Slide 1 / 97 Slide 2 / 97 Organic...

17
Slide 1 / 97 Organic Chemistry: Carbon and the Molecular Diversity of Life Slide 2 / 97 Organic chemistry is the study of carbon compounds Organic compounds range from simple molecules to colossal ones. Most organic compounds contain hydrogen atoms in addition to carbon atoms. Compounds containing only carbon and hydrogen are called hydrocarbons; they are commonly used as a fuel source. Organic Chemistry Slide 3 / 97 Carbon is the backbone of biological molecule. Carbon has the ability to form long chains. This property allows the formation of large biomolecules (such as proteins, lipids, carbohydrates, and nucleic acids). Biological Molecules Slide 4 / 97 Carbon has four valence electrons to make covalent bonds Carbon atoms can form diverse molecules by bonding to four other atoms Recall that electron configuration is the key to an atom’s characteristics because it determines the kinds of bonds and number of bonds an atom will form with other atoms Carbon Slide 5 / 97 1 Organic chemistry is a science based on the study of ___________________. A compounds that can only be made by living cells. B vital forces interacting with matter. C carbon compounds. D water and its interaction with other kinds of molecules. Slide 6 / 97 2 Which property of the carbon atom allows it to bond with many different elements? A Carbon has 6 to 8 neutrons. B Carbon has 4 valence electrons. C Carbon forms ionic bonds. D A and C only E A, B, and C

Transcript of Slide 1 / 97 Slide 2 / 97 Organic...

Slide 1 / 97

Organic Chemistry:Carbon and the Molecular

Diversity of Life

Slide 2 / 97

Organic chemistry is the study of carbon compoundsOrganic compounds range from simple molecules to colossal ones.

Most organic compounds contain hydrogen atoms in addition to carbon atoms.

Compounds containing only carbon and hydrogen are called hydrocarbons; they are commonly used as a fuel source.

Organic Chemistry

Slide 3 / 97

Carbon is the backbone of biological molecule.

Carbon has the ability to form long chains.

This property allows the formation of large biomolecules (such as proteins, lipids, carbohydrates, and nucleic acids).

Biological Molecules

Slide 4 / 97

Carbon has four valence electrons to make covalent bonds

Carbon atoms can form diverse molecules by bonding to four other atoms

Recall that electron configuration is the key to an atom’s characteristics because it determines the kinds of bonds and number of bonds an atom will form with other atoms

Carbon

Slide 5 / 97

1 Organic chemistry is a science based on the study of ___________________.

A compounds that can only be made by living cells.B vital forces interacting with matter.

C carbon compounds.

D water and its interaction with other kinds of molecules.

Slide 6 / 97

2 Which property of the carbon atom allows it to bond with many different elements?

A Carbon has 6 to 8 neutrons.

B Carbon has 4 valence electrons.C Carbon forms ionic bonds.D A and C onlyE A, B, and C

Slide 7 / 97

3 How many electron pairs does carbon share in order to complete its valence shell?

A 1B 2C 3D 4E 8

Slide 8 / 97

4 What type/s of bond/s does carbon have a tendency to form?

A IonicB HydrogenC Covalent

D A and B E A, B and C

Slide 9 / 97

Hydrocarbons are compounds made up of carbon and hydrogen atoms

Aliphatic hydrocarbons: compounds with carbon atoms connected in a straight chain

Aliphatic compounds consist of three classes of compounds: Alkanes Alkenes Alkynes

Aromatic hydrocarbons: compounds with carbon atoms connected in cyclic (ringed) structures that have an odor

Hydrocarbons

Slide 10 / 97

Hydrocarbon chains where all the bonds between carbons are SINGLE bonds

They are also known as saturated hydrocarbons. They are “saturated” with hydrogens.

Aliphatic hydrocarbons: Alkanes

Examples: Methane, Propane, Butane, OctaneName uses the ending -ane

Slide 11 / 97

Alkanes

Slide 12 / 97

The general formula CnH2n+2

n = number of carbon atoms

Alkanes

______ Hexane

______ Heptane

______ Octane

______ Nonane

______ Decane

CH4 Methane

C2H6 Ethane

C3H8 Propane

C4H10 Butane

C5H12 Pentane

Slide 13 / 97

Straight Chain Alkanes

Straight chain alkanes are alkanes that have all their carbon atoms connected in a row.

These are structural formulas.

CH3-CH2-CH3 This is a condensed formula for propane.

Slide 14 / 97

Branched chain alkanes are alkanes that have a branching connection of carbons.

For example, butane has the formula C4H10.

Shown below are the straight chain and branched forms of butane.

Branched Chain Alkanes

CH3-CH2-CH2-CH3

Straight chain butane Branched chain butane

Slide 15 / 97

Hydrocarbons are non polar, since the difference in electronegativity between C and H is below 0.5. Note that larger molecules are more polarizable and therefore have stronger London dispersion forces which increases boiling point.

Alkanes

Slide 16 / 97

5 What is the reason why hydrocarbons are not soluble in water?

A The majority of their bonds are polar covalent C-H linkages

B The majority of their bonds are nonpolar covalent C-H linkages

C They are hydrophilic

D They exhibit considerable molecular complexity and diversity

E They are lighter than water

Slide 17 / 97

6 Gasoline and water do not mix because gasoline is __________.

A less dense than water

B less viscous than wtaer

C nonpolar and water is polar

D volatile and water is not

E polar and water is nonpolar

Slide 18 / 97

7 Which substance would be the most soluble in gasoline?

A waterB sodium nitrate, NaNO3

C hydochloric acid, HClD hexane, C6H14

E sodium chloride, NaCl

Slide 19 / 97

Ethene

Alkenes have at least one double bond between two carbon atoms. General formula: CnH2n where n = # of carbon atoms

The name uses the ending -ene.

The simplest alkenes are:

C2H4 Ethene (from 2-carbon parent, ethane)

C3H6 Propene (from 3-carbon parent, propane)

Aliphatic hydrocarbons: Alkenes

Slide 20 / 97

Alkynes have at least one triple bond between two carbon atoms.General formula: CnH2n-2 where n = # of carbon atoms

The name uses the ending -yne.The simplest alkynes are:

C2H2 Ethyne (commonly known as acetylene)

C3H4 Propyne or propylene

Aliphatic hydrocarbons: Alkynes

Ethyne

Slide 21 / 97

Ball and stickmodel

Space fillingmodel

Molecular formula

Structuralformula

Representing Aliphatic Hydrocarbons

Slide 22 / 97

Cycloalkanes

Carbon can also form ringed structures.

Five- and six-membered rings are most stable.They can take on conformations in which their bond angles are very close to the tetrahedral angle.

Smaller rings are quite strained

Slide 23 / 97

Aromatic hydrocarbons

They have benzene ring structure ( hexagon) and have particular aroma associated with it.

CH3

Benzene Toluene ( methyl benzene)

Slide 24 / 97

8 Hydrocarbons

A are polar.B are held together by ionic bonds.C contain nitrogen.D contain only hydrogen and carbon atoms.

E are held together by hydrogen bonds.

Slide 25 / 97

9 Hydrocarbons containing only single bonds between the carbon atoms are called __________.

A alkenes

B alkynes

C aromatics

D alkanes

E ketones

Slide 26 / 97

10 The general formula of an alkane is _______.

A C2nH2n+2

B CnH2n

C CnH2n+2

D CnH2n-2

E CnHn

Slide 27 / 97

11 Which is the formula of an alkane?

A C10H10

B C10H18C C10H20

D C10H22

E C10H24

Slide 28 / 97

12 The molecular geometry of each carbon aton in an alkane is ________.

A octahedral

B sqaure planar

C trigonal planar

D tetrahedral

E trigonal pyramidal

Slide 29 / 97

13 Hydrocarbons containing carbon-carbon triple bonds are called________.

A alkenes

B alkynes

C aromatics

D alkanes

E ketones

Slide 30 / 97

14 Which is the formula of an alkyne?

A C10H10

B C10H18C C10H20

D C10H22

E C10H24

Slide 31 / 97

15An alkene has at least one ________ and has the general formula ______. A C-C single bond, CnH2n+2

B C-C double bond, CnH2n

C C-C triple bond, CnH2n

D C-C double bond, CnH2n-2

E C-C triple bond, CnH2n-2

Slide 32 / 97

16 ________ could be the formula of an alkene.

A C3H8

B C3H6

C C6H6

D C17H36

E CH8

Slide 33 / 97

17 Which of the following hydrocarbons has a double bond in its carbon skeleton?

A C3H8

B C2H6

C CH4

D C2H4

E C2H2

Slide 34 / 97

18 The compound below is an _________.

A alkyne

B alkene

C alkane

D aromatic compound

E olefin

Slide 35 / 97

19 The gasoline consumed by an automobile is a fossil fuel consisting mostly of

A aldehydes

B amino acidd

C alcohols

D hydrocarbons

E thiols

Slide 36 / 97

Structural isomers

Geometric isomers

Enantiomers

Isomers

Hydrocarbons exhibit a phenomenon called isomerism- existence of different molecular arrangement but same formula

Isomers are compounds with the same molecular formula but different structures and properties.

There are 3 different types of isomers:

click here for an animationon Isomers

Slide 37 / 97

Structural Isomers

Structural isomers have different covalent arrangements of their atoms.

These three compounds all have the same molecular formula, but differ in which atoms are bonded together.

Slide 38 / 97

cis isomerThe two CH3 groups are on the same side.

trans isomer: The two CH3 groups are

on opposite sides.

Geometric Isomers

Geometric isomers must contain a C=C double bond.

Geometric isomers have the same covalent arrangements but differ in spatial arrangements. Geometric isomers are referred to as either cis or trans.

Slide 39 / 97

Enantiomers differ in spatial arrangement around an asymmetric carbon, resulting in molecules that are mirror images, like left and right hands. The two isomers are designated the L and D isomers from the Latin for left and right (levo and dextro).

Enantiomers

Enantiomers are isomers that are mirror images of each other.

Enantiomers cannot be superimposed on each other.

Slide 40 / 97

20 Structural isomers are molecules that:

A are enantiomers.B are hydrocarbons.

C have a ring structure.D are mirror images.

E differ in the covalent arrangements of their atoms.

Slide 41 / 97

21 The two molecules shown are best described as

A optical isomers

B radioactive isotopes

C structural isomers

D nonradioactive isotopes

E geometric isomers

Slide 42 / 97

Which of the following is true of geometric isomers?

They have variations in arrangement around a double bond.

They have an asymmetric carbon that makes them mirror images.

They have the same chemical properties.

They have different molecular formulas.

Their atoms and bonds are arranged in different sequences

22

A

B

C

D

E

Slide 43 / 97

Functional groups

Haloalkanes/alkenes/alkynesAlcoholsAcidsAminesKetonesAldehydesEstersEther

A functional group is an atom or group of atoms that imparts special physical and chemical properties to the compound

Based on the functional group, the compounds are classified as follows.

Slide 44 / 97

Halo- alkanes/alkenes/alkynes

Haloalkanes, haloalkenes, and haloalkynes are characterized by the presence of a halogen atom (F, Cl, Br or I), in place of a hydrogen atom.

CH3Cl, CH2Cl2 , CHCl3, CCl4, CBr4, F2C=CF2 , FC = CF

They are formed when one or more H atoms are replaced by halogen atom/s.

Slide 45 / 97

Alcohols

Alcohols contain the functional group -OH (hydroxyl group).

For example, in CH4, one H is replaced by -OH

The name ends with -ol, drop the alkane "e" add "ol", So, methane becomes methyl alcohol or methanol, CH3OH.

CH3CH2OH is called ethyl alcohol or ethanol.

Thiols contain the functional group -SH, (sulfhydryl group)

Slide 46 / 97

Naming Alcohols

Alkaneformula Alkane name Alcohol

formulaAlcohol name

CH4 methane CH3OH methanol

C2H6 ethane C2H5OH ethanol

C3H8 propane C3H7OH propanol

C4H10 butane C4H9OH butanol

Slide 47 / 97

23 Which of the following statements is true concerning a compound that contains a hydroxyl group?

A It lacks an asymmetric carbon, and it is probably a fat or lipid.

B It should dissolve in water.

C It should dissolve in a nonpolar solvent.

D It won't form hydrogen bonds with water.

E It is hydrophobic.

Slide 48 / 97

24 In which of the structures are the atoms bonded ionic bonds?

A A

B B

C C

D C, D, E

E None of the structures

Slide 49 / 97

Carboxylic acids

The functional group is -COOH

Replace one H atom in the alkane by a -COOH group

HCOOH = Methanoic acid or formic acidCH3COOH = Ethanoic acid or acetic acid or vinegar

CH3CH2COOH = Propanoic acid

Drop the "e" from the parent alkane and add "oic acid"

C C OH

C

Slide 50 / 97

Amines

The functional group is - NH2

CH3NH2, replace one H by an -NH2 group

CH3NH2 Amino methane or Methyl amine

More than one functional groups, same or different are common in organic compounds

example: amino acids. They have amine and acid groups

Slide 51 / 97

25 Which of the structures contain(s) a carboxyl group?

A A

B B

C C

D C & E

E None of the structures

Slide 52 / 97

What is the name of the functional group shown in the following figure?

26

AB

C

D

E

carbonyl ketone

aldehydecarboxyl hydroxyl

Slide 53 / 97

Which two functional groups are always found in amino acids?

ketone and aldehydecarbonyl and carboxylcarboxyl and aminophosphate and sulfhydrylhydroxyl and aldehyde

27

A

B

C

D

E

Slide 54 / 97

Ketones

The functional group is -C=O or "carbonyl" groupUsually sandwiched between two carbon groups

CH3CH2CH3 = propaneCH3CO CH3 propanone or acetone ( nail polish remover)Drop e and add none

CH3COC2H5 Ethyl methyl ketone or butanone

O

H3C- C- CH3

Slide 55 / 97

A function the functional group can make!

Ketones

Estrogen- has two hydroxyl groups in it.

Testosterone - one hydroxyl group is replaced by a ketone.

Slide 56 / 97

Aldehydes

The functional group is -CHO with a C=O bond

drop 'e' of the parent alkane and add 'nal'

HCHO - (1 carbon) Methanal or Formaldehyde

CH3CHO- (2 carbon) Ethanal or Acetaldehyde

Slide 57 / 97

Aldehydes, Ketones and AcidsThe way the carbonyl group is bonded to the main body of the

molecule is different in acids, ketones and aldehydes

The C=O is between two other carbon atoms ( alkyl groups) in the molecule

The C=O group is at the end ( terminal carbon) of the molecule and should be connected to a H atom

The C=O bond should be connected to an OH group

Slide 58 / 97

What is the name of the functional group shown in the following figure?

R-C=O R

carbonyl ketone aldehyde carboxyl hydroxyl

28

ABC

D

E

(R = any carbon group)

Slide 59 / 97

Ester

The functional group is -COOR where R could be another alkyl group. Esters are formed by the combination of an acid and an alcohol by eliminating one molecule of water.

They are usually pleasant smelling compounds ( natural oils and essence)

CH3COOH + CH3OH --> CH3COOCH3

CH3COOCH3 methyl acetate

CH3COOC2H5 ethyl acetate

C2H5COOCH3 methyl propanoate

Slide 60 / 97

EtherThe functional group is an O atom sandwiched between two carbon groups

CH3-O- CH3 dimethyl ether

They are highly flammable and used as solvents in organic synthesis

Slide 61 / 97

Groups with a Carbon–Oxygen Double Bond (Carbonyl Groups)

Slide 62 / 97

AmidesAmides are formed by the reaction of carboxylic acids with amines.

RCOOH + H2NR' -->

-H2O

CONH linkage is known as the amide linkage ( peptide) in proteins

This linkage is formed when several amino acids join with their acid and amino groups together.

Slide 63 / 97

29 Which is the best description of a carbonyl group?

A an oxygen joined to a carbon by a single covalent bond

B a nitrogen and two hydrogens joined to a carbon by covalent bonds

C a carbon joined to two hydrogens by single covalent bonds

D a sulfur and a hydrogen joined to a carbon by covalent bonds

E a carbon atom joined to an oxygen by a double covalent bond

Slide 64 / 97

30 What is the name of the functional group shown below. A carbonylB ketoneC aldehydeD carboxylE hydroxyl

Slide 65 / 97

31 Which of the following contains nitrogen in addition to carbon, oxygen, and hydrogen?

A an alcohol such as ethanolB a monosaccharide such as glucoseC a steroid such as testosteroneD an amino acid such as glycineE a hydrocarbon such as benzene

Slide 66 / 97

32 What type of functional group is shown in the compound below?

A carbonylB ketoneC aldehydeD carboxylE hydroxyl

Slide 67 / 97

33 Which molecule contains an amine functional group?

Slide 68 / 97

34 Which molecule contains an aldehyde functional group?

Slide 69 / 97

35 Which molecule contains an alcohol functional group?

Slide 70 / 97

36 Which one of the following is not an alcohol?

A acetone

B glycerol

C ethanol

D cholesterol

E ethylene glycol

Slide 71 / 97

Macromolecules

Macromolecules are large molecules composed of smaller molecules.

They are complex in their structures.

Carbon has the unique property of joining together via covalent bonding to form large (macro) molecules. Most macromolecules are polymers, built from monomers.

Slide 72 / 97

Macromolecules

Three of the classes of life’s organic molecules are polymers:

There are some macromolecules that are not polymers:

lipidsphospholipidssteroids

ProteinsCarbohydratesNucleic acids

Slide 73 / 97

Although organisms share the same limited number of monomer types, each organism is unique based on the arrangement of monomers into polymers

An immense variety of polymers can be built from a small set of monomers

Polymers

Polymer Made of these monomers

Proteins Amino acids Carbohydrates Simple sugars (monosaccharides)

Nucleic acids Nucleotides

Slide 74 / 97

Monomers form larger molecules by condensation reactions called dehydration reactions

Polymers

Is a long molecule consisting of many similar building blocks called monomers

longer polymer

Monomershort polymer

Slide 75 / 97

Amino Acids and Proteins

Proteins are formed when several amino acids combine together

Acid and amine end of the molecules join together to form long peptide chain

Peptide chain with 50 or more amino acids can form an individual protein.

Slide 76 / 97

Carbohydrates (sugars)Simple sugars are poly-hydroxy aldehydes or ketones.

Table sugar, (sucrose) is made up of glucose and fructose.

They all have several hydroxyl groups in their structure that makes them soluble in water.

C

glucose fructose

(monosaccharide)

Glucose and fructose are monosaccharides.

Sucrose is a disaccharide.

Slide 77 / 97

In solution, they form cyclic structures.

These can form chains of sugars that form structural molecules such as starch and cellulose.

Carbohydrates (sugars)

Slide 78 / 97

Nucleic Acids

Nucleic acids are made up of monomer units called nucleotides

Sugar + Base + PO43- = nucleotide

Slide 79 / 97

Two of the building blocks of RNA and DNA are sugars (ribose or deoxyribose)

and cyclic bases (adenine, guanine, cytosine, and thymine or uracil)

Nucleic AcidsSlide 80 / 97

RNA DNA

carry genetic code

A, C, G and T

deoxyribose

Deoxyribonucleic acid

make proteins

A, C, G and U

ribose

Ribonucleic acidAcid

Sugar

Bases

Function

Slide 81 / 97

Nucleotides combine to form the familiar double-helix form of the nucleic acids

The blue ribbon is the sugar/phosphate backbone

The bases are the rungs in the (spiral) ladder

The nucleotides join together via hydrogen bonding through their basesA-T, C-G etc.

Nucleic Acids

Slide 82 / 97

37 Which of the following is not one of the four major groups of macromolecules found in living organisms?

A glucoseB carbohydratesC lipidsD proteinsE nucleic acids

Slide 83 / 97

38 Glucose is a type of _______.

A amino acidB proteinC carbohydrateD nucleotideE nucleic acids

Slide 84 / 97

39 Nucleic acids are made up of __________.

A amino acidsB proteinsC carbohydratesD nucleotidesE sugars

Slide 85 / 97

40 A nucleotide consists of _____________.

A glucose + fructose + amino acidB glucose + fructose + phosphate groupC amino acid + protein + phosphate group D sugar + base + amino acidE sugar + base + phosphate group

Slide 86 / 97

41 Polymers of polysaccharides and proteins are all synthesized from monomers by which process?

A connecting monosaccharides together (condensation reactions)

B the addition of water to each monomer (hydrolysis)C the removal of water (dehydration reactions)D ionic bonding of the monomers

E the formation of disulfide bridges between monomers

Slide 87 / 97

Other complex molecules of lifeFats and Lipids

Are a diverse group of hydrophobic molecules

Are the one class of large biological molecules that do not consist of polymers

Share the common trait of being hydrophobic

Slide 88 / 97

FatsAre constructed from two types of smaller molecules, a single glycerol and usually three fatty acids

Fatty acidsCarboxylic acids with a very long chain of carbon atoms.Vary in the length and number and locations of double bonds they contain

Fats and Fatty Acids

a fatty acid

CH2OH

CH2OH

CH2OH

glycerol

Slide 89 / 97

Dehydration Synthesis

The attachment of a fatty acid to glycerol results in a removal of a water molecule.

Slide 90 / 97

The diagram shows three fatty acids added to glycerol producing a fat molecule.

Slide 91 / 97

Saturated fatty acidsHave the maximum number of

hydrogen atoms possible

Have no double bonds in their carbon chain

Mainly animal origin

Unsaturated fatty acidsHave one or more double bonds

When hydrogenated ( add more Hydrogen) they become solid and saturated

Mainly plant origin

Saturated and Unsaturated Fatty Acids

Slide 92 / 97

Have only two fatty acids

Have a phosphate group instead of a third fatty acid

Results in a bilayer arrangement found in cell membranes

Phospholipids

Slide 93 / 97

Are lipids characterized by a carbon skeleton consisting of three or more fused rings

cholesterol

Steroids

Slide 94 / 97

42 Which of the following is (are) true for the class of large biological molecules known as lipids?

A They are insoluble in water.B They are an important constituent of cell membranes.

C They provide the least amount of energy in living organisms

D Only A and B are correct.E A, B, and C are correct.

Slide 95 / 97

43 Saturated fatty acids A are the predominant fatty acid in corn oil.

B have double bonds between carbon atoms of the fatty acids.

C have a higher ratio of hydrogen to carbon than do unsaturated fatty acids.

D are usually liquid at room temperature.

E are usually produced by plants.

Slide 96 / 97

44 The hydrogenation of vegetable oil would result in which of the following? A a decrease in the number of carbon-carbon

double bonds in the oil (fat) molecules

B an increase in the number of hydrogen atoms in the oil (fat) molecule

C the oil (fat) being a solid at room temperature

D A and C only

E A, B, and C

Slide 97 / 97