SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el...

118
SISTEMAS DE CONTROL ANÁLOGO PRIMERA PARTE INSTITUCIÓN UNIVERSITARIA DE ENVIGADO Luis Edo García Jaimes

Transcript of SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el...

Page 1: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

SISTEMAS DE CONTROL

ANÁLOGO

PRIMERA PARTE

INSTITUCIÓN UNIVERSITARIA DE

ENVIGADO

Luis Edo García Jaimes

Page 2: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

PROGRAMA

Luis Edo García Jaimes

Page 3: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

BIBLIOGRAFIA

Luis Edo García Jaimes

Dorf, Richard and Bishop, Robert. Sistemas de Control Moderno. Pearson 10ma.

ed. España, 2006.

Dorsey, John. Sistemas de Control Continuos y Discretos. McGraw-Hill. 1era. ed.

México, 2003.

Kuo, Benjamin and Golnaraghi, Farid. Automatic Control System. Wyle and Sons.

8va. ed. New York, 2003.

Nise, Norman. Control Systems Engineering, Wiley & Sons. 4ta ed. California,

2007.

Ogata, Katsuhito. Ingeniería de Control Moderna, Pearson. 4ta. ed. España, 2002.

Phillips, Charles and Harbor, Royce. Feedback Control Systems. Prentice Hall.

3era. ed. 1996.

Fongiel M. Automatic Control System/Robotics. Re-search and Education

Association 1era. ed.

Kuo, B.C.,"Sistemas de control automático", Ed. Prentice Hall.

F. Matía y A. Jiménez, “Teoría de Sistemas”, Sección de Publicaciones Universidad

Politécnica de Madrid.

Page 4: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

SISTEMA DE CONTROLEn un sentido lo más amplio posible, un sistema de control es un arreglo de

componentes tales que, ante unos objetivos determinados, responde con una serie

de actuaciones para cumplir con dichos objetivos

Luis Edo García Jaimes

Page 5: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

Luis Edo García Jaimes

ELEMENTOS EN UN SISTEMA DE CONTROLSistemas: Un sistema es una combinación de componentes que actúan juntos y

realizan un objetivo determinado. Hay sistemas físicos, biológicos, económicos y

similares.

Planta: Para el control, una planta es cualquier objeto físico que se va a controlar

Proceso: Es una operación progresivamente continua, caracterizada por una serie

de cambios graduales que se suceden unos a otros de una forma relativamente fija

y que conducen a un resultado o propósito determinado. Algunos ejemplos son los

procesos químicos, económicos y biológicos.

Variable controlada: Generalmente se le conoce como señal de salida. Es la

cantidad o condición que se mide y controla

variable manipulada: es la cantidad o condición que el controlador modifica para

afectar el valor de la variable controlada.

Page 6: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

ELEMENTOS EN UN SISTEMA DE CONTROL (2)

Luis Edo García Jaimes

Señal de referencia o set-point. Es la señal consigna o valor que se desea que

adquiera la señal de salida.

Perturbación: Es una señal que tiende a afectar adversamente el valor de la salida

de un sistema. Si la perturbación se genera dentro del sistema se denomina interna,

mientras que una perturbación externa se genera fuera del sistema y es una

entrada.

Sensor: El sensor es el elemento que permite captar el valor de la variable a

controlar en determinados instantes de tiempo.

Actuador: Es elemento que actúa sobre el sistema modificando el valor del fluido o

agente de control para llevar la salida al valor deseado.

Controlador: También llamado regulador, es el elemento que comanda al actuador

en función del objetivo de control.

Page 7: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

SISTEMA DE CONTROL

Luis Edo García Jaimes

Page 8: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

SISTEMAS DE CONTROL EN LAZO ABIERTOLos sistemas de control en lazo abierto son aquellos en los cuales la señal de

salida no tiene influencia sobre la señal de entrada.

En los sistemas de lazo abierto no se compara el valor de la variable controlada con

el valor de una entrada de referencia

Luis Edo García Jaimes

Page 9: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

SISTEMA DE CONTROL EN LAZO CERRADOlos sistemas de control en lazo cerrado o con realimentación son aquellos en los

cuales la señal de salida tiene efecto sobre la acción de control. en estos sistemas

se compara la señal de referencia con la señal de salida controlada para determinar

cuál es la diferencia existente entre ambas y con base a esa diferencia se ejerce la

acción de control

Luis Edo García Jaimes

Page 10: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

DIAGRAMA DE SISTEMA DE CONTROL EN LAZO CERRADO

Luis Edo García Jaimes

Page 11: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

CONTROL ANÁLOGO y CONTROL DIGITAL

En función del tipo de señal que use el detector de error, el control puede ser:

análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado, o en el

regulador en caso de ser un sistema en bucle abierto.

Control análogo: En este sistema de control, las variables están representadas

por ecuaciones con cantidades físicas continuas. El proceso directo de la señal

analógica está ligado al uso de amplificadores operacionales y sus

propiedades.

Control digital: Este sistema de control que funciona con variables

discontinuas codificadas.

Control hibrido: Este tipo de control puede procesar señales análogas y

discretas.

Luis Edo García Jaimes

Page 12: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

SEÑALES ANÁLOGICAS Y SEÑALES DIGITALES

Luis Edo García Jaimes

Page 13: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

CONTROL ANÁLOGO Y CONTROL DIGITAL

Luis Edo García Jaimes

Page 14: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

MODELADO DE SISTEMAS FÍSICOS

Luis Edo García Jaimes

Para realizar el análisis de un sistema de control, es necesario obtener un modelo

matemático que lo represente.

El modelo matemático equivale a una ecuación matemática o a un conjunto de

ecuaciones mediante las cuales es posible determinar el comportamiento del

sistema.

Page 15: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

SISTEMA MECÁNICO TRASLACIONAL

Luis Edo García Jaimes

Los sistemas mecánicos traslacionales son aquellos en los cuales el movimiento se

produce a lo largo de una línea recta, los elementos traslacionales activos son la

fuerza y la velocidad, y los elementos pasivos son la masa, la elasticidad y el

amortiguamiento.

Su dinámica se basa en la segunda ley de Newton. 𝑚. 𝑎 = 𝐹

Page 16: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO SISTEMA MECÁNICO TRASLACIONALHallar las ecuaciones diferenciales que describen el comportamiento dinámico del

sistema mecánico de la Figura cuando se le aplica una fuerza 𝑓 = 𝑢

Luis Edo García Jaimes

Masa 𝒎𝟏: 𝑚1𝑥 1 = 𝑢 − 𝑓𝐾1 − 𝑓𝑏1 − 𝑓𝐾2

Masa 𝒎𝟐: 𝑚2𝑥 2 = −𝑓𝐾2

Fuerza del resorte: 𝑓𝐾 = 𝐾𝑥 Fuerza del amortiguador: 𝑓𝑏 = 𝑏𝑑𝑥

𝑑𝑡

Masa 1: 𝑚1𝑥 1 = 𝑢 − 𝑘1𝑥1 − 𝑏1𝑥 1 − 𝑘2 𝑥1 − 𝑥2

Masa 2: 𝑚2𝑥 2 = −𝑘2 𝑥2 − 𝑥1

Aplicando la segunda ley de Newton

𝑚. 𝑎 = 𝑓𝑖𝑖

𝑚𝑑2𝑥

𝑑𝑡2= 𝑓𝑖

𝑖

Page 17: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJERCICIOSObtener las ecuaciones diferenciales que describen la dinámica de los siguientes

sistemas mecánicos traslacionales

Luis Edo García Jaimes

Page 18: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

SISTEMA MECÁNICO ROTACIONAL

Luis Edo García Jaimes

Si existe una rotación, los elementos básicos son el resorte de torsión, el

amortiguador giratorio y el momento de inercia, es decir, la inercia de una masa con

movimiento giratorio. Con estos elementos la entrada es el torque y la salida el

movimiento angular. Su dinámica se basa en la segunda ley de Newton: 𝐽𝛼 = 𝑇

Page 19: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO SISTEMA MECÁNICO ROTACIONAL

Determinar las ecuaciones dinámicas del sistema mecánico rotacional mostrado a

continuación.

Luis Edo García Jaimes

Masa 𝑱𝟏: 𝐽1𝜃 1 = 𝑇1(𝑆) − 𝑇𝐾1

Masa 𝑱𝟐 : 𝐽2𝜃 2 = −𝑇𝐾1 − 𝑇𝐾2 − 𝑇𝐵

Fuerza de rigidez: 𝑓𝐾 = 𝐾𝜃 Fuerza del amortiguador: 𝑓𝑏 = 𝑏𝑑𝜃

𝑑𝑡

Masa 𝑱𝟏: 𝐽1𝜃 1 = 𝑇1 𝑆 − 𝑘1 𝜃1 − 𝜃1

Masa 𝑱𝟐 𝐽2𝜃 2 = −𝑘1 𝜃2 − 𝜃1 − 𝑘2𝜃2 − 𝐵𝜃 2

Segunda ley de Newton:

𝐽𝛼 = 𝑇

𝑖

𝐽𝑑2𝜃

𝑑𝑡2= 𝑇

𝑖

Page 20: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJERCICIOSObtener las ecuaciones diferenciales que describen la dinámica de los siguientes

sistemas mecánicos rotacionales

Luis Edo García Jaimes

Page 21: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

SISTEMAS ELÉCTRICOS

Ley de Ohm: La corriente eléctrica (I) en un conductor (o circuito), es igual a la

diferencia de potencial (V) sobre el conductor (o circuito), dividido porla resistencia

(R) que opone a su paso. 𝐼 = 𝑉 𝑅

Leyes de Kirchhoff

1. Ley de corrientes (KCL): En cualquier nodo, la suma de las corrientes que

entran a ese nodo es igual a la suma de las corrientes que salen. De forma

equivalente, la suma algebraica de todas las corrientes que pasan por el nodo es

igual a cero. 𝑖𝑒 − 𝑖𝑠 = 0

2. Ley de Voltajes (KVL): La suma algebraica de las diferencias de potencial

eléctrico en un lazo cerrado es igual a cero. 𝑉𝑖 = 0

Luis Edo García Jaimes

Page 22: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

SISTEMAS ELÉCTRICOS (1)

Luis Edo García Jaimes

𝑖1 − 𝑖2 − 𝑖3 = 0

𝑅2𝑖2 − 𝜀1 + 𝑅1𝑖1 = 0

𝑅3𝑖3 + 𝜀2 + 𝜀1 − 𝑅2𝑖2 = 0

Page 23: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO SISTEMA ELÉCTRICO SERIE

Luis Edo García Jaimes

Hallar la ecuación diferencial que modela el circuito de la figura

Utilizando KVL:

𝑉𝑅 + 𝑉𝐿 + 𝑉𝐶 = 𝑉

𝑉𝑅 = 𝑖. 𝑅 𝑉𝐿 = 𝐿𝑑𝑖

𝑑𝑡 𝑉𝑐 =

1

𝐶 𝑖𝑑𝑡

𝑖. 𝑅 + 𝐿𝑑𝑖

𝑑𝑡+

1

𝐶 𝑖𝑑𝑡 = 𝑉 𝑖 =

𝑑𝑄

𝑑𝑡

𝑅𝑑𝑄

𝑑𝑡+ 𝐿

𝑑2𝑄

𝑑𝑡2+

1

𝐶𝑖 = 𝑉 → 𝐿

𝑑2𝑄

𝑑𝑡2+ 𝑅

𝑑𝑄

𝑑𝑡+

1

𝐶𝑖 = 𝑉

Page 24: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO CIRCUITO RLC PARALELO

Hallar la ecuación diferencial que modela el circuito de la figura

Luis Edo García Jaimes

Utilizando KCL:

𝐼𝑅 + 𝐼𝐿 + 𝐼𝐶 = 𝐼𝑆

𝐼𝑅 =𝑉𝑆

𝑅 𝐼𝐿 =

1

𝐿 𝑉𝑆𝑑𝑡 𝐼𝐶 = 𝐶

𝑑𝑉𝑆

𝑑𝑡

𝑉𝑆

𝑅+

1

𝐿 𝑉𝑆𝑑𝑡 + 𝐶

𝑑𝑉𝑆

𝑑𝑡= 𝑉𝑆 𝑉𝑆 =

𝑑𝜙

𝑑𝑡

1

𝑅

𝑑𝜙

𝑑𝑡+

1

𝐿𝜙 + 𝐶

𝑑2𝜙

𝑑𝑡2= 𝑉𝑆 → 𝐶

𝑑2𝜙

𝑑𝑡2+

1

𝑅

𝑑𝜙

𝑑𝑡+

1

𝐿𝜙 = 𝑉𝑆

Page 25: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

MOTOR DE CORRIENTE DC CONTROLADO POR ARMADURA

Luis Edo García Jaimes

𝑅𝑎 =Resistencia de la armadura Ω

𝐿𝑎 =Inductancia de la armadura [H]

𝑖𝑎 =Corriente en la armadura [A]

𝑖𝑓 =Corriente del campo [A]

𝑒𝑎 =Voltaje de armadura [V]

𝑒𝑏 =Fuerza contra electromotriz [V]

𝜃 =Desplazamiento angular del eje del motor [rad]

𝑇 =Torque desarrollado por el motor [N.m]

𝐽 =Momento de inercia de la carga [Kg.m]

𝑏 =Coeficiente de fricción viscosa equivalente del motor y la carga [N.m/rad/s]

Page 26: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

MODELO MATEMÁTICO DEL MOTOR DE CD

Luis Edo García Jaimes

Subsistema eléctrico: La armadura es un conductor, con una resistencia 𝑅𝑎 y

una inductancia 𝐿𝑎 en donde además, se genera una fuerza contraelectromotriz 𝑒𝑏

𝑅𝑎 𝑖𝑎 + 𝐿𝑑𝑖𝑎𝑑𝑡

+ 𝑒𝑏 = 𝑒𝑎 1.

Subsistema magnético: La circulación de corriente por las bobinas genera un

torque que es proporcional a la corriente en la armadura y la velocidad de giro del

motor produce la fuerza contraelectromotriz proporcional a la velocidad de giro.

𝑒𝑏 = 𝐾𝑏

𝑑𝜃

𝑑 𝑡 𝑇𝑚 = 𝐾𝑚 𝑖𝑎 2.

Subsistema Mecánico: El par mecánico 𝑇𝑚 del motor se emplea para imprimir

aceleración angular a la carga y en vencer la fuerza de fricción.

𝐽𝑑2𝜃

𝑑𝑡2+ 𝑏

𝑑𝜃

𝑑𝑡= 𝑇𝑚 3.

Combinando las ecuaciones 1, 2 y 3 resulta:

𝐽𝐿𝑎𝜃 + 𝐽𝑅𝑎 + 𝑏𝐿𝑎 𝜃 + 𝑏𝑅𝑎 + 𝐾𝑏𝐾𝑚 𝜃 = 𝐾𝑚 𝑒𝑎

Page 27: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

LA TRANSFORMADA DE LAPLACE

Luis Edo García Jaimes

La transformada de Laplace convierte cierto tipo de ecuaciones diferenciales en

ecuaciones algebraicas. De este modo, cuando se resuelve la ecuación algebraica,

queda también resuelta la ecuación diferencial correspondiente.

Definición: la transformada de Laplace de una función 𝑓(𝑡) definida para todo en

el intervalo 0 ∞ 0; se define así:

ℒ 𝑓(𝑡) = 𝐹 𝑆 = 𝑓(𝑡)𝑒−𝑆𝑡𝑑𝑡∞

0

Ejemplo: Sea 𝑓 (𝑡) = 1, hallar ℒ 𝑓(𝑡)

ℒ 𝑓(𝑡) = 𝐹 𝑆 = 1 ∗ 𝑒−𝑆𝑡𝑑𝑡∞

0

= −1

𝑆𝑒−𝑆𝑡

0

𝐹 𝑆 =1

𝑆

Page 28: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLOS DE TRANSFORMADA DE LA PLACE

Ejemplo: Sea 𝑓 (𝑡) = 𝑡, hallar ℒ 𝑓(𝑡)

ℒ 𝑓(𝑡) = 𝐹 𝑆 = 𝑡. 𝑒−𝑆𝑡𝑑𝑡∞

0

= − 𝑒−𝑆𝑡

𝑆2 𝑆𝑡 + 1

0

𝐹 𝑆 =1

𝑆2

En este caso se utilizó la integral por partes:

𝑢𝑑𝑣 = 𝑢. 𝑣 − 𝑣𝑑𝑢

Ejemplo: Sea 𝑓 𝑡 = cos 𝑎𝑡 hallar ℒ 𝑓 𝑡

ℒ 𝑓(𝑡) = 𝐹 𝑆 = cos 𝑎𝑡 𝑒−𝑆𝑡𝑑𝑡 = 𝑒−𝑆𝑡 𝑎. 𝑠𝑒𝑛𝑎𝑡 − 𝑆𝑐𝑜𝑠𝑎𝑡

𝑆2 + 𝑎2

0

=𝑆

𝑆2 + 𝑎2

0

Nuevamente se utilizó la integral por partes:

𝑢𝑑𝑣 = 𝑢. 𝑣 − 𝑣𝑑𝑢 𝑢 = 𝑒−𝑆𝑡 𝑑𝑣 = 𝑐𝑜𝑠𝑎𝑡

Luis Edo García Jaimes

Page 29: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

PROPIEDADES DE LA TRANSFORMADA DE LAPLACE

Luis Edo García Jaimes

1. Propiedad de linealidad: Si ℒ 𝑓(𝑡) = 𝐹(𝑆) y ℒ 𝑔(𝑡) = 𝐺 𝑆 entonces:

ℒ 𝑎𝑓(𝑡) + 𝑏𝑔(𝑡) = 𝑎ℒ𝑓 𝑡 + 𝑏ℒ𝑔 𝑡 = 𝑎𝐹 𝑆 + 𝑏𝐺(𝑆)

Ejemplo:

Hallar ℒ 3𝑠𝑒𝑛4𝑡 − 2𝑐𝑜𝑠4𝑡

ℒ 3𝑠𝑒𝑛4𝑡 − 2𝑐𝑜𝑠4𝑡 = 3ℒ 𝑠𝑒𝑛4𝑡 − 2ℒ 𝑐𝑜𝑠4𝑡 =3 ∗ 4

𝑆2 + 16−

2𝑆

𝑆2 + 16

ℒ 3𝑠𝑒𝑛4𝑡 − 2𝑐𝑜𝑠4𝑡 =12 − 2𝑆

𝑆2 + 16

syms t

f=3*sin(4*t)-2*cos4*t

FS=laplace(f)

Page 30: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

PROPIEDADES DE LA TRANSFORMADA DE LAPLACE

Luis Edo García Jaimes

2. Segunda propiedad de traslación: Si ℒ 𝑓(𝑡) = 𝐹(𝑆) entonces:

𝑃𝑖𝑚𝑒𝑟 𝑐𝑎𝑠𝑜: ℒ 𝑓(𝑡 − 𝑎)𝑢(𝑡 − 𝑎) = 𝑒−𝑎𝑆ℒ𝑓(𝑡)

𝑆𝑒𝑔𝑢𝑛𝑑𝑜 𝑐𝑎𝑠𝑜: ℒ 𝑓(𝑡)𝑢(𝑡 − 𝑎) = 𝑒−𝑎𝑆ℒ𝑓(𝑡 + 𝑎)

Ejemplo: Hallar ℒ 𝑡 − 5 3𝑢(𝑡 − 5)

ℒ 𝑡 − 5 3𝑢(𝑡 − 5) = 𝑒−5𝑠ℒ 𝑡3 = 6𝑒−5𝑆

𝑆4

Ejemplo: Hallar ℒ 𝑡3𝑢(𝑡 − 5)

ℒ 𝑡2𝑢(𝑡 − 5) = 𝑒−5𝑆ℒ 𝑡 + 5 2 = 𝑒−5𝑆ℒ 𝑡2 + 10𝑡 + 25

ℒ 𝑡2𝑢(𝑡 − 5) = 2

𝑆3+

10

𝑆2+

25

𝑆 𝑒−5𝑆 =

2 + 10𝑆 + 25𝑆2 𝑒−5𝑆

𝑆3

Page 31: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

PROPIEDADES DE LA TRANSFORMADA DE LAPLACE

3. Transformada de una derivada: Si ℒ 𝑓(𝑡) = 𝐹(𝑆) entonces:

ℒ 𝑓 ′ 𝑡 = 𝑆𝐹 𝑆 − 𝑓(0)

ℒ 𝑓 ′′ (𝑡) = 𝑆2𝐹 𝑆 − 𝑆𝑓 0 − 𝑓´ 0

ℒ 𝑓 ′′′ 𝑡 = 𝑆3𝐹 𝑆 − 𝑆2𝑓 0 − 𝑆𝑓 ′ 0 − 𝑓 ′′ (0)

Ejemplo: dada la ecuación diferencial

𝑑2𝑦

𝑑𝑡2+ 8

𝑑𝑦

𝑑𝑡+ 15𝑦 = 5𝑢

Con 𝑓 ′ 0 = 0, 𝑓 0 = 0, obtenga la relación 𝐺 𝑆 =𝑌(𝑆)

𝑈(𝑆)

Como las condiciones iniciales son iguales a cero, se obtiene:

𝑆2𝑌 𝑆 + 8𝑆𝑌 𝑆 + 15𝑌 𝑆 = 5𝑈 𝑆

𝑆2 + 8𝑆 + 15 𝑌 𝑆 = 5𝑈 𝑆 𝐺 𝑆 =𝑌(𝑆)

𝑈(𝑆)=

5

𝑆2 + 8𝑆 + 15

Luis Edo García Jaimes

Page 32: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

TRANSFORMADA DE UNA DERIVADA

Luis Edo García Jaimes

3. Transformada de una derivada: Si ℒ 𝑓(𝑡) = 𝐹(𝑆) entonces:

ℒ 𝑓 ′ 𝑡 = 𝑆𝐹 𝑆 − 𝑓(0)

ℒ 𝑓 ′′ (𝑡) = 𝑆2𝐹 𝑆 − 𝑆𝑓 0 − 𝑓´ 0

ℒ 𝑓 ′′′ 𝑡 = 𝑆3𝐹 𝑆 − 𝑆2𝑓 0 − 𝑆𝑓 ′ 0 − 𝑓 ′′ (0)

Ejemplo: dada la ecuación diferencial

𝑑2𝑦

𝑑𝑡2+ 8

𝑑𝑦

𝑑𝑡+ 15𝑦 = 5𝑢

Con 𝑓 ′ 0 = 0, 𝑓 0 = 0, obtenga la relación 𝐺 𝑆 =𝑌(𝑆)

𝑈(𝑆)

Como las condiciones iniciales son iguales a cero, se obtiene:

𝑆2𝑌 𝑆 + 8𝑆𝑌 𝑆 + 15𝑌 𝑆 = 5𝑈 𝑆

𝑆2 + 8𝑆 + 15 𝑌 𝑆 = 5𝑈 𝑆 𝐺 𝑆 =𝑌(𝑆)

𝑈(𝑆)=

5

𝑆2 + 8𝑆 + 15

Page 33: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

TRANSFORMADA DE UNA INTEGRAL

4. Transformada de una integral: Si ℒ 𝑓(𝑡) = 𝐹(𝑆) entonces:

ℒ 𝑓 𝑡 𝑑𝑡𝑡

0

=𝐹(𝑆)

𝑆

Ejemplo: Hallar

ℒ 𝑠𝑒𝑛2𝑡𝑑𝑡𝑡

0

sea 𝑓(𝑡) = 𝑠𝑒𝑛2𝑡

ℒ 𝑠𝑒𝑛2𝑡 =2

𝑆2 + 4 ⟶ ℒ 𝑠𝑒𝑛2𝑡𝑑𝑡

𝑡

0

=2

𝑆(𝑆2 + 4)

Luis Edo García Jaimes

Page 34: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

TRANSFORMADA DE UNA INTEGRAL (1)

Ejemplo: Hallar

ℒ 𝑒−3𝑡𝑐𝑜𝑠5𝑡𝑑𝑡𝑡

0

En este caso se aplican dos propiedades: la propiedad de la transformada de la

integral y la primera propiedad de traslación

ℒ 𝑐𝑜𝑠5𝑡 =𝑆

𝑆2 + 25

ℒ 𝑒−3𝑡𝑐𝑜𝑠5𝑡 =𝑆

𝑆2 + 25 𝑆=𝑆+3

=𝑆 + 5

𝑆 + 3 2 + 25=

𝑆 + 3

𝑆2 + 6𝑆 + 34

ℒ 𝑒−3𝑡𝑐𝑜𝑠5𝑡𝑑𝑡𝑡

0

=𝑆 + 5

𝑆 𝑆2 + 6𝑆 + 34

Luis Edo García Jaimes

Page 35: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

MULTIPLCACIÓN POR POTENCIAS DE t

5. Multiplicación por potencias de t: Si ℒ 𝑓(𝑡) = 𝐹(𝑆), entonces:

ℒ 𝑡𝑛𝑓(𝑡) = −1 𝑛𝐹 𝑛 (𝑆)

Ejemplo: Hallar

ℒ 𝑡 1 − 𝑒−4𝑡

Se hace 𝑓 𝑡 = 1 − 𝑒−4𝑡

ℒ 1 − 𝑒−4𝑡 =1

𝑆−

1

𝑆 + 4=

4

𝑆(𝑆 + 4)

ℒ 𝑡 1 − 𝑒−4𝑡 = (−1)1𝑑

𝑑𝑆

4

𝑆(𝑆 + 4) =

2𝑆 + 4

(𝑆2 + 4𝑆)2=

2(𝑆 + 2)

𝑆2(𝑆 + 4)

Luis Edo García Jaimes

Page 36: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

TRANSFORMADA DE UNA FUNCIÓN DIVIDIDA POR t

6. Transformada de la función dividida por 𝒕: Si ℒ 𝑓(𝑡) = 𝐹(𝑆), entonces,

ℒ 𝑓(𝑡)

𝑡 = 𝐹 𝑆 𝑑𝑠

𝑆

Ejemplo: Hallar

ℒ 𝑠𝑒𝑛5𝑡

𝑡

Se hace 𝑓 𝑡 = 𝑠𝑒𝑛5𝑡

ℒ 𝑠𝑒𝑛5𝑡 =5

𝑆2 + 25

ℒ 𝑠𝑒𝑛5𝑡

𝑡 =

5

𝑆2 + 25𝑑𝑆 = 𝑡𝑎𝑛−15𝑆

𝑆 𝑆

=𝜋

2− 𝑡𝑎𝑛−15𝑆

Luis Edo García Jaimes

Page 37: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

TRANSFORMADA INVERSA DE LAPLACE

Luis Edo García Jaimes

Es el proceso matemático de pasar de la expresión en el dominio de Laplace a

la expresión en el dominio del tiempo.

Por lo general, se utiliza el siguiente procedimiento

Utilizar tablas cuando las expresiones son sencillas.

Utilizar tablas y las propiedades de la transformada.

Utilizar fracciones parciales, tablas y las propiedades de la transformada en

caso de expresiones complejas.

Utilizar programas de software especializados (Matlab, wolfram….)

Page 38: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO DE TRANSFORMADA INVERSA DE LAPLACEEjemplo: Hallar

ℒ−1 5

𝑆2 + 4+

20𝑆

𝑆2 + 9

ℒ 𝑠𝑒𝑛 𝑏𝑡 =𝑏

𝑆2 + 𝑏2 ℒ 𝑐𝑜𝑠 𝑏𝑡 =

𝑆

𝑆2 + 𝑏2

ℒ−1 5

𝑆2 + 4 =

5

2ℒ−1

2

𝑆2 + 22 =

5

2𝑠𝑒𝑛(2𝑡)

ℒ−1 20𝑆

𝑆2 + 9 = 20ℒ−1

𝑆

𝑆2 + 32 = 20cos(3𝑡)

ℒ−1 5

𝑆2 + 4+

20𝑆

𝑆2 + 9 =

5

2𝑠𝑒𝑛 2𝑡 + 20cos(3𝑡)

Luis Edo García Jaimes

syms S;

FS=5/(S^2+4)+20*S/(S^2+9)

x=ilaplace(FS)

ezplot(x,[0,10])

grid on

xlabel('t')

ylabel('x')

Page 39: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO DE TRANSFORMADA INVERSA DE LAPLACE

Luis Edo García Jaimes

Hallar

ℒ−1 15𝑆 + 5

(𝑆 + 5)(𝑆 + 3)(𝑆 + 10)

Se descompone la expresión en fracciones parciales:

15𝑆 + 5

(𝑆 + 5)(𝑆 + 3)(𝑆 + 10)=

𝐴

𝑆 + 5+

𝐵

𝑆 + 3+

𝐶

𝑆 + 10

𝐴 =15𝑆 + 5

𝑆 + 3 𝑆 + 10 𝑆=−5

= 7 𝐵 =15𝑆 + 5

𝑆 + 5 𝑆 + 10 𝑆=−3

= −2.8571

𝐶 =15𝑆 + 5

(𝑆 + 5)(𝑆 + 3) 𝑆=−10

= −4.1429

15𝑆 + 5

(𝑆 + 5)(𝑆 + 3)(𝑆 + 10)=

7

𝑆 + 5−

2.8571

𝑆 + 3−

4.1429

𝑆 + 10

ℒ 𝑒−𝑎𝑡 =1

𝑆 + 𝑎

ℒ−1 7

𝑆 + 5−

2.8571

𝑆 + 3−

4.1429

𝑆 + 10 = 7𝑒−5𝑡 − 2.8571𝑒−3𝑡 − 4.1429𝑒−10𝑡

Page 40: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO DE TRANSFORMADA INVERSA DE LA PLACE

Hallar

ℒ−1 2

𝑆 + 4 2+

3

𝑆2 + 16+

5(𝑆 + 1)

𝑆2 + 2𝑆 + 5

De tablas:

ℒ−1 1

𝑆 + 𝑎 2 = 𝑡𝑒−𝑎𝑡 ℒ−1 𝑏

𝑆2 + 𝑏2 = 𝑠𝑒𝑛 𝑏𝑡 ℒ−1 𝑆 + 𝑎

𝑆 + 𝑎 2 + 𝑏2 = 𝑒−𝑎𝑡 cos(𝑏𝑡)

La expresión dada se puede escribir como:

2ℒ−1 1

𝑆 + 4 2 +

3

4ℒ−1

4

𝑆2 + 16 + 5ℒ−1

(𝑆 + 1)

𝑆 + 1 2 + 4

Por tanto:

ℒ−1 2

𝑆 + 4 2+

3

𝑆2 + 16+

5(𝑆 + 1)

𝑆2 + 2𝑆 + 5 = 2𝑡𝑒−4𝑡 + 0.75𝑠𝑒𝑛 4𝑡 + 5𝑒−𝑡cos(2𝑡)

Luis Edo García Jaimes

Page 41: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

TEOREMA DEL VALOR FINALSi se conoce la transformada de Laplace de una función 𝑓(𝑡), el valor final de dicha

función puede obtenerse multiplicando 𝐹(𝑠) por 𝑆 y evaluando el límite:

lim𝑡→∞

𝑓(𝑡) = lim𝑡→0

𝑆𝐹(𝑆)

El teorema del valor final indica que valor definitivo alcanza la respuesta de un

sistema, es decir, en qué valor e estabiliza la respuesta del sistema.

Ejemplo: La transformada de Laplace de cierto sistema térmico está dada por

𝐹 𝑆 =2𝑆 + 3

𝑆3 + 3𝑆2 + 5𝑆

¿Cuál es el valor final que alcanza la respuesta del sistema?

lim𝑡→∞

𝑓(𝑡) = lim𝑆→0

𝑆.2𝑆 + 3

𝑆3 + 3𝑆2 + 5𝑆= lim

𝑆→0𝑆.

2𝑆 + 3

𝑆(𝑆2 + 3𝑆 + 5)=

3

5= 0.6

Luis Edo García Jaimes

Page 42: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

TEOREMA DEL VALOR INICIAL

Si se conoce la transformada de Laplace de una función 𝑓(𝑡), el valor inicial de dicha

función puede obtenerse multiplicando 𝐹(𝑠) por 𝑆 y evaluando el límite:

lim𝑡→0

𝑓(𝑡) = lim𝑡→∞

𝑆𝐹(𝑆)

El teorema del valor inicial permite calcular el valor de la condición inicial del

sistema.

Ejemplo: La transformada de Laplace de cierto sistema térmico está dada por

𝐹 𝑆 =2𝑆 + 3

𝑆3 + 3𝑆2 + 5𝑆

¿Cuál es el valor inicial del sistema?

lim𝑡→0

𝑓(𝑡) = lim𝑆→∞

𝑆.2𝑆 + 3

𝑆3 + 3𝑆2 + 5𝑆= lim

𝑆→∞𝑆.

2𝑆 + 3

𝑆(𝑆2 + 3𝑆 + 5)= 0

Luis Edo García Jaimes

Page 43: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

FUNCIÓN DE TRANSFERENCIA

Luis Edo García Jaimes

La función de transferencia 𝐺(𝑠), de un sistema lineal e invariante en el tiempo, se

define como la relación entre la transformada de Laplace de salida 𝑦(𝑡) y la

transformada de Laplace de la entrada 𝑟(𝑡), con condiciones iniciales iguales a cero.

La función de transferencia de un sistema se puede obtener de forma teórica a

través de las ecuaciones diferenciales de su modelo matemático, en este caso se

dice que se utiliza un método fenomenológico.

La función de transferencia también se puede obtener en forma experimental

tomando datos de los valores de la señal de entrada aplicada al proceso y de los

valores de la respuesta obtenida, en este caso se dice que se utiliza el método de

identificación de procesos.

Page 44: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

PROPIEDADES DE LA FUNCIÓN DE TRANSFERENCIA

Luis Edo García Jaimes

La función de transferencia es una propiedad intrínseca del sistema. Conocida la

función de transferencia del sistema, se puede conocer el comportamiento del

mismo ante cualquier tipo de entrada.

La función de transferencia responde a la ecuación diferencial resultante que

gobierna un sistema, pero no ofrece información acerca de su configuración

interna.

Dos sistemas físicos diferentes pueden poseer idénticas funciones de

transferencia.

La función de transferencia es independiente de la magnitud y la naturaleza de la

señal de entrada.

El denominador de la función de transferencia igualado a cero se denomina

“Ecuación característica” y determina el comportamiento dinámico del sistema.

Page 45: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO DE FUNCIÓN DE TRANSFERENCIA

La entrada a cierto sistema neumático es 𝑟(𝑡) = 2𝑢(𝑡) y la salida correspondiente a

esa entrada es 𝑦 𝑡 = 4(1 − 𝑒−5𝑡) cual es su función de transferencia?

Luis Edo García Jaimes

La función de transferencia es:

𝐺 𝑆 =𝑌(𝑆)

𝑅(𝑆)

𝑌 𝑆 = ℒ 4(1 − 𝑒−5𝑡) = 4 1

𝑆−

1

𝑆 + 5 =

20

𝑆(𝑆 + 5) 𝑅 𝑆 = ℒ 2𝑢(𝑡) =

2

𝑆

𝐺 𝑆 =𝑌(𝑆)

𝑅(𝑆)=

20𝑆(𝑆 + 5)

2𝑆

𝐺 𝑆 =𝑌(𝑆)

𝑅(𝑆)=

10

𝑆 + 5

Page 46: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

FUNCIÓN DE TRANSFERENCIA A PARTIR DE LA ECUACIÓN DIFERENCIAL QUE MODELA AL

SISTEMA

Luis Edo García Jaimes

Cierto sistema de control está descrito mediante la ecuación diferencial:

𝑑2𝑦(𝑡)

𝑑𝑡2+ 2

𝑑𝑦(𝑡)

𝑑𝑡+ 5𝑦 𝑡 = 3𝑟(𝑡)

Obtener su función de transferencia.

Tomando la Transformada de Laplace a la ecuación diferencial con condiciones

iniciales iguales a cero, se obtiene:

𝑆2𝑌 𝑆 + 2𝑆𝑌 𝑆 + 5𝑌 𝑆 = 3𝑅(𝑆)

𝑆2 + 2𝑆 + 5 𝑌 𝑆 = 3𝑅 𝑆 → 𝐺 𝑆 =𝑌(𝑆)

𝑅(𝑆)=

3

𝑆2 + 2𝑆 + 5

Page 47: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

FUNCIÓN DE TRANSFERENCIA A PARTIR DE LA ECUACIÓN DIFERENCIAL QUE MODELA AL SISTEMA

Hallar la función de transferencia de:

𝑦 𝑡 + 3𝑦 𝑡 + 2𝑦 𝑡 + 𝑦 𝑡 = 𝑢 𝑡 + 2𝑢(𝑡)

La salida del sistema es 𝑦(𝑡) y su salida es 𝑢(𝑡), por tanto su función de

transferencia es:

𝐺 𝑆 =𝑌(𝑆)

𝑈(𝑆)

Tomando la transformada de Laplace a la ecuación diferencial, considerando las

condiciones iniciales iguales a cero:

𝑆3 + 3𝑆2 + 2𝑆 + 1 𝑌 𝑆 = 𝑆 + 2 𝑈(𝑆)

𝐺 𝑆 =𝑌(𝑆)

𝑈(𝑆)=

𝑆 + 2

𝑆3 + 3𝑆2 + 2𝑆 + 1

Luis Edo García Jaimes

Page 48: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

DIAGRAMAS DE BLOQUES

El diagrama de bloques es una forma de representar gráficamente las relaciones

entre las variables de un sistema. Se usa para representar el flujo de señales y la

función realizada por los componentes del sistema.

El diagrama de bloques de un sistema se puede construir a partir de las ecuaciones

diferenciales que lo gobiernan. El procedimiento es siempre igual, primero se toman

las transformadas de Laplace de estas ecuaciones, con la suposición de

condiciones iniciales iguales a cero. Posteriormente cada ecuación en el dominio de

Laplace se representa en forma de bloque. Finalmente se unen los elementos para

formar un único diagrama para todo el sistema.

Luis Edo García Jaimes

Page 49: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

SISTEMA CON REALIMENTACIÓN NEGATIVA NO

UNITARIALos sistemas de realimentación negativa son los más extendidos para el control de

sistemas, por eso su estructura se estudia de forma pormenorizada. En la Figura se

representa el caso más simple de sistema de realimentación negativa no unitaria.

Luis Edo García Jaimes

𝑅(𝑆): Señal de referencia o set-point

𝑌(𝑆): Señal de salida o variable controlada

𝐵(𝑆): Señal de realimentación

𝐸(𝑆): Señal de error. 𝐸(𝑆) = 𝑅(𝑆) − 𝐵(𝑆)

𝐺(𝑆): Función de transferencia del sistema o proceso

H(S): Función de transferencia del sistema de medición

Page 50: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

TIPOS DE FUNCIONES DE TRANSFERENCIA

Luis Edo García Jaimes

Función de transferencia directa: Relaciona la señal de salida con la señal de

error:

𝐺𝐷 𝑆 =𝑌 𝑆

𝐸 𝑆 = 𝐺(𝑆)

Función de transferencia de lazo abierto: Relaciona la señal de

realimentación con la señal de error. Es el producto de todas las funciones de

transferencia que se encuentran dentro del lazo de control.

𝐺𝐿𝐴 𝑆 =𝐵(𝑆)

𝐸(𝑆)= 𝐺 𝑆 . 𝐻(𝑆)

Función de transferencia de lazo cerrado: Es la que relaciona la señal de

salida con la señal de referencia o set-point.

𝐺𝑤 𝑆 =𝐺(𝑆)

1 + 𝐺 𝑆 . 𝐻(𝑆)

Page 51: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

SISTEMA CON REALIMENTACIÓN NEGATIVA EN PRESENCIA DE PERTURBACIONES

Luis Edo García Jaimes

En este caso, la salida debe darse en función de las dos entradas al sistema: la

referencia 𝑅(𝑆) y la perturbación 𝑉(𝑆).

𝑌 𝑆 = 𝐺2 𝑆 𝑃(𝑆)

𝑃 𝑆 = 𝑈 𝑆 + 𝑉(𝑆)

𝑈 𝑆 = 𝐺1 𝑆 𝐸(𝑆)

𝐸 𝑆 = 𝑅 𝑆 − 𝐵(𝑆)

𝐵 𝑆 = 𝐻 𝑆 𝑌(𝑆)

→ 𝑌 𝑆 =𝐺1(𝑆)𝐺2(𝑆)

1 + 𝐺1(𝑆)𝐺2(𝑆)𝐻(𝑆)∗ 𝑅 𝑆 +

𝐺2 𝑆

1 + 𝐺1 𝑆 𝐺2 𝑆 𝐻 𝑆 ∗ 𝑉(𝑆)

Page 52: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

REGLAS DEL ALGEBRA DE DIAGRAMAS DE BLOQUES

Un diagrama de bloques con varios lazos de realimentación se puede simplificar mediante un

reordenamiento de los bloques utilizando las reglas del álgebra de diagramas de bloques.

Luis Edo García Jaimes

Page 53: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

REGLAS DEL ÁLGEBRA DE DIAGRAMAS DE BLOQUES

Luis Edo García Jaimes

Page 54: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO 1 SIMPLIFICACIÓN D. DE B.

Simplificar el siguiente diagrama de bloques:

Luis Edo García Jaimes

La simplificación se inicia con los lazos más internos: en este caso un lazo de

realimentación (1) y dos bloques en paralelo (2)

Page 55: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO 1: SIMPLIFICACIÓN D. DE B.

El nuevo diagrama queda en la siguiente forma:

Luis Edo García Jaimes

A continuación, se resuelven los bloques en cascada y la realimentación con H2:

Page 56: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO 2 :SIMPLIFICACIÓN D. DE B.

Simplificar el siguiente diagrama de bloques:

Luis Edo García Jaimes

Se redistribuyen los puntos de suma de H2 y H3 y se pasa H1 después de G2

En el recuadro rojo, se hace una realimentación entre G2 y H2, mientras que en el recuadro

naranja se realiza la suma de H1/G2 con la ganancia 1

Page 57: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO 2: SIMPLIFICACIÓN D. DE B.

Luis Edo García Jaimes

Se multiplican los tres bloques en cascada del recuadro rojo y se simplifica el

resultado

Se resuelve el lazo de realimentación mostrado en el recuadro rojo y se simplifica,

finalmente se realiza el lazo con realimentación unitaria y se obtiene el resultado.

Page 58: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO 3: SIMPLIFICACIÓN de D. de B. (1)Reducir el diagrama de bloques de la figura

Luis Edo García Jaimes

El punto de suma asociado a la función de transferencia individual 𝐺(𝑆) = 12

se reposiciona entre los dos primeros puntos de suma.

Page 59: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO 3: SIMPLIFICACIÓN de D. de B. (2)

Luis Edo García Jaimes

Los bloques enmarcados forman un lazo de realimentación y pueden reducirse a

una función de transferencia parcial 𝑇(𝑆) mediante la expresión:

𝑇1 𝑆 =

1𝑆 + 4 ∗

1𝑆

1 +1

𝑆 + 4 ∗1𝑆 ∗ 10

𝑇1 𝑆 =1

𝑆2 + 4𝑆 + 10

La figura muestra el resultado de sustituir la función de transferencia parcial 𝑇1(𝑆).

Ahora se simplifica el lazo cerrado marcado en el recuadro:

𝑇2 𝑆 =

1𝑆2 + 4𝑆 + 10

∗1

𝑆2 + 9

1 +1

𝑆2 + 4𝑆 + 10∗

1𝑆2 + 9

∗ 12(𝑆 + 4) 𝑇2 𝑆 =

1

𝑆4 + 4𝑆3 + 19𝑆2 + 49𝑆 + 144

Page 60: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO 3: SIMPLIFICACIÓN de D. de B. (3)

Luis Edo García Jaimes

El diagrama resultante queda así:

Finalmente se resuelve el lazo cerrado total:

𝐺𝑤 𝑆 =

1

𝑆4 + 4𝑆3 + 19𝑆2 + 48𝑆 + 138

1 +1

𝑆4 + 4𝑆3 + 19𝑆2 + 48𝑆 + 138∗ 𝑆 + 6

𝐺𝑤 (𝑆) =1

𝑠4 + 4𝑆3 + 19𝑆2 + 49𝑆 + 144

La última expresión corresponde a la función de transferencia equivalente del

sistema

Page 61: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJERCICIOS SOBRE SIMPLIFICACÓN DE D. de B.Obtenga la función de transferencia de lazo cerrado 𝐺𝑤 𝑆 = 𝐶(𝑆) 𝑅(𝑆) para cada

uno de los diagramas de bloques dados a continuación

Luis Edo García Jaimes

Page 62: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

GRÁFICOS DE FLUJO DE SEÑALES

Luis Edo García Jaimes

Un gráfico de flujo de señal es un diagrama que representa un conjunto de

ecuaciones algebraicas lineales simultáneas. Al aplicar el método de gráficos de

flujo de señal al análisis de sistemas de control, primero hay que transformar las

ecuaciones diferenciales lineales en ecuaciones algebraicas en S.

Un gráfico de flujo de señal contiene esencialmente la misma información que un

diagrama de bloques y está formado por los siguientes elementos:

Page 63: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

ELEMENTOS DEL DFS

Nodo: es un punto que representa una variable o señal.

Transmitancia: Es la ganancia entre dos nodos. Tales ganancias pueden

expresarse en términos de la función de transferencia entre dos nodos.

Rama: Es un segmento de línea con dirección y sentido, que une dos nodos.

Nodo de entrada o fuente: Es un nodo que sólo tiene ramas que salen. Esto

corresponde a una variable independiente.

Nodo de salida o sumidero: Es un nodo que sólo tiene ramas de entrada. Esto

corresponde a una variable dependiente.

Nodo mixto: Es un nodo que tiene tanto ramas que llegan, como ramas que salen.

Camino o trayecto: Es un recorrido de ramas conectadas en el sentido de las

flechas de las ramas. Si no se cruza ningún nodo más de una vez, el camino o

trayecto es abierto. Si el camino o trayecto finaliza en el mismo nodo del cual partió,

y no cruza ningún otro más de una vez, es un camino o trayecto cerrado. Luis Edo García Jaimes

Page 64: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

ELEMENTOS DEL DFS

Luis Edo García Jaimes

Lazo: Es un camino o trayecto cerrado.

Ganancia de lazo: Es el producto de las ganancias de ramas de un lazo.

Lazos disjuntos: Son los lazos que no tienen ningún nodo común.

Trayecto o camino directo: Es el camino o trayecto de un nodo de entrada (fuente)

a un nodo de salida (sumidero), sin cruzar ningún nodo más de una vez.

Ganancia de trayecto directo: Es el producto de las ganancias de rama de un

camino o trayecto directo.

Page 65: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

COMO CONSTRUIR UN DFS A PARTIR DEL D. DE B.

Luis Edo García Jaimes

Page 66: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

FÓRMULA DE GANANCIA DE MASONLa fórmula de ganancia de Mason, permite calcular la ganancia total entre un nodo

de entrada y un nodo de salida, es decir, la función de transferencia del sistema.

𝑃 =1

∆ 𝑃𝐾∆𝐾

𝐾

𝑃𝐾 : Ganancia de la k-ésima trayectoria directa

𝛥: Determinante del gráfico

∆=1- (suma de todos los lazos de ganancias individuales) + (suma de los productos

de ganancia de todas las combinaciones posibles de dos lazos disjuntos) - (suma

de los productos de ganancia de todas las combinaciones posibles de tres lazos

disjuntos) +……

∆= 1 − 𝐿𝑎

𝑎

+ 𝐿𝑏𝐿𝑐

𝑏 ,𝑐

− 𝐿𝑑𝐿𝑒𝐿𝑓

𝑑 ,𝑒 ,𝑓

+ ⋯

∆𝐾 : cofactor del determinante de la k-ésima trayectoria directa. ∆𝐾 se obtiene a

partir de Δ , quitando los lazos que tocan la trayectoria 𝑃𝐾 Luis Edo García Jaimes

Page 67: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO DE SIMPLIFICACIÓN DE DFS

Obtenga el DFS para el diagrama de bloques de la figura y la función de

transferencia 𝐺 𝑆 = 𝑌(𝑆) 𝑅(𝑆)

Luis Edo García Jaimes

Page 68: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

FÓRMULA DE MASON PARA EL DFS DEL EJEMPLO

Trayectos directos: 𝑃1 = 𝐺1𝐺2𝐺3

Ganancias de lazo: 𝐿1 = −𝐺1𝐺2𝐻2

𝐿2 = −𝐺2𝐺3𝐻1

𝐿3 = −𝐺1𝐺2𝐺3

No existen lazos disjuntos

Determinante del sistema: ∆= 1 − 𝐿1 + 𝐿2 + 𝐿3 = 1 + 𝐺1𝐺2𝐻2 + 𝐺2𝐺3𝐻1 + 𝐺1𝐺2𝐺3

Cofactores: ∆1= 1

Por lo tanto:

𝑃 =1

∆ 𝑃𝐾∆𝐾 𝑃 =

𝑃1∆1

𝑃 = 𝐺 𝑆 =𝑌(𝑆)

𝑅(𝑆)=

𝐺1𝐺2𝐺3

1 + 𝐺1𝐺2𝐻2 + 𝐺2𝐺3𝐻1 + 𝐺1𝐺2𝐺3

Luis Edo García Jaimes

Page 69: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO DE SIMPLIFICACIÓN DE DFS (2)

Obtenga el DFS para el diagrama de bloques de la figura y la función de

transferencia 𝐺 𝑆 = 𝑌(𝑆) 𝑅(𝑆)

Luis Edo García Jaimes

Page 70: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

FÓRMULA DE MASON DEL DFS DEL EJEMPLO (2)

Trayectos directos: 𝑃1 = 𝐺1𝐺2𝐺3𝐺5 → ∆1

𝑃2 = 𝐺1𝐺2𝐺4𝐺5 → ∆2

Ganancias de lazo:

𝐿1 = −𝐺2𝐻1 𝐿2 = −𝐺5𝐻2 𝐿3 = −𝐺1𝐺2𝐺3𝐺5

𝐿4 = −𝐺1𝐺2𝐺4𝐺5

Lazos disjuntos: 𝐿1

𝐿2

Determinante del sistema: ∆= 1 − 𝐿1 + 𝐿2 + 𝐿3 + 𝐿4 + 𝐿1𝐿2

∆= 1 + 𝐺2𝐻1 + 𝐺5𝐻2 + 𝐺1𝐺2𝐺3𝐺5 + 𝐺1𝐺2𝐺4𝐺5 + 𝐺2𝐺5𝐻1𝐻2

Cofactores: ∆1= 1∆2= 1

Por lo tanto:

𝑃 =1

∆ 𝑃𝐾∆𝐾 𝑃 =

𝑃1∆1 + 𝑃2∆2

𝑃 = 𝐺 𝑆 =𝐶(𝑆)

𝑅(𝑆)=

𝐺1𝐺2𝐺3𝐺5 + 𝐺1𝐺2𝐺4𝐺5

1 + 𝐺2𝐻1 + 𝐺5𝐻2 + 𝐺1𝐺2𝐺3𝐺5 + 𝐺1𝐺2𝐺4𝐺5 + 𝐺2𝐺5𝐻1𝐻2

Luis Edo García Jaimes

Page 71: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJERCICIOS

Hallar la función de transferencia 𝐺 𝑆 para los siguientes diagramas de flujo.

Luis Edo García Jaimes

Page 72: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

CARACTERÍSTICAS DE RESPUESTA TEMPORAL

Los sistemas se pueden clasificar con respecto al orden de la ecuación diferencial

que los define.

sistema de orden cero: se describe por una ecuación diferencial de orden cero y

corresponde a una relación proporcional entre variables de salida y entrada, por

ejemplo, el caso del potenciómetro:

𝑣𝑜 𝑡 = 𝐾𝜃(𝑡)

Sistema de primer orden: son aquellos que quedan definidos por medio de

ecuaciones diferenciales de primer orden; por ejemplo, un sistema térmico, un

sistema hidráulico, uno eléctrico, etcétera:

Luis Edo García Jaimes

Page 73: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

CARACTERÍSTICAS DE RESPUESTA TEMPORAL (1)

Sistema de segundo orden: son aquellos que se definen por medio de ecuaciones

diferenciales de segundo orden, por ejemplo, el caso de los sistemas mecánicos,

tanto de rotación como de traslación.

Sistemas de orden superior: de tercer orden en adelante se generan cuando

varios subsistemas interactúan entre sí.

Luis Edo García Jaimes

Page 74: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

SISTEMAS DE PRIMER ORDENUn sistema de primer orden es aquel que queda definido por una ecuación

diferencial de primer orden:

𝜏𝑑𝑦(𝑡)

𝑑𝑡+ 𝑦(𝑡) = 𝐾𝑟(𝑡)

Tomando la transformada de Laplace, con condiciones iniciales iguales a cero se

obtiene:

𝜏𝑆 + 1 𝑌 𝑆 = 𝐾𝑟(𝑆)

La función de transferencia del sistema de primer orden es:

𝐺 𝑆 =𝑌(𝑆)

𝑅(𝑆)=

𝐾

𝜏𝑆 + 1

𝐾 = Ganancia del sistema (factor de amplificación entre salida y entrada).

𝜏 = Constante de tiempo del sistema (segundos, min, Horas).

La constante de tiempo 𝜏 se define como el tiempo necesario para que la respuesta

del sistema alcance el 63.2% de su valor final. Luis Edo García Jaimes

Page 75: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

RESPUESTA DEL SISTEMA DE PRIMER ORDEN A

UNA ENTRDA EN FORMA DE ESCALÓN

La señal escalón se define como:

Luis Edo García Jaimes

𝑟 𝑡 = 𝐴𝑢 𝑡 = 𝐴 𝑡 ≥ 00 𝑡 < 0

𝑅 𝑆 =𝐴

𝑆

Para el sistema de primer orden:

𝐺 𝑆 =𝑌 𝑆

𝑅 𝑆 =

𝐾

𝜏𝑆 + 1 → 𝑌 𝑆 =

𝐾. 𝑅 𝑆

𝜏𝑆 + 1 → 𝑌 𝑆 =

𝐾𝐴

𝑆 𝜏𝑆 + 1

La transformada inversa de la última expresión da la respuesta del sistema de

primer orden al escalón:

𝑦 𝑡 = 𝐾. 𝐴 1 − 𝑒−𝑡𝜏

𝑡 = 0 𝑦 0 = 0 𝑡 = ∞ 𝑦 ∞ = 𝐾. 𝑎

𝑡 = 𝜏3 𝑦 𝜏 3 = 0.283𝐾. 𝐴 𝑡 = 𝜏 𝑦 𝜏 = 0.632𝐾. 𝐴

𝑡 = 4𝜏 𝑦 4𝜏 = 0.981𝐾. 𝐴

Page 76: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

VALOR DE ESTADO ESTABLE

Luis Edo García Jaimes

Se considera que un sistema de control alcanza su valor de estado estable cundo

haya transcurrido un tiempo equivalente a cuatro constantes de tiempo. Este tiempo

se denomina tiempo de establecimiento

𝑡𝑠 = 4𝜏

Aplicando el teorema del valor final:

𝑦𝑆𝑆 = lim𝑆→0

𝑆𝐺 𝑆 = lim𝑆→0

𝑆𝐾𝐴

𝑆 𝜏𝑆 + 1 = 𝐾𝐴

𝑌𝑆𝑆 = lim𝑡→

𝑓(𝑡) = lim𝑡→

𝐾𝐴(1 − 𝑒−𝑡𝜏) = 𝐾𝐴

Page 77: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO DE RESPUESTA AL ESCALÓN

Luis Edo García Jaimes

La función de transferencia de cierto sistema térmico en lazo abierto está dada por:

𝐺 𝑆 =𝑌(𝑆)

𝑅(𝑆)=

1.5

5𝑆 + 1

Obtener la respuesta del sistema cuando la señal de entrada es un escalón de

magnitud 𝑟 𝑡 = 2𝑢(𝑡) . Los tiempos están en s.

De la función de transferencia se obtiene:

𝑌 𝑆 =1.5𝑅(𝑆)

5𝑆 + 1 𝑅 𝑆 = ℒ 2𝑢(𝑡) =

2

𝑆 → 𝑌 𝑆 =

3

𝑆(5𝑆 + 1)

Para este sistema, la ganancia es 1.5 y la constante de tiempo es 𝜏 = 5 𝑠.

De tablas:

ℒ− 𝑎

𝑆(𝑆 + 𝑎) = 1 − 𝑒−𝑎𝑡 𝑌 𝑆 = 3

0.2

𝑆(𝑆 + 0.2)

𝑦 𝑡 = 3 1 − 𝑒−0.2𝑡

𝑡 = 0 𝑦 0 = 0

𝑡 = 𝜏 𝑦 𝜏 = 1.896

𝑡 = 4𝜏 𝑦 4𝜏 = 2.999

𝑡 = ∞ 𝑦 ∞ = 3

El tiempo de establecimiento es: 𝑡𝑆 = 4𝜏 𝑡𝑆 = 20 𝑠.

Page 78: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

GRÁFICA DE LA RESPUESTA AL ESCALÓN

ℒ− 𝑎

𝑆(𝑆 + 𝑎) = 1 − 𝑒−𝑎𝑡 𝑌 𝑆 = 3

0.2

𝑆(𝑆 + 0.2)

𝑦 𝑡 = 3 1 − 𝑒−0.2𝑡

𝑡 = 0 𝑦 0 = 0

𝑡 = 𝜏 𝑦 𝜏 = 1.896

𝑡 = 4𝜏 𝑦 4𝜏 = 2.999

𝑡 = ∞ 𝑦 ∞ = 3

Luis Edo García Jaimes

Page 79: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

SISTEMA DE PRIMER ORDEN CON RETARDO (POR)Tiempo de retardo: también llamado tiempo muerto, es el tiempo comprendido entre

el momento en que se produce un cambio en la señal de entrada y el momento en el

que se observa en la señal de salida el efecto de dicha variación.

La función de transferencia de un sistema de primer orden con retardo es:

𝐺 𝑆 =𝑌(𝑆)

𝑅(𝑆)=

𝐾𝑒−𝜃 ′ 𝑆

𝜏𝑆 + 1

𝜃′ =Tiempo muerto o retardo

Luis Edo García Jaimes

Page 80: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

APROXIMACIÓN TEÓRICA DE UNA CURVA REAL

A UN SISTEMA POR

Si se tiene la respuesta de un sistema ante una entrada en forma de escalón es

posible aproximar su dinámica a un sistema de primer orden con retardo (POR).

Luis Edo García Jaimes

Page 81: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

PROCEDIMIENTO PARA OBTENER EL MODELO POR

Luis Edo García Jaimes

Se eligen en la curva de respuesta los puntos para los cuales la respuesta alcanza el

28.3% y el 63.2% de su valor final, estos puntos se presentan cuando los tiempos

transcurridos a partir del momento de la aplicación del escalón, al elemento final de

control, son respectivamente 𝜃′ + 𝜏 3 y 𝜃´ + 𝜏

Con los datos obtenidos de la gráfica se plantean las siguientes ecuaciones:

𝜃′ +𝜏

3= 𝑡1

𝜃′ + 𝜏 = 𝑡2

Los valores de 𝑡1 y de 𝑡2 se calculan directamente de las gráficas o de la base de

datos obtenida. Resolviendo simultáneamente las dos ecuaciones se estiman los

valores de 𝜃′ y 𝜏.

Si al resolver las ecuaciones el valor de 𝜃′ es negativo, se asume que el sistema no

tiene retardo es decir, se hace 𝜃′ = 0 y por lo tanto 𝜏 = 𝑡2.

Page 82: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

PROCEDIMIENTO…MODELO POR

El valor de la ganancia 𝐾 se obtiene mediante el cociente Δ𝑌 Δ𝑈 que se interpreta

como el cociente entre el cambio de la variable de salida y el cambio en la variable

de entrada (valor del escalón de entrada).

𝐾 =Δ𝑌

Δ𝑈 5.4

El modelo de la planta se obtiene reemplazando los valores de 𝐾, 𝜏 y 𝜃′ en la ecuación

del modelo POR

Una vez obtenido el modelo POR se debe validar para ver si ese modelo reproduce

adecuadamente los datos reales. En caso de que exista diferencia entre los datos

arrojados por el modelo obtenido y los datos reales , se debe repetir el proceso para

detectar posibles errores

Luis Edo García Jaimes

Page 83: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO:OBTENCIÓN MODELO PORLa figura muestra la respuesta de un sistema de temperatura cuando se varía la

apertura de la válvula de control del 30% al 40%. Aproxime el sistema a un modelo

POR

Luis Edo García Jaimes

Page 84: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

SOLUCIÓN EJEMPLO MODELO POR

El modelo POR es:

𝐺 𝑆 =𝑌(𝑆)

𝑈(𝑆)=

𝐾𝑒𝜃 ′

𝜏𝑆 + 1 𝐾 =

Δ𝑌

Δ𝑈

𝜃′ + 𝜏

3= 𝑡1

𝜃′ + 𝜏 = 𝑡2

∆𝑈 = 40% − 30% = 10% ∆𝑌 = 35% − 20% = 15% 𝐾 =15%

10%= 1.5

El 28.3% de la salida corresponde a: 20 + 0.283 ∗ 15 = 24.245% → 𝑡1 = 6.4 𝑚𝑖𝑛

El 63.2% de la salida corresponde a: 20 + 0.632 ∗ 15 = 29.48% → 𝑡2 = 13.2 𝑚𝑖𝑛

Por tanto:

𝜃′ + 𝜏

3= 6.4

𝜃′ + 𝜏 = 13.2

Resolviendo las ecuaciones anteriores resulta: 𝜃′ = 3 min 𝜏 = 10.2 𝑚𝑖𝑛

El modelo POR da:

𝐺 𝑆 =𝑌(𝑆)

𝑈(𝑆)=

1.5𝑒−3𝑆

10.2𝑆 + 1

Luis Edo García Jaimes

Page 85: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

SISTEMAS DE SEGUNDO ORDEN

Un sistema de segundo orden es aquel que queda definido por una ecuación

diferencial de segundo orden:

𝑑2𝑦(𝑡)

𝑑𝑡2+ 2𝜉𝜔𝑛

𝑑𝑦(𝑡)

𝑑𝑡+ 𝜔𝑛

2𝑦(𝑡) = 𝐾𝜔𝑛2𝑟(𝑡)

Tomando la transformada de Laplace, con condiciones iniciales iguales a cero se

obtiene:

𝑆2 + 2𝜉𝜔𝑛 + 𝜔𝑛2 𝑌 𝑆 = 𝐾𝜔𝑛

2𝑅(𝑆)

La función de transferencia del sistema de primer orden es:

𝐺 𝑆 =𝑌(𝑆)

𝑅(𝑆)=

𝐾𝜔𝑛2

𝑆2 + 2𝜉𝜔𝑛 + 𝜔𝑛2

𝐾 = Ganancia del sistema (factor de amplificación entre salida y entrada).

𝜉 = Coeficiente de amortiguamiento (adimensional)

𝜔𝑛 =Frcuencia natural del sistema [rad/s, rad/min...] Luis Edo García Jaimes

Page 86: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

RESPUESTA SISTEMA DE SEGUNDO ORDEN AL ESCALÓN

Luis Edo García Jaimes

La ecuación característica del sistema de segundo orden es:

𝑆2 + 2𝜉𝜔𝑛 + 𝜔𝑛2 = 0

Las raíces de la ecuación característica o polos del sistema son:

𝑆1,2 =−2𝜉𝜔𝑛 ± 4𝜉2𝜔𝑛

2 − 4𝜔𝑛2

2 𝑆1,2 = −𝜉𝜔𝑛 ± 𝑗𝜔𝑛 1 − 𝜉2

El tipo de respuesta del sistema de segundo orden lo determina el valor del

coeficiente de amortiguamiento así:

𝟎 < 𝝃 < 𝟏: Sistema subamortiguado: La ecuación característica tiene un par de

raíces conjugadas complejas. El sistema oscila y luego se estabiliza.

𝝃 = 𝟏: Sistema críticamente amortiguado: La ecuación tiene dos raíces reales e

iguales. El sistema no oscila.

𝝃 > 𝟏: Sistema sobreamortiguado: La ecuación tiene dos raíces reales distintas. El

sistema no oscila, pero su respuesta es más lenta que la del sistema subamortiguado

y la del críticamente amortiguado.

Page 87: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

RESPUESTA SISTEMA SEGUNDO ORDEN AL ESCALON

Luis Edo García Jaimes

Page 88: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

UBICACIÓN DE POLOS Y RESPUESTA AL ESCALÓN

Luis Edo García Jaimes

Page 89: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

PARÁMETROS DE RESPUESTA DE UN SISTEMA DE SEGUNDO ORDEN AL ESCALÓN

La respuesta transitoria de un sistema en tiempo de segundo orden se caracteriza

por el tiempo de pico, el tiempo de crecimiento, el tiempo de establecimiento y el

máximo sobreimpulso. La figura muestra las especificaciones de respuesta

transitoria, de un sistema de segundo orden subamortiguado, ante una entrada en

escalón unitario.

Luis Edo García Jaimes

Page 90: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

PARÁMETROS DE RESPUESTA SISTEMA SEGUNDO ORDEN

Tiempo de retardo (𝒕𝒅): Es el tiempo necesario para que la respuesta del sistema

alcance por primera vez, el 50% de su valor final.

𝑡𝑑 =1 + 0.7𝜉

𝑤𝑛 0 < 𝜉 < 1

𝑡𝑑 =1.1 + 0.125𝜉 + 0.46𝜉2

𝑤𝑛 0 < 𝜉 < 1

Tiempo de crecimiento (𝒕𝒓): Es el tiempo que requiere la respuesta al escalón para

pasar del 10% al 90% de su valor final.

𝑡𝑟 =0.8 + 2.5𝜉

𝑤𝑛 0 < 𝜉 < 1

𝑡𝑟 =1 − 0.4167𝜉 + 2.9𝜉2

𝑤𝑛 0 < 𝜉 < 1

Tiempo de pico (𝒕𝒑): Es el tiempo necesario para que la respuesta al escalón alcance

su máximo sobreimpulso.

𝑡𝑝 =𝜋

𝑤𝑛 1 − 𝜉2 0 < 𝜉 < 1

Luis Edo García Jaimes

Page 91: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

PARÁMETROS DE RESPUESTA SISTEMA SEGUNDO ORDEN

Luis Edo García Jaimes

Máximo sobreimpulso (𝑴𝒑): Es el valor máximo de la curva de respuesta al escalón

medido partir del valor de estado estable.

𝑀𝑎𝑥𝑖𝑚𝑜 𝑠𝑜𝑏𝑟𝑒𝑖𝑚𝑝𝑢𝑙𝑠𝑜 =𝑐 𝑡𝑝 − 𝑐 ∞

𝑐 ∞ ∗ 100%

En donde 𝑐(𝑡𝑝) representa el valor máximo alcanzado por la respuesta y 𝑐(∞)

representa el valor de estado estable de la misma.

𝑀𝑝 = 𝑒−𝜋𝜉 1−𝜉2 0 < 𝜉 < 1

Y, en forma porcentual:

𝑀𝑝% = 100𝑒−𝜋𝜉 1−𝜉2 0 < 𝜉 < 1

Tiempo de establecimiento (𝒕𝒔): Es el tiempo requerido para que la curva de

respuesta al escalón alcance y se quede variando, alrededor de su valor final dentro

de un rango especificado en función de un porcentaje absoluto de su valor final. Este

valor es por lo general el 2%.

𝑡𝑠 =4

𝜉𝑤𝑛 0 < 𝜉 < 1 𝑡𝑠 =

8𝜉

𝑤𝑛 𝜉 ≥ 1

Page 92: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

TIPO DE SISTEMA Y SUS PARÁMETROS

Luis Edo García Jaimes

Page 93: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLOConsidere un sistema de segundo orden, en el que 𝜉 = 0.6 y 𝜔𝑛 = 5 𝑟𝑎𝑑/𝑠. Obtener

el tiempo de crecimiento 𝑡𝑟 , el tiempo pico 𝑡 𝑝 , el máximo sobreimpulso 𝑀𝑝 y el tiempo

de establecimiento 𝑡𝑠 cuando el sistema está sujeto a una entrada escalón unitario.

Tiempo de crecimiento o tiempo de subida:

𝑡𝑟 =0.8 + 2.5𝜉

𝑤𝑛=

0.8 + 2.5 ∗ 0.6

5 𝑡𝑟 = 0.46 𝑠.

Tiempo de pico:

𝑡𝑝 =𝜋

𝑤𝑛 1 − 𝜉2=

3.14

5 1 − 0.62 𝑡𝑝 = 0.785 𝑠.

Máximo sobreimpulso:

𝑀𝑝 = 𝑒−𝜋𝜉 / 1−𝜉2= 𝑒−3.14∗0.6/ 1−0.62

𝑀𝑝 = 0.0948 𝑀𝑝 = 9.48%

Tiempo de establecimiento:

𝑡𝑠 =4

𝜉𝜔𝑛 0 < 𝜉 < 1 𝑡𝑠 =

4

0.6 ∗ 5 𝑡𝑠 = 1.33 𝑠.

Luis Edo García Jaimes

Page 94: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLOPara el sistema de la Figura , determine los valores de la ganancia 𝐾 y la constante

𝐾ℎ en lazo cerrado para que el máximo sobreimpulso de la respuesta al escalón

unitario sea 0.2 y el tiempo pico sea 1 s. Con estos valores de 𝐾 y 𝐾ℎ obtenga el

tiempo de subida y el tiempo de establecimiento. Suponga que 𝑗 = 1 𝐾𝑔. 𝑚2 y que

𝐵 = 1 𝑁. 𝑚𝑟𝑎𝑑 𝑠

Luis Edo García Jaimes

La F de T del sistema en lazo cerrado es:

𝐺𝑤 𝑆 =

𝐾𝑆(𝐽𝑆 + 𝐵 + 𝐾𝐾ℎ)

1 +𝐾

𝑆(𝐽𝑆 + 𝐵 + 𝐾𝐾ℎ)

𝐺𝑤 𝑆 =𝐾

𝐽𝑆2 + 𝐵 + 𝐾𝐾ℎ 𝑆 + 𝐾

Page 95: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO (CONTINUACIÓN)

Luis Edo García Jaimes

𝐺𝑤 𝑆 =𝐾/𝐽

𝑆2 + 𝐵 + 𝐾𝐾ℎ

𝐽𝑆 +

𝐾𝐽

𝐺 𝑆 =𝑘𝜔𝑛

2

𝑆2 + 2𝜉𝜔𝑛𝑆 + 𝜔𝑛2

Comparando las dos últimas ecuaciones con 𝐽 = 1 y 𝐵 = 1 resulta:

𝜔𝑛2 =

𝐾

𝐽 → 𝐾 = 𝜔𝑛

2 2𝜉𝜔𝑛 = 𝐵 + 𝐾𝐾ℎ

𝐽 → 𝐾ℎ =

2𝜉𝜔𝑛 − 𝐵

𝐾

Según las características del sistema de segundo orden y los datos dados:

𝑀𝑝 = 𝑒−𝜋𝜉 / 1−𝜉2 0.2 = 𝑒−𝜋𝜉 / 1−𝜉2

→ 𝜉 = 0.455

𝑡𝑝 =𝜋

𝜔𝑛 1 − 𝜉2 𝜔𝑛 =

𝜋

𝑡𝑝 1 − 𝜉2=

3.14

1 ∗ 1 − 0.4552 → 𝜔𝑛 = 3.526 𝑟𝑎𝑑/𝑠

Entonces:

𝐾 = 3.5262 𝐾 = 12.43𝑁. 𝑚 𝐾ℎ = 2 ∗ 0.455 ∗ 3.526 − 1

12.43 𝐾ℎ = 0.177 𝑠.

𝑡𝑟 =0.8 + 2.5𝜉

𝑤𝑛=

0.8 + 2.5 ∗ 0.455

3.526 𝑡𝑟 = 0.549 𝑠.

𝑡𝑠 =4

𝜉. 𝜔𝑛=

4

0.455 ∗ 3.526 𝑡𝑠 = 2.49 𝑠

Page 96: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO

Luis Edo García Jaimes

Obtenga la respuesta a un escalón unitario y a la rampa unitaria del sistema que se

da a continuación. Utilice el MATLAB.

𝐺 𝑆 =𝑌(𝑆)

𝑈(𝑆)=

6

𝑆2 + 4𝑆 + 8

num = [6]; den = [1 4 8]; sis=tf(num,den) t = 0:0.02:30; u=t; y = step(sis,t); % Respuesta al escalon figure(1) plot(t,y) grid title('Respuesta a un escalón unitario') xlabel('t (seg)') ylabel('Salida') y1 = lsim(sis,u,t);% Respuesta a la rampa figure(2) plot(t,t,'--',t,y1) v = [0 30 0 30]; axis(v); grid title('Respuesta a una rampa unitaria') xlabel('t (sec)') ylabel('Entrada rampa unitaria y salida') text(5,15,0,'Entrada rampa unitaria') text(15,10,'Salida')

Page 97: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

ANÁLISIS DE ERROR EN RÉGIMEN PERMANENTE

Luis Edo García Jaimes

En cualquier sistema físico de control existe un error inherente, que es el error en

estado estable en respuesta a determinados tipos de entradas. Puede ocurrir que un

sistema presente o no error en régimen permanente ante diferentes entradas.

TIPO DE UN SISTEMA: La función de transferencia en lazo abierto del sistema 𝐺(𝑠),

puede tener diversos polos y ceros y puede escribirse en la forma:

𝐺 𝑆 =𝐾 𝜏1𝑆 + 1 𝜏2𝑆 + 1 … 𝑎1𝑆

2 + 𝑏1𝑆 + 1

𝑆𝑁 𝜏1𝑆 + 1 𝜏2𝑆 + 1 … 𝑎2𝑆2 + 𝑏2𝑆 + 1

El valor de 𝑁 en la función de transferencia en lazo abierto, determina el tipo del

sistema. Así: 𝑁 = 0, el sistema es tipo cero, 𝑁 = 1, el sistema es tipo 1, 𝑁 = 2, el

sistema es tipo 2

Page 98: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

ERROR DE ESTADO ESTABLE

Luis Edo García Jaimes

Para el sistema de la figura, el error está dado por:

𝐸 𝑆 = 𝑅 𝑆 − 𝐻 𝑆 . 𝑌(𝑆)

𝑌 𝑆 = 𝐺 𝑆 . 𝐸 𝑆 → 𝐸 𝑆 = 𝑅 𝑆 − 𝐻 𝑆 𝐺 𝑆 𝐸(𝑆)

𝐸 𝑆 =𝑅(𝑆)

1 + 𝐺 𝑆 𝐻(𝑆)

Es decir, el error depende del tipo de entrada 𝑅(𝑆) y de la función de transferencia

de lazo abierto del sistema 𝐺𝐿𝐴(𝑆) = 𝐺(𝑆)𝐻(𝑆)

Aplicando el teorema del valor final, el error de estado estable es:

𝑒𝑠𝑠 = lim𝑡→∞

𝑓(𝑡) = lim𝑆→0

𝑆. 𝐸(𝑆)

𝑒𝑠𝑠 = lim𝑆→0

𝑆.𝑅(𝑆)

1 + 𝐺 𝑆 𝐻(𝑆)

Page 99: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

ERROR ANTE UNA ENTRADA EN FORMA DE ESCALÓN

Luis Edo García Jaimes

Error de posición: es el que se produce en el sistema ante una entrada escalón.

𝑅 𝑆 =𝐴

𝑆 → 𝑒𝑠𝑠 = lim

𝑆→0𝑆.

𝐴

𝑆 1 + 𝐺 𝑆 𝐻(𝑆) =

𝐴

1 + lim𝑆→0

𝐺 𝑆 𝐻(𝑆)

Se define: 𝑲𝒑 = Coeficiente de error de posición 𝐾𝑝 = lim𝑆→0

𝐺 𝑆 𝐻(𝑆)

𝑒𝑠𝑠 = 𝐴

1 + 𝐾𝑝 𝐾𝑝 = lim

𝑆→0𝐺 𝑆 𝐻(𝑆)

Page 100: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

ERROR ANTE UNA ENTRADA EN FORMA DE RAMPA

Luis Edo García Jaimes

Error de velocidad: es el que se produce en el sistema ante una entrada en rampa.

𝑅 𝑆 =𝐴

𝑆2 → 𝑒𝑠𝑠 = lim

𝑆→0𝑆.

𝐴

𝑆2 1 + 𝐺 𝑆 𝐻(𝑆) =

𝐴

𝑆 lim𝑆→0

𝐺 𝑆 𝐻(𝑆)

Se define: 𝑲𝒗 = Coeficiente de error de velocidad 𝐾𝑣 = S. lim𝑆→0

𝐺 𝑆 𝐻(𝑆)

𝑒𝑠𝑠 =1

𝐾𝑣 𝐾𝑣 = lim

𝑆→0S. 𝐺 𝑆 𝐻(𝑆)

Page 101: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

ERROR ANTE UNA ENTRADA PARABÓLICA

Luis Edo García Jaimes

Error de aceleración: es el que se produce en el sistema ante una entrada parábola.

𝑅 𝑆 =𝐴

𝑆3 → 𝑒𝑠𝑠 = lim

𝑆→0𝑆.

𝐴

𝑆3 1 + 𝐺 𝑆 𝐻(𝑆) =

𝐴

𝑆2 lim𝑆→0

𝐺 𝑆 𝐻(𝑆)

Se define: 𝑲𝒂 = Coeficiente de error de aceleración 𝐾𝑎 = S2. lim𝑆→0

𝐺 𝑆 𝐻(𝑆)

𝑒𝑠𝑠 =1

𝐾𝑎 𝐾𝑣 = lim

𝑆→0S2. 𝐺 𝑆 𝐻(𝑆)

Page 102: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

CUADRO RESUMENN DE COEFICIENTES DE ERROR

Luis Edo García Jaimes

𝑻𝒊𝒑𝒐 𝑬𝒔𝒄𝒂𝒍ó𝒏

𝒓 𝒕 = 𝑨

𝑹𝒂𝒎𝒑𝒂

𝒓 𝒕 = 𝑨𝒕

𝑷𝒂𝒓á𝒃𝒐𝒍𝒂

𝒓 𝒕 =𝟏

𝟐𝒕

0 𝐴

1 + 𝑘𝑝

∞ ∞

1 0 𝐴

𝑘𝑣

2 0 0 𝐴

𝑘𝑎

Page 103: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO

Luis Edo García Jaimes

Entrada escalón

𝑉𝑟

= 𝑢 𝑡 𝑃 = 0 𝐺 𝑆 𝐻 𝑆 =15

(𝑆 + 10)(𝑆 + 1)2 → Sistema Tipo 0

𝑒𝑠𝑠 =𝐴

1 + 𝐾𝑝 𝐾𝑃 = lim

𝑆→0𝐺 𝑆 𝐻(𝑆) 𝐾𝑝 = lim

𝑆→0

15

(𝑆 + 10)(𝑆 + 1)2 = 1.5

𝑒𝑠𝑠 =1

1 + 1.5 𝑒𝑠𝑠 = 0.4 𝑒𝑠𝑠 = 40 %

Si en el sistema de control de la figura 𝐺𝑐 = 50 determine el error de estado estable

a) Cuando la entrada 𝑉𝑟 es un escalón unitario b) Cuando la entrada 𝑉𝑟 es una rampa

unitaria. Asuma en ambos casos que la perturbación 𝑃 = 0. c) Cual sería el error si

la referencia es 𝑉𝑟 = 1𝑢(𝑡) y la perturbación 𝑃 = 0.5𝑢 𝑡 ?

Page 104: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO (CONTINUACIÓN)

Luis Edo García Jaimes

Entrada Rampa

𝑉𝑟 = 𝑡𝑢 𝑡 𝑃 = 0

𝑒𝑠𝑠 =𝐴

𝐾𝑣 𝐾𝑃 = lim

𝑆→0𝑆. 𝐺 𝑆 𝐻(𝑆) 𝐾𝑝 = lim

𝑆→0𝑆

15

(𝑆 + 10)(𝑆 + 1)2 = 0

𝑒𝑠𝑠 =1

0 𝑒𝑠𝑠 = ∞

Entrada escalón + perturbación

La perturbación afecta la salida del sistema y por lo tanto modifica el error de estado

estable. La salida del sistema incluyendo la entrada de referencia

𝑉𝑟 y la perturbación

𝑃 es:

𝑉𝑇 = 𝑉𝑟𝑒𝑓 + 𝑉𝑝𝑒𝑟𝑡

𝑉𝑇 =

15(𝑆 + 10)(𝑆 + 1)2

1 +15

(𝑆 + 10)(𝑆 + 1)2

∗1

𝑆+

0.3 𝑆 + 1 2

1 +15

𝑆 + 10 𝑆 + 1 2

∗0.5

𝑆

Page 105: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO (CONTINUACIÓN)

Simplificando:

𝑉𝑇 =15

𝑆 𝑆 + 10 𝑆 + 1 2 + 15 +

0.15(𝑆 + 10)

𝑆 𝑆 + 10 𝑆 + 1 2 + 15

Aplicando el teorema del valor final:

𝑉𝑇𝑠𝑠 = lim𝑆→0

𝑆 𝑉𝑇 = lim𝑆→0

𝑆 15

𝑆 𝑆 + 10 𝑆 + 1 2 + 15 +

0.15(𝑆 + 10)

𝑆 𝑆 + 10 𝑆 + 1 2 + 15

𝑉𝑇𝑠𝑠 =15

10 + 15+

0.15 ∗ 10

10 + 15= 0.66

𝑒𝑠𝑠 = 𝑉𝑟 − 𝑉𝑇𝑠𝑠 = 1 − 0.66 𝑒𝑠𝑠 = 0.34 𝑒𝑠𝑠 = 34%

Luis Edo García Jaimes

Page 106: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO 2. En el diagrama de bloques de la figura 𝐾 = 1.5 y 𝐾𝑡 = 0.8. Determinar los coeficientes

de error para las entradas escalón, rampa y parábola y el error de estado estable

para cada entrada.

Luis Edo García Jaimes

La solución se inicia reduciendo el lazo de realimentación interno para dejar un solo

lazo.

𝐺𝑤1 𝑆 =

1001 + 0.2𝑆

1 +100

1 + 0.2𝑆 ∗ 0.8=

100

0.2𝑆 + 81

Page 107: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO 2 (CONTINUACIÓN)

Luis Edo García Jaimes

La función de transferencia de lazo abierto es:

𝐺 𝑆 𝐻 𝑆 = 1.5 ∗100

0.2𝑆 + 81∗

1

20𝑆 𝐺 𝑆 𝐻 𝑆 =

7.5

𝑆 0.2𝑆 + 81

Coeficiente de error de posición:

𝐾𝑃 = lim𝑆→0

𝐺 𝑆 𝐻 𝑆 = lim𝑆→0

7.5

𝑆 0.2𝑆 + 81 𝐾𝑃 = ∞ 𝑒𝑠𝑠 =

1

1 + 𝐾𝑃= 0

Coeficiente de error de velocidad:

𝐾𝑣 = lim𝑆→0

𝑆. 𝐺 𝑆 𝐻 𝑆 = lim𝑆→0

𝑆 7.5

𝑆 0.2𝑆 + 81 𝐾𝑣 = 0.0925 𝑒𝑠𝑠 =

1

𝐾𝑣= 10.8

Coeficiente de error de aceleración:

𝐾𝑎 = lim𝑆→0

𝑆2. 𝐺 𝑆 𝐻 𝑆 = lim𝑆→0

𝑆2 7.5

𝑆 0.2𝑆 + 81 𝐾𝑎 = 0 𝑒𝑠𝑠 =

1

𝐾𝑎= ∞

Page 108: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

PROGRAMA PARA CALCULAR PARAMETROS DE UN SISTEMA DE SEGUNDO ORDEN SUBAMORTIGUADOclc %Parámetros de un sistema subamortiguado numT = input('Entre el numerador:'); denT = input('Entre el denominador:'); % Cálculo del valor fi nal ValorFinal = polyval(numT,0)/polyval(denT,0); % Cálculo y almacenamiento de valores [y,x,t] = step(numT,denT);% Respuesta al escalon % Cálculo del tiempo de crecimiento tr. p = 1; while y(p) < 0.1 * ValorFinal, p = p + 1; end q = 1; while y(q) < 0.9 * ValorFinal, q = q + 1; end Tr = t(q)-t(p) % Cálculo del tiempo pico tp, seg. [Y,k] = max(y); tp = t(k) % Cálculo del máximo pico de sobreimpulso MP en % MP = 100 * (Y-ValorFinal)/ValorFinal % Cálculo del tiempo de establecimiento ts. a = length(t); while (y(a)>0.9816 * ValorFinal)&(y(a) < 1.01831 * ValorFinal) a = a-1; end ts = t(a) Luis Edo García Jaimes

Page 109: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

ESTABILIDAD DE SISTEMAS CONTINUOSLa estabilidad es una especificación básica que deben satisfacer los sistemas de

control.

Desde el punto de vista de la descripción externa se dice que un sistema lineal

invariante en el tiempo es estable, si ante una entrada acotada se produce una salida

acotada para todas las posibles condiciones iniciales. Estabilidad BIBO (Bounded

Input Bounded Output).

Existen diversos resultados teóricos que permiten realizar un análisis de estabilidad,

desde el punto de vista de la descripción externa, de un sistema en tiempo continuo

lineal e invariante en el tiempo.

Criterio de Routh-Hurwitz, sobre la ecuación característica.

Nyquist en el dominio de la frecuencia

Diagramas de Bode de Bode, con la respuesta en frecuencia.

El lugar de las raíces en el plano S Luis Edo García Jaimes

Page 110: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

CONDICIÓN DE ESTABILIDAD PARA SISTEMAS CONTÍNUOS

Para que un sistema continuo sea estable todos sus polos deben estar localizados

en la parte izquierda del semiplano de S. Es decir, el sistema es estable si todos

sus polos tienen la parte real negativa.

Luis Edo García Jaimes

Los polos del sistema son las raíces de la ecuación característica que resulta de

igualar a cero el denominar de la función de transferencia del sistema.

Las raíces de la ecuación característica nos ofrecen información no solo del

transitorio del sistema, sino también de su estabilidad.

𝐺𝑤 𝑆 =𝐺(𝑆)

1 + 𝐺 𝑆 𝐻(𝑆)

Ecuación característica:

1 + 𝐺 𝑆 𝐻 𝑆 = 0

Page 111: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

REGIONES DE ESTABILIDAD PARA SISTEMAS CONTINUOS EN EL PLANO S

Luis Edo García Jaimes

Para que un sistema continuo sea estable todos sus polos deben estar localizados

en la parte izquierda del semiplano de S

Page 112: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

CRITERIO DE ESTABILIDAD DE ROUTH-HURTWISTH

El criterio de Routh-Hurwitz aplicado a la ecuación característica de un sistema

permite conocer si el sistema es estable o no, sin necesidad de calcular las raíces

de dicha ecuación característica.

Sea la función de transferencia:

𝐺𝑤 𝑆 =𝑃(𝑆)

𝑎𝑛𝑆𝑛 + 𝑎𝑛−1𝑆𝑛−1 + 𝑎𝑛−2𝑆𝑛−2 + ⋯ 𝑎1𝑆 + 𝑎0

La ecuación característica del sistema es:

𝑎𝑛𝑆𝑛 + 𝑎𝑛−1𝑆𝑛−1 + 𝑎𝑛−2𝑆

𝑛−2 + ⋯𝑎1𝑆 + 𝑎0 = 0

Para determinar la estabilidad primero se comprueba que todos los coeficientes

𝑎𝑖 sean positivos. Si hay algún coeficiente negativo o falta el sistema es inestable.

Si se cumple la condición anterior, el sistema puede ser estable o no.

Luis Edo García Jaimes

Page 113: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

ARREGLO DE ROUTH-HURTWISTH

Luis Edo García Jaimes

Para comprobar si el sistema es estable, se construye el arreglo de Routh-Hurwitz

así:

𝑆𝑛

𝑆𝑛−1

𝑆𝑛−2

𝑆𝑛−3

⋯⋯𝑆0

𝑎𝑛 𝑎𝑛−2 𝑎𝑛−4 𝑎𝑛−6

𝑎𝑛−1 𝑎𝑛−3 𝑎𝑛−5 𝑎𝑛−7

𝑏1 𝑏2 𝑏3 ⋯𝑐1 𝑐2 ⋯ ⋯

⋯ ⋯⋯ ⋯𝑓

𝑏1 =𝑎𝑛−1𝑎𝑛−2 − 𝑎𝑛𝑎𝑛−3

𝑎𝑛−1 𝑏2 =

𝑎𝑛−1𝑎𝑛−4 − 𝑎𝑛𝑎𝑛−5

𝑎𝑛−1 𝑏3 =

𝑎𝑛−1𝑎𝑛−6 − 𝑎𝑛𝑎𝑛−7

𝑎𝑛−1

𝑐1 =𝑏1𝑎𝑛−3 − 𝑏2𝑎𝑛−1

𝑏1 𝑐2 =

𝑏1𝑎𝑛−5 − 𝑏3𝑎𝑛−1

𝑏1

El proceso acaba cuando se calcula la fila de coeficientes en 𝑆0 que solo posee un

coeficiente no nulo, 𝑓 en la expresión

El criterio de Routh-Hurtwitz dice que el sistema es estable si y sólo si todos

los coeficientes de la primera columna de Routh-Hurwitz son positivos.

Page 114: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO CRITERIO DE ROUTH

Luis Edo García Jaimes

Determinar la estabilidad de un sistema cuya ecuación característica es:

𝑆4 + 2𝑆3 + 3𝑆2 + 4𝑆 + 5 = 0

Arreglo de Routh:

𝑆4

𝑆3

𝑆2

𝑆1

𝑆0

1 3 52 4 01 5

−6 05

𝑏1 =2 ∗ 3 − 4 ∗ 1

2= 1 𝑏2 =

2 ∗ 5 − 0 ∗ 1

2= 5

𝑐1 =1 ∗ 4 − 5 ∗ 2

1= −6 𝑑1 =

−6 ∗ 5 − 0 ∗ 1

−6= 5

Hay un término con signo negativo en la primera columna del arreglo, por lo tanto, el

sistema es inestable.

Existen dos cambios de signo en la primera columna, entonces existen dos raíces

con parte real positiva.

Las raíces de la ecuación característica son: 0.287 ± 1.416 ∗ 𝑖 𝑦 − 1.287 ± 0.857 ∗ 𝑖

Page 115: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

CASO ESPECIAL 1: APARICIÓN DE UN CERO EN LA PRIMERA COLUMNA.

La aparición de un cero en la primera columna crea una indeterminación debida a la

división por cero. Este problema se elimina cambiando el cero por 𝜖 , que es una

cantidad muy pequeña.

Ejemplo: determinar la estabilidad del sistema cuya ecuación característica es:

𝑆4 + 2𝑆3 + 4𝑆2 + 8𝑆 + 5 = 0

𝑆4

𝑆3

𝑆2

𝑆1

𝑆0

1 4 52 8 00 5 0∞

𝑆4

𝑆3

𝑆2

𝑆1

𝑆0

1 4 52 8 0𝜖 5

8𝜖 − 10

𝜖0

5

𝑏1 =2 ∗ 4 − 8 ∗ 1

2= ∞ 𝑐1 =

8 ∗ 𝜖 − 10

𝜖

𝑏2 =2 ∗ 5 − 0 ∗ 1

2= 5 𝑑1 =

8𝜖 − 10𝜖

∗ 5 − 0 ∗ 𝜖

8𝜖 − 10𝜖

= 5

𝑐1 = 5 ∗ 2 − 0 ∗ 8

0= ∞

8 ∗ 𝜖 − 10

𝜖< 0 Inestable

Luis Edo García Jaimes

Page 116: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

CASO ESPECIAL 2: FILA COMPLETA DE CEROS

Luis Edo García Jaimes

Procedimiento

• formar una ecuación auxiliar con los coeficientes de la fila anterior a la de ceros.

• Sustituir la fila de ceros por los coeficientes de la derivada de la ecuación auxiliar.

Ejemplo: determinar la estabilidad del sistema cuya ecuación característica es:

𝑆4 + 2𝑆3 + 11𝑆2 + 18𝑆 + 18 = 0

𝑆4

𝑆3

𝑆2

𝑆1

𝑆0

1 11 182 18 02 18 00 0 0

𝑆4

𝑆3

𝑆2

𝑆1

𝑆0

1 11 182 18 02 18 04 0 0

18

𝑏1 =2 ∗ 11 − 18 ∗ 1

2= 2 𝐸𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟 ∶ 2𝑆2 + 18

𝑏2 =2 ∗ 18 − 0 ∗ 1

2= 18 𝐷𝑒𝑟𝑖𝑣𝑎𝑑𝑎 𝐸𝑐𝑢𝑎𝑐𝑖ó𝑛: 4𝑆

𝑐1 =2 ∗ 18 − 18 ∗ 2

2= 0 𝐸𝑛𝑡𝑜𝑛𝑐𝑒𝑠: 𝑐1 = 4

𝑐2 =2 ∗ 0 − 0 ∗ 2

2= 0 𝑑1 =

4 ∗ 18 − 2 ∗ 0

4= 18

Todos los términos de la primera columna son positivos: el sistema es estable

Page 117: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJEMPLO DE APLICACIÓN CRITERIO DE ROUTH

Luis Edo García Jaimes

Para el sistema de control de la figura obtenga el valor o rango de valores de 𝐾 para

los cuales el sistema es estable

La función de transferencia de lazo cerrado del sistema es:

𝐺𝑤 𝑆 =

𝐾 𝑆 − 2 (𝑆 + 1)(𝑆2 + 6𝑆 + 25)

1 +𝐾 𝑆 − 2

(𝑆 + 1)(𝑆2 + 6𝑆 + 25)

=𝐾 𝑆 − 2

𝑆3 + 7𝑆2 + 31 + 𝐾 𝑆 + 25 − 2𝐾

Ecuación característica del sistema: 𝑆3 + 7𝑆2 + 31 + 𝐾 𝑆 + 25 − 2𝐾 = 0

𝑆3

𝑆2

𝑆1

𝑆0

1 31 + 𝐾7 25 − 2𝐾

192 + 9𝐾

70

25 − 2𝐾

Para estabilidad todos los elementos de la primera columna deben ser positivos

192 + 9𝐾

7> 0 𝑦 25 − 2𝐾 > 0

Resolviendo las dos desigualdades se obtiene: −21.33 < 𝐾 < 12.5

Page 118: SISTEMAS DE CONTROL ANÁLOGO...En función del tipo de señal que use el detector de error, el control puede ser: análogo, digital e híbrido. en caso de ser un sistema en bucle cerrado,

EJERCICIOSHallar el valor o rango de valores de 𝐾, para los cuales los sistemas de control dados

son estables.

Luis Edo García Jaimes