Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields...

26
Singular moduli for real quadratic fields Singular moduli for real quadratic fields Jan Vonk MIT Number Theory Seminar, 5 May 2020 Joint work with Henri Darmon, Alice Pozzi, Yingkun Li

Transcript of Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields...

Page 1: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

Singular moduli for real quadratic fields

Jan VonkMIT Number Theory Seminar, 5 May 2020

Joint work with Henri Darmon, Alice Pozzi, Yingkun Li

Page 2: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

Outline

1 Introduction: Infinite products

2 The Dedekind–Rademacher cocycle

3 Singular moduli for real quadratic fields

Page 3: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

Introduction: Infinite products

Outline

1 Introduction: Infinite products

2 The Dedekind–Rademacher cocycle

3 Singular moduli for real quadratic fields

Page 4: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

Introduction: Infinite products

Consider the sine function

sinπz = πz∏

n∈ Z \{0}

(1− z

n

).

For any z ∈ Q, the value sinπz is algebraic.

sin π4 =

√2

2

sin π8 =

√2−√

22

sin π16 =

√2−√

2+√

22

Theorem (Kronecker–Weber)All finite abelian extensions of Q are (essentially) generated bycombinations of

sin(πz), z ∈ Q

Page 5: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

Introduction: Infinite products

Consider the j-function

j(q) = q−1 + 744 + 196884q + 21493760q2 + . . . q = e2πiz

= q−1(1− q)−744(1− q2)80256(1− q3)−12288744 · · ·

=

reg∏γ ∈ SL2(Z)

ζ3 − γzζ3 − γz

For any z ∈ K imaginary quadratic, the value j(z) is algebraic.

j(√−14) = 23

(323 + 228

√2 + (231 + 161

√2)

√2√

2− 1)3

Theorem (Kronecker–Weber)All finite abelian extensions of K are (essentially) generated bycombinations of {

sin(πz) z ∈ Q,j(z) z ∈ K .

Page 6: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

Introduction: Infinite products

Singular moduli

Singular moduli, like Weber’s example:

j(√−14) = 23

(323 + 228

√2 + (231 + 161

√2)

√2√

2− 1)3

,

have several interesting features. In this case:

It generates the Hilbert class field over K = Q(√−14).

It has an interesting prime factorisation (Gross–Zagier)

Nm j(√−14) = 224 · 116 · 173 · 413

It is closely related to the first derivative of the diagonal restriction ofa real analytic family of Eisenstein series (Gross–Zagier).

Page 7: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

Introduction: Infinite products

Let τ1, τ2 be two CM points inH∞ = {z ∈ C : Im(z) > 0}.Gross and Zagier (1985) find explicit formula for

Nm (j(τ1)− j(τ2)) ∈ Z

Algebraic proof: Its q-adic valuation is given in terms of arithmeticintersection of (oriented optimal) embeddings

Q(τ1),Q(τ2) ↪→ B∞q = �at alg conductor∞q

Analytic proof: Fourier coe�icients of Hecke’s real analytic Eisensteinseries over F , a�ached to the genus character defined by Q(τ1, τ2).

Q(τ1, τ2)

F

Q

Q(τ2)Q(τ1)

χ

Page 8: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

Introduction: Infinite products

Real analytic Hilbert Eisenstein series Es(z1, z2) defined by Hecke:

∑[a]∈Cl(∆1∆2)

χ(a)Nm(a)1+2s′∑

(m,n)∈a2/U

y s1y

s2

(mz1 + n)(m′z2 + n′)|mz1 + n|2s|m′z2 + n′|2s

Gross–Zagier consider its diagonal restriction Es(z, z) and show

When s = 0, have Es(z, z) = 0,

The holomorphic projection of the first derivative(∂

∂sEs(z, z)

)∣∣∣∣hols=0

has Fourier coe�icients related to logNm (j(τ1)− j(τ2)).

The holomorphic projection must vanish!⇒ formula for Nm (j(τ1)− j(τ2)).

Page 9: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

Introduction: Infinite products

Today: Analogues for real quadratic fields.

(Gross–Zagier) Let τ1, τ2 be CM points, consider

J∞(τ1, τ2) = j(τ1)− j(τ2) ∈ Q

Related to real analytic Eisenstein family.

ordq J∞(τ1, τ2) = Intersection multiplicities

Q(τ1),Q(τ2) ↪→ B∞q.

(With Darmon) Let τ1, τ2 be RM points, construct

Jp(τ1, τ2)?∈ Q

Related to p-adic analytic families.

ordq Jp(τ1, τ2)?= Intersection multiplicities

Q(τ1),Q(τ2) ↪→ Bpq.

Page 10: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

The Dedekind–Rademacher cocycle

Outline

1 Introduction: Infinite products

2 The Dedekind–Rademacher cocycle

3 Singular moduli for real quadratic fields

Page 11: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

The Dedekind–Rademacher cocycle

The work of Duke–Imamoglu–TothInspiration comes from work of Duke–Imamoglu–Toth on linking numbersof modular geodesics.

If γ ∈ SL2(Z) is hyperbolic, get associated knot

Kn(γ) ↪→ SL2(Z)\ SL2(R)

t 7→ SL2(Z)g(

et

e−t

), where g−1γg = diagonal

Linking Kn(γ) and trefoil↔ Dedekind–Rademacher cocycle (Ghys)

Linking Kn(γ1) and Kn(γ2)↔ Knopp cocycle (DIT)

Page 12: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

The Dedekind–Rademacher cocycle

The map γ 7→ 12c/(cz + d) is a weight 2 cocycle, trivialised by theEisenstein series E2(z). It li�s uniquely to a weight 0 cocycle:

0−→H1(SL2(Z),O)d−→ H1(SL2(Z),O2)−→ 0

The Dedekind–Rademacher symbol Φ(γ) ∈ Z is defined by

log ∆(γz)− log ∆(z) = 6 log(−(cz + d)2) + 2πiΦ(γ).

so that the unique li� is given by the right hand side. When applied to ahyperbolic matrix γ with fixed point τ , we get

6 log(−(cz + d)2) + 2πiΦ(γ)

z = τ

y yz = i∞ (+ homog.)

12 log(ετ ) Link(Kn(γ), trefoil)

Page 13: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

The Dedekind–Rademacher cocycle

Now upgrade the above to the se�ing

Γ = SL2(Z[1/p])O = Analytic functions on Hp = P1(Cp) \P1(Qp)

Want a multiplicative li� instead

0 H1(Γ,O×) H1(Γ,O×/C×p )

H1(Γ,O)

H1(Γ0(p),C×p )

H1(Γ,O2)

log dlog

d

From Euler system of Siegel units, construct ΘDR ∈ C1(Γ,O×) such that

ΘDR(γ1γ2) = ΘDR(γ1)ΘDR(γ2)γ1 × pΦp(γ1,γ2)

where Φp : Γ0(p)→ Z is Dedekind–Rademacher morphism(viewed as an element in H2(Γ,Z) ⊃ H1(Γ0(p),Z)).

Page 14: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

The Dedekind–Rademacher cocycle

Let τ be RM point, then the value

ΘDR[τ ] := ΘDR(γτ )(τ)

can be computed, e.g. p = 7 and τ = −17+√

3214 seems to give a root of

74x6−20976x5−270624x4+526859689x3−649768224x2−120922465776x+716

Conjecture (Darmon–Dasgupta)Let H/Q(τ) be the ring class field a�ached to τ , then

ΘDR[τ ] ∈ OH[1/p]×

With Henri Darmon and Alice Pozzi, we prove this conjecture. Use p-adicEisenstein family over Q(τ) with an odd class character ψ

E(p)k,ψ := Lp(ψ, 1− k) + 4

∑ν∈d−1

+

∑p - I | (ν) d

ψ(I)Nm(I)k−1

e2πi(ν1z1+ν2z2),

Remark. Dasgupta–Kakde (forthcoming) give a di�erent proof.

Page 15: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

The Dedekind–Rademacher cocycle

We consider its diagonal restriction E(p)k,ψ(z, z), and show that

When k = 1, we get

E(p)1,ψ(z, z) = Lp(ψ, 0)− 4

∞∑n=1

〈{0→∞}, Tngψ〉 qn if p split in Q(τ),

E(p)1,ψ(z, z) = 0 if p inert in Q(τ).

When p is inert in Q(τ), the ordinary projection limn→∞

Un!p of the first

derivative equals(∂

∂kE(p)k,ψ(z, z)

)∣∣∣∣ordk=1

= log(NmΘDR[ψ]) E(p)2 +

∑f cusp

log(Nm P−f (ψ)) f

where P−f (ψ) = Stark–Heegner point.

Mirrors Gross–Zagier very closely! Can even be bootstrapped to a fullproof of the conjecture on ΘDR, via the (exclusively p-adic) connectionwith deformation theory of Galois representations.

Page 16: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

The Dedekind–Rademacher cocycle

With Henri Darmon and Alice Pozzi consider the eigenvariety around E(p)1,ψ ,

which was shown to be etale over weight space by Betina–Dimitrov–Shih.

The first derivatives of the three parallel weight deformations of the Artinrepresentation 1⊕ ψ are related, exhibiting uψ ∈ OH[1/p]× such that

log(NmΘDR[ψ]) = L′p(ψ, 0) (Diagonal restrictions)= log(Nm uψ) (Galois deformations)

Remark 1. Working instead with the anti-parallel family F− through theweight (1, 1) form E(p)

1,ψ , we prove the full conjecture, without the norm.

Remark 2. Charollois–Darmon define archimedean version of ΘDR[τ ],refining the Stark conjecture. (No Galois deformation, no proof!)

Page 17: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

Singular moduli for real quadratic fields

Outline

1 Introduction: Infinite products

2 The Dedekind–Rademacher cocycle

3 Singular moduli for real quadratic fields

Page 18: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

Singular moduli for real quadratic fields

The work of Duke–Imamoglu–Toth (Part II)Let us return to modular knots Kn(γ) ↪→ SL2(Z) \ SL2(R):

Linking Kn(γ) and trefoil↔ Dedekind–Rademacher cocycle (Ghys)

Linking Kn(γ1) and Kn(γ2)↔ Knopp cocycle (DIT)

The Knopp cocycle in Z 1(SL2(Z),O2) a�ached to an RM point τ is

γ 7−→∑

w ∈ SL2(Z)τ

{∞ → γ∞} ∩ {w → w ′}z − w

where the exponent is the intersection number of the geodesic from w ′ tow with the geodesic from∞ to γ∞, and hence ±1 or 0.

Choie–Zagier: Those account for all elements in Z 1par(SL2(Z),O2).

Page 19: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

Singular moduli for real quadratic fields

Joint with Henri Darmon, we upgrade the above to the se�ing

Γ = SL2(Z[1/p])M = Meromorphic functions on Hp = P1(Cp) \P1(Qp)

Construct multiplicative li�

0 H1(Γ,M×) H1(Γ,M×/C×p )

H1(Γ,M)

H1(Γ0(p),C×p )

H1(Γ,M2)

log dlog

d

Concretely, Θτ ∈ C1(Γ,M×) is explicit infinite product over Γ:

Θτ (γ) =∏

w ∈ Γτ

∗ (z − w){w′→w}∩{∞→γ∞}

Its li�ing obstruction is rich! When X0(p) has genus zero, we have

Θτ (γ1γ2) = Θτ (γ1)Θτ (γ2)γ1 × εΦp(γ1,γ2)τ

where Φp : Γ0(p)→ Z is the Dedekind–Rademacher morphism.

Page 20: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

Singular moduli for real quadratic fields

Assume that X0(p) has genus 0, i.e. p = 2, 3, 5, 7, 13 (for simplicity)

If τ1, τ2 are coprime RM points inHp, the quantity

Jp(τ1, τ2) := Θτ1 (γτ2 )(τ2)

is arithmetically very rich, and should be thought of as analogous to thequantity J∞(τ1, τ2) := j(τ1)− j(τ2) considered by Gross–Zagier:

Conjecture (Darmon–V.)Let Hi be the ring class field a�ached to τi , then

Jp(τ1, τ2) ∈ H1H2

and is acted on in the obvious way by Gal(H1H2/Q).

Remark 1. This implies complex conjugation always acts by inversion.Remark 2. For general primes, li�ing obstructions are killed by principalparts of weakly holomorphic forms of weight 1/2, giving a map

M!!1/2(Γ0(4p))−→H1(Γ,M×).

Page 21: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

Singular moduli for real quadratic fields

Let ∆1 = 13, then for below choices of p and τ consider the quantity

Jp

(1 +√

132

, τ

)

τ p = 11 p = 19 p = 59

2√

2 3−4√−1

53−4√−1

5 1

3√

2 11+21√−3

2·195−4√−6

11 1

4√

2 57−176√−1

5·375−12√−1

133+4√−1

5

7√

2 118393−8328√−14

52·59·8393+95

√−7

22·6737+9√−7

22·11

8√

2 1312−1425√−1

13·14943+924

√−1

52·373+4√−1

5

9√

2 11387+12320√−3

192·6743+4100

√−6

112·83 1

Observe that for any pair of primes p, q there seems to be some relation

“ordp”(q-adic invariant) = “ordq”(p-adic invariant).

Page 22: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

Singular moduli for real quadratic fields

Let p = 2, then the RM values of

J2

(1 +√

132

,−)

at the six RM points of discriminant 621 are all roots of

53266281197421626898704636823062295969007036119297599934916 x6

−27836752624445107255550537796183532261306810430217742390746 x5

−29297701627429700833818885363891546270240998098759334148135 x4

+87958269550388100260309855891207245711288562805656560629805 x3

−29297701627429700833818885363891546270240998098759334148135 x2

−27836752624445107255550537796183532261306810430217742390746 x+53266281197421626898704636823062295969007036119297599934916 = 0

This generates ring class field of conductor 621 over K = Q(√

13).

Page 23: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

Singular moduli for real quadratic fields

The q-adic valuation of Jp(τ1, τ2) is conjecturally given by arithmeticintersection numbers of geodesics on Shimura curve Xpq a�ached toquaternion algebra Bpq . In this example, the constant term is

22 · 77 · 194 · 375 · 472 · 592 · 673 · 972 · 1092 · 229 · 241 · 379 · 631 · 709 · 733 · 1009

James Rickards developed algorithms to compute these intersectionnumbers. He finds that the only q for which some geodesic of discriminant13 intersects some geodesic of discriminant 621 on X2,q are:

q 7 19 37 47 59 67 97 109〈−,−〉q,∞ 7 4 5 2 2 3 2 2

q 229 241 379 631 709 733 1009〈−,−〉q,∞ 1 1 1 1 1 1 1

Page 24: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

Singular moduli for real quadratic fields

Towards a proof?

The connection between di�erences of singular moduli and derivatives ofreal analytic families of modular forms place singular moduli in thecontext of the Kudla programme, which seeks connections betweenalgebraic cycles and Fourier coe�icients of families of automorphic forms.

For real quadratic singular moduli, it is reasonable to try to establishsimilar connections in the context of an emerging p-adic Kudla programme.It has the additional connection

p-Adic families of modular forms

lDeformations of Galois representations

Page 25: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

Singular moduli for real quadratic fields

Ongoing work with Henri Darmon and Yingkun Li adapts this strategy tomeromorphic cocycles. Replaces Eisenstein family by a family Fk+1/2

obtained from a Hida family of theta series.

Again there is vanishing at k = 1, and(∂

∂kFk+1/2

)∣∣∣∣ordk=1

=∑D

log(Nm Jp(χ,D))qD + (Alg.terms)

where the algebraic terms are determined by the deformation theory of theHida family around weight k = 1 worked out by Darmon–Lauder–Rotger.

When X0(p) has genus zero, this ordinary projection must vanish! Flow ofinformation is reversed from the CM se�ing of Gross–Zagier.

Page 26: Singular moduli for real quadratic fieldsvonk/MIT.pdf · Singular moduli for real quadratic fields Introduction: Infinite products Singular moduli Singular moduli, like Weber’s

Singular moduli for real quadratic fields

Singular moduli for real quadratic fields

Conclusion

We hope that this may lead to a tentative ‘RM theory’ which provides richarithmetic invariants that play a role in an emerging p-adic Kudlaprogramme similar to that of CM singular moduli.

The lack of a geometric substitute for ‘RM elliptic curve’ is o�set by manyadvantages of the p-adic se�ing, especially the connection with thearithmetic of number fields via the theory of Galois deformations.

Thanks for having me!