Small Seed Black Hole Growth in Various Accretion Regimes · Small Seed Black Hole Growth in...

49
Small Seed Black Hole Growth in Various Accretion Regimes Hannalore J. Gerling-Dunsmore Philip F. Hopkins TAPIR, Caltech Hannalore Gerling-Dunsmore, Caltech

Transcript of Small Seed Black Hole Growth in Various Accretion Regimes · Small Seed Black Hole Growth in...

Small Seed Black Hole Growth in Various Accretion Regimes"Hannalore J. Gerling-Dunsmore Philip F. Hopkins TAPIR, Caltech

Hannalore Gerling-Dunsmore, Caltech"

Background"! The SMBH formation problem"

Hannalore Gerling-Dunsmore, Caltech" 1"

Background ! The SMBH formation problem"! BHs of mass 106 – 1010 M""

Hannalore Gerling-Dunsmore, Caltech" 1"

Background ! The SMBH formation problem"! BHs of mass 106 – 1010 M""

! Observations indicate SMBH form in < 1 Gyr"

Hannalore Gerling-Dunsmore, Caltech" 1"

Background ! The SMBH formation problem"! BHs of mass 106 – 1010 M""

! Observations indicate SMBH form in < 1 Gyr"! SMBH at z=7

Hannalore Gerling-Dunsmore, Caltech" 1"

Background"! The SMBH formation problem"! BHs of mass 106 – 1010 M""

! Observations indicate SMBH form in < 1 Gyr"! BH dominates gravitational potential once ~104 M""

Hannalore Gerling-Dunsmore, Caltech" 1"

Background"! The SMBH formation problem"! BHs of mass 106 – 1010 M""

! Observations indicate SMBH form in < 1 Gyr"! BH dominates gravitational potential once ~104 M""

! Proposed Mechanisms of SMBH Formation"

Hannalore Gerling-Dunsmore, Caltech" 1"

Background"! The SMBH formation problem"! BHs of mass 106 – 1010 M""

! Observations indicate SMBH form in < 1 Gyr"! BH dominates gravitational potential once ~104 M""

! Proposed Mechanisms of SMBH Formation"! Direct collapse"

Hannalore Gerling-Dunsmore, Caltech" 1"

Background"! The SMBH formation problem"! BHs of mass 106 – 1010 M""

! Observations indicate SMBH form in < 1 Gyr"! BH dominates gravitational potential once ~104 M""

! Proposed Mechanisms of SMBH Formation"! Direct collapse"! Runaway merging "

Hannalore Gerling-Dunsmore, Caltech" 1"

Background"! The SMBH formation problem ! BHs of mass 106 – 1010 M"

! Observations indicate SMBH form in < 1 Gyr ! BH dominates gravitational potential once ~104 M""

! Proposed Mechanisms of SMBH Formation ! Direct collapse ! Runaway merging"! Accretion onto small seed BHs "

Hannalore Gerling-Dunsmore, Caltech" 1"

Latif & Ferrara, 2016

Accretion onto Small Seed BHs"! Rapid accretion onto 100 M"BHs"

Hannalore Gerling-Dunsmore, Caltech" 2

Accretion onto Small Seed BHs"! Rapid accretion onto 100 M"BHs"! Eddington limited"

Hannalore Gerling-Dunsmore, Caltech" 2

Accretion onto Small Seed BHs"! Rapid accretion onto 100 M"BHs"! Eddington limited"! Fails to grow BH rapidly"

Hannalore Gerling-Dunsmore, Caltech" 2

Accretion onto Small Seed BHs"! Rapid accretion onto 100 M"BHs"! Eddington limited"! Fails to grow BH rapidly"

! Super-Eddington "

Hannalore Gerling-Dunsmore, Caltech" 2

Accretion onto Small Seed BHs"! Rapid accretion onto 100 M"BHs"! Eddington limited"! Fails to grow BH rapidly"

! Super-Eddington "

Hannalore Gerling-Dunsmore, Caltech"

Begelman 1979"

2

M

L

Variable rad. efficiency (Slim disk)

Constant rad. efficiency

Accretion onto Small Seed BHs"! Rapid accretion onto 100 M"BHs"! Eddington limited"! Fails to grow BH rapidly"

! Super-Eddington "! Compton heating shuts down growth"

Hannalore Gerling-Dunsmore, Caltech" 2

Accretion onto Small Seed BHs"! Rapid accretion onto 100 M"BHs"! Eddington limited"! Fails to grow BH rapidly"

! Super-Eddington "! Compton heating shuts down growth"

Hannalore Gerling-Dunsmore, Caltech"

BH γCompton

2

Accreting matter

Accretion onto Small Seed BHs"! Rapid accretion onto 100 M"BHs"! Eddington limited"! Fails to grow BH rapidly"

! Super-Eddington "! Compton heating shuts down growth"

! Hyper-Eddington"

Hannalore Gerling-Dunsmore, Caltech"

BH γCompton

2

Accreting matter

Accretion onto Small Seed BHs"! Rapid accretion onto 100 M"BHs"! Eddington limited"! Fails to grow BH rapidly"

! Super-Eddington "! Compton heating shuts down growth"

! Hyper-Eddington"! 100 – 1000x Eddington limit"

Hannalore Gerling-Dunsmore, Caltech"

BH γCompton

2

Accreting matter

Accretion onto Small Seed BHs"! Rapid accretion onto 100 M"BHs"! Eddington limited"! Fails to grow BH rapidly"

! Super-Eddington "! Compton heating shuts down growth"

! Hyper-Eddington"! 100 – 1000x Eddington limit"! Ram pressure smothers Compton heating"

Hannalore Gerling-Dunsmore, Caltech"

BH γCompton

Accreting matter

2

Accretion onto Small Seed BHs"! Rapid accretion onto 100 M"BHs"! Eddington limited"! Fails to grow BH rapidly"

! Super-Eddington "! Compton heating shuts down growth"

! Hyper-Eddington"! 100 – 1000x Eddington limit"! Ram pressure smothers Compton heating""

Hannalore Gerling-Dunsmore, Caltech"

BH γCompton

Accreting matter

2

Volonteri+ 2014 Sadowski+ 2015"Inayoshi+ 2016"

Our Study"! Goal"

Hannalore Gerling-Dunsmore, Caltech" 3

Our Study"! Goal"

! Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH"

Hannalore Gerling-Dunsmore, Caltech" 3

Our Study"! Goal"

! Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH"

! Using GIZMO (Hopkins 2012)"

Hannalore Gerling-Dunsmore, Caltech" 3

Our Study"! Goal"

! Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH"

! Using GIZMO (Hopkins 2012)"! 3D, MHD+gravity "

Hannalore Gerling-Dunsmore, Caltech" 3

Our Study"! Goal"

! Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH"

! Using GIZMO (Hopkins 2012)"! 3D, MHD+gravity "! Accretion treatment"

Hannalore Gerling-Dunsmore, Caltech" 3

BH Particle

Our Study"! Goal"

! Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH"

! Using GIZMO (Hopkins 2012)"! 3D, MHD+gravity "! Accretion treatment"

Hannalore Gerling-Dunsmore, Caltech" 3

BH Particle

Gravitational capture radius

Our Study"! Goal"

! Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH"

! Using GIZMO (Hopkins 2012)"! 3D, MHD+gravity "! Accretion treatment""

Hannalore Gerling-Dunsmore, Caltech" 3

BH Particle

Gravitational capture radius

Unbound particle

Our Study"! Goal"

! Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH"

! Using GIZMO (Hopkins 2012)"! 3D, MHD+gravity "! Accretion treatment"

Hannalore Gerling-Dunsmore, Caltech" 3

BH Particle

Gravitational capture radius

Potentially bound particle Unbound

particle

Our Study"! Goal"

! Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH"

! Using GIZMO (Hopkins 2012)"! 3D, MHD+gravity "! Accretion treatment"!  Particles within capture radius

tested to see if bound "

Hannalore Gerling-Dunsmore, Caltech" 3

BH Particle

Gravitational capture radius

Unbound particle

Potentially bound particle

Our Study"! Goal"

! Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH"

! Using GIZMO (Hopkins 2012)"! 3D, MHD+gravity "! Accretion treatment"!  Particles within capture radius

tested to see if bound"!  Bound particles added

to reservoir"

Hannalore Gerling-Dunsmore, Caltech" 3

BH Particle

Gravitational capture radius

Unbound particle

Potentially bound particle

Our Study"! Goal"

! Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH"

! Using GIZMO (Hopkins 2012)"! 3D, MHD+gravity "! Accretion treatment"!  Particles within capture radius

tested to see if bound"!  Bound particles added

to reservoir"!  Transfer from reservoir

to BH via slim disk "

Hannalore Gerling-Dunsmore, Caltech" 3

BH Particle

Gravitational capture radius

Unbound particle

Potentially bound particle

Our Study"! Goal"

! Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH"

! Using GIZMO (Hopkins 2012)"! 3D, MHD+gravity "! Accretion treatment"!  Particles within capture radius

tested to see if bound"!  Bound particles added

to reservoir"!  Transfer from reservoir

to BH via slim disk "! Set up"

Hannalore Gerling-Dunsmore, Caltech" 3

BH Particle

Gravitational capture radius

Unbound particle

Potentially bound particle

Our Study"! Goal"

! Determine environment in which a small seed BH can grow via Hyper-Eddington accretion to SMBH"

! Using GIZMO (Hopkins 2012)"! 3D, MHD+gravity "! Accretion treatment"!  Particles within capture radius

tested to see if bound"!  Bound particles added

to reservoir"!  Transfer from reservoir

to BH via slim disk "! Set up"

!  100 M"BH in 10 pc – 1 kpc box;vary initial density"

Hannalore Gerling-Dunsmore, Caltech" 3

BH Particle

Gravitational capture radius

Unbound particle

Potentially bound particle

Advances with this study"

Hannalore Gerling-Dunsmore, Caltech" 4

!  Intermediate scale

Advances with this study"

Hannalore Gerling-Dunsmore, Caltech" 4

!  Intermediate scale !  Stellar feedback # inhomogeneous, turbulent environment "

Advances with this study"

Pillars of Creation"

Hannalore Gerling-Dunsmore, Caltech"

Credit: Jeff Hester and Paul Scowen

(Arizona State University), and

NASA/ESA" 4

!  Intermediate scale !  Stellar feedback # inhomogeneous, turbulent environment "

Structure Formation due to Stellar Feedback"

Hannalore Gerling-Dunsmore, Caltech"

Star Formation"

10 pc GIZMO simulation"

4

BH BH

Gas

Gas Structure Formation

BH

Stars

BH

Gas

Results: BH + Disk growth "

Hannalore Gerling-Dunsmore, Caltech" 5

•  Parameters: 10 pc box with 104 atoms/cm3 density"•  Mass res. : 0.8 M", Spatial res. : 0.1 pc

Simulated BH + Disk growth v. Eddington Limited growth"

Hannalore Gerling-Dunsmore, Caltech" 5

rate: 2.2$10-6 M" per yr"

avg. rate: 3.8$10-5 M" per yr max. rate: 9.0$10-5 M" per yr"

avg. rate: 7.3$10-5 M" per yr max. rate: 2.8$10-4 M" per yr"

avg. rate: 4.8$10-5 M" per yr max. rate: 1.4$10-4 M" per yr"

Discussion ! Intermediate scale Hyper-Eddington accretion

Hannalore Gerling-Dunsmore, Caltech" 7

Discussion ! Intermediate scale Hyper-Eddington accretion ! Growth occurs for both Z = 10-3 Z" and Z = Z"

Hannalore Gerling-Dunsmore, Caltech" 7

Discussion ! Intermediate scale Hyper-Eddington accretion ! Growth occurs for both Z = 10-3 Z" and Z = Z"

! Hyper-Eddington accretion in presence of stellar feedback

Hannalore Gerling-Dunsmore, Caltech" 7

Discussion ! Intermediate scale Hyper-Eddington accretion ! Growth occurs for both Z = 10-3 Z" and Z = Z"

! Hyper-Eddington accretion in presence of stellar feedback ! Turbulence and inhomogeneity do not prevent rapid

growth

Hannalore Gerling-Dunsmore, Caltech" 7

Discussion ! Intermediate scale Hyper-Eddington accretion ! Growth occurs for both Z = 10-3 Z" and Z = Z"

! Hyper-Eddington accretion in presence of stellar feedback ! Turbulence and inhomogeneity do not prevent rapid

growth ! Realistic environment

Hannalore Gerling-Dunsmore, Caltech" 7

Discussion ! Intermediate scale Hyper-Eddington accretion ! Growth occurs for both Z = 10-3 Z" and Z = Z"

! Hyper-Eddington accretion in presence of stellar feedback ! Turbulence and inhomogeneity do not prevent rapid

growth ! Realistic environment

! 104 atoms per cm3 less than central density of ARP220

Hannalore Gerling-Dunsmore, Caltech" 7

Discussion"ARP220"

Hannalore Gerling-Dunsmore, Caltech"

Credit:NASA, ESA, and C. Wilson (McMaster University, Hamilton, Ontario, Canada) 7

Discussion ! Intermediate scale Hyper-Eddington accretion ! Growth occurs for both Z = 10-3 Z" and Z = Z"

! Hyper-Eddington accretion in presence of stellar feedback ! Turbulence and inhomogeneity do not prevent rapid

growth ! Realistic environment

! 104 atoms per cm3 comparable to central density of ARP220

! Only require SMBH formation once per Hubble time per galaxy

Hannalore Gerling-Dunsmore, Caltech" 7

Summary ! Study

!  100 M" seed"!  Intermediate scales (10pc – 1 kpc) !  Including stellar feedback

! Results !  Initial gas density: 104 atoms per cm3

!  10 pc box ! Growth to 104 M" in <107 years with BH feedback, at both

Z = 10-3 Z" and Z = Z" ! Further Work

!  Limit interesting parameter space ! Higher resolution simulations ! Observable phenomenology %

Hannalore Gerling-Dunsmore, Caltech" 8