Slow neutron captures in stars weak and main s process abundances determined by (n, ) cross...
-
Upload
shana-stevens -
Category
Documents
-
view
215 -
download
1
Embed Size (px)
Transcript of Slow neutron captures in stars weak and main s process abundances determined by (n, ) cross...

Slow neutron captures in stars
weak and main s process • abundances determined by (n, ) cross sections
(n, ) reactions • experiment and theory• variety of types: 187Os, 22Ne, 60Fe• Maxwellian averages – laboratory data and thermal
corrections
F. Käppeler, KIT Karlsruhe
Dust in Eurogenesis environments, Perugia, Nov 11-14, 2012

0 50 100 150 200MASS NUMBER
10-2
10-1
100
101
102
103
104
105
106
107
108
109
1010
AB
UN
DA
NC
E
(Si =
106 )
the observed abundances – the observed abundances – ashes of stellar burning and of SNashes of stellar burning and of SN
Neutrons FusionBB
Fe
sr
neutrons produce 75% of the stable isotopes
s process
mass number
ab
un
dan
ce
r process22Ne
60Fe
187Os

from Fe to U: from Fe to U: ss- and - and rr-process-process
p-Region
Red Giants(s-process)
supernova
e(r-p
rocess)
Massenzahl
H
äufi
gkei
t

Maxwellian averaged cross sectionsMaxwellian averaged cross sections
measure (En) by time of flight, 0.3 < En < 300 keV, determine average for stellar spectrum correct for SEF
produce thermal spectrum in laboratory, measure stellar average directly by activation correct for SEF
accurate experimental cross section data essential

status of stellar (n,) cross sections
s process: = 1-3%
what do we have?
nuclear input must be good enough that uncertainties don‘t dominate calculated abundances!
what do we need?
beware:
- discrepancies often larger than uncertainties!
- experimental data often incomplete
-theory needed for thermal effects

what about theorywhat about theory?? 176Hf, 178Hf, 180Hf:
MACS uncertainties
1 - 2%
exercise joined by 6 leading groups:
calculate MACS of174Hf and 182Hf
prior to measurement
BUT: theory indispensible for stellar corrections

prompt -rays + TOF-method
measurement of neutron capture data
* Moxon-Rae ~ 1% * PH-weighting ~ 20% * Ge, NaI < 1%
single ´s
all cascade ´s * 4BaF2 ~100%
(n,):
activation in quasi-stellar spectrum most sensitive * small cross sections,
1014 atoms sufficient selective * natural samples or low enrichment

the s process in low mass stars (1-3 M)
s abundances from 90Zr – 209Bi: the main component
H shell burning13C(,n)
kT~8 keV
T~90 MK
nn= 107-108 cm-3
He flash22Ne(,n)
kT~25 keV
T~250 MK
nn= 1010-1011 cm-3
abundances anti-correlated with cross sections: Ns = const detailed models for realistic description of stellar evolution
reaction flow in equilibrium

Case 1: Case 1: 187187Os (n,Os (n,))
W W 182 26.3
Re
Os
Re 183 71 d
Os 184 0.02
W 183 14.3
W 184 30.67
W 185 75.1 d
W 186 28.6
W 187 23.8 h
W 188 69 d
Re 184 38 d
Re 185 37.4
Re 186 90.64 h
Re 187 62.6
42.3x109 a
Re 188 16.98 h
Re 189 24.3 h
Re 190 3.1 m
Os 185 94 d
Os 186 1.58
Os 187 1.6
Os 188 13.3
Os 189 16.1
Os 190 26.4
Os 191 15.4 d
Os 192 41.0
Now4.5 Gyr?BANG!
galax
ies
solar
syste
m
s-only

186Os (2 g, 79 %) 187Os (2 g, 70 %) 188Os (2 g, 95 %)
Al can environmental background
197Au (1.2g) flux normalization
(using Ratynski and Macklin high accuracy cross section data)
natPb (2 g) in-beam gamma background
natC (0.5 g) neutron scattering background
Neutron beam
Os (n, ) cross sections measured at n_TOF/CERN

(n,) cross sections
02.042.0)187(
)186(

thermal population of nuclear states
in 187Os at kT = 30 keV:
P(gs) = 33%P(1st) = 47%P(all others) = 20%
stellar enhancement factorSEF = / exp
m
kTEm
kTEk
k m
k
eJ
eJEP /
/
)12(
)12()(
186Os 187Os 188Os

stellar 187Os(n,) cross section: SEF
JJ J
lslsn
lslsn
Jls
lsn
Jn
nn WTTT
TTg
kE ,
,,',
,,
2, )(
Hauser-Feshbach statistical model:
• neutron transmission coefficients, Tn :from OMP calculations
• -ray transmission coefficients, T:from GDR (experimental parameters)
• nuclear level densities:fixed at the neutron binding from <D>exp
all these parameters can be derived all these parameters can be derived and fixed from the analysis of and fixed from the analysis of experimental data at low-energyexperimental data at low-energy
kTkT ‹‹σσ187187››lablab ‹ ‹σσ187187››calccalc ‹ ‹σσ187187››** ff187 187 FFσσ
(keV) (mbarn) (mbarn) (mbarn) (keV) (mbarn) (mbarn) (mbarn)
10 1988 2111 2324 10 1988 2111 2324 1.101.10 0.91 0.91
20 1171 1193 1402 20 1171 1193 1402 1.181.18 0.85 0.85
30 874 876 1059 30 874 876 1059 1.211.21 0.86 0.86
40 715 712 877 40 715 712 877 1.231.23 0.89 0.89
50 614 610 766 50 614 610 766 1.26 1.26 0.93 0.93
stellar correction factor Fσ = f186 / f187
SEF ± 2-3%

the s-process abundance distributionthe s-process abundance distribution

Case 2: 22Ne(n,)
2 TOF measurements, faint resonances at 266, 304, 422 keV activation method more sensitive (kT=25 and 52 keV) thermal cross section important
light nuclei low level densities, HF not valid neutron poisons & grains

22Ne(n,) by activation
7Li(p, n)7Be: highest sensitivity small samples, small cross sections
quasi-stellarspectra for kT=25 keV via 7Li(p, n) 7Be 52 keV via 3H(p, n)3He
5 kev via 18O(p, n)18F

activation measurement at kT=25 keV
22Ne+
natKr
high pressure gas cells (loaded with 30 to 100 bar)
enriched 22Ne gas (98.87%) with natKr, 200 mg each
measurement relative to 80,82,84Kr
HPGe detector and pneumatic slide
t1/2 (23Ne) = 38 s

no or few resonances DRC dominant
Direct Radiative Capture (calculated) - s-wave normalized at thermal
- p-wave normalized to fit keV data
kT (keV) MACS (b)old new
5 133 109 25 62 56 50 61 49100 95 54
±7-20%
MACS ±5-10%
no SEF required
s-wave?
p-wave

the s process in massive stars s abundances from 56Fe – 89Y: the weak component
He core burning22Ne(,n)
kT~25 keV
T~300 MK
nn= 106 cm-3
reaction flow NOT saturated propagation waves!
C shell burning22Ne(,n)
kT~90 keV
T~109 K
nn=1011- 1012 cm-3
weak s process complicated by
small and resonance dominated cross sections contributions from direct capture, SEF?

intermediate-mass nuclei
theory very uncertain, HF approach questionable
experimental data incomplete
sample material unstable (t1/2 = 2.6 Myr)
total sample mass 1.4 g
sample contains all stable Fe isotopes and 150 MBq of 55Fe (t1/2 = 2.7 yr)
the special case of 60Fe

60Fe in interstellar space 19 HPGe Detectors, W coded mask
3º resolution, 16ºx16º field of view
Eγ= 15 keV – 8 MeV, 2.5 keV@1 MeV
Diehl, NAR 50 (2006) 534Wang et al. A&A 469 (2007) 1005
60Fe, inner Galaxy

60Fe in deep-sea manganese crust
• growth rate via 10Be (1.5 Myr) (mm/Myr)
• archived period 20 Myr
0,0E+00
5,0E-16
1,0E-15
1,5E-15
2,0E-15
2,5E-15
3,0E-15
0 2 4 6 8 10 12 14
age [Myr]
60
Fe/F
e_
me
as
ure
d
Knie et al. PRL 93, 2004

60Fe from s process in massive stars
no experimental data for 60Fe(n, )theoretical estimates ranging from 1 to 20 mbarn
58Fe 0.28
59Fe 44.5 d
60Fe2.6 Myr
57Fe 2.2
56Fe 91.7
61Fe 6.0 m
first measurements at VdG Karlsruhe and TRIGA reactor Mainz by activation
t1/2 = 6 minE = 298, 1027, 1205 keVI = 22, 43, 44(5)%
world supply of 60Fe:
extracted from Cu beam dump at PSI
1.3·1016 atoms (1.4 g) on thin carbon disk (6 mm diam.)
active impurities 55Fe (100 MBq), ingrowth of 60Co

search for -decay of 61Fe
61Co
118 single, 17 cascade events
1.7·1014 neutrons
1205 keV
single transitions
70 mm
sample
cascade transitions (298 & 1027 keV)

cross section results
Karlsruhe: kT=25 keV
‹σ› = 5.7 ± 1.6stat ± 0.8syst mbarn
Mainz: thermal
σth = 203 ± 21stat ± 24syst mbarn
• DC component small (<10%)• normalization of HF calculations• SEF = 1.0
± 30%
± 16%
2114
824
0 0+
2+
4+
60Fe

how much 60Fe per Supernova?
Chieffi & Limongi ApJ 647, 2006
production mostly before SN-explosion

propagation waves: the example of 62Ni
stellar (n, ) cross sections (mb):
TOF25.8 ± 3.7 (2008)37.0 ± 3.2 (2005)12.5 ± 4.0 (1983)26.8 ± 5.0 (1975)
activation20.2 ± 2.1 (2009)23.4 ± 4.6 (2008)26.1 ± 2.6 (2005)
cross sections near Fe seed have strong effect on abundances of weak s process
62Ni(n,)63Ni
12.5
35
22.6
mass number
abun
danc
e ra
tio
reaction flow not in equilibrium

data for the main component
Zr – Pb/Bi; kT= 8 and 23 keV measured data for stable nuclei available
Hauser-Feshbach applicable in most cases
thermal corrections small, can be handled if experimental information complete
Problems: gaps in data base, esp. for SEF neutron poisons unstable branch point isotopes

data for the weak componentdata for the weak component
Fe – Sr/Y ; kT= 26 and 90 keV
experimental data incomplete
Hauser-Feshbach questionable
thermal corrections uncertain, esp. at kT=90 keV
Problems: large gaps in data for stable nucleiSEF determination uncertain neutron poisons unstable branch point isotopes error propagation

60Fe: example for required sensitivity in case of - small cross sections and
- rare unstable samples
summary
60Fe stands for a variety of rare & radioactive samples that can be studied with new, advanced facilities such as
n_TOF-2, FRANZ, SARAF
stellar (n, ) cross sections need further improvement - assessment of weak s process in massive stars (TOF data)
- better accuracy of many key cross sections of main s process - touching the region of unstable, neutron-rich isotopes