Singlet oxygen : From discovery to natural and biologically active product synthesis

48
Singlet oxygen : From discovery to natural and biologically active product synthesis November, 8-15-22-28 th 2005 By Isabelle Bonnaventure Literature Meeting

description

Singlet oxygen : From discovery to natural and biologically active product synthesis. Literature Meeting. By Isabelle Bonnaventure. November, 8-15-22-28 th 2005. Presentation Outlook. Discovery of 1 O 2 and use as a reagent. Properties of 1 O 2. Generation of 1 O 2. - PowerPoint PPT Presentation

Transcript of Singlet oxygen : From discovery to natural and biologically active product synthesis

Page 1: Singlet oxygen : From discovery to natural and biologically active product synthesis

Singlet oxygen:From discovery to

natural and biologically active product synthesis

November, 8-15-22-28th 2005

By Isabelle Bonnaventure

Literature Meeting

Page 2: Singlet oxygen : From discovery to natural and biologically active product synthesis

Presentation OutlookPresentation Outlook

I. IntroductionI.1. Discovery of 1O2

I.2. Properties of 1O2

I.3. Sources of 1O2

II. ReactivityII.1. Reaction overview

II.2. Ene reaction

II.2.1. Introduction

II.2.2. Mechanism

II.2.3. Various effects

II.2.4. Diastereoselectivity

II.3. [4+2] cycloaddition

II.4. [2+2] cycloaddition

II.5. Competition between 3 modes

IV. Applications

IV.1. Ene reaction

IV.2. [4+2] cycloaddition

V. Conclusion

IV.3. [2+2] cycloaddition

Page 3: Singlet oxygen : From discovery to natural and biologically active product synthesis

Discovery of Discovery of 11OO22 and use as a reagent and use as a reagent

Ranby, B. The History of Singlet Oxygen-An Introduction. In Singlet Oxygen, Reactions with Organic Compounds and Polymers, Ranby, R., Rabek, J. F., Ed. John Wiley & Sons Ltd.: 1978; pp. 1-12.

° °

-1811: Avogadro, O2 is a diatomic molecule-1848: Faraday, O2 is paramagnetic

-1867: Fritzsche, reaction occured with light and oxygen

-1931: Kautsky, discovery of photo-oxygenation of unsaturated molecules (1O2 as "active oxygen")

-1954: Schenk and Ziegler, first use in organic synthesis

O Oh, O2

heat

naphthacene

h, O2

chlorophyllO

O

( )-ascaridole-terpinene

Page 4: Singlet oxygen : From discovery to natural and biologically active product synthesis

Properties of Properties of 11OO22

2 outer e in the degenerate antibonding x* and y*

3 g

1 +g

1 g

_

22.5 kcal/mol

37.5 kcal/mol

Ground state

1st Singlet state

2nd Singlet state Lifetime = 10-12 s

Lifetime = 10-3-10-6 s

Mulliken, 1928

Childe/Mecke, 1931

Herzberg, 1934

Kearns, D. R.; Merkel, P. B. J. Am. Chem. Soc. 1972, 94, 7244.Young, R. H.et al J. Am. Chem. Soc. 1973, 95, 375.Kearns, D. R.; Long, C. A. J. Am. Chem. Soc. 1975, 97, 2018.

Lifetime highly dependent on solvent No significant effect of temperature

Lifetime (.10-6 s)H2O (2)

MeOH (9)

EtOH (12)

n-BuOH (19)

C6H12 (17)

C6H6 (25)

t-BuOH (34)

Acetone (26)

C5H5N (33)

C6F6 (600)

CHCl3 CCl4

CS2 (200)

n-PrBr Freon(CF3Cl)

C6D6 (36)

D2O CDCl310 20 30 40 50 60 100 300 500 700 900 1000

Page 5: Singlet oxygen : From discovery to natural and biologically active product synthesis

Generation of Generation of 11OO22

H2O2/NaOCl

ClO + H2O2_

1O2 Cl+_

- MeOH (production of up to 80% of 1O2)

But versatility of H2O2

Khan, A. U.; Kasha, M. J. Am. Chem. Soc. 1970, 92, 3293.

H2O+

Thermolysis of triaryl phosphite ozonides

T> -20 °C

Trialkylphosphites: problem of stability

(ArO)3P + O3

O(ArO)3P

OO (ArO)3P O + 1O2

Murray, R. W.; Kaplan, M. J. Am. Chem. Soc. 1968, 90, 537.

Production of ~ 90% of 1O2

Page 6: Singlet oxygen : From discovery to natural and biologically active product synthesis

Generation of Generation of 11OO22

Dye-sensytized photochemical excitation

+ h 1S* + 3O2

absorption intersystemcrossing 3S* 1O2+

energytransfer

S = Rose Bengal, methylene blue, tetraphenylene porphyrine (TPP)

ET >> 22.5 kcal/mol

S S

spin allowed

Small size of O2: rapid diffusion in media N

NH N

HN

Ph

Ph

Ph

Ph

Kearns, D. R. et al Chem. Rev. 1971, 71, 395.

Decomposition of 9,10-phenylanthracene peroxide

Ph

Ph

Ph

Ph

O Obenzene, reflux

+1O2

Production of ~ 96% of 1O2Long process: up to 4 days Wasserman, H. H. et al J. Am. Chem. Soc. 1972, 94, 4991.

Page 7: Singlet oxygen : From discovery to natural and biologically active product synthesis

Reaction OverviewReaction Overview

1O2

heteroatomoxidation

organosulfurorganophosphorus

organometallic complexes

amines

heterocyclicphoto-oxygenation

furans, benzofurans

pyrroles, indoles

oxazoles

reaction withdouble bonds

ene reaction:hydroperoxide

[2+2] cycloadditions:1,2-dioxetane

[4+2] cycloadditions:endoperoxide

O O

HOO

OO

H

XR

XR

Page 8: Singlet oxygen : From discovery to natural and biologically active product synthesis

Discovered by Schenck in 1943

Formation of allylic hydroperoxides: access to diverse functionalities

R2

R1 1O2

R2

OOHR1

Ene reaction: IntroductionEne reaction: Introduction

Reduction

Rearrangement to epoxide

Kornblum-DeLaMare Dehydration

NaBH4

R2

OHR1

R2

OR1

R2

R1

OR2

R1

O

R3

R3

R2

OHOAcAcCl, Py

R1

R2

OR1

Frimer, A. A. Chem. Rev. 1979, 79, 359.

Page 9: Singlet oxygen : From discovery to natural and biologically active product synthesis

Ene reaction: IntroductionEne reaction: Introduction

Fragmentation to divinyl ethers (cyclic cases)

OOH H+O

OH2+

O+

H

O

Frimer, A. A. Chem. Rev. 1979, 79, 359.

1,3-allylic isomerisation

R2

OR1O

O O

R2

R1 O

R2

R1

HO

Hock cleavage

R2

OR1

OH2+

R1

O+

R2

-H2O + H2O

O

R1

O

R2

+H

Page 10: Singlet oxygen : From discovery to natural and biologically active product synthesis

Ene reaction: MechanismEne reaction: Mechanism

Foote, C. S.; Houk, K. N. et al J. Am. Chem. Soc. 2003, 125, 1319.

1O2 O2

O+ O_

H

H

HOO

exciplexintermediate

perepoxideintermediate

OOH

stepwisemechanism

concertedmechanism

OO

+O

O

Concerted process

Stepwise process

versus no significant intermolecular KIE suggests the presence of an intermediate

Page 11: Singlet oxygen : From discovery to natural and biologically active product synthesis

Ene reaction: MechanismEne reaction: Mechanism

Stephenson, L. M.; Grdina, M. J.; Orfanopoulos, M. Acc. Chem. Res. 1980, 13, 419.

Perepoxide intermediate: Stephenson inter/intramolecular isotope effect test

D3C

H3C CD3

CH3

D3C

H3C CH3

CD3

H3CD3C

O+ O

D

H

D3CD3C

O+ O

H

H

H3CH3C

O+ O

D

D

E

Z

- H

- D

- H or - D CD2

CH3D3C

DOO

H3C

CH2

CD3D3C

HOO

H3C

CD2

CH3D3C

DOO

H3C

CH2

CD3D3C

HOO

H3C

1.0

1.0

1.05

1.4

kanti

ksyn

Exciplex intermediate

- G ~ 0- S << 0

characteristics of singlet oxygen reactionand reactions involving rapid and reversibly formed exciplexes

Zwitterionic/biradical intermediates ruled out

- reaction not subjected to Markovnikov regioselectivity(control experiments on trisubstituted olefins)

- radical scavengers are ineffective

- cis-trans isomerisation does not occur

O2

OO

+O

O

+

Page 12: Singlet oxygen : From discovery to natural and biologically active product synthesis

Ene reaction: MechanismEne reaction: Mechanism

Orfanopoulos, M.; Stephenson, L. M. J. Am. Chem. Soc. 1980, 102, 1417.

HH3C

HPh

D

H

H3CD

PhHOO

HH3C

H

Ph

H

H3CH

PhDOO

OOD

HH3C

D

Ph

OOH

ANTARAfacial SUPRAfacialobserved

"Re" face (top)

"Si" face (bottom)

Interaction * (1O2) - (ene)

1O2

+

Page 13: Singlet oxygen : From discovery to natural and biologically active product synthesis

Ene reaction: “Ene reaction: “ciscis effect” effect”

X

R1

R2 X

R1

R2

HOO1O2

X = Alkyl, ethers

10%

22% 68% 48% 52%

0%

48%

22%30%

65%33%

<2% 43%4%

53%

MeO 72%

28%

"cis effect" = Hydrogen abstraction syn to X (most congested side of olefin)

Conia, J. M. et al Tetrahedron Lett. 1977, 2517. Foote, C. S. et al Tetrahedron Lett. 1978, 3227.Orfanopoulos, M. et al J. Am. Chem. Soc. 1979, 101, 275. Schulte-Elte K. H. et al J. Am. Chem. Soc. 1980, 102, 1738.

Page 14: Singlet oxygen : From discovery to natural and biologically active product synthesis

Ene reaction: “Ene reaction: “ciscis effect” effect”

Stephenson/Fukui model

H

H

LUMO (*-like)

HOMO ()

H

HH

R

H

R

H

H

eclipsed cis: 1.06 kcal/moltrans: 2.06 kcal/mol

Houk

Stephenson, L. M. Tetrahedron Lett. 1980, 21, 1005.

Houk, K. N. et al J. Am. Chem. Soc. 1981, 103, 949.

Foote, C. S.; Houk, K. N. et al J. Am. Chem. Soc. 2003, 125, 1319.

TS: 2.8 kcal/mol higher

1O2

O+ O

HH

Page 15: Singlet oxygen : From discovery to natural and biologically active product synthesis

Stratakis, M.; Orfanopoulos, M.; Foote, C. S. J. Org. Chem. 1998, 63, 1315.

Ene reaction: “Ene reaction: “ciscis effect” in styrene derivatives effect” in styrene derivatives

CD3

Styrene derivatives: solvent-dependent syn selectivity

CD3 CD21O2

+

syn anti

MeCN

MeOH

56

71

82

44

29

18

H

D

OO

H

D

O

syn anti

O

more stabilised

CCl4

HOO DOO

Page 16: Singlet oxygen : From discovery to natural and biologically active product synthesis

Orfanopoulos, M. Tetrahedron Lett. 1989, 30, 4755.

Ene reaction: large group non-bonded effectEne reaction: large group non-bonded effect

L s

O

O

L s

O

O

L s

O

O

H

minor

major

1,3-non bonded interactionH

L s

1O2

L s L s+

major minor

OOH HOO

Ph

PhPh

Ph

Ph70% 30%

70% 30%

73% 27%

95% 5%

56% 44%Ph 11% 89%

Page 17: Singlet oxygen : From discovery to natural and biologically active product synthesis

Orfanopoulos, M. et al J. Am. Chem. Soc. 1990, 112, 6417.Clennan, E. L. et al J. Am. Chem. Soc. 1990, 112, 5193.

Orfanopoulos, M. et al Synth. Comm. 1993, 23, 425.

Ene reaction: bulky subtituentsEne reaction: bulky subtituents

L

1O2

OOHL L+

major minor

HOO

>97% 82% 18%

>97%29%

71% 96%4%

- Allylic bulk

- Vinylic bulk

66% 34%

77%

23%>97%

O

O

L OL

O

O

O

L

O

O

L

H

H

minor

major

OL

OH

not observed

Page 18: Singlet oxygen : From discovery to natural and biologically active product synthesis

Thomas, A. F.; Pawlak, W. Helv. Chim. Acta 1971, 54, 1822.

Rautenstrauch, V.; Thommen, W.; Schulte-Elte, K. H. Helv. Chim. Acta 1986, 69, 1638.

Ene reaction: gem dimethyl/diethyl trisubstituted olefinsEne reaction: gem dimethyl/diethyl trisubstituted olefins

L R

1O2

L R L R+

major minor

HOOR HOO R R

Ph

Ph68%

32%

91%

9%

Ph

PhPh

92%

8%

94%

6%

53%

47%

47%

53%

Geminal dimethyl, diethyl trisubstituted olefins: reaction at the most congested side of olefin

L R

O

O

Hminor

1,3-non bonded interactionR

A1,3 in the newly formed double bond

Page 19: Singlet oxygen : From discovery to natural and biologically active product synthesis

Ene reaction: hydroxyl group directing effectEne reaction: hydroxyl group directing effect

Adam, W.; Nestler, B. J. Am. Chem. Soc. 1993, 115, 5041.

OH1O2 HOO

OH

HOO

OH

OOH

OH

OOH

OH

93 7

96%

:E Z

4%

H

H H

O

H MeMe H

O

O

H

HH

O

HMeMe H

O

O H

HH

H

MeHOMe H

O

O H

HH

Me

HHOMe H

O

O

threo erythro

H

H

++ +

CCl4

OAc1O2 HOO

OAc

HOO

OAc

OOH

OAc

OOH

OAc

:E Z

39 61 38 62

82% 18%

:

H

H H

H

Me OAcMe H H

HH

H

MeAcOMe H

O

O

O

OA1,3 smaller

cis effect ++ +

threo erythro

Page 20: Singlet oxygen : From discovery to natural and biologically active product synthesis

Adam, W.; Nestler, B. Tetrahedron Lett. 1973, 34, 611.

Ene reaction: hydroxyl group directing effectEne reaction: hydroxyl group directing effectAllylic strain

OH

Ha1O2

OH

HOO

OH

HOO

O

HOO

+ +

93 : 7

>97% <3%

OH

Ha 54 : 46

>96% <4%

H

H H

O

H MeH Ha

O

O

threo

H

Z: highly threo diastereoselectivity

1O2

OH OH

HOO

OH

HOO+

93 : 7

A1,2 strain: no significant effect

1O2

Page 21: Singlet oxygen : From discovery to natural and biologically active product synthesis

Ene reaction: hydroxyl group directing effectEne reaction: hydroxyl group directing effect

Stratakis, M.; Orfanopoulos, M.; Foote, C. S. Tetrahedron Lett. 1996, 37, 7159.Vassilikogiannakis, G.; Orfanopoulos, M.; Foote, C. S. J. Org. Chem. 1999, 64, 4130.

Solvent effect

H

D

O+ O

OH

destabilised in polar protic solvents

CD3HO

syn

anti

syn:anti

75:25

Benzene 73:27

MeCN 41:59

MeOH 33:67

CCl4

CH3

CD2HO

DOO

CH2

CD3HO

HOO

anti

syn

Page 22: Singlet oxygen : From discovery to natural and biologically active product synthesis

Adam, W. et al J. Am. Chem. Soc. 1995, 117, 3976.Adam, W. et al J. Am. Chem. Soc. 1996, 118, 1899.

Ene reaction: hydroxyl group directing effectEne reaction: hydroxyl group directing effect

X

H

X

MeHMe

Me

H

X

MeHMe

Me

1O2

H

X

MeHMe

Me

H

X

MeHMe

Me

O

O

O

O

_

erythro:threoX

NH2

NH3+Cl

NHAc

NHBocaNBoc2

ClaSO2Ph

8:92

6:94

64:36

65:35

95:5

85:15

>95:5

aOH 7:93

66:34aOOH

a: CCl4 used as solvent

erythro

threo

attractive interactions: OH, NH2, NH3+

repulsive interactions: NHAc, NHBoc, NBoc2, NHPhth, Cl, SO2Ph, OOH

threo selectivity

erythro selectivity

Page 23: Singlet oxygen : From discovery to natural and biologically active product synthesis

Ene reaction: EWG at vinylic and allylic positionEne reaction: EWG at vinylic and allylic position

- Allylic substitution

bad selectivities

OMe

O62%

38%P

Ph

OSOPhPh

52%

48%

38%

62%

electronic repulsion with highly polarised X-O bonds

Stratakis, M.; Orfanopoulos, M. Tetrahedron Lett. 1997, 38, 1067.

EWG 1O2 HOO EWG EWG+ OOH

majorX = CHO, COMe, COOH, COOEt, CN, CNR, SOPh

driving force: double-bond-carbonyl conjugation

- Vinylic substitution

solvent effect: non polar solvents: >95polar solvents: 80:20 (higher dipole moments, stabilisation of perepoxide TS)

O+

EWG

O

O+

EWG

O

majorAdam, W.; Richter, M. J. Tetrahedron Lett. 1993, 34, 8423.

minor

Page 24: Singlet oxygen : From discovery to natural and biologically active product synthesis

1O2

OOH

OOH

H

H

H

OOH

OOH

H

98.5 1.5

16 84

+

+

Steric effect

exo endo

1O2

Jefford, C. W. et al Helv. Chim. Acta 1974, 57, 2242.Jefford, C. W. et al J. Am. Chem. Soc. 1972, 94, 8904.

Ene reaction: cyclic moleculesEne reaction: cyclic molecules

Page 25: Singlet oxygen : From discovery to natural and biologically active product synthesis

Ene reaction: cyclic moleculesEne reaction: cyclic molecules

Paquette, L. et al Synth. Commun. 1986, 16, 1275.

O

H

H

OO

H

H

OO

H

H

O+

OOHOOH

71 (53%) 29 (22%)

O O

1. 1O22. P(OEt)3

OH

single diastereoisomer

1O2

less hindered face

less hindered face

O

O

O

Steric effect

Page 26: Singlet oxygen : From discovery to natural and biologically active product synthesis

Ene reaction: cyclic moleculesEne reaction: cyclic molecules

Okada, K.; Mukai, T. J. Am. Chem. Soc. 1978, 100, 6509. Paquette, L. A. et al J. Am. Chem. Soc. 1978, 100, 6510.Houk, K. N. et al J. Org. Chem. 1993, 58, 4625.

1. 1O22. Me2S

+OH HO

17:83

CO2Me

CO2Me

OMe

MeO

F

F F

F

Cl

Cl

Cl

Cl

syn/anti 46:54 24:76 21:79 56:44 59:41

anti

syn

Stereoelectronic effect

major

Mukai: distortion of exo orbital to the anti side by mixing orbital due to perturbation induced by orbital

Paquette: electron density donation to the developping anti perepoxide

Houk: syn attack disfavored by electrostatic repulsion between 1O2 and cloud of aromatic ring

Page 27: Singlet oxygen : From discovery to natural and biologically active product synthesis

Ene reaction: diastereoselectivity?Ene reaction: diastereoselectivity?

Oxazoline

N

O

N

O

OOH

1O2

>95%

d.r 1:1

Adam, W. et al Tetrahedron Lett. 1991, 32, 1957.

Page 28: Singlet oxygen : From discovery to natural and biologically active product synthesis

Menthol derivatives

Dussault, P. H. et al Tetrahedron 1994, 50, 8929.

Ene reaction: diastereoselectivity?Ene reaction: diastereoselectivity?

O

O

O

O

Si attackRe attack

O

OXc

Me

OOH

Xc =no selectivityAr

Me Me

Me

Ar

Sensitiser/solvent T (°C) Yield (%) d.r

TPP/DCM rt 82

TPP/CCl4 rt 87

RB/MeCN rt 94

RB/MeOH - 30 89

TPP/DCM - 45 83

TPP/DCM - 60 86 82:18

77:23

77:23

70:30

70:30

70:30

or

Page 29: Singlet oxygen : From discovery to natural and biologically active product synthesis

Adam, W. et al Eur. J. Org. Chem. 1998, 501.

Ene reaction: diastereoselectivity?Ene reaction: diastereoselectivity?

ON

O

Me

MeR

MeMe

1. 1O22. PPh3 O

NO

R

MeMe

OH

Me

R = Bn, iPr d.r = 1:1

R

HO

MeMe

O

Me

Me H

no facial selectivity

Oxazolidine

Page 30: Singlet oxygen : From discovery to natural and biologically active product synthesis

Adam, W. et al J. Am. Chem. Soc. 2000, 122, 7610.

Ene reaction: diastereoselectivity?Ene reaction: diastereoselectivity?

Oxazolidine

NO

Ph

Xc

OH

O2, h

NO

Ph

Xc

OH

NO

Ph

Xc

O+

OH OO

Xc solvent T (°C) time (h) crude yield (%) regio d.r

OtBu

Ph

NHPh

NHPh

NHp-NO2Ph

NMePh

d6-acetone

- 5

- 5

- 5

- 10

- 10

- 10

20

23

4

40

28

48

92

86

>95

72

85

90

75:25

86:14

93:7

96:4

96:4

70:30

25:75

45:55

94:6

85:15

>95:5

41:59

CCl4

CDCl3

CDCl3

CDCl3

CDCl3

TPP

steric model: failedhydrogen bonding model: successful (mimic of allylic alcohols)

Page 31: Singlet oxygen : From discovery to natural and biologically active product synthesis

O

NPh

OXc

H

H

HH

N

OMeH

PhXc

O

H

H

HH

N

OMeH

Ph Xc

O

H

1O2

1O2

O

N HH

OOH

Me

CH2

O Xc

Ph

O

N H

O Xc

Ph

OOH

H Me

CH2

NO

Ph

Xc

OH

OOH

NO

Ph

Xc

OH

OOH

Diastereoselectivity

Me

OOHH

HH

N

O

Ph

OXc

H

HHN

O

MeHPh

XcO1O2

NO

Ph

Xc

OO

O

Regioselectivity

Ene reaction: diastereoselectivity?Ene reaction: diastereoselectivity?

major

Page 32: Singlet oxygen : From discovery to natural and biologically active product synthesis

S

N

O O

O

R

S

N

O O

O

S

N

O O

R

O

R

C-C rotation

C-N rotation

O O

Re attack favored

S

N

O O

O

R H

HH

O O

Ene reaction: diastereoselectivity?Ene reaction: diastereoselectivity?

Adam, W. et al J. Am. Chem. Soc. 2002, 124, 12938.

Bornane-derived sultam

S

N

O O

O

R

1O2

S

N

O O

O

OOHR

R

MeiPr

time (d)

1

3

conversion (%)

>95

90

yield (%)

90

78

d.r

83:17

>95:5

Page 33: Singlet oxygen : From discovery to natural and biologically active product synthesis

Ene reaction: diastereoselectivity?Ene reaction: diastereoselectivity?

Adam, W. et al J. Org. Chem. 2004, 69, 1704.

Enecarbamates

NO O

PhHR

NO O

PhH

R

R d.r

MeiPr

R d.r

PhtBu

88:12

83:17

71:29

91:9

N

Me

Ph

O

O

R

N

Me

Ph

O

O

R

N Ph

O

O

R

OO HOO

+

1O2CDCl3

Z olefin: [2+2] mode

E olefin: ene mode

NPh

O O

R

cis-effect: orbital directing effect of the vinylic nitrogen (HOMO)

H

less accessible

NPh

O O

RH

favored

Page 34: Singlet oxygen : From discovery to natural and biologically active product synthesis

R4

R3

R2

R1

R4

R3

R2

R1OOHConditions

Comparison with other Comparison with other -oxidation methods-oxidation methods

Denny, R. W.; Nickon, A. Org. React. 1973, 20, 133.

1O2

convenient

few side products

disubstituted-olefins react slowly

Auto-oxidation

hydroperoxide cleavage under reaction conditions

SeO2

toxic

functional group not tolerated

complementary (different isomers) to 1O2

Dehydrohalogenation of -Halohydroperoxides

functional group not tolerated

limited to tetraalkylated olefins

AcNHCl, H2O2Et2O

N

NBr

O

O

Brhydantoin

or

OOH

X NaOHMeOH

OOH

(O2, air)

by-products

Page 35: Singlet oxygen : From discovery to natural and biologically active product synthesis

Adam, W.; Prein, M. Acc. Chem. Res. 1996, 29, 275.

[4+2] cycloaddition[4+2] cycloaddition

R2

R1

O

O+

R2

R1

O

O

exciplex

O

O

R1

R2

endoperoxide

cyclic dienes: high anti/syn diastereoselectivities (cyclopentadiene)moderate diastereoselectivity for endo/exo

acyclic dienes: low diastereoselectivitydependent on A1,3 allylic strain

steric and electronic factors which depend on type of substrate and reaction conditions

OO

X

anti

exo

endo

Page 36: Singlet oxygen : From discovery to natural and biologically active product synthesis

more recent (1969) than [4+2] cycloaddition and ene reaction

Clennan, E. L. Tetrahedron 1991, 47, 1343.

[2+2] cycloaddition[2+2] cycloaddition

electron rich olefin

1,3-diene: cis-geometry: trans dioxetane

trans-geometry: cis dioxetane

H

ORO

OR

O

+H

H

OOR OR+

H

O

OR

RO

OR

OR

OR

RO

OR

OO

OO

RO

RX RX1O2

1O2

exciplex

RX+ OO

RX OO

1,2-dioxetane

Page 37: Singlet oxygen : From discovery to natural and biologically active product synthesis

?

1,3-diene s-cis/s-trans ratio

Alignment of allylic hydrogens

C1-C4 distance in diene

Steric factors

Ionisation potential of diene

[4+2], [2+2] cycloaddition or ene reaction ?[4+2], [2+2] cycloaddition or ene reaction ?

ene reaction:hydroperoxide

[2+2] cycloaddition:1,2-dioxetane

[4+2] cycloaddition:endoperoxide

O OHOO

OO

XR

XRH

1O2

XR

RX

Page 38: Singlet oxygen : From discovery to natural and biologically active product synthesis

[4+2], [2+2] cycloaddition or ene reaction ?[4+2], [2+2] cycloaddition or ene reaction ?

Matsumoto, M.; Kuroda, K.; Suzuki, Y. Tetrahedron Lett. 1981, 22, 3253.

Matsumoto, M.; Kondo, K. Tetrahedron Lett. 1975, 3935.

1,3-diene s-cis/s-trans ratio

OMe

OMeOMe

CHO

+1O2

4753

O

O

OMe

OMe

86%cis

trans 98% >99 1

HH

1O2

H OOH

O

O

H

Me

Alignment of allylic hydrogens

1O2

55%90%

Page 39: Singlet oxygen : From discovery to natural and biologically active product synthesis

Clennan, E. Tetrahedron 1991, 47, 1343.

[4+2], [2+2] cycloaddition or ene reaction ?[4+2], [2+2] cycloaddition or ene reaction ?

[4+2] rate constants (M-1s-1):

1x108 7.1x106 1.1x106 6.5x104

C1-C4 distance in diene

Page 40: Singlet oxygen : From discovery to natural and biologically active product synthesis

Ionisation potential of diene: IP (eV)

1O2 OO

8.639.13

+

OOH HOO8.48 8.68

1O2

39 61

79%

92%

Kondo, K.; Matsumoto, M. J. Org. Chem. 1975, 40, 2259.

[4+2], [2+2] cycloaddition or ene reaction ?[4+2], [2+2] cycloaddition or ene reaction ?

Paquette, L. A. et al Tetrahedron Lett. 1976, 2681.

Page 41: Singlet oxygen : From discovery to natural and biologically active product synthesis

H H

+

+

1O2 OO

HOO

HOO HOO

10-15% 85-90%

1O2

OO

Me

[4+2], [2+2] cycloaddition or ene reaction ?[4+2], [2+2] cycloaddition or ene reaction ?

Barrett, H. C.; Buchi, G. J. Am. Chem. Soc. 1967, 89, 5665.

Sasson, I.; Labovitz, J. J. Org. Chem. 1975, 40, 3670.

Steric factors

Page 42: Singlet oxygen : From discovery to natural and biologically active product synthesis

Paquette, L. A. et al J. Am. Chem. Soc. 2000, 122, 2742.

Ene reaction: applicationEne reaction: application

OOBr S

O O

TolO

O CO2Me

H

SOTol

O

O CO2Me

H

HH

O

TfO CO2Me

H

HH

O

CO2Me

H

HH

1. n-BuLi2. (-)-menthyl p-toluenesulfinate, CSA, acetone

77%

CO2MeHO

K2CO3, THF

38%

H2, RaNi(150 psi),

MeOH

88%

KHMDS, PhNTf2,THF, -78 °C

98%

SnBu3

Pd2(dba)2·CHCl3LiCl, THF

95%

O O

O

H

H

HH

(+)-Asteriscanolide

Page 43: Singlet oxygen : From discovery to natural and biologically active product synthesis

Ene reaction: applicationEne reaction: application

Paquette, L. A. et al J. Am. Chem. Soc. 2000, 122, 2742.

O

CO2Me

H

HH

OH

HH I

OH

HH

O

H

H

H

O

H

H

H

HO

O

H

H

H

O

O O

O

H

H

HH

1. LAH2. MsCl, Et3N3. NaI

74%

MgCl

CuI, THF, 0 °C98%

RuPy

PCy3

PCy3Cl

Cl

DCM, 93%

1. O2, TPP, DCM, h2. LAH

61%

1. Dess-Martin2. H2, 10% Pd/C EtOH, 300 psi

67%

RuCl3, NaIO4CCl4, MeCN, H2O

63%

4%, 13 steps

H

Page 44: Singlet oxygen : From discovery to natural and biologically active product synthesis

O

P2O

OH

O

OP1

OH O

P2O

O

O

OP1

OP3

OH

P2O

OH

O

OP1

HO

ORX

O

OP1

O

HO

OSiR'3

XHO

CH(OR)2

O

OSiR'3

XHO

[4+2] cycloaddition: application[4+2] cycloaddition: application

Kusama, H. et al J. Am. Chem. Soc. 2000, 122, 3811.

O

O

O

O

NHPh

O

OH

OAcHO

Ph

AcOBzO

H

OH

( )Taxol

Page 45: Singlet oxygen : From discovery to natural and biologically active product synthesis

[4+2] cycloaddition: application[4+2] cycloaddition: application

Kusama, H. et al J. Am. Chem. Soc. 2000, 122, 3811.

O

OTIPS

SPhHO

HO

OTIPS

SPhHO

CH(OBn)2CH(OBn)2

Br

1. tBuMgCl, THF, -78 °C, 30min2. tBuLi, -78 °C, 1h

68%+

(MeBO)3,Py, rt, 30min

77%

O

OTIPS

SPhO

CH(OBn)2

B

TiCl2(OiPr)2,DCM,

-78 °C to 0 °C,1.5h

pinacol, DMAP,rt, benzene

59%

OBn

O

O

OB SPh

OBn

O

HO

HOSPh

1. PhCH(OMe)2, PPTS, 1h2. DIBAL3. TBSOTf, 2,6-lutidine

80%

OBn

TBSO

O

OSPhPh

OBn

TBSO

O

OPh

HO

OH

1. h, O2, TPP2. Bu3SnH, AIBN

85%

O

TBSO

O

OPh

HO

O Ph

1. Pd/C, HCO2NH42. PhCH(OMe)2, CSA

87%

Page 46: Singlet oxygen : From discovery to natural and biologically active product synthesis

NH

NH2

CO2MeH

N

NHFmoc

CO2HH

MeMe

+

NH

NH2

CO2MeH

NaBH3CN, AcOH

60%

NH

NHBoc

CO2MeH1. CuCl, iPr2NEt, THF, reflux

2. DDQ3. H2, quinoline, Pd/C

Me

Me OAc

83%

N

NHBoc

CO2MeH

MeMe

1. SOCl2, MeOH2. LiOH3. Fmoc-Cl

81%

[2+2] cycloaddition: application[2+2] cycloaddition: application

Corey, E. J. et al J. Am. Chem. Soc. 2003, 125, 5628.

NH

N

N

NMe Me

OO

Me Me

H

HH

OH

Okaramine N

8%, 10 steps

Page 47: Singlet oxygen : From discovery to natural and biologically active product synthesis

[2+2] cycloaddition: application[2+2] cycloaddition: application

Corey, E. J. et al J. Am. Chem. Soc. 2003, 125, 5628.

NH

NH2

CO2MeH CHO

Me

MeN

NHFmoc

CO2HH

MeMe

DCM

1.

2. NaBH4, MeOHNH

NH

CO2MeH

Me Me

BOPCl

NH

N

FmocHNMeO2C

NMe Me

OH

H

70%

Pd(OAc)2 (1 equiv),AcOH:dioxane:H2O

1 atm O2, rt, 16h

NH

N

FmocHNMeO2C

NMe Me

O

Me Me

H

H

44%

Et2NH/THF

95%

NH

N

HN

NMe Me

OO

Me Me

H

H

1. MTAD, DCM, -5 °C2. -DCM3. O2, sunlamp, 7.5h MeOH, MB, -28 °C4. DMS

N

N

N

NMe Me

OO

Me Me

H

HH

OH

H-MTAD

, 110 °C,30min

70%

Me

Me

Page 48: Singlet oxygen : From discovery to natural and biologically active product synthesis

ConclusionConclusion

1O2

Discovery of reactionwith organic molecules

1867 (Fritzche)

Generation: dye-photosensitisation

Choice of solventimportant (lifetime)

Diverse modes of reactivity- heteroatom oxidation- heterocyclic oxygenation- reaction with double bonds

- ene reaction- [2+2], [4+2] cycloadditions

Diastereoselectivity:essentially based on

steric factors and/or hydrogen bonding

Application to biologically activeand natural product synthesis