SITI FAIRUZ ROSLAN -...

35
MULTIPLE INPUT MULTIPLE OUTPUT DIELECTRIC RESONATOR ANTENNA FOR LONG TERM EVOLUTION APPLICATIONS SITI FAIRUZ ROSLAN UNIVERSITI TEKNOLOGI MALAYSIA

Transcript of SITI FAIRUZ ROSLAN -...

Page 1: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

MULTIPLE INPUT MULTIPLE OUTPUT DIELECTRIC RESONATOR

ANTENNA FOR LONG TERM EVOLUTION APPLICATIONS

SITI FAIRUZ ROSLAN

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

MULTIPLE INPUT MULTIPLE OUTPUT DIELECTRIC RESONATOR ANTENNA

FOR LONG TERM EVOLUTION APPLICATIONS

SITI FAIRUZ ROSLAN

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Master of Engineering (Electrical)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

JANUARY 2015

Page 3: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

iii

To my beloved mother, RAMLAH HASAN

and father, ROSLAN YA’ACOB

Page 4: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

iv

ACKNOWLEDGMENT

Foremost, I would like to express my sincere gratitude to my supervisor Assoc.

Prof. Dr. Muhammad Ramlee bin Kamarudin for the continuous support of my master

degree study and research, for his patience, motivation, enthusiasm, and immense

knowledge. His guidance helped me in all the time of research and writing of this thesis.

My sincere thanks also go to Dr. Mohd Haizal bin Jamaluddin for his

encouragement, insightful comments and provided me with the dielectrics resonators

(DRs) I studied. I also wish to thank Dr. Mohsen Khalily and others in the WCC group for

sharing ideas and discussions during the period of completing my studies.

In my daily work I have been blessed with a friendly and cheerful group of fellow

students. I thank my fellow lab mates; Nur Shazwani Mohd Noor, Alyaa Syaza Azini,

Roshayati Yahya @ Atan and Izni Husna Idris for the discussions and working together

before deadlines, and for all the fun we have had in the last two years.

The Wireless Communication Centre (WCC) Director, Professor Tharek Abd

Rahman and technician, Mr. Norhafizul Ismail who guide me use the equipment. Last but

not the least; I would like to thank my mother Ramlah Hasan and my father Roslan

Ya’acob, for giving birth to me at the first place and my family members who supporting

me spiritually throughout my life.

Page 5: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

v

ABSTRACT

Wireless communications have been part of human life where people can

communicate worldwide with very high speed through the use of new technology known

as Long Term Evolution (LTE). LTE is an evolution in wireless communication system

which is capable of providing high data rates and high speed transmission. In addition, a

multiple input multiple output (MIMO) technology enables wireless communication

systems to achieve high data rates and high quality of services by placing multiple

antennas at transmitter and receiver. Multiple antennas should be designed to have good

isolation even when closely spaced. A ceramic material with several attractive features

which is called a dielectric resonator (DR) is used as a radiation element in this thesis.

This thesis presents three designs of dielectric resonator antenna (DRA) that operate at 2.6

GHz for LTE applications. Firstly, a coplanar waveguide (CPW) rectangular DRA

(RDRA) without and with metallic strip has been designed. The measured impedance

bandwidths (BWs) for CPW RDRA without and with metallic strip for S11 < -6 dB are 45%

and 66%, respectively. The gains obtained for CPW RDRA without and with a metallic

strip are 2.92 dBi and 3.12 dBi, respectively. Secondly, an MIMO F-shaped DRA is

designed. The measured impedance BWs for S11 < -6 dB are 36% for port 1 and 31% for

port 2, respectively with S21 = 33 dB. The antenna provides gain of 1.99 dBi for port 1 and

1.85 dBi for port 2. Lastly, an MIMO RDRA is designed. Two orthogonal modes of the

MIMO RDRA are excited by using two different feed mechanisms which is CPW and

coaxial probe. The measured impedance BWs for S11 < -6 dB are 47% for port 1 and 25%

for port 2, respectively with S21 = 33 dB. The antenna provides gain of 4.97 dBi for port 1

and 4.51 dBi for port 2. Then, the third design was extended by using higher relative

permittivity value of DR in order to reduce the antenna size. It can be seen, both second

and third designs produced correlation coefficient well below 0.5 with nearly 10 dB

diversity gain. A reasonable agreement between the simulated and measured results has

been achieved.

Page 6: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

vi

ABSTRAK

Komunikasi tanpa wayar telah menjadi sebahagian daripada kehidupan manusia di

mana orang ramai boleh berkomunikasi ke seluruh dunia dengan kelajuan yang sangat

tinggi melalui penggunaan teknologi baru yang dikenali sebagai Evolusi Jangka Panjang

(LTE). LTE merupakan evolusi dalam sistem komunikasi tanpa wayar yang mampu

menyediakan kadar data yang tinggi dan kelajuan penghantaran yang tinggi. Di samping

itu, teknologi berbilang masukan berbilang keluaran (MIMO) membolehkan sistem

komunikasi tanpa wayar untuk mencapai kadar data yang tinggi dan perkhidmatan

berkualiti tinggi dengan meletakkan berbilang antena pada bahagian penghantar dan

penerima. Berbilang antena perlu direkabentuk untuk mempunyai pengasingan baik

walaupun jarak rapat. Bahan seramik dengan beberapa ciri-ciri menarik yang dipanggil

resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini. Tesis ini

membentangkan tiga reka bentuk antena resonator dielektrik (DRA) yang beroperasi pada

2.6 GHz untuk aplikasi LTE. Pertama, daya sesatah pandu gelombang (CPW) DRA

berbentuk segiempat tepat (RDRA) tanpa dan dengan jalur logam telah direka bentuk.

Pengukuran jalur lebar bagi CPW RDRA tanpa dan dengan jalur logam untuk S11 <-6 dB

adalah 45% dan 66%, setiap satu. Gandaan yang diperolehi untuk CPW RDRA tanpa dan

dengan jalur logam adalah 2.92 dBi dan 3.12 dBi. Kedua, MIMO DRA berbentuk F telah

direka bentuk. Pengukuran jalur lebar untuk S11 <-6 dB adalah 36% untuk port 1 dan 31%

untuk port 2, dengan S21 = 33 dB. Antena ini menyediakan gandaan sebanyak 1.99 dBi

untuk port 1 dan 1.85 dBi untuk port 2. Akhir sekali, MIMO RDRA telah direka bentuk.

Dua mod ortogon daripada MIMO RDRA di teruja dengan menggunakan dua mekanisme

masukan yang berbeza iaitu CPW dan kabel sepaksi. Pengukuran jalur lebar untuk S11 <-6

dB adalah 47% bagi port 1 dan 25% untuk port 2, dengan S21 = 33 dB. Antena ini

menyediakan gandaan sebanyak 4.97 dBi untuk port 1 dan 4.51 dBi untuk port 2.

Kemudian, reka bentuk ketiga telah dilanjutkan dengan menggunakan nilai ketelusan

relatif DR yang lebih tinggi untuk mengurangkan saiz antena. Reka bentuk kedua dan

ketiga memberikan pekali korelasi kurang daripada 0.5 dengan gandaan kepelbagaian

menghampiri 10 dB. Kesetaraan di antara keputusan simulasi dan pengukuran telah dapat

dicapai.

Page 7: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xvii

LIST OF SYMBOLS xix

LIST OF APPENDICES xx

1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Statement 2

1.3 Objectives of Research 4

1.4 Scope of Research 4

1.5 Layout of the Thesis 5

2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Introduction to LTE and MIMO Technology 8

2.3 Antennas for LTE Applications 12

Page 8: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

viii

2.3.1 Single Port Antenna 13

2.3.2 MIMO Antenna 15

2.4 History of Dielectric Resonator Antenna (DRA) 19

2.5 Dielectric Resonator Antenna (DRA) 22

2.6 Summary 27

3 METHODOLOGY 28

3.1 Overview 28

3.2 Flow Chart 28

3.3 Design Specifications 30

3.4 Design and Simulation 31

3.5 Antenna Fabrication Process 34

3.6 Antenna Testing and Measurement Process 36

3.7 Summary 38

4 A WIDEBAND RECTANGULAR DIELECTRIC

RESONATOR ANTENNA (RDRA)

39

4.1 Introduction 39

4.2 Antenna Geometry 40

4.3 Antenna Design and Analysis 42

4.4 Results of the Proposed Antenna 45

4.5 Comparison with Other Work 48

4.6 Summary 49

5 AN MIMO F-SHAPED DIELECTRIC

RESONATOR ANTENNA (DRA)

50

5.1 Introduction 50

5.2 Antenna Geometry 51

5.3 Antenna Design and Analysis 54

5.4 Results of the Proposed Antenna 57

Page 9: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

ix

5.5 Comparison with Other Work 61

5.6 Summary 63

6 AN MIMO RECTANGULAR DIELECTRIC

RESONATOR (RDRA)

64

6.1 Introduction 64

6.2 Antenna Geometry 65

6.3 Antenna Design and Analysis 68

6.4 Sensitivity Studies 71

6.5 Results of the Proposed Antenna 73

6.6 Size Reduction of MIMO RDRA with

Permittivity of 30.

77

6.7 Comparison with Other Work 81

6.8 Summary 83

7 CONCLUSIONS 84

7.1 Conclusions 84

7.2 Future Works 86

REFERENCES 87

Appendices A-D 95-98

Page 10: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

x

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Frequency number and channel band of LTE 9

2.2 Configuration of MIMO Technology 10

3.1 Design specifications of proposed antenna 31

4.1 Comparison with other work 48

5.1 Simulated and calculated 𝜂 60

5.2 Comparison with other work 62

6.1 Simulated and calculated 𝜂 (𝜀𝑟 = 10). 76

6.2 Simulated and calculated 𝜂 (𝜀𝑟 = 30). 80

6.3 Comparison with other work 81

Page 11: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

xi

LIST OF FIGURES

FIGURE NO. TITLE

PAGE

1.1 Portable communication devices 3

2.1 The evolution of wireless communication systems 8

2.2 Small-size wideband monopole with distributed

inductive strips

13

2.3 Planar compact LTE/WWAN monopole antenna 14

2.4 A planar WWAN/LTE antenna 15

2.5 Compact mobile handset MIMO antenna 16

2.6 Novel quad-band diversity antenna 17

2.7 Compact dual-port diversity antenna 17

2.8 Compact MIMO antenna 18

2.9 Miniature Ferrite antenna 19

2.10 Rectangular dielectric resonator on ground plane 21

2.11 Dual polarized DRAs

(a) Slot-coupled fed

(b) CPW and slot hybrid-fed

22

2.12 Wideband ring dielectric resonator antenna with

annular-shaped microstrip feed

23

2.13 MIMO arrays circular DRAs 23

2.14 Wideband P-shaped DRA 24

2.15 Compact CPW-fed DRA 25

2.16 MIMO dielectric resonator antenna 25

2.17 MIMO dielectric resonator antenna 26

Page 12: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

xii

2.18 Cylindrical DRA with dual polarization 26

3.1 Flow chart of research project 29

3.2 (a) Coaxial Probe

(b) Coplanar waveguide (CPW)

33

3.3 A CPW RDRA

(a) Without metallic strip

(b) With metallic strip

33

3.4 MIMO F-shaped DRA 34

3.5 MIMO RDRA 34

3.6 Dielectric Resonator 35

3.7 (a) Cutter Machine

(b) Ultraviolet (UV) machine

(c) Etching machine

36

3.8 S-parameters measurement of DRA using VNA 36

3.9 Schematic diagram of DRA radiation pattern inside

anechoic chamber

37

3.10 (a) E-plane for port 1

(b) H-plane for port 1

37

3.11 (a) E-plane for port 2

(b) H-plane for port 2

38

4.1 A CPW RDRA geometry

(a) Without metallic strip

(b) With metallic strip

41

4.2 Photograph of the fabricated CPW RDRA

(a) Without metallic strip

(b) With metallic strip

41

4.3 Simulated S11 for different value of wg2 × lg2 42

4.4 Simulated S11 for different value of d 43

4.5 Simulated S11 for different value of l2 44

4.6 Simulated S11 for different value of lm along x-direction 45

Page 13: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

xiii

4.7 Simulated S11 without and with a metallic strip 46

4.8 Illustration electric field distribution in the DR 46

4.9 Gain for the RDRA without and with metallic strip 47

4.10 Simulated and measured 2-D radiation patterns of CPW

RDRA without metallic strip at 2.6 GHz

(a) E-plane. (y-z plane)

(b) H-plane. (x-z plane)

47

4.11 Simulated and measured 2-D radiation patterns of CPW

RDRA with metallic strip at 2.6 GHz

(a) E-plane. (y-z plane)

(b) H-plane. (x-z plane)

48

5.1 Geometry of single port F-shaped DRA 52

5.2 DRA cutting procedures

(a) Rectangular shaped

(b) L-shaped

(c) F-shaped

52

5.3 An MIMO F-shaped DRA geometry

(a) Top view

(b) Side view

53

5.4 Photograph of the fabricated MIMO F-shaped DRA 53

5.5 Simulated S21 of the MIMO DRA for different

configuration

(a) Mirrored parallel

(b) Parallel

(c) Horizontal

(d) Orthogonal

55

5.6 Simulated S21 of the MIMO DRA for different shaped

(a) Rectangular DRA

(b) L-shaped DRA

(c) F-shaped DRA

56

Page 14: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

xiv

5.7 Simulated S11 of the MIMO F-shaped DRA for

different configuration

(a) Mirrored parallel

(b) Parallel

(c) Horizontal

(d) Orthogonal

56

5.8 Simulated and measured S-parameters of MIMO F-

shaped DRA

57

5.9 3-D radiation patterns of the two antennas element 58

5.10 Illustration electric field distributions in the F-shaped

DRA

58

5.11 Simulated and calculated 𝜌𝑒 59

5.12 Simulated and calculated 𝐺 59

5.13 Simulated and measured 2-D radiation patterns of

proposed antenna at 2.6 GHz for port 1

(a) E-plane. (y-z plane)

(b) H-plane. (x-z plane)

60

5.14 Simulated and measured 2-D radiation patterns of

proposed antenna at 2.6 GHz for port 2

(a) E-plane. (x-z plane)

(b) H-plane. (y-z plane)

61

6.1 An MIMO RDRA geometry

(a) 3-D view

(b) Side view

(c) Top view

(d) Back view.

67

6.2 Photograph of the fabricated MIMO RDRA

(a) Without RDRA

(b) With RDRA

(c) Side view with RDRA

67

Page 15: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

xv

6.3 Simulated S11 for different value of l2 68

6.4 Simulated S11 for different value of d 69

6.5 Simulated S11 for different value of ls 70

6.6 Simulated S11 for different value of lc along y-direction 70

6.7 Glue thickness between DR and ground plane 71

6.8 Simulated S11 for different value of t 72

6.9 Air gap between coaxial probe and DR 72

6.10 Simulated S11 for different value of r 72

6.11 Simulated and measured S-parameters of MIMO

RDRA (𝜀𝑟 = 10).

73

6.12 Current distributions at 2.6 GHz when Port 1 and Port 2

are simultaneously excited

74

6.13 Illustration electric field distributions in the DR 74

6.14 Simulated and calculated 𝜌𝑒 75

6.15 Simulated and calculated 𝐺 75

6.16 Simulated and measured 2-D radiation patterns of

proposed antenna at 2.6 GHz for port 1

(a) E-plane. (y-z plane)

(b) H-plane. (x-z plane)

76

6.17 Simulated and measured 2-D radiation patterns of

proposed antenna at 2.6 GHz for port 2

(a) E-plane. (x-z plane)

(b) H-plane. (y-z plane)

77

6.18 Reduction size of MIMO RDRA 78

6.19 Simulated and measured S-parameters of MIMO

RDRA (𝜀𝑟 = 30)

78

6.20 Simulated and calculated 𝜌𝑒 79

6.21 Simulated and calculated 𝐺 79

6.22 Simulated and measured 2-D radiation patterns of

proposed antenna at 2.6 GHz for port 1

80

Page 16: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

xvi

(a) E-plane. (y-z plane)

(b) H-plane. (x-z plane)

6.23 Simulated and measured 2-D radiation patterns of

proposed antenna at 2.6 GHz for port 2

(a) E-plane. (x-z plane)

(b) H-plane. (y-z plane)

81

Page 17: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

xvii

LIST OF ABREVIATIONS

BW - Bandwidth

CP - Circular Polarization

CPW - Coplanar Waveguide

CST - Computer Simulation Technology

dB - Decibel

DR - Dielectric Resonator

DRA - Dielectric Resonator Antenna

DWM - Dielectric Waveguide Model

EDGE - Enhanced Data Rates for GSM Evolution

GPRS - General Packet Radio Service

GUI - Graphical User Interface

GSM - Global System for Mobile Communication

HSPA - High Speed Packet Access

HSPA+ - High Speed Packet Access Plus

IEEE - Institute of Electrical and Electronics Engineers

LTE - Long Term Evolution

MIMO - Multiple Input Multiple Output

MISO - Multiple Input Single Output

PCS - Personal Communications Service

PIFA - Planar Inverted F Antenna

RDRA - Rectangular Dielectric Resonator Antenna

SMA - Sub Miniature Version A

SIMO - Single Input Multiple Output

SISO - Single Input Single Output

UMTS - Universal Mobile Telecommunications System

UV - Ultraviolet

Page 18: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

xviii

VNA - Vector Network Analyzer

VoIP - Voice over Internet Protocol

WWAN - Wireless Wide Area Network

Wi-Fi - Wireless Fidelity

3GPP - 3rd Generation Partnership Project

Page 19: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

xix

LIST OF SYMBOLS

S11 & S22 - Reflection coefficient magnitude

S21 - Isolation

% - Percentage

𝜀𝑟 - Permittivity

δ - Loss tangent

≤ - Less than or equal to

˃ - Greater than

Ω - Ohm

𝜆𝑔 - Guided wavelength

𝜆° - Free space wavelength

𝜌𝑒 - Correlation coefficient

𝐺 - Diversity gain

𝜂 - Total efficiency

Page 20: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

xx

LIST OF APPENDICES

APPENDIX TITLE PAGE

A List of Author’s Publication 95

B Datasheet of ECCOSTOCK HiK500F 96

C Datasheet of Coaxial Probe 97

D Datasheet of SMA Connector 98

Page 21: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

CHAPTER 1

INTRODUCTION

1.1 Introduction

Imagine that Malaysian societies of tomorrow, which mobile users will be able to

receive and send high quality videos, images, data along the highways, on the trains, in the

parks, universities and anywhere with high speed data transmission. In order to have the

high speed data transmission and amount of data received or transmitted, a new high

performance of air interface is introduced which calls Long Term Evolution (LTE) and

later on upgraded to LTE-Advanced. LTE standardized by the 3rd

Generation Partnership

Project (3GGP) in order to satisfy with the market demand [1]. LTE operates over

different frequency bands from 400 MHz up to 4 GHz with impedance bandwidth (BW)

from 1.4 to 20 MHz [2].

However, this evolution need major requirement especially on the user equipment

and base station infrastructures. The high speed data transmission and high data rates of

the proposed antenna can be achieved by applying multiple input multiple output (MIMO)

technology. With the MIMO technology, multiple element of antennas are placed at the

transmitter and receiver of the communication system to exploit multipath fading in order

to improve the capacities of channel, data rates, link reliability, and network coverage [3-

Page 22: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

2

4]. In order to fully exploit the aforementioned benefits of MIMO technology, the multiple

antennas should be designed for good isolation even when closely spaced [5-6].

Much research on wireless communication used printed antenna to implement

MIMO technology. Therefore, with the introduction of ceramic material with several

attractive features in 1980s, it is a very much interesting candidates for LTE applications

[7]. This antenna is called a dielectric resonator antenna (DRA). The antenna with the

suitable size, simple structure and good performance are proposed in this thesis for LTE

applications.

1.2 Problem Statement

The new era of mobile communication has been evolved moving forward from

first-generation (1G) analogue voice communication to the second-generation (2G) which

is digital voice communication. Then, mobile communication technology has been

expanded to the 3G that provide video call, internet access, games and video or music

download. Furthermore, the new coming of mobile communication technology fourth

generation (4G) which is called LTE that increasing the speed and data rates of mobile

telephone networks [8-9].

LTE is one of the key technologies in recent mobile wireless communication

system that provides high quality service and coverage. One way to develop LTE

technology is to fulfill the requirement by placing multiple of antennas is placed at both

transmitter and receiver. This technique is called MIMO technology which is suitable

method to improve performance of wireless communication system by reducing multipath

fading and cross channel interference [5]. Also, the correlation coefficient and isolation

need to be consider in improving uncorrelated signals between transmitter and receiver in

MIMO technology.

Page 23: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

3

Other than that, the antenna size should be practical or can be utilized in the devices

such as tablet, laptop and mobile phone. The standard device has a maximum form factor

of 100 mm × 55 mm × 13.5 mm include a plastic cover that houses the whole device, an

LCD and a battery which has been discussed in [10-11]. The devices are shown in Figure

1.1. Therefore, a ceramic material with some attractive features and potentially useful

antenna radiation element which is called a dielectric resonator (DR) is used in this

research [12]. DRA has several potential to be implemented for wireless communication

system such as high impedance BW, high radiation efficiency, small conductive loss and

various of feeding mechanism [13-15]. DRA also have various shapes (i.e. spherical,

cylindrical, trapezoid, split conical) [16-19]and feeding mechanism [20-23] with simple

structure.

Figure 1.1: Portable communication devices [24-25].

Although many studies have been carried out in MIMO antenna, many are still

focusing on printed antennas. Typically, printed antenna using two or more antenna

elements to build MIMO antenna. However, DRAs have not received much attention in

MIMO technology, especially for LTE at 2.6 GHz. This is because the 2.6 GHz is the new

standard in Malaysia during these two years. Other than that, most of the previous studied

conducted on MIMO DRA at low band of LTE (LTE 700MHz) or for circular polarized.

In addition, DR can be used to reduce the size and improve the impedance bandwidth

(BW) of antenna. Therefore, an MIMO DRA with good diversity performance for LTE

Page 24: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

4

applications at 2.6 GHz is presented in this thesis. In MIMO technology, high isolation

and low correlation coefficient is main requirement to achieved good diversity

performance. Therefore, several parameters such as current distribution, mode excitation

and antenna configuration and distance are studied to improve the isolation and correlation

coefficient. Other diversity performance (i.e. diversity gain, total efficiency) of MIMO

antenna by using DRA has also been discussed in the following chapter.

1.3 Objectives of Research

The objectives of the thesis are:

1. To design and fabricate an MIMO dielectric resonator antennas for LTE

applications at 2.6 GHz.

2. To investigate the performance of an MIMO dielectric resonator antenna in term of

S-parameters (S11, S22 and S21), gain, radiation pattern, correlation coefficient,

diversity gain and total efficiency.

1.4 Scope of Research

The scope of this research is to design, fabricate and measure an MIMO DRA for

LTE applications. This research begins with designing an antenna that has a single port.

Then, comparison will be made without and with metallic strip. After that, the research

proceeds with an MIMO F-shaped DRA. This antenna design consist two antenna

Page 25: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

5

elements which is normally use by printed antenna. It can be seen that the printed antenna

implement two or more antenna elements to develop MIMO technology. Several studies

on the antenna configuration are conducted to ensure that MIMO F-shaped DRA can

produce good diversity performance. Final design and also main contribution in this

research which is an MIMO RDRA shows that only one resonator is needed to radiate two

different modes at the same frequency.

The characteristics of the antennas will be analyzed and optimized to get the best

performance. Then, the antenna will be fabricated and measured in term of S-parameters,

gain, radiation pattern, correlation coefficient, diversity gain and total efficiency to ensure

it is suitable to operate as MIMO antenna for LTE applications.

1.5 Layout of the Thesis

This thesis is organized with seven chapters. In Chapter 1, the research starts with

the understanding of the problem statement and the objectives of this research. Chapter 2

of this thesis starts with the introduction of the modern wireless communication which is

LTE and also the basic concept of MIMO technology and DRA. The technique and design

consideration from the previous research that is related to this research are discussed and

summarized in this chapter.

Chapter 3 reviews the methodology applied in this research. This chapter consists

of flow chart, process of setting the general simulation using 3D-Software CST microwave

studio, design specification, fabrication and measurement process of DRA. Then, a single

port antenna with wide impedance BW is designed and presented in Chapter 4. The

comparison of the antenna without and with metallic strip is discussed.

Page 26: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

6

An MIMO F-shaped DRA with two antennas element is presented in Chapter 5.

The various configurations of antenna with suitable distance and shape is studied in order

to produce a good isolation (S21 < -20 dB). The performance of the proposed antenna is

investigated in term of S-parameters, gain, radiation pattern, correlation coefficient,

diversity gain and total efficiency.

The main contributions of this research are described in Chapter 6. In this chapter,

the MIMO RDRA using single element of DR is proposed. This chapter provides the

performance of the two similar antenna designs with different relative permittivity (𝜀𝑟)

value of DR which is 10 and 30. The performance of the proposed antenna which is

similar with Chapter 5 is investigated in order to ensure the proposed antenna can operate

as MIMO antenna. Finally, Chapter 7 gives summary from all chapters and some

recommendations for future work.

Page 27: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

87

REFERENCES

[1] L. Lizzi and A. Massa, “Dual-band printed fractal monopole antenna for LTE

applications,” IEEE Antennas and Wireless Propagation Letters, vol. 10, no. 1, pp.

760–763, 2011.

[2] M. Mustaqim, K. Khan, and M. Usman, “LTE-Advanced: Requirements and

technical challenges for 4G cellular network,” Journal of Emerging Trends in

Computing and Information Sciences, vol. 3, no. 5, pp. 665–671, 2012.

[3] S. C. Fernandez and S. K. Sharma, “Multiband printed meandered loop antennas

with MIMO implementations for wireless routers,” IEEE Antennas and Propagation

Magazine, vol. 12, pp. 96–99, 2013.

[4] R. Karimian, H. Oraizi, S. Fakhte, and M. Farahani, “Novel F-Shaped quad-band

printed slot antenna for WLAN and WiMAX MIMO systems,” IEEE Antennas and

Wireless Propagation Letters, vol. 12, pp. 405–408, 2013.

[5] K. J. Babu, K. S. Ramakrishna, and L. P. Reddy, “Reduction of mutual coupling in a

MIMO array employing circular DRAs,” International Journal of Information and

Telecommunication Technology, vol. 4, no. 1, pp. 8–11, 2012.

[6] K. J. Babu, K. S. Ramakrishna, and L. P. Reddy, “A review on the design of MIMO

antennas for upcoming 4G communications,” International Journal of Applied

Engineering Research,Dindigul, vol. 1, no. 4, pp. 85–93, 2011.

[7] A. Sharma and S. C. Shrivastava, “Bandwidth enhancement techniques of dielectric

resonator antenna,” International Journal of Engineering and Technology (IJEST),

vol. 3, no. 7, pp. 5995–5999, 2011.

[8] A. H. Abo Absa, “LTE antenna ’ s parameter enhancement for mobile

communication applications,” Islamic University Gaza, 2012.

[9] X. Zhao, Y. Lee, and J. Choi, “Design of a compact MIMO antenna using coupled

feed for LTE mobile applications,” International Journal of Antennas and

Propagation, pp. 1–8, 2013.

Page 28: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

88

[10] Q. Rao and D. Wang, “A compact dual-port diversity antenna for long-term

evolution handheld devices,” IEEE Transactions on Vehicular Technology, vol. 59,

no. 3, pp. 1319–1329, 2010.

[11] M. K. Meshram, R. K. Animeh, A. T. Pimpale, and N. K. Nikolova, “A novel quad-

band diversity antenna for LTE and Wi-Fi applications with high isolation,” IEEE

Transactions on Antennas and Propagation, vol. 60, no. 9, pp. 4360–4371, 2012.

[12] R. K. Mongia and A. Ittipiboon, “Theoretical and experimental investigations on

rectangular dielectric resonator antennas,” IEEE Transactions on Antennas and

Propagation, vol. 45, no. 9, pp. 1348–1356, 1997.

[13] Y. Gao, Z. Feng, and L. Zhang, “Compact CPW-fed dielectric resonator antenna

with dual polarization,” IEEE Antennas and Wireless Propagation Letters, vol. 10,

pp. 544–547, 2011.

[14] A. Petosa and A. Ittipiboon, “Dielectric resonator antennas : A historical review and

the current state of the art,” IEEE Antennas and Propagation Magazine, vol. 52, no.

5, pp. 91–116, Oct-2010.

[15] P. M. Hadalgi, R. G. Madhuri, and S. L. Mallikarjun, “Slot-fed wideband dielectric

resonator antenna for wireless applications,” Indian Journal of Radio & Space

Physics, vol. 39, no. December, pp. 372–375, 2010.

[16] M. Khalily, M. K. A. Rahim, A. A. Kishk, and S. Danesh, “Wideband P-Shaped

dielectric resonator antenna,” Radioengineering, vol. 22, no. 1, pp. 281–285, 2013.

[17] J. Yan and J. T. Bernhard, “Implementation of a frequency-agile MIMO dielectric

resonator antenna,” IEEE Transactions on Antennas and Propagation, vol. 61, no.

7, pp. 3434–3441, 2013.

[18] X. Liang and T. A. Denidni, “H-shaped dielectric resonator antenna for wideband

applications,” IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 163–

166, 2008.

Page 29: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

89

[19] L. C. Y. Chu, D. Guha, and Y. M. M. Antar, “Conformal strip-fed shaped

cylindrical dielectric resonator: improved design of a wideband wireless antenna,”

IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 482–485, 2009.

[20] A. A. Kishk and W. Huang, “Size-reduction method for dielectric-resonator

antennas,” IEEE Antennas and Propagation Magazine, vol. 53, no. 2, 2011.

[21] K. S. Ryu and A. A. Kishk, “Ultrawideband dielectric resonator antenna with

broadside patterns mounted on a vertical ground plane edge,” IEEE Transactions on

Antennas and Propagation, vol. 58, no. 4, pp. 1047–1053, 2010.

[22] A. Buerkle, K. Srabandi, and H. Mosallaei, “Compact slot and dielectric resonator

antenna with dual-resonance, broadband characteristics,” IEEE Transactions on

Antennas and Propagation, vol. 53, no. 3, pp. 1020–1027, 2005.

[23] T. A. Denidni and Z. Weng, “Hybrid ultrawideband dielectric resonator antenna and

band-notched designs,” IET Microwaves, Antennas & Propagation, vol. 5, no. 4, pp.

450–458, 2011.

[24] C. J. Reddy, “Antenna design considerations for LTE mobile applications,” 2011.

[25] “gadget pictures - Google Search.” [Online]. Available:

https://www.google.com/search?q=gadget+pictures. [Accessed: 24-Oct-2013].

[26] A. Note, “MIMO in LTE operation and measurement — Excerpts on LTE Test.”

[Online]. Available: http://cp.literature.agilent.com/litweb/pdf/5990-4760EN.pdf.

[27] K. Rosengren and P. Kildal, “Radiation efficiency , correlation , diversity gain and

capacity of a six-monopole antenna array for a MIMO system: theory , simulation

and measurement in reverberation chamber,” in IEE Proceedings Microwave

Antennas Propagation, 2005, vol. 152, no. 1, pp. 7–16.

[28] Y. Ban, C. Liu, J. L. Li, and R. Li, “Small-size wideband monopole with distributed

inductive strip for seven-band WWAN/LTE mobile phone,” IEEE Antennas and

Wireless Propagation Letters, vol. 12, pp. 7–10, 2013.

Page 30: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

90

[29] J. Lu and Z. Lin, “Planar compact LTE / WWAN monopole antenna for tablet

computer application,” IEEE Antennas and Wireless Propagation Letters, vol. 12,

pp. 147–150, 2013.

[30] W. Chen and W. Jhang, “A planar WWAN / LTE antenna for portable devices,”

IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 19–22, 2013.

[31] A. R. Mallahzadeh, S. F. Seyyedrezaei, N. Ghahvehchian, S. Mohammad, and S.

Mallahzadeh, “Tri-band printed monopole antenna for WLAN and WiMAX MIMO

systems,” in Proceedings of the 5th European conferences on Antenna and

Propagation (EUCAP), pp. 548–551.

[32] H. T. Chattha, Y. Huang, X. Zhu, and Y. Lu, “Dual-feed PIFA diversity antenna for

wireless applications,” Electronics Letters, vol. 46, no. 3, pp. 45–46, 2010.

[33] S. Mohammad, A. Nezhad, and H. R. Hassani, “A novel triband E-shaped printed

monopole antenna for MIMO application,” IEEE Antennas and Wireless

Propagation Letters, vol. 9, pp. 576–579, 2010.

[34] Y. Yao, X. Wang, and J. Yu, “Multiband planar monopole antenna for LTE MIMO

systems,” International Journal of Antennas and Propagation, vol. 2012, pp. 1–6,

2012.

[35] L. Mouffok, A. C. Lepage, J. Sarrazin, and X. Begaud, “A compact dual-band dual-

port diversity antenna for LTE,” Advanced Electromagnetics, vol. 1, no. 1, pp. 1–5,

2012.

[36] H. Bae, F. J. Harackiewicz, M. Park, T. Kim, N. Kim, D. Kim, and B. Lee,

“Compact mobile handset MIMO antenna for LTE700 applications,” Microwave

and Optical Technology Letters, vol. 52, no. 11, pp. 2419–2422, 2010.

[37] M. S. Sharawi, S. S. Iqbal, and Y. S. Faouri, “An 800MHz 2×1 compact MIMO

antenna system for LTE handsets,” IEEE Transactions on Antennas and

Propagation, vol. 59, no. 8, pp. 3128–3131, 2011.

Page 31: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

91

[38] J. Lee, Y. Hong, S. Bae, G. S. Abo, W. Seong, and G. Kim, “Miniature Long-Term

Evolution ( LTE ) MIMO ferrite antenna,” IEEE Antennas and Wireless

Propagation Letters, vol. 10, pp. 603–606, 2011.

[39] P. Rezaei, M. Hakkak, and K. Forooraghi, “Design of wide-band dielectric resonator

antenna with a two-segment structure,” Progress In Electromagnetics Research, vol.

66, pp. 111–124, 2006.

[40] H. Wu, X. Wu, C. Hua, and N. Yang, “A dual frequency rectangular dielectric

resonator antenna fed by a coaxial probe,” Progress In Electromagnetics Research

Symposium Proceedings, Suzhou, China, pp. 211–213, 2011.

[41] T. A. Denidni, Z. Weng, and M. Niroo-Jazi, “Z-shaped dielectric resonator antenna

for ultrawideband applications,” IEEE Transactions on Antennas and Propagation,

vol. 58, no. 12, pp. 4059–4062, 2010.

[42] R. Chair, A. A. Kishk, K. F. Lee, and C. E. Smith, “Wideband flipped staired

pyramid dielectric resonator antennas,” Electronics Letters, vol. 40, no. 10, pp. 13–

14, 2004.

[43] E. E. C. Oliveira, A. G. D’Assuncao, J. B. L. Oliveira, and A. M. Cabral, “Small

size dual-band rectangular dielectric resonator antenna based on calcium titanate (

CaTiO 3 ),” Microwave and Optical Technology Letters, vol. 54, no. 4, pp. 976–

979, 2012.

[44] L. Zhang, S. Zhong, and S. Xu, “Broadband U-shaped dielectric resonator antenna

with elliptical patch feed,” Electronics Letters, vol. 44, no. 16, pp. 7–8, 2008.

[45] B. Ghosh, Y. M. M. Antar, A. Petosa, and A. Ittipiboon, “CPW feed to rectangular

DRA,” Microwave and Optical Technology Letters, vol. 45, no. 3, pp. 210–216,

2005.

[46] M. H. Jamaluddin, “Reflactery DRA at Ka band,” Universite of Rennes 1, 2009.

[47] R. Y. B.E., “Novel designs for broadband and compact dielectric resonator

antennas,” Texas Tech University, 2004.

Page 32: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

92

[48] Y. Guo and K. Luk, “Dual-polarized dielectric resonator antennas,” IEEE

Transactions on Antennas and Propagation, vol. 51, no. 5, pp. 1120–1123, 2003.

[49] R. K. Chaudhary, R. Kumar, and K. V. Srivastava, “Wideband ring dielectric

resonator antenna with annular-shaped microstrip feed,” IEEE Antennas and

Wireless Propagation Letters, vol. 12, pp. 595–598, 2013.

[50] M. Khalily, M. K. Abdul Rahim, and A. A. Kishk, “Bandwidth enhancement and

radiation characteristics improvement of rectangular dielectric resonator antenna,”

IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 393–395, 2011.

[51] W. Huang and A. A. Kishk, “Compact wideband multi-layer cylindrical dielectric

resonator antennas,” IEEE Transactions on Antennas and Propagation, vol. 1, no. 5,

pp. 998–1005, 2007.

[52] J.-B. Yan and J. T. Bernhard, “Design of a MIMO dielectric resonator antenna for

LTE femtocell base stations,” IEEE Transactions on Antennas and Propagation,

vol. 60, no. 2, pp. 438–444, Feb. 2012.

[53] L. Zou, D. Abbott, and C. Fumeaux, “Omnidirectional cylindrical dielectric

resonator antenna with dual polarization,” IEEE Antennas and Wireless Propagation

Letters, vol. 11, pp. 515–518, 2012.

[54] A. Moradikordalivand, T. A. Rahman, and M. Khalily, “Common elements

wideband MIMO antenna system for WiFi / LTE access-point applications,” IEEE

Antennas and Wireless Propagation Letters, vol. 13, pp. 1601–1604, 2014.

[55] S. A. Long and E. M. O. Connor, “The History of the Development of the Dielectric

Resonator Antenna,” IEEE, pp. 1–4, 2007.

[56] H. Kimouche, D. Abed, and B. Atrouz, “Small size microstrip slot antennas for

ultra-wideband communications,” EuCAP, pp. 1–5, 2010.

[57] A. Dastranj and H. Abiri, “Bandwidth enhancement of printed E-shaped slot

antennas fed by CPW and microstrip line,” IEEE Transactions on Antennas and

Propagation, vol. 58, no. 4, pp. 1402–1407, 2010.

Page 33: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

93

[58] E. K. I. Hamad and H. A. Atallah, “Bandwidth improvement of compact high

permittivity RDRA using parasitic conducting strips,” EuCAP, vol. 5, no. c, pp. 5–8,

2012.

[59] R. G. Madhuri and P. M. Hadalgi, “Rectangular ring-slot dielectric resonator

antenna with small metallic patch,” Progress In Electromagnetics Research M, vol.

20, pp. 171–177, 2011.

[60] M. Saed and R. Yadla, “Microstrip fed-low profile and compact dielectric resonator

antennas,” Progress In Electromagnetics Research, vol. 56, pp. 151–162, 2006.

[61] Y. Yu, J. Ji, W. Seong, and J. Choi, “A compact MIMO antenna with improved

isolation bandwidth for mobile applications,” Microwave and Optical Technology

Letters, vol. 53, no. 10, pp. 2314–2317, 2011.

[62] H. Chen, “Broadband CPW-fed square slot antennas with a widened tuning stub,”

IEEE Transactions on Antennas and Propagation, vol. 51, no. 8, pp. 1982–1986,

2003.

[63] M. S. Al Salameh, Y. M. M. Antar, and G. Séguin, “Coplanar-waveguide-fed slot-

coupled rectangular dielectric resonator antenna,” IEEE Transactions on Antennas

and Propagation, vol. 50, no. 10, pp. 1415–1419, 2002.

[64] S. G. Chand, S. U. Kiran, T. N. Pavan, and K. J. Babu, “A slotted fork shaped patch

antenna with improved bandwidth and isolation for MIMO systems,” International

Journal of Energy, Information and Communications, vol. 4, no. 3, pp. 27–36, 2013.

[65] R. G. Vaughan and J. B. Andersen, “Antenna diversity in mobile communications,”

IEEE Transactions on Vehicular Technology, vol. 36, no. 4, pp. 149–172, 1988.

[66] M. Khalily, M. K. A. Rahim, and A. A. Kishk, “Planar wideband circularly

polarized antenna design with rectangular ring dielectric resonator and parasitic

printed loops,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 905–

908, 2012.

Page 34: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

94

[67] H. Li, X. Lin, B. K. Lau, and S. He, “Equivalent circuit based calculation of signal

correlation in lossy MIMO antennas,” IEEE Transactions on Antennas and

Propagation, vol. 61, no. 10, pp. 5214–5222, 2013.

[68] G.-T. Jeong, S. Choi, K. Lee, and W.-S. Kim, “Low-profile dual-wideband MIMO

antenna with low ECC for LTE and Wi-Fi applications,” International Journal of

Antennas and Propagation, vol. 2014, pp. 1–6, 2014.

[69] Y. Gao, S. Member, B. Ooi, S. Member, W. Ewe, and A. P. Popov, “A Compact

Wideband Hybrid Dielectric Resonator Antenna,” IEEE Microwave and Wireless

Components Letters, vol. 16, no. 4, pp. 227–229, 2006.

[70] Y. Gao, B. Ooi, W. Ewe, and A. P. Popov, “A compact wideband hybrid dielectric

resonator antenna,” IEEE Microwave and Wireless Components Letters, vol. 16, no.

4, pp. 227–229, 2006.

[71] X. Wang, H. D. Nguyen, and H. T. Hui, “Correlation coefficient expression by S-

parameters for two omni-directional MIMO antennas,” in Proceedings IEEE

Antennas and Propagation International Symposium (APSURSI), 2011, no. 1, pp.

301–304.

[72] B. Mun, C. Jung, M. Park, and B. Lee, “A compact frequency-reconfigurable

multiband LTE MIMO antenna for Laptop applications,” IEEE Antennas and

Wireless Propagation Letters, vol. 13, pp. 1389–1392, 2014.

Page 35: SITI FAIRUZ ROSLAN - eprints.utm.myeprints.utm.my/id/eprint/50719/25/SitiFairuzRoslanMFKE2015.pdf · resonator dielektrik (DR) digunakan sebagai elemen radiasi di dalam tesis ini.

95

APPENDIX A: List of Author’s Publication

1. S. F. Roslan, M. R. Kamarudin, M. Khalily, and M. H. Jamaluddin, ”An MIMO

rectangular dielectric resonator antenna for 4G applications,” IEEE Antennas and

Wireless Propagation Letters, vol. 13 pp. 321-324, 2014.