, vol. 36, no. 24, pp. 2027, Nov. 23, 2000.

  • Terabit

    Why? Power, Size, and Cost are independent of the data rate

    1 secen

    ergy

    1 sec

    ener

    gy

    10 Gb/s

    100 Gb/s

    400 Gb/s

    The power consumption of the Sagnac gates, passive components, and optical amplifiers are independent of the data rate.

    The size of the Sagnac gates, passive components, and optical amplifiers are independent of the data rate.

    The cost of the Sagnac gates, passive components, and optical amplifiers are independent of the data rate.

    Power consumption of a Sagnac gate

  • Terabit

    Why? Electronics vs. Optics

    pow

    er

    bits / sec

    bits / sec

    size

    bits / sec

    cost

    size

    bits / sec

    optics

    electronics

    cost

    bits / sec

    optics

    electronics

    pow

    er

    bits / sec

    optics

    electronics

    optics vs. electronics optics

  • Terabit

    data rate

    pow

    er

    data rate

    pow

    er

    data rate

    pow

    er

    Optical crossbar with electronic control (10% optical & 90% electronic) (1999)

    Add / Drop Packet Ring (30% optical & 70% electronic) (2001)

    Optical state machines(100% optical) (2005)

    How? Power as a function of data rate and percent of electronics

  • Terabit

    Overview Background What and How

    methodologyoptical state machines

    Whysmartspeedpowersizecost

    Historical PerspectiveSummary

    Historical Perspective

  • Terabit

    Historical Perspective Enabling Experiments

    1.6 Tb/s digital oscillator (Bell Labs 1993)2.5 Gb/s digital loop (Bell Labs 1993)

    0-200 200

    relative delay (ps.)

    100

    % tr

    ansm

    issi

    on

    Jitter Tolerance (Bell Labs 1992)

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    0 0.5 1 1.5 2 2.5 3 3.5

    Intensity

    Non-linear Transfer Function (Bell Labs 1990)

  • Terabit

    Historical Perspective Methodology and Tools

    logic

    plumbing & timing

    methodology

    Application

    State Machine

    Device

    plumbing

    tools

  • Terabit

    Historical Perspective Optical Time Domain Multiplexing

    Bell Labs 1990 not 2.5 Gb/s

    British Telcom 1995 not wireless

    NTT 2000 not WDM

  • Terabit

    physics EE CS

    optical state machines

    Historical Perspective Technological Evolution

  • Terabit

    Historical Perspective Paradigm Shifts

    control electronic > optical

    multiplexing wavelength division > time division

    switching circuit > packet

    granularity circuit > bit

    representation analog > digital

    data rate / bandwidth electronic > optical

  • Terabit

    Historical Perspective 20 / 20 Hindsight

    Electrons (fermions) are for control while photons (bosons) are forcommunications (incorrect inference)

    There is no such thing as optical memory (closed minded)

    Wavelength division multiplexing (WDM) is superior to time division multiplexing (TDM) (lack of perspective)

    Optics is analog while electronics is digital (ignorance)

    In an optical switch the same photon must come out the other end (ignorance)

    There is no need to go faster than electronics since all the inputs areelectronic (lack of imagination)

  • Terabit

    Overview Background What and How

    methodologyoptical state machines

    Whysmartspeedpowersizecost

    Historical PerspectiveSummary

    Summary

  • Terabit

    Summary Technological Advantages

    Smart logic and memory

    Speed > 1.0 Tb/s

    Power is independent of the Clock Rate

    Size is independent of the Clock Rate

    Cost is independent of the Clock Rate