Single transversely polarized DY, observables, TMDs

25
Single transversely polarized DY, observables, TMDs • Introduction – TMD DFs SIDIS • DY – General expression and LO parton model • Intrinsic transverse parton momenta – P. Schweitzer, T. Teckentrup and A. Metz article review – Application to Sivers effect in DY • Discussion Aram Kotzinian Torino Uni&INFN On leave in absence from YerPhI, Armenia 4/26/2010, CERN 1 Aram Kotzinian

description

Single transversely polarized DY, observables, TMDs. Aram Kotzinian Torino Uni&INFN On leave in absence from YerPhI, Armenia. Introduction TMD DFs SIDIS DY General expression and LO parton model Intrinsic transverse parton momenta - PowerPoint PPT Presentation

Transcript of Single transversely polarized DY, observables, TMDs

Page 1: Single transversely polarized DY, observables, TMDs

Aram Kotzinian 1

Single transversely polarized DY, observables, TMDs

• Introduction– TMD DFs– SIDIS

• DY– General expression and LO parton model

• Intrinsic transverse parton momenta – P. Schweitzer, T. Teckentrup and A. Metz article review– Application to Sivers effect in DY

• Discussion

Aram KotzinianTorino Uni&INFN

On leave in absence from YerPhI, Armenia

4/26/2010, CERN

Page 2: Single transversely polarized DY, observables, TMDs

24/26/2010, CERN Aram Kotzinian

TMD quark DFs of Nucleon

At twist-two we have 6 T-even & 2 T-odd

21 ( , )q

Th x k

21 ( , )qT Th x k

21 ( , )qT Tf x k

21 ( , )q

Tf x k

21 ( , )qL Tg x k

21 ( , )qT Tg x k

21 ( , )qT Th x k

21 ( , )qL Th x k

Page 3: Single transversely polarized DY, observables, TMDs

3

SIDIS

4/26/2010, CERN Aram Kotzinian

Using current conservation + parity conservation + hermiticity one can show that 18 independent Structure Functions describe one particle SIDIS cross section in one photon exchange approximation.Moreover, the dependences on azimuthal angle of produced hadron and of the target nucleon polarization are calculated explicitly and factorized

Page 4: Single transversely polarized DY, observables, TMDs

Aram Kotzinian

SIDIS, polarized lepton and target

4/26/2010, CERN 4

cos, ,

2 2 2

2 2

2

cos2 sin sin sin 2

cos

1 2 (1 )cos2(1 ) 2

cos(2 ) 2 (1 )sin 2 (1 )sin sin(2 )

1 2 (1 )cos

( ){

[ ][ ]

h

h h h h

h

UU T UU L UU

UU LU U

hh h

h h h hL

L

L UL

L T

e

e L L

l

Lh

d ydxdy dzd dP xyQ x

F F F

F F F F

FS F S

S

sin( ) sin( ), ,

sin( ) sin(3 ) sin

sin(2 ) co )2 s(

sin( )

sin( ) sin(3 ) 2 (1 )sin

2 (1 )sin(2 ) 1 cos( )

2 (1 )cos

[ ( )

] [

h S h S

h S h S S

h S h S

h S

h S h S S

h S h S

UT T UT L

UT UT UT

UT LT

L

e

S

T

F F

F F F

F S F

F

cos cos(2 )2 (1 )cos(2 ) ]}S h ShT LTS F

( , ) ( , ) ( ) ( )hl N P S l h P X

( , )18 structure functions h SfABF

2 2 2 2 2 21 1 11 1 , 4 2 4

Mxy y y y yQ

Page 5: Single transversely polarized DY, observables, TMDs

Aram Kotzinian 5

SIDIS, unpolarized lepton

4/26/2010, CERN

cos cos2, ,

sin sin 2

sin( ) sin( )

2 2 2

,

2 2

,

12(1 ) 2

2 (1 )cos cos(2 )

2 (1 )sin sin(2 )

sin( )

sin( )

( ){

[ ][ ( )

h h

h h

h S h S

h h

h hUU T UU L UU UU

ULh h

h S

UL

UT T

h S

UT L

l

L

T

d ydxdy dzd dP xyQ x

F F F F

F F

F

F

S

FS

sin( ) sin(3 )

sin sin(2 )

sin(3 )

2 (1 )sin 2 (1 )sin(2 ) ]}h S h S

S h S

UT UT

UT

h S

S Uh S T

F

F F

( ) ( , ) ( ) ( )hl N P S l h P X

( , )12 structure functions h SfABF

Page 6: Single transversely polarized DY, observables, TMDs

Aram Kotzinian 6

SIDIS, unpolarized lepton, LO parton model

4/26/2010, CERN

cos2,

sin 2 sin( )

sin( )

2 2 2

2 2

sin(3 )

1 cos(2 )2(1 ) 2

sin(2 ) sin( )

sin( ) sin(3 )

( ){

[]}

h

h h S

h S h S

U

L

U T UU

UL UT

U

hh h

h h S

h S h ST

l

UT

T

F F

F F

d ydxdy d

S

zd dP xyQ

S

F F

x

( , )6 structure functions h SfABF

cos(2 ) sin(2 ),

sin( ) sin( ) si

1 1 1 1 1 1

1 1 1 1 1(3 )

1n

, ,

, ,

h h

h s h s h s

q h q h q hq q L q

q h q h q hT q

UU T UU UL

UT T q T qU UT

f D h H h H

f D h H h

F F F

F F F H

Page 7: Single transversely polarized DY, observables, TMDs

Aram Kotzinian 7

Crossing

4/26/2010, CERN

( , ) ( )

( , )

( )

(

( )

( () ) )

h

h

h P

h

N P S l X

N PP S l X

l

l

Page 8: Single transversely polarized DY, observables, TMDs

8

DY processes

4/26/2010, CERN Aram Kotzinian

2 22 2, Q , , ,

2 2a b F a ba b

q qq l l q x x x x xP q P q

( ) ( , )a bP p P S X

Page 9: Single transversely polarized DY, observables, TMDs

Aram Kotzinian 9

Angular variables

4/26/2010, CERN

Target rest frame (TF)

Collins-Soper frame (CS)

Page 10: Single transversely polarized DY, observables, TMDs

Aram Kotzinian 10

General expression for DY cross section(only target is polarized)

4/26/2010, CERN

22 2 2

4 2

2

1 2 cos cos2

sin sin 2

sin sin sin( ) sin(2 )

(1 cos ) (1 cos ) sin 2 cos sin cos 2

sin 2 sin sin sin 2

cos sin sin 2 sin( ) sin( )

sin

{( )

( )[( ) ( )S S S S

U U U U

L L

T T

e

T S

L

TS ST

mdd qd q

S

F F F F

F F

F FS F F

sin(2 ) s2 in(2 )sin(2 ) sin(2 )( )]}S ST STSF F

( , )2,

2 2 24 ( · ) - flux, ( , , ) Sa b a

fA a b Tb F x x qP P M M Q

( , )12 structure function s SfAF

as expected from crossing symmetry

S. Arnold, A. Metz and M. Schlegel, PRD 79, 034005 (2009)48 structure functions if both spin-1/2 hadrons are polarized

( ) ( , )a bP p P S X

Page 11: Single transversely polarized DY, observables, TMDs

Aram Kotzinian 11

DY-LO, only transversely polarized target

4/26/2010, CERN

2[ ( )] 2

1 ( )ˆ (1 cos ), 1 cos

LO LO

U fUfDF

2

2

cos2

sin sin(2 ) sin

2

4 2 [si

(2

n ]

[sin)

]

ˆ 1 cos 2

sin sin(2 ) sin(2 )

{

[ ( )]}S S S

LOem

U

T S S S

U

T T T

d Dd qd Fq

S

A

A AD A

( , )Only 5 structure fu nctions SfAF

Page 12: Single transversely polarized DY, observables, TMDs

Aram Kotzinian 12

DY-LO asymmetries, transversely polarized target

4/26/2010, CERN

cos2 11 1

sin sin 11 1

sin(2 ) 2 2 11 1

sin(2 )

2 · · ·

·

2( · )[2( · )( · ) · ] (

· )

4

( )( ) )S S

S

S

LO

U aT bT aT bT a b U

LO LO

T T bT T b U

LO

T bT aT bT aT bT bT aT T a b U

T

A h h M M F

A A f f M F

A h h M M F

A

hk hk k k

hk

hk hk hk k k k hk

C

C

C1

1 1 · 2LO

aT a Uh h M F hkC

2

2

22

2 2 2

1 (2)( , ) ( ) ( , )1 2

( , ) ( , ) ( , ) ( , )1

1 2

2

aT bT q aT bT aT bT aT bTq

aT bT aT bT

w f f e wTNcq q q qf x f x f x f xb

d

a a

d

b

k k k k q k k k k

k k k k

C

1 LO

U a aF f f CT

Tqqh

Page 13: Single transversely polarized DY, observables, TMDs

Aram Kotzinian 13

Intrinsic transverse momentum in SIDIS

4/26/2010, CERN

P. Schweitzer, T. Teckentrup and A. Metz, arXiv:1003.2190v1 [hep-ph,]Comprehensive analysis of existing unpolarized SIDIS and DY data

SIDIS, factorized Gauss model:

Old extractions:Torino: EMC data

Bochum: HERMES

In many analyses, for example, extraction of transversity, BM function from SIDIS and pp and pd DY processes this values are applied

Page 14: Single transversely polarized DY, observables, TMDs

Aram Kotzinian 14

New data from JLab

4/26/2010, CERN

Page 15: Single transversely polarized DY, observables, TMDs

Aram Kotzinian 15

Test of Gauss model at HERMES

4/26/2010, CERN

Page 16: Single transversely polarized DY, observables, TMDs

Aram Kotzinian 16

Parameters from HERMES and cross check with CLAS

4/26/2010, CERN

Page 17: Single transversely polarized DY, observables, TMDs

Aram Kotzinian 17

Cahn effect at EMC

4/26/2010, CERN

Page 18: Single transversely polarized DY, observables, TMDs

Aram Kotzinian 18

Intrinsic transverse momentum in DY: testing Gauss

4/26/2010, CERN

Page 19: Single transversely polarized DY, observables, TMDs

Aram Kotzinian 19

Intrinsic transverse momentum in DY: pion vs nucleon

4/26/2010, CERN

Page 20: Single transversely polarized DY, observables, TMDs

Aram Kotzinian 20

Energy dependence of intrinsic transverse momenta

4/26/2010, CERN

Page 21: Single transversely polarized DY, observables, TMDs

Aram Kotzinian 21

STM conclusions

4/26/2010, CERN

• “Gauss model works very well in SIDIS and DY” – No evidence for flavor- or x- or z-dependence of

Gauss widths– Gauss width increase with energy in DY– This property holds in SIDIS too • “More precise data from SIDIS are needed…”

“The Gauss Anzatz remains to be tested, in particular, when polarization phenomena are included, and future data may demand to refine it, which will improve our understanding of intrinsic transverse parton momenta.”

Page 22: Single transversely polarized DY, observables, TMDs

Aram Kotzinian 22

Exercise for Sivers effect in DY@COMPASS

4/26/2010, CERN

2

2

cos2

sin sin(2 ) sin

2

4 2 [si

(2

n ]

[sin)

]

ˆ 1 cos 2

sin sin(2 ) sin(2 )

{

[ ( )]}S S S

LOem

U

T S S S

U

T T T

d Dd qd Fq

S

A

A AD A

sin sin 11 1 ·S S

LO LO

T T bT T b UA A f f M F hk C

1 LO

U a aF f f C2

2

22

2 2 2

1 (2)( , ) ( ) ( , )1 2

( , ) ( , ) ( , ) ( , )1

1 2

2

aT bT q aT bT aT bT aT bTq

aT bT aT bT

w f f e wTNcq q q qf x f x f x f xb

d

a a

d

b

k k k k q k k k k

k k k k

C

Unpolarized PDFs: GRV-P1 pion PDFs (Zeit.Phys.C53(1992)651) and GRV98 LO for proton

Page 23: Single transversely polarized DY, observables, TMDs

Aram Kotzinian 23

Parameterization of TMDs

4/26/2010, CERN

2 22

1 1 2

exp( , ) ( ) Sq q

T TS

f x f x

T TT

T

k kk

k

2 22

1 1 2

exp( , ) ( ) Uq q

U

f x f x

T T

TT

k kk

k

Torino parameterization for Sivers function (with changed sign for DY case)

2 21 1

2 21

1

2 22 1

1 12 2 21

2 22 1

2 21

( , ) ( ) ( ) ( , )

( ) 1 , ( ) 2 exp

exp( , ) 2 1 ( )

q q

qq

q q

q q

qq

q q

q qT q

q qq q

q q

Sq qq qT q

U b Sq q

U bS

U b

Mf x x h f x

x N x x h e MM

MMf x e N x x f xM

MM

T T TT

TT T

T TT

T T

TT

T

k k kk

kk k

k kk

k k

kkk

N

N

Extracted parameters (Melis talk) 21, , , , U b q q qM N Tk

Page 24: Single transversely polarized DY, observables, TMDs

Aram Kotzinian 24

Torino-STM

4/26/2010, CERN

2 2

2 2

2 21

2 2

0.25 (GeV/c)

0.25 (GeV/c)

0.34 (GeV/c)

Torino

0.144 (GeV/c)

U b

U a

S

M

T

T

T

k

k

k

2 2

2 2

2 21

2 2

(GeV/c)

(GeV/c)

0.34 (GeV/c)

STM

0.55

1.05

0.21 (GeV/c)

U b

U a

S

M

T

T

T

k

k

k

2 2

2 2

2 21

2 2

(GeV/c)

(

STM1

0.74

GeV/c)

(GeV/c

0.55

1.05

)

(GeV

8

)0 17 /c.3

U b

U a

S

M

T

T

T

k

k

k

Page 25: Single transversely polarized DY, observables, TMDs

Aram Kotzinian 25

Discussion

4/26/2010, CERN

• What is the origin of energy dependence of Gauss width? • SIDIS at COMPASS can provide at higher than HERMES and Jlab energy

• new acceptance corrected data on unpolarized TMD DFs• new data on Sivers asymmetry

• to check the energy dependence of the Gauss width of unpolarized DFs and FFs

• Energy dependence of parameters of Sivers DF• First DY measurements with transversely polarized target at COMPASS will allow to

study the universality of spin dependent TMD DFs• Size and shape of Sivers DY asymmetry dependence on xF and qT will are

sensitive to Gaussian width of Sivers function at high energy and Q2 and allow to understand if

• this width is energy dependent?• What is universal: the Sivers PDF or the ratio of Sivers PDF to unpolarized

one?