Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie...

33
Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska** *DTU Electrical Engineering, Electromagnetic Systems Group, Technical University of Denmark DK-2800 Kgs. Lyngby Denmark **III-V Lab, F-91461 Marcoussis France

Transcript of Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie...

Page 1: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s

‘Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

*DTU Electrical Engineering, Electromagnetic Systems Group, Technical University of DenmarkDK-2800 Kgs. LyngbyDenmark

**III-V Lab,F-91461 MarcoussisFrance

Page 2: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

2

Outline

• The ”InP/InGaAs DHBT” device

• Specific modeling issues for III-V HBT devices:

-The integral charge control relation (ICCR) for HBT modelling

-Charge and transit-time modelling in III-V HBT devices

-Temperature effects and self-heating

• Small-signal modellng: Direct parameter extraction

• Scalable large-signal model verification

• Summary

Page 3: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

• The introduction of an wide-gap emitter and collector to form a

Double Heterojunction Bipolar Transistor (DHBT) offers several

advantages over Homojunction Bipolar Transistors:

- Higher fT and fmax characteristic

- increased breakdown voltage

- better performance under saturation operation

The ”InP/InGaAs DHBT” Device

100 500 1000

1

2

3

4

5

6

BV ce

o(V

)

fT (GHz)

HBT SiGe IBMHBT SiGe IBM CryoHBT InP UIUCHBT InP EHTZHBT InP UCSBHBT InP ALTHHEMT

100 500 1000

1

2

3

4

5

6

100 500 1000

1

2

3

4

5

6

BV ce

o(V

)

fT (GHz)

HBT SiGe IBMHBT SiGe IBM CryoHBT InP UIUCHBT InP EHTZHBT InP UCSBHBT InP ALTHHEMT

Indicated in red are the 1.5µm and

0.7µm InP/InGaAs DHBT technologies

developed at the III-V Lab.

Page 4: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

The ”InP/InGaAs DHBT” Device

• InP/InGaAs DHBT allows simultaneously high output power and

high frequency:

- mm-Wave power amplifiers

- VCOs for PLLs

- Electronic laser drivers and transimpedance amplifiers for

ultra-high bit rate optoelectronics (>100Gbit/s operation)

III-V Lab’s 0.7µm InP/InGaAs DHBT:

Emitter

Base plug

Collector

Page 5: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

InP DHBT Frequency Performance

Geometrical parameters:

• An InP DHBT large-signal model must

predict the frequency characteristic

dependence on bias and on geometry

Frequency characteristic:

Device Lein [um] Ae [um2] Ac [um2]

T5B3H7 5.0 2.7 8.6

T7B3H7 7.0 3.9 10.9

T10B3H7 10.0 5.7 14.3

Page 6: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

HBT large-signal model topology

Circuit diagram of HBT model: Agilent ADS SDD implementation:

• The large-signal topology is nearly identical for the various HBT models

(UCSD HBT model, Agilent HBT model, FBH HBT model)

Page 7: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

The integral charge control relation

DC model of bipolar transistor:

TVbcV

eTVbeV

ep

eATqVccI

cX

eXdx

2inn

)x(pp

The transport current in a npn transistor

depends directly on the hole charge!

Hole

concentraction

1D BJT cross-section:

Base Current

Forward

Operation

Net Transport

Current

Base Current

Reverse

Operation

Page 8: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

The Gummel-Poon model for BJTs

Gummel-Poon model formulation: Normalized base charge:

TVbcV

eTVbeV

ebqsI

ccI

current saturation :sI

charge hole base normalized :bq

RQFQ)bcV(CjQ)beV(EjQBOQBQ

2q4

21q

21q

bqbq2q

1qBOQBQ

bq

effectEarly theModels

FVBCV

RVBEV

1CjqEjq11q

effect Webster theModels

1TVBCV

eKRI

sI1TVBEV

eKFIsI1TV

BCV

eBOQsI

R1TVBEV

eBOQsI

F2q

Page 9: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

Extended GP model for HBTs

Energy band diagram for abrupt DHBT: HBT modeling approach:

TVBNbcV

eSBIsITVAN

beV

eSAIsI

2q4

21q

21q

bq

• In an abrupt DHBT additional transport mechanisms such as

thermionic emission over the barrier and tunneling through it

tend to drag the ideality factor away from unity (NF>1).

• The collector blocking leads to earlier saturation at high collector

voltages (the so-called ”soft knee” effect)

TVRNbcV

eTVFNbeV

ebqsI

ccI≈1 in HBTs

Page 10: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

Forward Gummel-plot for InP DHBT device

Nf=1.14

•Base current in UCSD HBT model:

idealNon

1TVENBEV

eSEI

Ideal

1TVFNBEV

eFbq

sIBEI

Page 11: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

•Nf=1.14

idealNon

1TVENBEV

eSEI

Ideal

1TVHNBEV

eSHIBEI

Forward Gummel-plot for InP DHBT device

•Base current in Agilent HBT model:

Page 12: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

Charge modeling in III-V HBT

• In any transistor a change in bias requires charge movement which

takes time:

- built up depletion layers in the device

- redistribution of minority carriers

AC model of bipolar transistor: Total emitter-collector delay:

model signal-small

in the itancesTranscapac)bcV,beV(diffQ

cbm

bcje

Vcc

bc

Vcc

beec g

CC

dI

dQ

dI

dQ

cece

charge diffusion

diffQexF

chargedepletion

jeQbeQ

charge diffusion

diffQ)exF1(

chargedepletion

jcQbcQ

• Diffusion charge partitionen with Fex

Page 13: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

exitvBW

nD2

2BW

b

cv2cW

c

Transit time formulation

Analytical transit-times: Velocity-field diagram for InP:

Velocity modulation effects in collector:

• Collector transit-time c increase with electrical field

• Collector transit-time c decrease with current due to modulation of

the electrical field with the electron charge (velocity profile modulation)

• Intrinsic base-collector capacitance Cbci decrease with current

(assumed constant)

(varies with bias)

HBTs! V-IIIin bc .Typ

Base thickness

Collector thickness

Page 14: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

modulation profileVelocity

r0

2c

dc1

increase field Av.

bcijc1

delay Conv.

c0c 12

W)n2N(

2

k)VV(

2

k

2

WkT

er

ccc

c

erbci

bci

cc

c

erbci A

WIkkI

W

AC

V

TI

W

AC

0

1100

61

2

Transit time formulation: Full depletion

Collector transit-time model:

densityelectron Av.

eav

cA)(qv

In

Base-collector capacitance model:

Slowness of electrons in InP:

Ekk)E(v/1 10

• Formulation used in UCSD HBT model

Page 15: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

Inclusion of self-heating

• The thermal network provides an 1.order estimate of the temperture

rise (delT) in the device with dissipated power (Ith).

Thermal network

thththth

ththth

Qdt

dRRIdelT0

R

delTQ

dt

dI

charge Thermal :delTCQ

resistance Thermal :R

ndissipatioPower :I

rise Tempeture :delT

thth

th

th

Self-Heating formulation:

Page 16: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

InP HBT self-heating characteristic

• Self-heating in HBT devices manifests itself with the downward sloping

Ic-Vce characteristic for fixed Ib levels.

kT

gE

TcI

constbITcI

Page 17: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

bebebe Cj

1||Rz

bcbcbc Cj

1||Rz

bcxbcxbcx Cj

1||Rz

ebxbembcxbccibi

bcbi

bcxbccibi

bcxcibi

bem

be11 RR

)Zg1)(ZZRR(

ZR

ZZRR

)ZR(R

Zg1

Zz

ebembcxbccibi

bcbi

bcxbccibi

cibi

bem

be12 R

)Zg1)(ZZRR(

ZR

ZZRR

RR

Zg1

Zz

eR)beZmg1)(bcxZbcZciRbiR(

beZbcxZbcZmgbcZbiR

bcxZbcZciRbiRciRbiR

beZmg1beZ

21z

ecxbembcxbccibi

bcxbibc

bcxbccibi

bcxbici

bem

be22 RR

)Zg1)(ZZRR(

)ZR(Z

ZZRR

)ZR(R

Zg1

Zz

Small-signal modeling

_

Cbcx

C

Cceo

Rbci

Rbcx

gmVbeVbe

+

Rbx RbiB

Cbe Rbe

Re

Cbci Rci Rcx

gm=gmoe-jd

Page 18: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

bbx1211 Ifor R)ZZRe(

Resistance Extraction: Standard method

Open-Collector Method: HBT base current flow:

•Rbx underestimated due to shunting

effect from forward biased external

base-collector diode!

Saturated HBT device:

bIfor ciR||biReR)12ZRe(

bIfor cxR)12Z22ZRe(

•Re overestimated due to the intrinsic

collector resistance!

Standard method only good for Rcx extraction

Page 19: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

c

factor Correction

Ifor ebcxbci

bcxbi12 R

)1)(CC(

CR)0)(ZRe(

Emitter resistance extraction

Forward biased HBT device:

Re can be accurately determined if correction is employed

Notice: Rbi extracted assuming

uncorrected Re value.

Page 20: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

Circuit diagram of HBT model:

• Correct extraction of the extrinsic base resistance is important as it

influence the distribution of the base-collector capacitance

fmax modeling!

Extrinsic base resistance extraction (I)

• Distributed base lumped into a few elements

• The bias dependent intrinsic base resistance Rbi describes the active region under the emitter

• The extrinsic base resistance Rbx describes the accumulative resistance going from the base contact to the active region

Page 21: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

er0

cc1c1

c

er0bci A6

WIk1

2

Ik

W

AC

p

c0bcibci I

I1CC

Base-collector capacitance model: Linearization of capacitance:

• Linear approximation only valid at very low collector currents.

Low current linear approximation:

10bcip k/C2I c

er00bci W

AC

Linear approx.

K1=0.35ps/V

Ae=4.7m2

Wc=0.13mPhysical model

Characteristic

current

Extrinsic base resistance extraction (II)

Page 22: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

]I/I)X1(1[XI/IX1

]I/I1[X

C]I/I1[C

]I/I1[C

CC

CX

pc00pc0

pc0

bcxpc0bci

pc0bci

bcxbci

bci

Base-collector splitting factor: Linearization of splitting factor:

• Base collector splitting factor follows linear trend to higher currents.

Linear approx.

K1=0.35ps/V

Ae=4.7m2

Wc=0.13m

X0=0.41Physical model

cebcx0bci0bci0 A/A)CC/(CX

Zero-bias splitting factor:

Extrinsic base resistance extraction (III)

Page 23: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

pc

bxbip

c00beff

bxbibxbibcxbci

bcibeff

II for

RRI

I)X1(1XR

RXRRRCC

CR

Improved extraction method:

• Extrinsic base resistance estimated from extrapolation in full depletion.

Effective base resistance model:

Rbx extraction method:

0

pcbxbeff X1

IIfor RR

Extrinsic base resistance extraction (IV)

1211beff ZZReR :Def.

Page 24: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

bebe

bcbebebibe121111 CRj1

))CC(Rj1(RR)YY/(1H

bibe

bcbebi11 R

C

CCR)(H

Intrinsic base resistance extraction

Rbi in InP DHBT devices is fairly

constant versus base current

Improved Semi-impedance circle method:

(Rbx, Re, Rcx de-embedded)

Page 25: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

)CC()ZZ/(1Im bcibcx2122

bci

bcibcx

bi1211 C

CC

R

1)ZZ/(1Re

Base-collector capacitance extraction

Base-collector capacitance modelling:

er0

cc1c1

c

er0bci A6

WIk1

2

Ik

W

AC

40.0X

V/ps44.0k

m9.3A

56.12

m130.0W

0

1

2e

r

c

1

X

1

W

AC

0c

er0bcx

•Model parameters:

•Base-collector capacitance extraction

Page 26: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

i

12Yi11YImbeC

i

12Yi11YRe/1beR

Intrinsic element extraction

Intrinsic hybrid-pi equivalent circuit

• The influence from the elements Rbx, Rbi, Re, Rcx, Cbcx, and Cceo are

removed from the device data by de-embedding to get to the intrinsic data.

i

12YImbciC

i

12YRe/1bciR

)dcos(/i12Yi

21YRemog

i12Yi

21YRe

i12Yi

21YImtana

1d

Page 27: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

Direct parameter extraction verification

Small-signal equivalent circuit S-Parameters

Model Parameter Value Model Parameter Value

Rbx [] 8.0 Cbcx [fF] 10.1

Rbi [] 11.1 Cbci [fF] 3.0

Rcx [] 2.6 Rbci [k] 56.0

Re [] 2.7 gmo [mS] 773

Cbe [fF] 340.8 d [pS] ≈0

Rbe [] 34.6 Cceo [fF] 6.8

Page 28: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

Scalable UCSD HBT model verification

Page 29: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

Scalable Agilent HBT model verification

Page 30: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

• Load pull measurements not

possible. Load and source

fixed at 50Ω.

• Lowest measurement loss at

74.4GHz

Single-finger device

Large-signal characterization setup

Page 31: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

Large-signal single-tone verification

• The large-signal performance at 74.4GHz of the individual single-finger devices is well predicted with the developed UCSD HBT model except for

low collector bias voltage (Vce=1.2V).

mm-wave verification!

Measurements versus UCSD HBT model:

Page 32: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

• The large-signal performance at 74.4GHz of the individual single-finger devices is well predicted with the developed Agilent HBT model. The agreement at lower collector bias voltage is better.

Measurements versus Agilent HBT model:

mm-wave verification!

Large-signal single-tone verification

Page 33: Small- and Large-Signal Modeling for Submicron InP/InGaAs DHBT’s ‘ Tom K. Johansen*, Virginie Nodjiadjim**, Jean-Yves Dupuy**, Agnieszka konczykowska**

Summary

• The InP/InGaAs DHBT can be modeled accurately by an extended

Gummel-Poon formulation

- thermionic emission and tunneling

- collector blocking effect

- collector transit-time physical modeling

• Small-signal InP/InGaAs HBT modeling

-unique direct parameter extraction approach

•Scalable large-signal HBT model verfication

-RF figure-of-merits and DC characteristics

-mm-wave large-signal verification