SLA-LVP Deep Discharge SLA Battery Protection · PDF file · 2017-07-06SLA-LVP Deep...

40
1 picoUPS-100-LVP Advanced SLA UPS / Charger With Battery Protection SLA-LVP Deep Discharge SLA Battery Protection Module Sealed lead acid (SLA), Lithium Ion (Li-Ion) Lithium Polymer (Li-Po) or LiFePO4 batteries, are permanently destroyed when they are over discharged. The SLA-LVP module is designed around the ICL7665 voltage monitor ic and provides protection against destructive deep discharge condition, through its constant monitoring of the SLA battery voltage. When the critical discharge threshold voltage is approaching, the SLA-LVP module triggers an early warning alarm to indicate that corrective action (such as battery recharging) is required. If corrective action is not taken, the SLA-LVP will then automatically cut off the load as soon as the critical discharge voltage is reached. The SLA-LVP will keep the load disconnected until the battery voltage is restored to an acceptable level, at which time it will automatically reconnect the load. The SLA-LVP is simply installed between the SLA battery and the load. It has been designed as an add-on battery protec- tion circuit for use with the picoUPS-100 uninterruptible power supply / charger module from www.mini-box.com to provide an advanced featured SLA uninterruptible battery backup power supply for a wide range of applications. The SLA-LVP module when combined together with the picoUPS-100 results in a highly compact, advanced featured modu- lular solution for custom SLA battery based uninterruptible power power supply battery backup systems. Features SLA battery deep discharge protection Early warning discharge alarm: selectable Beeper or flashing LED MOSFET load switching up to 10A Adjustable hysteresis Adjustable Early Warning voltage trigger voltage Adjustable battery cutoff voltage Designed for the picoUPS-100 uninterruptible power supply / battery charger module Typical Applications SLA battery deep discharge protection Custom Uninterruptible power supplies Portable battery powered systems Battery backup systems Emergency power supplies Alarm systems SLA-LVP module picoUPS-100-LVP module (picoUPS-100 plus SLA-LVP)

Transcript of SLA-LVP Deep Discharge SLA Battery Protection · PDF file · 2017-07-06SLA-LVP Deep...

1

picoUPS-100-LVP Advanced SLA UPS / Charger With Battery Protection

SLA-LVP Deep Discharge SLA Battery Protection Module

Sealed lead acid (SLA), Lithium Ion (Li-Ion) Lithium Polymer (Li-Po) or LiFePO4 batteries, are permanently destroyed whenthey are over discharged. The SLA-LVP module is designed around the ICL7665 voltage monitor ic and provides protectionagainst destructive deep discharge condition, through its constant monitoring of the SLA battery voltage. When the criticaldischarge threshold voltage is approaching, the SLA-LVP module triggers an early warning alarm to indicate that correctiveaction (such as battery recharging) is required. If corrective action is not taken, the SLA-LVP will then automatically cut offthe load as soon as the critical discharge voltage is reached.

The SLA-LVP will keep the load disconnected until the battery voltage is restored to an acceptable level, at which time it willautomatically reconnect the load.

The SLA-LVP is simply installed between the SLA battery and the load. It has been designed as an add-on battery protec-tion circuit for use with the picoUPS-100 uninterruptible power supply / charger module from www.mini-box.com to providean advanced featured SLA uninterruptible battery backup power supply for a wide range of applications.

The SLA-LVP module when combined together with the picoUPS-100 results in a highly compact, advanced featured modu-lular solution for custom SLA battery based uninterruptible power power supply battery backup systems.

Features● SLA battery deep discharge protection

● Early warning discharge alarm: selectable Beeper or flashing LED

● MOSFET load switching up to 10A

● Adjustable hysteresis

● Adjustable Early Warning voltage trigger voltage

● Adjustable battery cutoff voltage

● Designed for the picoUPS-100 uninterruptible power supply / batterycharger module

Typical Applications● SLA battery deep discharge protection

● Custom Uninterruptible power supplies

● Portable battery powered systems

● Battery backup systems

● Emergency power supplies

● Alarm systems

SLA-LVP modulepicoUPS-100-LVP module(picoUPS-100 plus SLA-LVP)

2

Basic Operation

It is important to note that the SLA battery terminal voltage under load will be lower than the battery terminal voltage when theload is removed. When the load is removed, the battery voltage rebounds to a higher voltage. The amount of voltage rebounddepends on the load current draw and the state of battery charge.

For example:

A 12V SLA battery supplying a load current of 5A can measure 11V under load after some time, but as soon as the load is re-moved, the battery voltage can rebound to 12.3V. This effect is taken into account when configuring the SLA-LVP module EarlyWarning (E/W) threshold voltage and the Low Voltage Protection (LVP) load cut-off voltage.

The SLA-LVP modules are pre-configured E/W trigger voltage of:

● 11.7V

and a LVP load cut-off voltage of:

● 11.5V

With the above E/W and LVP settings, when the battery voltage drops to 11.7V the E/W is triggered and the module startsbeeping its alarm (or flashes its LED depending on the jumper setting) to signal that battery recharging is required. When theexternal power supply is connected to the picoUPS-100-LVP, then the beeping E/W alarm will stop.

If the charging power supply is not connected to the module, the battery voltage continues to drop. Once it reaches the 11.5VLVP threshold setting, the picoUPS-100-LVP automatically disconnects the load and ends the E/W alarm and is locked in pro-tection mode, preventing further discharge to the battery.

The picoUPS-100-LVP recovers out of protection mode as soon as the 16V external charging power supply is connected to thepicoUPS-100-LVP and the battery is recharged.

The SLA-LVP module may be user reconfigured for alternative E/W and LVP voltage thresholds, via the relevant on-board po-tentiometers as described in configuration below.

Custom LVP and E/W Configuration

The SLA-LVP module is pre-configured with its E/W and LVP threshold voltages at 11.7V and 11.5 V respectively. With thesesettings, the E/W will trigger when the battery voltage drops to 11.7 V and the LVP load cut-off will occur when the battery volt-age is at 11.5V.

The LVP hysteresis is set to 1.5V to allow for battery voltage rebound condition when the load is cut-off. Without the hysteresisallowance, undesired load switching oscillation will occur. From tests, it has been determined that the 1.5V hysteresis is justgreater than the rebound voltage which is desired to prevent oscillation.

Fixed resistors R1 (180K) and R4 (10K) set the hysteresis for LVP and E/W respectively. R1 is the most critical in oscillationprevention. To increase the hysteresis, a higher value will be used or a lower value for reduced hysteresis.

The “LV set” potentiometer is used to set the LVP cut-off voltage. To change the LVP and E/W voltages, proceed with the stepson the next page.

Equipment required:

● Variable DC power supply with an output voltage up to 16V

● Voltmeter or multimeter

● Small flat tip screwdriver

3

1. Turn the “LV Set” potentiometer fully clockwise

2. Set variable power supply to 15V and connect power to power supply input screw terminal

3. Connect a multimeter (Voltage scale) to the Vout terminals. Multimeter should measure 15V.

4. Adjust the variable power supply down to the desired LVP cut-off voltage

5. Slowly adjust the LV Set potentiometer counter clockwise whilst monitoring the V out on the multimeter

6. When Vout measured on the multmeter suddenly drops to read 0V stop adjusting. The LVP cut-off voltage has now been set .

7. Slowly increase the voltage on the variable power supply. (Do not exceed 15V). And monitor the multimeter voltage

8. When the mutimeter reads the power supply voltage, Vout has turned ON and the upper hysteresis turn-on voltage can benoted. Always, after LVP cutoff has occurred, at least this upper voltage must be applied to restore the Vout to the load.

After the “LVP set” has been custom configured as described above, the E/W trigger voltage can be then be custom configured as fol-lows:

1. Set variable power supply to 15V and connect power to power supply input screw terminal.

2. Connect a multimeter (Voltage scale) to the Vout terminals. Multimeter should measure 15V.

3. Adjust the variable power supply down to the desired E/W cut-off voltage. This voltage setting will be a slightly higher voltagethan the LVP cut-off voltage setting.

4. Adjust the “E/W Set” potentiometer to the point at which the beeper / LED triggers.

5. When the beeper / LED triggers stop adjusting the potentiometer. The E/W voltage is now set .

Once the LVP and E/W has been custom configured, connect the load and test the performance by simulating the SLA battery dis-charge by slowly reducing the power supply voltage. IMPORTANT: Never exceed the maximum input voltage of 16V. Doing so will de-stroy the SLA-LVP module.

E/W adjust

LVP adjust

E/W output select

E/W outputs

To multimeter /voltmeter / load

To variable powersupply. 16V max.

LVP Hysteresis R1

E/W Hysteresis R4

Setting Low Voltage Protection (LVP) Cut-Off

4

This sidebar is for Advanced Custom Configuration Only for special applications that require LVP and E/W settingsthat are beyond the adjustable range capabilities determined by the existing SLA-LVP on-board component values.

Refer to the ICL7665 data sheet formula fig. 5 on page 8 for calculating custom hysteresis values. Cross reference data sheetdesignations to module designations as follows:

For LVP values: (R21-data sheet =Vset+R2 on module, R31=R1 on module, R11-data sheet=R3=150K on module)

For E/W values: (R22-data sheet=E/W+R5 on module, R32-data sheet=R4 on module, R12-data sheet=R6 on module)

Advanced Custom LVP and E/W Configuration

Vout to load

Vout

Vin 16VDC max.

to 12V SLA battery

To external16VDC powersupply

Pairing picoUPS-100 with SLA-LVP

The SLA-LVP module has eight mounting holes. The four inner holes align with the the picoUPS-100 for stand-off mounting the two as-semblies together into one compact device as shown on page 1.

The interconnect wiring is shown below, together with connection details to an external power supply, 12V SLA battery, and the load

SLA Battery

Charger PSU

Load

SLA-LVP

The SLA-LVP module may be used without the picoUPS-100 module, as shown below. In this case, the SLA battery and the SLA-LVPmodule need an isolation circuit such as a switch or relay when the external charger power supply is connected to charge the battery.

5

1.51

in.

3.11 in.

2.41 in.

2.94 in.

SLA-LVP Mounting Hole Dimensions

6

Buck / Boost DC-DC Converterprovides slectable 5V, 12V,15V, 16V, 18V, 19V 20V or24VDC regulated output

SLA-LVP module

PicoUPS-100 module

Regulated DC output fromBuck/Boost DC-DC Converter

SLA battery output

12V, 4.5Ah SLA Battery

Select DC voltage out-put and slected outputvoltage displayStatus LED: Amber - Charging. Red - Battery

Backup ON. Green - External Power Supply ON

External 16VDC PowerSupply /Charger In

Application Example: Rechargeable SLA Battery Power Pack / UPS

This power pack uses the picoUPS-100-LVP modules and includes a DC-DC Buck/Boost regulator to provide multiple selectableoutput voltages from 5V to 24V. The SLA battery management is taken care of by the picoUPS-100-LVP which provides powerstatus indication, 3 stage battery charging, deep discharge protection and more.

7

Parameters Characteristics Comments

E/W Trigger Voltage 11.7V Adjustable

LVP load cut-off voltage 11.5V Adjustable

Max Input Voltage 16V

Max Load Current 5A

No Load Current 0.2mA Vin=12V

E/W output Beeper / LED Jumper selectable

Output Voltage =Input Voltage

LVP Hysteresis 1.5V

Output enable 13V Vin voltage

Reverse Polarity Protection None

Dimensions 1.5in. X 3.1 in. X 0.5 in. SLA-LVP module only

Dimensions 1.5in. X 3.1 in. X 1.35 in. PicoUPS-100-LVP with 0.4” stand-offs

Technical Characteristics

Ordering Information

Part Number Description

picoUPS-100-LVP……. picoUPS-100 module plus SLA-LVP module

picoUPS-100..………… picoUPS-100 uninterruptible power supply

battery charger module

SLA-LVP……………..… SLA deep discharge protection module

ABACOM Technologies, Inc. 32 Blair Athol Crescent, Etobicoke, Ontario, M9A 1X5, Canada Tel:+1(416) 236 3858

website: http://www.abacom-tech.com email: [email protected]

8

The following pages contain the user manual forthe picoUPS-100 module

picoUPS-100 12V DC battery backup system

Micro UPS (uninterruptible power supply)

Quick Installation Guide Version 1.0b

P/N picoUPS-100 Introduction The picoUPS-100 is a small yet powerful UPS (uninterruptible power supply) solution. The picoUPS-100 was conveniently design to be compatible with quarter brick PSU standard (58 x 36mm). The picoPSU-100 ensures uninterrupted power for your electronics by automatically switching in between a DC input source (15-18V) and a Lead Acid (SLA battery). The switching in between the power sources is instantaneous, thus allowing smooth, uninterrupted device operation. The picoUPS-100 also has a built-in, two stage battery charger unit.

Mini-Box.com ATX DC-DC Converter Series

picoUPS-100 Quick Installation Guide Page 2

Mode of Operation The PICOUPS-100 has been specifically designed for uninterruptible small/medium power PC operation, where “always on” operating is required. Applications for the picoUPS include a wide range of systems including servers and telecom and high availability systems. These applications often have either N+1 redundant power supplies, redundant power buses, or both.

Fig 1.1 picoUPS block diagram

Power inputs 1) A 16V power source. The actual range for V(in) 15-18V. NOTE: Unit will work as low as 6V, but battery will not be charged if V(in) is lower than 15V!

2) A Lead Acid or Sealed Lead Acid battery Power Path Switching The picoUPS-100 will automatically switch in between V(In) and Batt depending on who has a higher voltage. The switching hysteresis is as low as 10mv. As a result, when AC/DC power is lost, the picoUPS will automatically switch to Battery output. The switching speed is about 100nS.

Mini-Box.com ATX DC-DC Converter Series

picoUPS-100 Quick Installation Guide Page 3

Battery charging, bulk charging mode The picoUPS-100 has a built in, two stage SLA battery charger. First stage is bulk charging stage, where the battery is being charged at a constant current of ~500mA. Depending on battery size and level of discharge, bulk charing stage can be anywhere from few minutes to few hours. For example, a typical 7AH / 12V SLA battery will fully change in 6-12 hours. During this time the Orange LED will be ON. Battery charging, float charging mode When the battery is near full capacity, charge current will slowly decrease. At this point, picoUPS will switch charging mode from bulk to float charge. Float charging ensures that the battery is kept at a precise 13.5V. Typical configuration A typical configuration for a low / medium power computer setup is comprised from a 12V / 7Ah battery, a 16V / 5A AC/DC adapter. The output can be coupled to ATX power supply such as M1-ATX, M2-ATX, M3-ATX or picoPSU-60-WI or picoPSU-120-25.

Specifications, picoUPS-100.

Power Ratings (max load = 10A)

Volts (V) Max Load (A) Peak Load (A) Bulk Charge 6-18V* 6A fanless / 10A fan 12A 500mA * if Vcc is below 15V unit will work but will not fully charge the Battery. Precautions for operating this DC-DC converter: -Inrush input current should not exceed 20A. -Peak load should not exceed 60 seconds. -Low voltage battery cut-off not provided by this module. -Float voltage is 13.5V (+/- 1%), use only with SLA batteries

Green LED: V(in) is active. V(in) is routed to V(out). Red LED: Batt is active. Batt is routed to V(Out). Orange LED: Batt is in bulk charging mode. Input Requirements: 16V regulated, min=2A, max = load dependent.

Mini-Box.com ATX DC-DC Converter Series

picoUPS-100 Quick Installation Guide Page 4

Size: 58mm(L) * 36mm(W) * 20mm (H) (1U compliant) Weight: 30gramms Connectors: Faston Blades, 0.187’ LED: 0603 status LEDs (Vcc, BATT, Charge) Overload protection This unit does not provide overload protection. Inrush current should not exceed more than 20A for 1 second. Operating environment Temperature: -20 to 65 degree centigrade. NOTE: For fanless operation, please ensure that the PSU body temperature, T(psu) does not exceed 75C. Higher temperatures are allowed, but MTBF could decrease. Maximum power supply body temperature T(psu) is 85C. Relative Humidity: 10 to 90 percent, non-condensing. Efficiency, MTBF: 95%. MTBF=100K hours at T(psu) 55Celsius. Shipping and storage Temperature -40 to +40 degree centigrade. Relative humidity 5 to 90 percent, non-condensing Warranty 1 Year Limited Warranty statement. Warranty is void if maintenance or calibration is performed by end-user or by use in conjunction with power modules not provided by mini-box.com. Support Web Site: http://www.mini-box.com/site/support.html

Features of Power-Sonic Sealed Lead Acid Batteries .................................................1

Battery Construction ........................................................................................................2

Theory of Operation ..................................................................................................3 & 4

Battery Capacity ........................................................................................................5 & 6

Battery Capacity Selector ................................................................................................7

Performance Data ............................................................................................................8 Discharge..................................................................................................................................8 OpenCircuitVoltage.................................................................................................................8 Temperature.............................................................................................................................9 ShelfLifeandStorage...........................................................................................................10 BatteryLife.......................................................................................................................10-11 OverDischarge.......................................................................................................................12

Charging ...........................................................................................................................12 ChargingTechniquesSummary............................................................................................13 ChargingCharacteristics........................................................................................................13 ChargingMethods..................................................................................................................13 ConstantVoltageCharging....................................................................................................14 ConstantCurrentCharging....................................................................................................15 Taper-CurrentCharging..........................................................................................................15 Overcharging..........................................................................................................................16 Undercharging........................................................................................................................16 ChargingforCycleOperation.................................................................................................16 ChargingforStandbyOperation............................................................................................16 Two-StepConstantVoltageCharging....................................................................................17 CharginginSeries..................................................................................................................17 CharginginParallel................................................................................................................18 TemperatureCompensation..................................................................................................18 TopCharging...........................................................................................................................18 ChargingEfficiency.................................................................................................................19

Important Do’s and Don’ts ............................................................................................20 Handling..................................................................................................................................20 Installation..............................................................................................................................20 Charging..................................................................................................................................21

Notes ................................................................................................................................22

Glossary ...........................................................................................................................24

Table of Contents

Sealed/Maintenance–FreeThevalveregulatedspillproofconstructionallowstrouble-freesafeoperationinanyposition.Thereisnoneedtoaddelectrolyte,asgasesgeneratedduringthechargephasearerecombinedinaunique“oxygencycle”.

Power-Sonicsealedleadacidbatteriescanbeoperatedinvirtuallyanyorientationwithoutthelossofcapacityorelectrolyteleakage.However,upsidedownoperationisnotrecommended.

Long Shelf LifeAlowself-dischargerate,uptoapproximately3%permonth,mayallowstorageoffullychargedbatteriesforuptoayear,dependingonstoragetemperatures,beforechargingbecomescritical.However, we strongly recommend that all batteries should be recharged within six months of receipt as it will enhance their long term life.

PleaserefertothisTechnicalManualandindividualbatteryspecificationsheetsformoredetails.

Design FlexibilitySamemodelbatteriesmaybeusedinseriesand/orparalleltoobtainchoiceofvoltageandcapacity.Thesamebatterymaybeusedineithercyclicorstandbyapplications.Over80modelsavailabletochoosefrom.

Deep Discharge RecoverySpecialseparators,advancedplatecompositionandacarefullybalancedelectrolytesystemensurethatthebatteryhastheabilitytorecoverfromexcessivelydeepdischarge.

EconomicalThehighwatt-hourperdollarvalueismadepossiblebythematerialsusedinasealedlead-acidbattery;theyarereadilyavailableandlowincost.

Easy HandlingNospecialhandlingprecautionsorshippingcontainers,surfaceorair,arerequiredduetotheleak-proofconstruction.PleaserefertothedeclarationofnonrestrictedstatusforD.O.T.andI.A.T.A.aslistedintheLiteraturesectionofourwebsite:www.power-sonic.com.

CompactPower-Sonicbatteriesutilizestateoftheartdesign,highgradematerials,andacarefullycontrolledplate-makingprocesstoprovideexcellentoutputpercell.Thehighenergydensityresultsinsuperiorpower/volumeandpower/weightratios.

Low Pressure Valve RegulatorsAllbatteriesfeatureaseriesoflowpressureone-wayreliefvalves.Thesevalvessafelyreleaseanyexcessiveaccumulationofgasinsidethebatteryandthenreseal.

High Discharge RateLowinternalresistanceallowsdischargecurrentsofuptotentimestheratedcapacityofthebattery.Relativelysmallbatteriesmaythusbespecifiedinapplicationsrequiringhighpeakcurrents.

Wide Operating Temperature RangePower-Sonicbatteriesmaybedischargedoveratemperaturerangeof-40°Cto+60°C(-40°Fto+140°F)andchargedattemperaturesrangingfrom-20°Cto+50°C(-4°Fto+122°F).

Rugged ConstructionThehighimpactresistantbatterycaseismadeofnon-conductiveABSplastic.Thecasematerialsimpartgreatresistancetoshock,vibration,chemicalsandheat.FlameRetardant(FR)batterycasesandlidsareavailablewheretheendapplicationdictates.

Long Service LifePS/PSHandPSGSeries:Haveadesignlifeofuptofiveyearsinstandbyapplications.Incyclicalapplicationsupto1,000charge/dischargecyclescanbeexpecteddependingonaveragedepthofdischarge.

PGSeries:Haveadesignlifeofupto10yearsinfloatapplications.

PleaseconsultthisTechnicalManualandproductspecificationstobecomeawareofthemanyfactorsthateffectproductlife.

Theinformationcontainedwithinisprovidedasaservicetoourcustomersandisfortheirinformationonly.Theinformationandrecommendationssetforthhereinaremadeingoodfaithandarebelievedtobeaccurateatthedate

compiled.Power-SonicCorporationmakesnowarrantyexpressedorimplied.

Features of Power-Sonic Sealed Lead Acid Batteries

POWER-SONIC Rechargeable Batteries �

Battery Construction

Relief valveIn case of excessive gas pressure build-up inside the battery, the relief valve will open and relieve the pressure. The one-way valve not only ensures that no air gets into the battery where the oxygen would react with the plates causing internal discharge, but also represents an important safety device in the event of excessive overcharge.

Vent release pressure is between 2-6 psi; the seal ring material is neoprene rubber.

TerminalsDepending on the model, batteries come either with AMP Faston type terminals made of tin plated brass, post type terminals of the same composition with threaded nut and bolt hardware, or heavy duty flag terminals made of lead alloy.

A special epoxy is used as sealing material surrounding the terminals.

ElectrolyteImmobilized dilute sulfuric acid: H2S04.

SeparatorsPower-Sonic separators are made of non-woven glass fiber cloth with high heat and oxidation resistance. The material further offers superior electrolyte absorption and retaining ability, as well as excellent ion conductivity.

Plates (electrodes)Power-Sonic utilizes the latest technology and equipment to cast grids from a lead-calcium alloy free of antimony. The small amount of calcium and tin in the grid alloy imparts strength to the plate and guarantees durability even in extensive cycle service. Lead dioxide paste is added to the grid to form the electrically active material.

In the charged state, the negative plate paste is pure lead and that of the positive lead dioxide. Both of these are in a porous or spongy form to optimize surface area and thereby maximize capacity. The heavy duty lead calcium alloy grids provide an extra margin of performance and life in both cyclic and float applications and give unparalleled recovery from deep discharge.

Leakproof Design & Operational SafetyThe leak proof construction of Power-Sonic batteries has ensured that our batteries have been approved for shipment by air, both by D.O.T. and I.A.T.A. Copies of these approvals are available on our website: www.power-sonic.com.

U.L’s component recognition program for emergency lighting and power batteries lists Power-Sonic under file number MH20845

Case SealingDepending on the model the case sealing is ultrasonic, epoxy or heat seal.

ContainerCase and lid material is ABS, high impact, resin with high resistance to chemicals and flammability. Case and cover are made of non-conductive ABS plastic to UL94-HB or UL94 V-O.

This case has molded-in dividers for each 2 volt cell.

POWER-SONIC Rechargeable Batteries �

DischargeDuringthedischargeportionofthereaction,leaddioxide(PbO2)isconvertedintoleadsulfate(PbSO4)atthepositiveplate.Atthenegativeplatespongelead(Pb)isconvertedtoleadsulfate(PbSO4).Thiscausesthesulfuricacid(2H2SO4)intheelectrolytetobeconsumed.

Figure �: Chemical reaction when a battery is being discharged

ChargeDuringtherechargephaseofthereaction,thecycleisreversed.Theleadsulfate(PbSO4)andwaterareelectrochemicallyconvertedtolead(Pb),leaddioxide(PbO4)andsulfuricacid(2H2SO4)byanexternalelectricalchargingsource.

Figure �: Chemical reaction when a battery is being charged

Theory of Operation

Thebasicelectrochemicalreactionequationinaleadacidbatterycanbewrittenas:

Oxygen Recombination Toproduceatrulymaintenance-freebattery,itisnecessarythatgasesgeneratedduringoverchargearerecombinedinaso-called“oxygencycle”.Shouldoxygenandhydrogenescape,agradualdryingoutwouldoccur,eventuallyaffectingcapacityandbatterylife.

Duringcharge,oxygenisgeneratedatthepositiveandreactswithandpartiallydischargesthespongeleadofthenegative.Aschargingcontinuestheoxygenrecombineswiththehydrogenbeinggeneratedbythenegative,formingwater.Thewatercontentoftheelectrolytethusremainsunchangedunlessthechargingrateistoohigh.

Incaseofrapidgenerationofoxygenexceedingtheabsorbingcapacityofthenegativeplate,thepressurereliefvalvewillopentoreleaseexcessivegas.

Deep DischargePower-Sonicbatteriesareprotectedagainstcellshortingbytheadditionofabufferingagentthatensuresthepresenceofacidionseveninafullydischargedstate.Power-Sonicdefines“deepdischarge”asonethatallowsthebatteryvoltageunderloadtogobelowthecut-off(or“final”)voltageofafulldischarge.Therecommendedcutoffvoltagevarieswiththedischargerate.Table1showsthefinaldischargevoltagespercell.

Itisimportanttonotethatdeepdischargingabatteryathighratesforshortperiodsisnotnearlyassevereasdischargingabatteryatlowratesforlongperiodsoftime.Toclarify,let’sanalyzetwoexamples:

• Battery A – Dischargedatthe1Cratetozerovolts.“C”fora4AHbattery,forexample,is4amps.Fulldischargeisreachedafterabout30minuteswhenthebatteryvoltagedropsto1.5V/cell.Atthispoint,only50%ofratedcapacityhasbeendischarged(1Campsx0.5hrs=0.5CAmp.Hrs).Continuingthedischargetozerovoltswillbringthetotalamountofdischargedampere-hourstoapproximately75%becausetherapidlydecliningvoltagequicklyreducescurrentflowtoatrickle.Thebatterywillrecovereasilyfromthistypeofdeepdischarge.

• Battery B – Dischargedatthe0.01Cratetozerovolts.0.0ICfora4AHbatteryis40mA.Fulldischargeisreachedafter100+hourswhentheterminalvoltagedropsto1.75V/cell.Atthispoint,thebatteryhasalreadydelivered100%ofitsratedcapacity(0.01x100hrs=1CAmp.Hrs.).Continuingthedischargetozerovoltswillkeepthebatteryunderloadforafurtherperiodoftime,squeezingouteverybitofstoredenergy.Thistypeof“deep”dischargeissevereandislikelytodamagethebattery.Thesooneraseverelydischargedbatteryisrecharged,thebetteritschancestofullyrecover.

Theory of Operation

Discharge Current Final Discharge Voltage Per Cell

0.1Corbelow,orintermittentdischarge 1.75

0.17Corcurrentclosetoit 1.75

0.6Corcurrentclosetoit 1.70

From1Cto2Corcurrentclosetoit 1.50

3Corcurrentclosetoitandabove 1.37

Table �: Final discharge voltage per cell

POWER-SONIC Rechargeable Batteries �

Capacity

Thecapacityofabatteryisthetotalamountofelectricalenergyavailablefromafullychargedcellorcells.Itsvaluedependsonthedischargecurrent,thetemperatureduringdischarge,thefinal(cut-off)voltageandthegeneralhistoryofthebattery.

Table2showscapacitiesforvariousmultiplesofthe20-hourdischargecurrentforPS,PSHandPSGmodels.

Rated Capacity

20 Hour Rate 10 Hour Rate 5 Hour Rate 1 Hour Rate

Amps AH Amps AH Amps AH Amps AH

0.5 AH 0.025 0.50 0.045 0.45 0.08 0.40 0.30 0.300.8 AH 0.04 0.80 0.072 0.72 0.13 0.65 0.48 0.481.1 AH 0.055 1.10 0.10 1.00 0.19 0.95 0.68 0.681.4 AH 0.07 1.40 0.13 1.30 0.24 1.20 0.85 0.852.0 AH 0.10 2.00 0.19 1.90 0.34 1.70 1.24 1.242.3 AH 0.115 2.30 0.225 2.25 0.39 1.95 1.38 1.382.5 AH 0.125 2.50 0.22 2.20 0.40 2.00 1.50 1.502.8 AH 0.14 2.80 0.25 2.50 0.48 2.40 1.70 1.702.9 AH 0.145 2.90 0.26 2.60 0.49 2.45 1.80 1.803.2 AH 0.16 3.20 0.30 3.00 0.54 2.70 2.00 2.003.4 AH 0.17 3.40 0.33 3.30 0.58 2.90 2.20 2.203.5 AH 0.175 3.50 0.33 3.40 0.59 2.95 2.17 2.173.8 AH 0.19 3.80 0.35 3.50 0.64 3.20 2.40 2.404.5 AH 0.225 4.50 0.41 4.10 0.64 3.20 2.75 2.755.0 AH 0.25 5.00 0.43 4.30 0.80 4.00 3.00 3.005.4 AH 0.27 5.40 0.50 5.00 0.90 4.50 3.60 3.605.5 AH 0.275 5.50 0.54 5.40 0.95 4.75 3.70 3.706.0 AH 0.30 6.00 0.56 5.60 0.98 4.90 3.60 3.606.5 AH 0.325 6.50 0.61 6.10 1.10 5.50 4.03 4.037.0 AH 0.35 7.00 0.63 6.30 1.19 5.95 4.34 4.347.2 AH 0.36 7.20 0.70 7.00 1.30 6.50 4.60 4.608.0 AH 0.40 8.00 0.78 7.75 1.40 7.00 4.80 4.808.5 AH 0.425 8.50 0.81 8.10 1.50 7.50 6.50 6.509.0 AH 0.45 9.00 0.83 8.30 1.54 7.70 5.60 5.60

10.0 AH 0.50 10.00 0.93 9.30 1.70 8.50 6.20 6.2010.5 AH 0.53 10.50 0.98 9.80 1.87 9.35 6.82 6.8212.0 AH 0.60 12.00 1.15 11.50 2.10 10.50 7.30 7.3013.0 AH 0.65 13.00 1.22 12.20 2.30 11.50 8.00 8.0014.0 AH 0.70 14.00 1.30 13.00 2.50 12.50 8.45 8.4518.0 AH 0.90 18.00 1.70 17.00 3.20 16.00 11.10 11.1020.0 AH 1.00 20.00 1.85 18.50 3.40 17.00 12.40 12.4021.0 AH 1.05 21.00 2.00 20.00 3.70 18.50 13.00 13.0026.0 AH 1.30 26.00 2.40 24.00 4.40 22.00 16.10 16.1028.0 AH 1.40 28.00 2.62 26.20 5.00 25.00 18.60 18.6035.0 AH 1.75 35.00 3.30 33.00 6.20 31.00 25.00 25.0036.0 AH 1.80 36.00 3.35 33.50 6.12 30.60 22.30 22.3040.0 AH 2.00 40.00 3.80 38.00 6.70 33.50 24.00 24.0055.0 AH 2.75 55.00 5.10 51.00 8.80 44.00 30.60 30.6075.0 AH 3.75 75.00 7.20 72.00 13.60 68.00 47.00 47.00

100.0 AH 5.00 100.00 9.20 92.00 15.80 79.00 55.20 55.20110.0 AH 5.50 110.00 10.30 103.00 17.70 88.50 61.80 61.80140.0 AH 7.00 140.00 13.50 135.00 24.00 120.00 84.00 84.00210.0 AH 10.50 210.00 20.00 200.00 36.00 180.00 168.00 168.00

Table �: Capacities for various multiples of the �0-hour discharge current - PS, PSH and PSG models.

Capacity

Capacity,expressedinampere-hours(AH),istheproductofthecurrentdischargedandthelengthofdischargetime.Theratedcapacity(C)ofaPower-Sonicbattery(PS,PSHandPSG-Series)ismeasuredbyitsperformanceover20hoursofconstantcurrentdischargeatatemperatureof20°C(68°F)toacutoffvoltageof1.75volts/cell.

Asanexample,modelPS-610,witharatedcapacityof1.1AHwilldeliver55mA(1/20of1.1AH,or0.05C)for20hoursbeforethevoltagereachesanendvoltageof5.25volts.

Bycyclingthebatteryafewtimesorfloatchargingitforamonthortwo,thehighestlevelofcapacitydevelopmentisachieved.Power-Sonicbatteriesarefullychargedbeforeleavingthefactory,butfullcapacityisrealizedonlyafterthebatteryhasbeencycledafewtimesorbeenonfloatchargeforsometime.

Whenabatterydischargesataconstantrate,itscapacitychangesaccordingtotheamperageload.Capacityincreaseswhenthedischargecurrentislessthanthe20hourrateanddecreaseswhenthecurrentishigher.

Rated Capacity

20 Hour Rate 10 Hour Rate 5 Hour Rate 1 Hour Rate

Amps AH Amps AH Amps AH Amps AH

28.0 AH 1.50 30.00 2.80 28.00 5.10 25.50 18.60 18.60

35.0 AH 1.80 36.00 3.50 35.00 6.50 32.50 27.00 27.00

42.0 AH 2.25 45.00 4.20 42.00 7.20 36.00 25.20 25.20

56.0 AH 3.00 60.00 5.60 56.00 9.50 47.50 33.00 33.00

65.0 AH 3.53 70.60 6.50 65.00 11.20 56.00 39.00 39.00

75.0 AH 4.00 80.00 7.50 75.00 12.90 64.50 45.00 45.00

92.0 AH 4.90 98.00 9.20 92.00 15.80 79.00 55.20 55.20

103.0 AH 5.55 111.00 10.30 103.00 17.70 88.50 61.80 61.80

124.0 AH 6.45 129.00 12.40 124.00 21.30 106.50 74.40 74.40

144.0 AH 7.70 154.00 14.40 144.00 24.08 120.40 84.00 84.00

153.0 AH 8.30 166.00 15.30 153.00 26.30 131.50 91.80 91.80

210 0 AH 11.30 226.00 21.00 210.00 36.10 180.50 126.00 126.00

Table �: PG-Series batteries, by industry convention, are rated at their �0 hour rate.

Table3showscapacitiesforvariousmultiplesofthe20-hourdischargecurrentforPGmodels.

POWER-SONIC Rechargeable Batteries �

Figu

re3

sho

ws

capa

city

line

sfo

rmaj

orP

ower

-Son

icb

atte

rym

odel

sw

ithd

iffer

enta

mpe

re-h

ourr

atin

gs.A

mpe

rage

iso

nth

eho

rizon

tal

scal

ean

dth

etim

eel

apse

dis

on

the

vert

ical

sca

le;t

hep

rodu

cto

fth

ese

valu

esis

the

capa

city

.

Properbatteryselectionforaspecificapplicationcanbemadefrom

this

gra

phif

the

requ

ired

time

and

curr

enta

rek

now

n.F

ore

xam

ple,

to

det

erm

ine

the

prop

erc

apac

ityo

fab

atte

ryp

rovi

ding

3a

mps

for2

0m

inut

es,l

ocat

eth

ein

ters

ectio

nof

thes

eva

lues

on

the

grap

h.T

heli

ne

imm

edia

tely

abo

veth

atp

oint

repr

esen

tsth

eba

ttery

whi

chw

illm

eet

the

requ

irem

ent.

Figu

re �

: Cap

acity

line

s fo

r Pow

er-S

onic

bat

teri

es

Dis

char

ge T

ime

(Am

ps)

Discharge Time (hrs)

Performance Data

DischargeDuringdischargethevoltagewilldecrease.ThegraphsinFigure4illustratethisfordifferentdischargeratesandambienttemperatures.“C”istheratedcapacityofabattery:“C”formodelPS-61O(6V–1.1AH)is1.1AH.Byconventiontheratingofnearlyallsealed-leadacidbatteries,isbasedona20-hour(0.05C)dischargerate.ForlargerbatteriesusedfortelecomandlargeUPSsystems(ourPG-Series)theconventionistousea10-hourrate(0.1C).

AnimportantfeatureofPower-Sonicbatteriesisshowninthedischargecurves;namely,thevoltagetendstoremainhighandalmostconstantforarelativelylongperiodbeforedecliningtoanendvoltage.

Open-Circuit VoltageOpencircuitvoltagevariesaccordingtoambienttemperatureandtheremainingcapacityofthebattery.Generally,opencircuitvoltageisdeterminedbythespecificgravityoftheelectrolyte.Dischargingabatterylowersthespecificgravity.TheopencircuitvoltageofaPower-Sonicbatteryis2.16V/cellwhenfullychargedand1.94V/cellwhencompletelydischarged.

AsseeninFigure4,underload,thebatterycandeliverusefulenergyatlessthan1.94V/cell,butaftertheloadisremovedtheopencircuitvoltagewill“bounceback”tovoltagesshowninFigure5,dependentuponresidualcapacity.

Figure �: Discharge Characteristic Curves at �0°C (��°F)

Figure �: Open-Circuit Voltage Characteristics

Discharge Time

Term

inal

Vol

tage

Term

inal

Vol

tage

Residual Capacity (%)

POWER-SONIC Rechargeable Batteries �

TemperatureActualcapacityisafunctionofambienttemperatureandrateofdischarge.At20°C(68°F)ratedcapacityis100%.Thecapacityincreasesslowlyabovethistemperatureanddecreasesasthetemperaturefalls.Evenat-40ºC(-40°F),however,thePower-Sonicbatterywillstillfunctionatbetterthan30%ofitsratedcapacitywhendischargedatthe20-hourrate(0.05C).Atanyambienttemperature,thehighertherateofdischarge,thelowertheavailablecapacity.ThisrelationshipisshowninFigure6.

Power-Sonicbatteriesmaybedischargedattemperaturesrangingfrom-40°Cto60°C(-40°Fto140°F)andchargedattemperaturesfrom-20°Cto50°C(-4°Fto122°F).

Whileraisingambienttemperatureincreasescapacity,italsodecreasesusefulservicelife.Itisestimatedthatbatterylifeishalvedforeach10°C(18°F)abovenormalroomtemperature.

Performance Data

Figure �: Relationship between current and discharge time for different ambient temperatures

Figure �: Effect of Temperature on Capacity

Capa

city

Rat

io (%

)

Temperature (°C)

Dis

char

ge T

ime

Discharge Current (A)

�0

Performance Data

Shelf Life & StorageLowinternalresistanceandspecialalloysintheelectrodesassurealowselfdischargerateand,consequently,alongshelflife.Ifkeptat20°C(68°F),about60-70%ofthenominalcapacityremainsafteroneyearofstorage.Duetotheself-dischargecharacteristicsofthistypeofbattery,itisimperativethattheybechargedwithin6monthsofstorage,otherwisepermanentlossofcapacitymightoccurasaresultofsulfation.

Therateofselfdischargevarieswiththeambienttemperature.Atroomtemperature(20°C(68°F))itisabout3%permonth.Atlowtemperaturesitisnearlynegligible;athigherambienttemperaturesselfdischargeincreases.Toobtainmaximumbatterylifeandperformance,batteriesshouldberechargedassoonaspossibleaftereachuseandnotstoredinadischargedstate.Ifpossiblebatteriesshouldbestoredat20°C(68°F)orlower,andrechargedeverysixmonthswhennotinuse.

Battery LifeCyclicUse:Thenumberofcharge/dischargecyclesdependsonthecapacitytakenfromthebattery(afunctionofdischargerateanddepthofdischarge),operatingtemperatureandthechargingmethod.

Figure 8: Self Discharge Characteristics

Figure �: Relationship between depth of discharge and number of cycles as well as increases of capacity during the early cycles.

Capa

city

Ret

enti

on R

atio

(%)

Storage Period (Months)

Ret

enti

on C

apac

ity

(%)

Number of Cycles

POWER-SONIC Rechargeable Batteries ��

Performance Data

Battery Life (continued)StandbyUse:Thefloatservicelife,orlifeexpectancyundercontinuouscharge,dependsonthefrequencyanddepthofdischarge,thechargevoltage,andtheambienttemperature.Atafloatvoltageof2.25Vto2.30V/cellandanambienttemperatureof20°Cto25°C(60°Fto77°F)Power-Sonicbatteriesshouldlastfourtofiveyearsbeforethecapacitydropsto60%ofitsoriginalrating.

ThegraphinFigure11showslifecharacteristicsinfloat(standby)serviceforambienttemperaturesrangingfrom15°Cto55°C(60°Fto130°F).Ifprevailingambienttemperaturesarewellabove20°Cto25°C(68°Fto77°F)thelifeexpectancyofthistypeofbatteryinfloatservicedependsgreatlyontemperaturecompensatedcharging.Thetypicaltemperaturecoefficientis2mV/cell/20°Candunder.

Figure �0: Indicates how capacity changes over time.

Figure ��: Service life at various ambient temperatures

Ret

enti

on C

apac

ity

(%)

Years

Serv

ice

Life

(Yea

rs)

Temperature (°C)

��

Performance Data

Over DischargeTooptimizebatterylife,itisrecommendedthatthebatterybedisconnectedfromtheload(eitherelectronicallyormanually)whentheendvoltage-afunctionofthedischargerate-isreached.Itisthevoltagepointatwhich100%oftheusablecapacityofthebatteryhasbeenconsumedorcontinuationofthedischargeisuselessbecauseofthevoltagedroppingbelowusefullevels.ThefinaldischargevoltagespercellareshowninTable1(Page4).

Dischargingasealedlead-acidbatterybelowthisvoltageorleavingabatteryconnectedtoaloadwillimpairthebattery’sabilitytoacceptacharge.Topreventpotentialoverdischargeproblems,voltagecutoffcircuitsasshowninFigure12maybeused.

Figure ��: Circuits of Over-Discharge Preventative Device

ChargingDependableperformanceandlongservicelifedependuponcorrectcharging.Faultyproceduresorinadequatechargingequipmentresultindecreasedbatterylifeand/orunsatisfactoryperformance.Theselectionofsuitablechargingcircuitsandmethodsisasimportantaschoosingtherightbatteryfortheapplication.

Power-Sonicbatteriesmaybechargedbyusinganyoftheconventionalchargingtechniques:

• ConstantVoltage • ConstantCurrent • Taper-Current • TwoStepConstantVoltage

Toobtainmaximumservicelifeandcapacity,alongwithacceptablerechargetimeandeconomy,constantvoltage-currentlimitedchargingisrecommended.

TochargeaPower-SonicSLAbattery,aDCvoltagebetween2.30voltspercell(float)and2.45voltspercell(fast)isappliedtotheterminalsofthebattery.Dependingonthestateofcharge,thecellmaytemporarilybelowerafterdischargethantheappliedvoltage.Aftersometime,however,itshouldleveloff.

Duringcharge,theleadsulfateofthepositiveplatebecomesleaddioxide.Asthebatteryreachesfullcharge,thepositiveplatebeginsgeneratingdioxidecausingasuddenriseinvoltageduetodecreasinginternalresistance.Aconstantvoltagecharge,therefore,allowsdetectionofthisvoltageincreaseandthuscontrolofthecurrentchargeamount.

Additionalinformationregardingchargingmethodscanbefoundonpages13through19.

POWER-SONIC Rechargeable Batteries ��

Charging

Charging CharacteristicsDuringconstantvoltageortapercharging,thebattery’scurrentacceptancedecreasesasvoltageandstateofchargeincrease.Thebatteryisfullychargedoncethecurrentstabilizesatalowlevelforafewhours.Therearetwocriteriafordeterminingwhenabatteryisfullycharged:(1)thefinalcurrentleveland(2)thepeakchargingvoltagewhilethiscurrentflows.

Charging MethodsSelectingtheappropriatechargingmethoddependsontheintendeduse(cyclicorfloatservice),economicconsiderations,rechargetime,anticipatedfrequencyanddepthofdischarge,andexpectedservicelife.Thekeygoalofanychargingmethodistocontrolthechargecurrentattheendofthecharge.

Figure ��: Typical charge characteristics for cycle service where charging is non-continuous and peak voltage can be higher.

Figure ��: Typical characteristics for standby service type charge. Here, charging is continuous and the peak charge voltage must be lower.

��

Charging

Constant Voltage Charging ConstantvoltagechargingisthebestmethodtochargePower-Sonicbatteries.Dependingontheapplication,batteriesmaybechargedeitheronacontinuousornon-continuousbasis.InapplicationswherestandbypowerisrequiredtooperatewhentheACpowerhasbeeninterrupted,continuousfloatchargingisrecommended.Non-continuouscyclicchargingisusedprimarilywithportableequipmentwherechargingonanintermittentbasisisappropriate.

Theconstantvoltagechargemethodappliesaconstantvoltagetothebatteryandlimitstheinitialchargecurrent.Itisnecessarytosetthechargevoltageaccordingtospecifiedchargeandtemperaturecharacteristics.Inaccuratevoltagesettingscauseover-orunder-charge.Thischargingmethodcanbeusedforbothcyclicandstandbyapplications.

Figure ��: Constant voltage charging circuit

Figure ��: Constant voltage charging characteristics

POWER-SONIC Rechargeable Batteries ��

Charging

Constant Current Charging Constantcurrentchargingissuitedforapplicationswheredischargedampere-hoursoftheprecedingdischargecycleareknown.Chargetimeandchargequantitycaneasilybecalculated,howeveranexpensivecircuitisnecessarytoobtainahighlyaccurateconstantcurrent.Monitoringofchargevoltageorlimitingofchargetimeisnecessarytoavoidexcessiveovercharge.

Whilethischargingmethodisveryeffectiveforrecoveringthecapacityofabatterythathasbeenstoredforanextendedperiodoftime,orforoccasionaloverchargingtoequalizecellcapacities,itlacksspecificpropertiesrequiredintoday’selectronicenvironment.

Taper-Current Charging Thismethodisnotrecommendedasitissomewhatabusiveofsealedleadacidbatteriesandcanshortenservicelife.However,becauseofthesimplicityofthecircuitandlowcost,taper-currentchargingisextensivelyusedtochargemultiplenumbersand/orforcycliccharging.

Whenusingataper-currentchargerthechargertimeshouldbelimitedorachargingcut-offcircuitbeincorporatedtopreventovercharge.Pleasecontactourtechnicaldepartmentifyouneedassistancewiththis.

Inataper-currentchargingcircuit,thecurrentdecreasesinproportiontothevoltagerise.Whendesigningataperchargeralwaysconsiderpowervoltagefluctuations.Inthiseventtheinternalresistancedropwillconverttoheat.Heatgeneratedbythecircuitshouldbemeasuredandifrequiredaheatsinkshouldbeincorporatedinthedesign.

Figure ��: Taper-current charging characteristics for this type of basically unregulated charger.

Figure ��: Taper-current charging circuit

��

Overcharging Asaresultoftoohighachargevoltageexcessivecurrentwillflowintothebattery,afterreachingfullcharge,causingdecompositionofwaterintheelectrolyteandprematureaging.

Athighratesofoverchargeabatterywillprogressivelyheatup.Asitgetshotter,itwillacceptmorecurrent,heatingupevenfurther.Thisiscalledthermalrunawayanditcandestroyabatteryinaslittleasafewhours.

Undercharging Iftoolowachargevoltageisapplied,thecurrentflowwillessentiallystopbeforethebatteryisfullycharged.Thisallowssomeoftheleadsulfatetoremainontheelectrodes,whichwilleventuallyreducecapacity.

Batterieswhicharestoredinadischargedstate,orleftontheshelffortoolong,mayinitiallyappeartobe“opencircuited”orwillacceptfarlesscurrentthannormal.Thisiscausedbyaphenomenoncalled“sulfation”.Whenthisoccurs,leavethechargerconnectedtothebattery.Usually,thebatterywillstarttoacceptincreasingamountsofcurrentuntilanormalcurrentlevelisreached.Ifthereisnoresponse,eventochargevoltagesaboverecommendedlevels,thebatterymayhavebeeninadischargedstatefortoolongtorecover.

Ifinanydoubt,orifconceptsofproperuseandcareareunclear,pleaseensurethatyoucontactPower-Sonic’stechnicaldepartment.

Charging for Cycle OperationCyclicapplicationsgenerallyrequirethatrechargingbedoneinarelativelyshorttime.Theinitialchargecurrent,however,mustnotexceed0.30xCamps.Justasbatteryvoltagedropsduringdischarge,itslowlyrisesduringcharge.Fullchargeisdeterminedbyvoltageandinflowingcurrent.When,atachargevoltageof2.45±0.05volts/cell,thecurrentacceptedbythebatterydropstolessthan0.01xCamps(1%ofratedcapacity),thebatteryisfullychargedandthechargershouldbedisconnectedorswitchedtoafloatvoltageof2.25to2.30volts/cell.Thevoltageshouldnotbeallowedtoriseabove2.45±0.05volts/cell.

Charging for Standby OperationStandbyapplicationsgenerallydonotrequirethatthebatterybechargedasfastorasfrequentlyasincycleoperation.However,thebatterymustbekeptconstantlychargedtoreplacetheenergythatisexpendedduetointernallossanddeteriorationofthebatteryitself.AlthoughtheselossesareverylowinPower-Sonicbatteries,theymustbereplacedattheratethebatteryselfdischarges;atthesametimethebatterymustnotbegivenmorethantheselossesoritwillbeovercharged.Toaccomplishthis,aconstantvoltagemethodofchargingcalled“floatcharging”isused.

Therecommendedconstantfloatvoltageis2.25-2.30voltspercell.Maintainingthisfloatvoltagewillallowthebatterytodefineitsowncurrentlevelandremainfullychargedwithouthavingtodisconnectthechargerfromthebattery.ThetricklecurrentforafullychargedbatteryfloatingattherecommendedchargevoltagewilltypicallyhoveraroundtheO.OO1Crate(1OmAfora10AHbattery,forexample.)

Thefloatchargerisbasicallyaconstantvoltagepowersupply.Asincyclechargers,caremustbeexercisednottoexceedtheinitialchargecurrentof0.30xCamperes.

Charging

Caution! Never charge or discharge a battery in a hermetically sealed enclosure. Batteries generate a mixture of gases internally. Given the right set of circumstances, such as extreme overcharging or shorting of the battery, these gases might vent into the enclosure and create the potential for an explosion when ignited by a spark.

POWER-SONIC Rechargeable Batteries ��

Charging

Two-Step Constant Voltage ChargingThismethodusestwoconstantvoltagedevices.Intheinitialchargephasethehighvoltagesettingisused.Whenchargingisnearlycompleteandthechargevoltagehasrisentoaspecifiedvalue(withthechargecurrentdecreased),thechargerswitchesthevoltagetothelowersetting.Thismethodallowsrapidchargingincycleorfloatservicewithoutthepossibilityofovercharging,evenafterextendedchargingperiods.

Charging in Series Lead-acidbatteriesarestringsof2voltcellsconnectedinseries,commonly2,3,4or6cellsperbattery.StringsofPower-Sonicbatteries,upto48voltsandhigher,maybechargedinseriessafelyandefficiently.However,asthenumberofbatteriesinseriesincreases,sodoesthepossibilityofslightdifferencesincapacity.Thesedifferencescanresultfromage,storagehistory,temperaturevariationsorabuse.

Fullychargedbatteriesshouldneverbemixedwithdischargedbatterieswhencharginginseries.Thedischargedbatteriesshouldbechargedbeforeconnection.

Whenasingleconstantvoltagechargerisconnectedacrossanentirehighvoltagestring,thesamecurrentflowsthroughallcellsinthestring.Dependingonthecharacteristicsoftheindividualbatteries,somemayoverchargewhileothersremaininaslightlyunderchargedcondition.

Tominimizetheeffectsofindividualbatterydifferences,usebatteriesofthesameage,amphour,andhistoryand,ifpossible,chargeinstringsofnogreaterthan24or48volts.

Figure ��: Dual stage current limited battery charger.

Figure �0: Two-step constant voltage charging characteristics.

��

Charging

Charging in Parallel Power-Sonicbatteriesmaybeusedinparallelwithoneormorebatteriesofequalvoltage.

Whenconnectedinparallel,thecurrentfromachargerwilltendtodividealmostequallybetweenthebatteries.Nospecialmatchingofbatteriesisrequired.Ifthebatteriesofunequalcapacityareconnectedinparallel,thecurrentwilltendtodividebetweenthebatteriesintheratioofcapacities(actually,internalresistances).

Whenchargingbatteriesinparallel,wheredifferentratiosofchargearetobeexpected,itisbesttomakeprovisionstoassurethatthecurrentswillnotvarytoomuchbetweenbatteries.

Temperature CompensationPower-Sonicbatteriesperformwellbothatlowandhightemperatures.Atlowtemperatures,however,chargeefficiencyisreduced;attemperaturesabove45°C(113°F),chargeefficiencyincreasessorapidlythatthereisadangerofthermalrunawayiftemperaturecompensationisnotprecise.

Theeffectoftemperatureonchargevoltageislesscriticalinfloatapplicationsthanincyclicuse,whererelativelyhighchargecurrentsareappliedforthepurposeofshortrechargetimes.

Temperatureeffectsshoulddefinitelybeconsideredwhendesigningorselectingachargingsystem.Temperaturecompensationisdesirableinthechargingcircuit,especiallywhenoperatingoutsidetherangeof5°Cto35°C(41°Fto95°F).Thetemperaturecoefficientis-2mV/cell/ºCbelow20°C(68°F)infloatuseand-6mV/cell/ºCbelow20°Cincyclicuse.Forhighertemperaturesthechargevoltageshouldbecorrespondinglydecreased.

Top ChargingAllbatterylosecapacitythroughself-discharge,itisrecommendedthata“topupcharge”beappliedtoanybatterythathasbeenstoredforalongperiodoftime,priortoputtingthebatteryintoservice.

Tosuccessfullytopchargeabatterystoredformorethan12months,theopencircuitvoltagemustbehigherthan2.0voltspercell,inthiscase,alwaysconfirmopencircuitvoltagepriortoattemptingtopupcharging.

Ambient Charge Voltage Per Cell

Temperature Cyclic Use (V) Float Use (V)

-40°C(-40°F) 2.85–2.95 2.38–2.43

-20°C(-4°F) 2.67–2.77 2.34–2.39

-10°C(14°F) 2.61–2.71 2.32–2.37

0°C(32°F) 2.55–2.65 2.30–2.35

10°C(50°F) 2.49–2.59 2.28–2.33

20°C(68°F) 2.43–2.53 2.26–2.31

25°C(77°F) 2.40–2.50 2.25–2.30

30°C(86°F) 2.37–2.47 2.24–2.29

40°C(104°F) 2.31–2.41 2.22–2.27

50°C(122°F) 2.25–2.35 2.20–2.25

Table �: Recommended charge voltages for different temperatures.

POWER-SONIC Rechargeable Batteries ��

Charging EfficiencyThechargingefficiency(η)ofabatteryisexpressedbythefollowingformula:

Thechargingefficiencyvariesdependinguponthestateofchargeofthebattery,temperatures,andchargingrates.Figure21illustratestheconceptofthestateofchargeandchargingefficiency.AsshowninFigure22.Power-Sonicbatteriesexhibitveryhighchargingefficiency,evenwhenchargedatlowchargingrates.

Charging

Figure 21: Charge efficiency vs. state of charge.

Char

ge E

ffici

ency

State of Charge (%)

Figure 22: Charge efficiency vs. charging current.

Char

ge E

ffici

ency

Charging Current (xCA)

�0

Important Do’s and Don’ts

Power-Sonicrechargeablesealedlead-acidbatteriesaredesignedtoprovideyearsofdependableservice.Adherencetothefollowingguidelineswillensurethatbatterylifeismaximizedandoperationistrouble-free.

Material Safety Data Sheets (MSDS)

• Itisimportantthatyoufamiliarizeyourselfwiththesepriortohandling,installinganddisposingofallbatteries.IfthereareanyquestionsraisedfromthesepleasecontactPower-Sonic’stechnicaldepartment.

Handling

•Alwayswearinsulatedgloveswhenhandlingbatteries;especiallywhenconnectingseriesandparallelgroupsofbatteries.

•FollowallprecautionsasdescribedinourMaterialsSafetyDataSheets(MSDS).Thisinformationissubjecttochangedependingupongovernmentlegislation.Visitourwebsite:www.power-sonic.comforup-to-datecopiesofthese.

•Ifequipmentistobestoredforalongperiodoftimethebatteriesshouldbedisconnectedtoavoidunduedrainonthebatteriesandanypotentialfordamagetotheequipment.

Installation

•Fastenbatteriestightlyandmakeprovisionsforshockabsorptionifexposuretoshockorvibrationislikely.

•Wheninstallingthebatterywithinapieceofequipment,fixitsecurelyatthelowestpracticablepoint.

•Thebatteryshouldnotbeattachedtoanypieceofequipmentduring“burn-in”testing.

•Donotapplyundueforcetotheterminalsorbendthem.Avoidapplyingheattotheterminalsthroughprocessessuchassoldering.

•Ifsolderingtothebatteryterminalsisunavoidableitmustbeaccomplishedwithin3seconds,usingasolderingironnogreaterthan100watts.

•Donotplacebatteriesincloseproximitytoobjectswhichcanproducesparksorflames,anddonotchargebatteriesinaninvertedposition.

•Avoidexposingbatteriestoheat!Careshouldbetakentoplacebatteriesawayfromheat-emittingcomponents.Ifcloseproximityisunavoidable,provideventilation.Servicelifeisshortenedconsiderably’atambienttemperaturesabove30°C(86°F).

•Topreventproblemsarisingfromheatexchangebetweenbatteriesconnectedinseriesorparallel,itisadvisabletoprovideairspaceofatleast0.4”(10mm)betweenbatteries.

•Donotmixbatterieswithdifferentcapacities,differentagesorofdifferentmakes.Thedifferenceincharacteristicswillcausedamagetothebatteriesandpossiblytotheattachedequipment.

•BatterycasesandlidsmadeofABSplasticcansustaindamageifexposedtoorganicsolventsoradhesives.

•Forbestresultsandgenerallyacceptableperformanceandlongevity,keepoperatingtemperaturerangebetween-40°C(-40°F)and60°C(140°F).

•Itisgoodpracticetoensurethattheconnectionsarere-torquedandthebatteriesarecleanedperiodically.

•Donotattempttodisassemblebatteries.Contactwithsulfuricacidmaycauseharm.Shoulditoccur,washskinorclotheswithliberalamountsofwater.Donotthrowbatteriesintoafire;batteriessodisposedmayruptureorexplode.Disassembledbatteriesarehazardouswasteandmustbetreatedaccordingly.

POWER-SONIC Rechargeable Batteries ��

Important Do’s and Don’ts

Charging

•Batteriesshouldnotbestoredinadischargedstateoratelevatedtemperatures.Ifabatteryhasbeendischargedforsometime,ortheloadwasleftonindefinitely,itmaynotreadilytakeacharge.Toovercomethis,leavethechargerconnectedandthebatteryshouldeventuallybegintoacceptcharge.

•Continuousover-orunderchargingisthesingleworstenemyofalead-acidbattery.Cautionshouldbeexercisedtoensurethatthechargerisdisconnectedaftercyclecharging,orthatthefloatvoltageissetcorrectly.

•AlthoughPower-Sonicbatterieshavealowself-dischargeratewhichpermitsstorageofafullychargedbatteryforuptoayear,itisimportantthatabatterybechargedwithin6monthsafterreceipttoaccountforstoragefromthedateofmanufacturetothedateofpurchase.Otherwise,permanentlossofcapacitymightoccurasaresultofsulfation.Toprolongshelflifewithoutcharging,storebatteriesat10°C(50°F)orless.

•AlthoughitispossibletochargePower-Sonicbatteriesrapidly,i.e.in6-7hrs.itisnotnormallyrecommended.Unlimitedcurrentchargingcancauseincreasedoff-gassingandprematuredrying.Itcanalsoproduceinternalheatingandhotspotsresultinginshortenedservicelife.Toohighachargecurrentwillcauseabatterytogetprogressivelyhotter.Thiscanleadto“thermalrunaway”andcandestroyabatteryinaslittleasafewhours.

•Caution:Neverchargeordischargeabatteryinanairtightenclosure.Batteriesgenerateamixtureofgasesinternally.Giventherightsetofcircumstances,suchasextremeoverchargingorshortingofthebattery,thesegasesmightventintotheenclosureandcreatethepotentialforanexplosionwhenignitedbyaspark.Generally,ventilationinherentinmostenclosuresissufficienttoavoidproblems.

•Whenchargingbatteriesinseries(positiveterminalofonebatteryisconnectedtothenegativeterminalofanother)theinterconnectingcablesmustallbeofequallengthandresistancetoinsureequalizationoftheload.Allbatteriesinthestringwillreceivethesameamountofchargecurrent,thoughindividualbatteryvoltagesmayvary.

•Whenchargingbatteriesinparallel(positiveterminalsareconnectedtothepositiveterminalandnegativeterminalstothenegative),allbatteriesinthestringwillreceivethesamechargevoltage,butthechargecurrenteachbatteryreceiveswillvaryuntilequalizationisreached.

•Highvoltagestringsofbatteriesinseriesshouldbelimitedtotwenty6voltorten12voltbatterieswhenasingleconstantvoltagechargerisconnectedacrosstheentirestring.Differencesincapacitycancausesomebatteriestooverchargewhileothersremainunderchargedthuscausingprematureagingofbatteries.Itis,therefore,notadvisabletomixbatteriesofdifferentcapacities,make,orageinaseriesstring.

•Tominimizetheeffectsofcellorbatterydifferences,chargethestringin24voltbatterygroupsthroughaconstantcurrentsourcewithzenerdioderegulationacrossindividualbatteriesorbatterygroups.

•Rechargetimedependsonthedepthoftheprecedingdischargeandtheoutputcurrentofthecharger.Todeterminetheapproximaterechargetimeofafullydischargedbattery,dividethebattery’scapacity(amp.hrs)bytheratedoutputofthechargercurrent(amps)andmultiplytheresultingnumberofhoursbyafactorof1.75tocompensateforthedecliningoutputcurrentduringcharge.Iftheamountofamp.hrs.dischargedfromthebatteryisknown,useitinsteadofthebattery’scapacitytomakethecalculation.

��

Notes

POWER-SONIC Rechargeable Batteries ��

Notes

��

Glossary

Active MaterialTheactiveelectro-chemicalmaterialsusedinthemanufactureofpositiveandnegativeelectrodes.

Ambient TemperatureTheprevailingsurfacetemperaturetowhichabatteryisexposed.

AmpereUnitofmeasurementforelectriccurrent.

Ampere-HourTheproductofcurrent(amperes)multipliedbytime(hours).Usedtoindicatethecapacityofabattery.AlsoAmp.Hr.orA.H.

BatteryTwoormorecellsconnectedtogether,mosttypicallyinseries.

CUsedtosignifyachargeordischargerateequaltothecapacityofabatterydividedbyonehour.ThusCfora1600mAhbatterywouldbe1.6A.C/5forthesamebatterywouldbe320mAandC/10wouldbe160mA.

CapacityTheelectricalenergyavailablefromacellorbatteryexpressedinampere-hours.

• Available capacity:ampere-hoursthatcanbedischargedfromabatterybasedonitsstateofcharge,rateofdischarge,ambienttemperature,andspecifiedcut-offvoltage.

• Rated capacity (“C”):thedischargecapacitythemanufacturerstatesmaybeobtainedatagivendischargerateandtemperature.

• Capacity fade:thelossofcapacityduetoinadequaterecharging.

CellThebasicbuildingblockofabattery.Thenominalvoltageofalead-acidcellis2volts.

• Cell reversal:theactofdrivingacellintoreversepolaritybyexcessivedischarge.

• Primary cell:cellorbatterythatcanbedischargedonlyonce.

• Secondary cell:theprocessisreversiblesothatcharginganddischargingmayberepeatedoverandover.

ChargeTheconversionofelectricalenergytochemicalenergy;theprocesswhichrestoreselectricalenergytoacellorbattery.

• Charge retention:abattery’sabilitytoholdacharge.Itdiminishesduringstorage.

• Charge acceptance:quantifiestheamountofelectricchargethataccumulatesinabattery.

• Float charge:maintainsthecapacityofacellorbatterybyapplyingaconstantvoltage.

Charge (Continued) • Trickle charge:maintainsthecapacityofacellorbatteryby

applyingasmallconstantcurrent. • Charge equalization:bringsallofthecellsinabatteryor

stringtothesamestateofcharge.

Closed Circuit Voltage TestAtestmethodinwhichthebatteryisbrieflydischargedataconstantcurrentwhilethevoltageismeasured.

Cutoff VoltageThefinalvoltageofacellorbatteryattheendofchargeordischarge.

CycleAsinglechargeanddischargeofacellorbattery.

Deep CycleAcycleinwhichthedischargecontinuesuntilthebatteryreachesit’scut-offvoltage,usually80%ofdischarge.

Direct Current (DC)Thetypeofelectricalcurrentthatabatterycansupply.Oneterminalisalwayspositiveandtheotheralwaysnegative.

DischargeTheprocessofdrawingcurrentfromabattery.

• Deep Discharge:thedischargeofacellorbatterytobetween80%and100%ofratedcapacity.

• Depth of Discharge:theamountofcapacity-typicallyexpressedasapercentage-removedduringdischarge.

• Self Discharge:thelossofcapacitywhilestoredorwhilethebatteryisnotinuse.

• Self Discharge Rate:thepercentofcapacitylostonopencircuitoveraspecifiedperiodoftime.

DrainThewithdrawalofcurrentfromabattery.

ElectrodePositiveornegativeplatecontainingmaterialscapableofreactingwithelectrolytetoproduceoracceptcurrent.

ElectrolyteConductsionsinacell.Leadacidbatteriesuseasulfuricacidsolution.

End of Charge VoltageThevoltagereachedbythecellorbatteryattheendofcharge,whilethechargerisstillattached.

Energy DensityRatioofbatteryenergytovolumeorweightexpressedinwatt-hourspercubicinchorpound.

Glossary

Gas RecombinationTheprocessbywhichoxygengasgeneratedfromthepositiveplateduringthefinalstageofchargeisabsorbedintothenegativeplate,preventinglossofwater.

High Rate DischargeAveryrapiddischargeofthebattery.NormallyinmultiplesofC(theratingofthebatteryexpressedinamperes).

ImpedanceTheresistivevalueofabatterytoanACcurrentexpressedinohms(Ω).Generallymeasuredat1000Hzatfullcharge.

Internal ResistanceTheresistanceinsideabatterywhichcreatesavoltagedropinproportiontothecurrentdraw.

Negative TerminalTheterminalofabatteryfromwhichelectronsflowintheexternalcircuitwhenabatterydischarges.SeePositiveTerminal

Nominal Voltage / Nominal CapacityThenominalvalueofratedvoltage/thenominalvalueofratedcapacity.Thenominalvoltageofalead-acidbatteryis2voltspercell.

Open Circuit VoltageThevoltageofabatteryorcellwhenmeasuredinanoloadcondition.

OverchargeThecontinuouschargingofacellafteritachieves100%ofcapacity.Batterylifeisreducedbyprolongedovercharging.

Parallel ConnectionConnectingagroupofbatteriesorcellsbylinkingallterminalsofthesamepolarity.Thisincreasesthecapacityofthebatterygroup.

PolarityThechargesresidingattheterminalsofthebattery.

Positive TerminalTheterminalofabatterytowardwhichelectronsflowthroughtheexternalcircuitwhenthecelldischarges.SeeNegativeTerminal.

Rated CapacityThecapacityofthecellexpressedinamperes.Commonly,aconstantcurrentforadesignatednumberofhourstoaspecifieddepthofdischargeatroomtemperature.

RecombinationThestateinwhichthegassesnormallyformedwithinthebatterycellduringitsoperationarerecombinedtoformwater.

Series ConnectionTheconnectionofagroupofcellsorbatteriesbylinkingterminalsofoppositepolarity.Thisincreasesthevoltageofthebatterygroup.

Self DischargeThelossofcapacityofabatterywhileinstoredorunusedconditionwithoutexternaldrain.

SeparatorMaterialisolatingpositivefromnegativeplates.Insealedleadacidbatteriesitnormallyisabsorbentglassfibertoholdtheelectrolyteinsuspension.

SLA BatterySealedlead-acidbattery,generallyhavingthefollowingcharacteristics:Maintenance-free,leak-proof,position-insensitive.Batteriesofthistypehaveasafetyventtoreleasegasincaseofexcessiveinternalpressurebuild-up.Hencealsotheterm:Valveregulatedbattery.

“GelCells”areSLAbatterieswhosedilutesulfuricacidelectrolyteisimmobilizedbywayofadditiveswhichturntheelectrolyteintoagel.

Service LifeTheexpectedlifeofabatteryexpressedinthenumberoftotalcyclesoryearsofstandbyservicetoadesignatedremainingpercentageoforiginalcapacity.

Shelf LifeThemaximumperiodoftimeabatterycanbestoredwithoutsupplementarycharging.

Standby ServiceAnapplicationinwhichthebatteryismaintainedinafullychargedconditionbytrickleorfloatcharging.

State of ChargeTheavailablecapacityofabatteryatagiventimeexpressedasapercentageofratedcapacity.

SulfationTheformationordepositofleadsulfateonthesurfaceandintheporesoftheactivematerialofthebatteries’leadplates.Ifthesulfationbecomesexcessiveandformslargecrystalsontheplatesthebatterywillnotoperateefficientlyandmaynotworkatall.

Thermal RunawayAconditioninwhichacellorbatteryonconstantpotentialchargecandestroyitselfthroughinternalheatgeneration.

Valve Regulated Lead Acid Battery (VRLA)See“SLABattery”listedabove.

POWER-SONIC Rechargeable Batteries

Quality is always #1 WeemployIQC,PQCandISO9001QualityManagementSystemstotestmaterials,monitormanufacturingprocessesandevaluatefinishedproductspriortoshipment.Allourbatteriesare100%testedwithadvancedcomputerequipmentpriortobeingreleasedforsale.

Power-Sonicmanagementandstaffarecommittedtoprovidingthebestpossibleservicetosatisfyourcustomer’sneeds,andfulfillourundertakingtodelivertopgradeproductsontimeandatacompetitiveprice.

OurbatteriesaremanufacturedtointernationalstandardsincludingJIS,DINandIECandhaveULandCEcertification.

Corporate Headquarters and Domestic Sales Power-SonicCorporation•7550PanasonicWay•SanDiego,CA92154•USAPhone:(619)661-2020•Fax:(619)661-3650Support:[email protected]:[email protected]:[email protected]

International Sales Power-SonicCorporation•P.O.Box5242•RedwoodCity,CA94063•USAPhone:(650)364-5001•Fax:(650)366-3662Sales:[email protected]

European Sales Power-SonicEurope,Ltd.•3BuckinghamSquare,HurricaneWay•Wickford,EssexSS118YQ•EnglandPhone:(1268)560686•Fax:(1268)560902Sales:[email protected]:www.power-sonic.co.uk

www.power-sonic.com©Copyright2009.Power-SonicCorporation.Allrightsreserved.REV0109