Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

35
Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion Simple Harmonic Motion repetitive motion that follows Hooke’s Law; F s = -kx Know where net force, acceleration, and speed are maximum values and where they are zero; be able to calculate the maximum values for a mass oscillating on the end of a spring (conservation of mechanical energy for speed, Hooke’s law for force, and Newton’s 2 nd law for acceleration) Understand the position versus time graph for an object oscillating with SHM amplitude Understand the energy transformations for an object oscillating with SHM; be able to use conservation of mechanical energy to calculate speed or amplitude and @ (amplitude) so Understand the graphs for energy and force with respect to position for an object undergoing SHM Understand the motion of a simple pendulum at small angles; be able to use conservation of mechanical energy to find speed of a simple pendulum at the bottom of the swing; be able to use Newton’s 2 nd law to determine the tension in the string at the bottom of the swing knowing that the acceleration is centripetal Know the factors that affect the period (or frequency) of a spring and pendulum Understand everything we have covered this year in physics including projectile motion, Newton’s laws (calculate force and acceleration), conservation of energy, conservation of momentum, and circular motion

Transcript of Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Page 1: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 10-1

AP Physics Review Ch 10 – Oscillatory Motion

Simple Harmonic Motion repetitive motion that follows Hooke’s Law; Fs = -kx

Know where net force, acceleration, and speed are maximum values and where they are zero; be able to calculate the maximum values for a mass oscillating on the end of a spring (conservation of mechanical energy for speed, Hooke’s law for force, and Newton’s 2nd law for acceleration)

Understand the position versus time graph for an object oscillating with SHM

amplitude

Understand the energy transformations for an object oscillating with SHM; be able to use conservation of mechanical energy to calculate speed or amplitude

and @ (amplitude) so

Understand the graphs for energy and force with respect to position for an object undergoing SHM

Understand the motion of a simple pendulum at small angles; be able to use conservation of mechanical energy to find speed of a simple pendulum at the bottom of the swing; be able to use Newton’s 2nd law to determine the tension in the string at the bottom of the swing knowing that the acceleration is centripetal

Know the factors that affect the period (or frequency) of a spring and pendulum

Understand everything we have covered this year in physics including projectile motion, Newton’s laws (calculate force and acceleration), conservation of energy, conservation of momentum, and circular motion

Page 2: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

A. Speed is a maximum; net force is zero.B. Speed is zero; net force is zero.C. Speed is a maximum; net force is a maximum.D. Speed is zero; net force is a maximum.

This is the position graph of a mass on a spring. What can you say about the speed and the magnitude of the net force at the instant indicated by the dotted line?

Page 3: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

A. Speed is a maximum; net force is zero.B. Speed is zero; net force is zero.C. Speed is a maximum; net force is a maximum.D. Speed is zero; net force is a maximum.

This is the position graph of a mass on a spring. What can you say about the speed and the magnitude of the net force at the instant indicated by the dotted line?

Page 4: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 14-4

A mass oscillates on a horizontal spring. It’s velocity is vx and the spring exerts force Fx. At the time indicated by the arrow,

A. vx is and Fx is

B. vx is and Fx is –

C. vx is – and Fx is 0

D. vx is 0 and Fx is

E. vx is 0 and Fx is –

Page 5: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 14-5

A mass oscillates on a horizontal spring. It’s velocity is vx and the spring exerts force Fx. At the time indicated by the arrow,

A. vx is and Fx is

B. vx is and Fx is –

C. vx is – and Fx is 0

D. vx is 0 and Fx is

E. vx is 0 and Fx is –

Page 6: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 14-6

A mass oscillates up and down on a spring; the motion is illustrated at right.

1. At which time or times shown is the acceleration zero?

2. At which time or times shown is the kinetic energy a maximum?

3. At which time or times shown is the potential energy a maximum?

.

Page 7: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 14-7

A mass oscillates up and down on a spring; the motion is illustrated at right.

1. At which time or times shown is the acceleration zero?

2. At which time or times shown is the kinetic energy a maximum?

3. At which time or times shown is the potential energy a maximum?

A, C, E

A, C, E

B, D

Page 8: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 10-8

A mass on a spring in SHM has amplitude A and period T.

At what point in the motion is v = 0 and a = 0

simultaneously?

(A) x = A

(B) x > 0 but x < A

(C) x = 0

(D) x < 0

(E) none of the above

Page 9: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 10-9

A mass oscillates in simple harmonic motion with

amplitude A. If the mass is doubled, but the amplitude

is not changed, what will happen to the total energy of

the system?

(A) total energy will increase

(B) total energy will not change

(C) total energy will decrease

Page 10: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 10-10

If the amplitude of a simple harmonic oscillator is

doubled, which of the following quantities will change

the most?

(A) frequency

(B) period

(C) maximum speed

(D) maximum acceleration

(E) total mechanical energy

Page 11: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 14-11

Two identical blocks oscillate on different horizontal springs. Which spring has the larger spring constant?

A. The red spring

B. The blue spring

C. There’s not enough information to tell.

Page 12: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 14-12

Two identical blocks oscillate on different horizontal springs. Which spring has the larger spring constant?

A. The red spring

B. The blue spring

C. There’s not enough information to tell.

Page 13: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 14-13

A block of mass m oscillates on a horizontal spring with period T 2.0 s. If a second identical block is glued to the top of the first block, the new period will be

A. 1.0 s

B. 1.4 s

C. 2.0 s

D. 2.8 s

E. 4.0 s

Page 14: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 14-14

A block of mass m oscillates on a horizontal spring with period T 2.0 s. If a second identical block is glued to the top of the first block, the new period will be

A. 1.0 s

B. 1.4 s

C. 2.0 s

D. 2.8 s

E. 4.0 s

Page 15: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 10-15

A glider with a spring attached to each end oscillates with a

certain period. If identical springs are added in parallel to the

original glider, what will happen to the period?

(A) period will increase

(B) period will not change

(C) period will decrease

Page 16: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 10-16

A mass oscillates on a vertical spring with period T.

If the whole setup is taken to the Moon, how does the

period change?

(A) period will increase

(B) period will not change

(C) period will decrease

Page 17: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 14-17

A pendulum is pulled to the side and released.The mass swings to the right as shown. The diagram shows positions for half of a complete oscillation.

1. At which point or points is the speed the highest?

2. At which point or points is the acceleration the greatest?

3. At which point or points is the restoring force the greatest?

Page 18: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 14-18

A pendulum is pulled to the side and released.The mass swings to the right as shown. The diagram shows positions for half of a complete oscillation.

1. At which point or points is the speed the highest?

2. At which point or points is the acceleration the greatest?

3. At which point or points is the restoring force the greatest?

C

A, E

A, E

Page 19: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 14-19

A series of pendulums with different length strings and different masses is shown below. Each pendulum is pulled to the side by the same (small) angle, the pendulums are released, and they begin to swing from side to side.

Which of the pendulums oscillates with the highest frequency?

Page 20: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 14-20

A series of pendulums with different length strings and different masses is shown below. Each pendulum is pulled to the side by the same (small) angle, the pendulums are released, and they begin to swing from side to side.

Which of the pendulums oscillates with the highest frequency?

A

Page 21: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 10-21

Two pendula have the same length, but different masses

attached to the string. How do their periods compare?

(A) period is greater for the greater mass

(B) period is the same for both cases

(C) period is greater for the smaller mass

Page 22: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 10-22

Two pendula have different lengths: one has length L

and the other has length 4L.

How do their periods compare?

(A) period of 4L is four times that of L

(B) period of 4L is two times that of L

(C) period of 4L is the same as that of L

(D) period of 4L is one-half that of L

(E) period of 4L is one-quarter that of L

Page 23: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 10-23

A grandfather clock has a weight at the bottom of the

pendulum that can be moved up or down. If the clock

is running slow, what should you do to adjust the time

properly?

(A) move the weight up

(B) move the weight down

(C) moving the weight will not matter

(D) call the repair man

Page 24: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 10-24

A swinging pendulum has period T on Earth. If the

same pendulum were moved to the Moon, how does

the new period compare to the old period?

(A) period increases

(B) period does not change

(C) period decreases

Page 25: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 10-25

After a pendulum starts swinging, its amplitude

gradually decreases with time because of friction.

What happens to the period of the pendulum during

this time?

(A) period increases

(B) period does not change

(C) period decreases

Page 26: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

What is the spring constant of a spring that stretches 2.00 cm

when a mass of 0.600 kg is suspended from it? Use 9.8 m/s2

for gravity.

(A) 0.300 N/m

(B) 30.0 N/m

(C) 2.94 N/m

(D) 294 N/m

Page 27: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

A 0.50-kg mass is attached to a spring of spring constant 20 N/m

along a horizontal, frictionless surface. The object oscillates in

simple harmonic motion and has a speed of 1.5 m/s at the

equilibrium position. What is the amplitude of vibration?

(A) 0.024 m

(B) 0.058 m

(C) 0.24 m

(D) 0.58 m

Page 28: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

A 2.0-kg mass is attached to the end of a horizontal spring

of spring constant 50 N/m and set into simple harmonic

motion with an amplitude of 0.10 m. What is the total

mechanical energy of this system?

(A) 0.020 J

(B) 25 J

(C) 0.25 J

(D) 1.0 J

Page 29: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

A 4.0-kg object is attached to a spring of spring constant 10 N/m. The object is displaced by 5.0 cm from the equilibrium position and let go. What is the period of vibration?

(A) 2.0 s

(B) 4.0 s

(C) 8.0 s

(D) 16 s

Page 30: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

A pendulum has a period of 2.0 s on Earth.

What is its length?

(A) 2.0 m

(B) 1.0 m

(C) 0.70 m

(D) 0.50 m

Page 31: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

The pendulum of a grandfather clock is 1.0 m long.

What is its period on the Moon where the acceleration

due to gravity is only 1.7 m/s2?

(A) 1.2 s

(B) 2.4 s

(C) 4.8 s

(D) 23 s

Page 32: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 14-32

A block oscillates on a very long horizontal spring. The graph shows the block’s kinetic energy as a function of position. What is the spring constant?

A. 1 N/m

B. 2 N/m

C. 4 N/m

D. 8 N/m

Page 33: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 14-33

A block oscillates on a very long horizontal spring. The graph shows the block’s kinetic energy as a function of position. What is the spring constant?

A. 1 N/m

B. 2 N/m

C. 4 N/m

D. 8 N/m

Page 34: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 14-34

A set of springs all have initial length 10 cm. Each spring now has a mass suspended from its end, and the different springs stretch as shown below.

Now, each mass is pulled down by an additional 1 cm and released, so that it oscillates up and down. Which of the oscillating systems has the highest frequency?

.

Page 35: Slide 10-1 AP Physics Review Ch 10 – Oscillatory Motion.

Slide 14-35

A set of springs all have initial length 10 cm. Each spring now has a mass suspended from its end, and the different springs stretch as shown below.

Now, each mass is pulled down by an additional 1 cm and released, so that it oscillates up and down. Which of the oscillating systems has the highest frequency?

C

C