Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science...

51
Slant Anisotropy and Tilt-dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley http://john.berkeley.edu James M. Hillis Dept. of Psychology Univ. of Pennsylvania Simon J. Watt Vision Science Program UC Berkeley Michael S. Landy Dept. of Psychology NYU Martin S. Banks Vision Science Program, Optometry & Psychology UC Berkeley Supported by NIH, NSF
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    212
  • download

    0

Transcript of Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science...

Page 1: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Slant Anisotropy and Tilt-dependent Variations in Stereo

Precision

Slant Anisotropy and Tilt-dependent Variations in Stereo

Precision

Tandra GhoseVision Science Program

UC Berkeley

http://john.berkeley.edu

James M. HillisDept. of Psychology

Univ. of Pennsylvania

Simon J. WattVision Science Program

UC Berkeley

Michael S. LandyDept. of Psychology

NYU

Martin S. BanksVision Science Program,Optometry & Psychology

UC BerkeleySupported by NIH, NSF

Page 2: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Slant Anisotropy

Tilt 0

Tilt 90

Page 3: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Slant Anisotropy

Less slant perceived in stereograms for slant about vertical axis (tilt = 0) than for slant about horizontal axis (tilt = 90)

Why?

Page 4: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Theories of Slant Anisotropy

• Orientation disparity & tilt Cagenello & Rogers (1988, 1993)

• Size and shear disparity processed differently Mitcheson & McKee (1990)

Mitcheson & Westheimer (1990)Gillam et al (1991, 1992)Banks, Hooge, & Backus (2001)

• Straightening the curved horizontal horopterGarding et al (1995)Frisby et al (1999)

• Cue conflict between disparity & other slant cues

o

Page 5: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Real Surfaces & Slant Anisotropy

Bradshaw et al (2002) examined slant anisotropy for virtual & real surfaces & found no slant anisotropy with real surfaces.conflict crucial to the effect

Random-dot virtual surfaces Real surfaces

Page 6: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Theories of Slant Anisotropy

• Orientation disparity & tilt Cagenello & Rogers (1988, 1993)

• Size and shear disparity processed differently Mitcheson & McKee (1990)

Mitcheson & Westheimer (1990)Gillam et al (1991, 1992)Banks, Hooge, & Backus (2001)

• Straightening the curved horizontal horopterGarding et al (1995)Frisby et al (1999)

• Cue conflict between disparity & other slant cues

o

Page 7: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Theories of Slant Anisotropy

• Orientation disparity & tilt Cagnello & Rogers (1988, 1993)

• Size and shear disparity processed differently Mitcheson & McKee (1990)

Mitcheson & Westheimer (1990)Gillam et al (1991, 1992)Banks, Hooge, & Backus (2001)

• Straightening the curved horizontal horopterGarding et al (1995)Frisby et al (1999)

• Cue conflict between disparity & other slant cues

o

Page 8: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Cue Combination

Multiple depth cues are used to estimate 3D shape

Page 9: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Cue Combination

Estimates can be combined by a weighted average

ˆ ˆ ˆD D T TS w S w S ˆ

ˆD

T

S

S

2

2 2

1

1 1D

D

D T

w

2

2 2

1

1 1T

T

D T

w

: slant estimate from disparity

: slant estimate from texture

If the cues have uncorrelated noises, weighted average has minimal variance if:

Page 10: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Cue Combination

Estimates can be combined by a weighted average

ˆ ˆ ˆD D T TS w S w S

Combined estimate is shifted toward single-cue estimate of lower variance

Page 11: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

The relevant cues in the phenomenon are slant from disparity & slant from texture

So we have:

In random-element stereograms:

so where

Thus, we expect less perceived slant when wD is small

We propose that wD less for tilt 0 than for tilt 90

Cue Combination & Slant Anisotropy

Page 12: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

The relevant cues in the phenomenon are slant from disparity & slant from texture

So we have:

In random-element stereograms:

so where

Thus, we expect less perceived slant when wD is small

We propose that wD less for tilt 0 than for tilt 90

Cue Combination & Slant Anisotropy

ˆ ˆ ˆD D T TS w S w S

Page 13: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

The relevant cues in the phenomenon are slant from disparity & slant from texture

So we have:

In random-element stereograms:

so where

Thus, we expect less perceived slant when wD is small

We propose that wD less for tilt 0 than for tilt 90

Cue Combination & Slant Anisotropy

ˆ ˆ ˆD D T TS w S w S

ˆ 0TS

Page 14: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

The relevant cues in the phenomenon are slant from disparity & slant from texture

So we have:

In random-element stereograms:

so where

Thus, we expect less perceived slant when wD is small

We propose that wD less for tilt 0 than for tilt 90

Cue Combination & Slant Anisotropy

ˆ ˆ ˆD D T TS w S w S

ˆ ˆD DS w S 1Dw

ˆ 0TS

Page 15: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

The relevant cues in the phenomenon are slant from disparity & slant from texture

So we have:

In random-element stereograms:

so where

Thus, we expect less perceived slant when wD is small

We propose that wD less for tilt 0 than for tilt 90

Cue Combination & Slant Anisotropy

ˆ ˆ ˆD D T TS w S w S

ˆ ˆD DS w S 1Dw

ˆ 0TS

Page 16: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

The relevant cues in the phenomenon are slant from disparity & slant from texture

So we have:

In random-element stereograms:

so where

Thus, we expect less perceived slant when wD is small

We propose that wD is less for tilt 0 than for tilt 90

Cue Combination & Slant Anisotropy

ˆ ˆ ˆD D T TS w S w S

ˆ ˆD DS w S 1Dw

ˆ 0TS

Page 17: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Cue Combination & Slant Anisotropy

ˆ ˆT DS SWith real surfaces:

so

Thus, we expect variation in wD to have little or

no effect on perceived slant because the weights presumably add to 1

Page 18: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Cue Combination & Slant Anisotropy

ˆ ˆ ˆD D T TS w S w S

ˆ ˆT DS SWith real surfaces:

so

Thus, we expect variation in wD to have little or

no effect on perceived slant because the weights presumably add to 1

Page 19: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Cue Combination & Slant Anisotropy

ˆ ˆ ˆD D T TS w S w S

ˆ ˆT DS SWith real surfaces:

so

Thus, we expect variation in wD to have little or

no effect on perceived slant.

Page 20: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Cue Combination & Slant Anisotropy

To test the idea that slant anisotropy results from cue conflicts and lower disparity weight with tilt 0, we …..

1. Measured slant discrimination with single cues (disparity & texture) at tilt 0 and 90

2. Used those measurements to predict weights for two-cue experiment at tilt 0 and 90

3. Measured slant discrimination in two-cue experiment at tilt 0 and 90

4. Compared the predicted and observed weights

Page 21: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Cue Combination & Slant Anisotropy

To test the idea that slant anisotropy results from cue conflicts and lower disparity weight with tilt 0, we …..

1. Measured slant discrimination with single cues (disparity & texture) at tilt 0 and 90

2. Used those measurements to predict weights for two-cue experiment at tilt 0 and 90

3. Measured slant discrimination in two-cue experiment at tilt 0 and 90

4. Compared the predicted and observed weights

Page 22: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Cue Combination & Slant Anisotropy

To test the idea that slant anisotropy results from cue conflicts and lower disparity weight with tilt 0, we …..

1. Measured slant discrimination with single cues (disparity & texture) at tilt 0 and 90

2. Used those measurements to predict weights for disparity and texture at tilt 0 and 90

3. Measured slant discrimination in two-cue experiment at tilt 0 and 90

4. Compared the predicted and observed weights

Page 23: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Cue Combination & Slant Anisotropy

To test the idea that slant anisotropy results from cue conflicts and lower disparity weight with tilt 0, we …..

1. Measured slant discrimination with single cues (disparity & texture) at tilt 0 and 90

2. Used those measurements to predict weights for disparity and texture at tilt 0 and 90

3. Measured slant discrimination in two-cue experiment at tilt 0 and 90

4. Compared the predicted and observed weights

Page 24: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Cue Combination & Slant Anisotropy

To test the idea that slant anisotropy results from cue conflicts and lower disparity weight with tilt 0, we …..

1. Measured slant discrimination with single cues (disparity & texture) at tilt 0 and 90

2. Used those measurements to predict weights for disparity and texture at tilt 0 and 90

3. Measured slant discrimination in two-cue experiment at tilt 0 and 90

4. Compared the predicted and observed weights

Page 25: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Single-cue Experiment

• 2-IFC: choose interval which has more positive slantno feedback

• Standard S = –60,-30,0,30 or 60 degS controlled by 2-down,1-up staircases

• Discrimination thresholds measured for tilts 0 and 90

• Measured for texture alone & for disparity aloneused for estimating D

2 and T

2

and from that we can derive predicted weights wD and wT

Page 26: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Texture threshold

Monocular viewing

Stimulus

Page 27: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Disparity Threshold

Binocular viewing

Stimulus

Page 28: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Two-cue Experiment

• 2-IFC: which interval has more positive slant?

• 2 conflict conditions: ST or SD fixed at -60, -30, 0, 30 or 60

deg for two tilts (0 and 90 deg) & the other one varied

• Conflict (difference between fixed and varied cue): -10, -5, 0, 5 & 10 deg

S of no-conflict stimulus controlled by 2-down,1-up and 1- down,2-up staircases

Page 29: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Two-cue Experiment

No-conflict stimulusDisparityTexture

specified slant

Conflict stimulusDisparityTexture

specified slant

For each conflict stimulus, we find the value of the no-conflict stimulus that has the same perceived slant (PSE).

Page 30: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Texture Dominance

SD varied

Sfixed

Svaried in Conflict Stimulus (deg)

PS

E (

deg

)ST varied

wT = 1

wD = 0

Page 31: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Disparity Dominance

SD varied

Sfixed

Svaried in Conflict Stimulus (deg)

PS

E (

deg

)ST varied

wT = 0

wD = 1

Page 32: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Two-cue Results

50 60conflict (deg)

Base Slant = 60

50 60conflict (deg)

SJW

tilt 0 tilt 90

PS

E (

deg

)

Sfixed Sfixed

50 60 70

PS

E

50 60 70

50

60

70

50

60

70

Svaried in Conflict Stimulus (deg)

SD variedST varied

Page 33: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Predictions

50 60conflict (deg)

Base Slant = 60

50 60conflict (deg)

SJW

tilt 0 tilt 90

PS

E (

deg

)

Sfixed Sfixed

50 60 70

PS

E

50 60 70

50

60

70

50

60

70

Svaried in Conflict Stimulus (deg)

SD variedST varied

Page 34: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Two-cue Results

50 60conflict (deg)

Base Slant = 30

50 60conflict (deg)

SJW

tilt 0 tilt 90

PS

E (

deg

)

Sfixed Sfixed

20 30 4020 30 40

20

30

40

20

30

40

Svaried in Conflict Stimulus (deg)

Page 35: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Predictions

50 60conflict (deg)

Base Slant = 30

50 60conflict (deg)

SJW

tilt 0 tilt 90

PS

E (

deg

)

Sfixed Sfixed

20 30 4020 30 40

20

30

40

20

30

40

Svaried in Conflict Stimulus (deg)

Page 36: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Two-cue Results

50 60conflict (deg)

Base Slant = 0

50 60conflict (deg)

SJW

tilt 0 tilt 90

PS

E (

deg

)

Sfixed Sfixed

-10 0 10

PS

E

-10 0 10

-10

0

10

-10

0

10

Svaried in Conflict Stimulus (deg)

Page 37: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Predictions

50 60conflict (deg)

Base Slant = 0

50 60conflict (deg)

SJW

tilt 0 tilt 90

PS

E (

deg

)

Sfixed Sfixed

-10 0 10

PS

E

-10 0 10

-10

0

10

-10

0

10

Svaried in Conflict Stimulus (deg)

Page 38: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Two-cue Results

50 60conflict (deg)

Base Slant = -30

50 60conflict (deg)

SJW

tilt 0 tilt 90

PS

E (

deg

)

Sfixed Sfixed

-40 -30 -20 -40 -30 -20

-40

-30

-20

-40

-30

-20

Svaried in Conflict Stimulus (deg)

Page 39: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Predictions

50 60conflict (deg)

Base Slant = -30

50 60conflict (deg)

SJW

tilt 0 tilt 90

PS

E (

deg

)

Sfixed Sfixed

-40 -30 -20 -40 -30 -20

-40

-30

-20

-40

-30

-20

Svaried in Conflict Stimulus (deg)

Page 40: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Two-cue Results

50 60 70conflict (deg)-70 -60 -50

-70

-60

-50

Base Slant = -60

50 60 70conflict (deg)-70 -60 -50

-70

-60

-50

SJW

tilt 0 tilt 90

Svaried in Conflict Stimulus (deg)

PS

E (

deg

)

Sfixed Sfixed

Page 41: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Predictions

50 60 70conflict (deg)-70 -60 -50

-70

-60

-50

Base Slant = -60

50 60 70conflict (deg)-70 -60 -50

-70

-60

-50

SJW

tilt 0 tilt 90

Svaried in Conflict Stimulus (deg)

PS

E (

deg

)

Sfixed Sfixed

Page 42: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Predictions

50 60 70conflict (deg)-70 -60 -50

-70

-60

-50

Base Slant = -60

50 60 70conflict (deg)-70 -60 -50

-70

-60

-50

RM

tilt 0 tilt 90

Svaried in Conflict Stimulus (deg)

PS

E (

deg

)

Sfixed Sfixed

Page 43: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Predictions

50 60conflict (deg)

Base Slant = -30

50 60conflict (deg)

tilt 0 tilt 90

PS

E (

deg

)

Sfixed Sfixed

-40 -30 -20 -40 -30 -20

-40

-30

-20

-40

-30

-20

Svaried in Conflict Stimulus (deg)

RM

Page 44: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Predictions

50 60conflict (deg)

Base Slant = 0

50 60conflict (deg)

tilt 0 tilt 90

PS

E (

deg

)

Sfixed Sfixed

-10 0 10

PS

E

-10 0 10

-10

0

10

-10

0

10

Svaried in Conflict Stimulus (deg)

RM

Page 45: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Predictions

50 60conflict (deg)

Base Slant = 30

50 60conflict (deg)

tilt 0 tilt 90

PS

E (

deg

)

Sfixed Sfixed

20 30 4020 30 40

20

30

40

20

30

40

Svaried in Conflict Stimulus (deg)

RM

Page 46: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Predictions

50 60conflict (deg)

Base Slant = 60

50 60conflict (deg)

tilt 0 tilt 90

PS

E (

deg

)

Sfixed Sfixed

50 60 70

PS

E

50 60 70

50

60

70

50

60

70

Svaried in Conflict Stimulus (deg)

RM

Page 47: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Conclusions

1. In the single-cue experiment, disparity thresholds were slightly, but consistently, lower with tilt 90 than with tilt 0.

2. Therefore, we predicted that with tilt = 0 deg, weight given to disparity is relatively less than with tilt = 90, and that’s what we found.

3. Slant anisotropy is thus a byproduct of cue conflict between disparity- and texture-specified slants.

4. However, the cause of poorer disparity thresholds at tilt = 0 remains mysterious.

Page 48: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Single-cue Experiment

The thresholds were used to determine the variances of the disparity and texture estimators at different tilts and base slants.

2

2 2T

DD T

Tw

T T

2

2 2D

TD T

Tw

T T

2 2

2 2D T T

T D D

w T

w T

Empirical weightsSingle cue thresholds

% “

mo

re s

lan

t”

50%

75%

threshold

slant difference

Page 49: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Single-Cue data

Disparity threshold Texture threshold

Base-Slant (deg)

Log(

thre

shol

d)

Tilt=0

Tilt=90

Page 50: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

Single-Cue data

Disparity threshold Texture threshold

Base-Slant (deg)

Log(

thre

shol

d)

Tilt=0

Tilt=90

Page 51: Slant Anisotropy and Tilt- dependent Variations in Stereo Precision Tandra Ghose Vision Science Program UC Berkeley  James M. Hillis.

With real surfaces:

so

Thus, we expect variation in wD to have little or

no effect on perceived slant.

S = wD*SD + (1-wD)*ST

S = ST

Cue Combination & Slant Anisotropy

ˆ ˆ ˆD D T TS w S w S

ˆ ˆT DS S