Simulation with Nonlinear Structural Materials

43
Simulation with Nonlinear Structural Materials

description

When the stress in a structure becomes sufficiently large, many materials display nonlinear behavior. Some materials may exhibit a nonlinear stress-strain response even at very low stress. Material models including elastoplastic, viscoplastic, creep, and hyperelastic require expressions more sophisticated than the linear Hooke’s law. This webinar presented applications of nonlinear materials modeling in COMSOL Multiphysics and demonstrated how user-defined materials can be incorporated into a simulation. The webinar concluded with a 15-minute Q&A session. Watch the webinar to learn: • which nonlinear material models are predefined in COMSOL • how to simulate nonlinear material behavior • how to combine different sources of material nonlinearity Speaker: Mateusz Stec, Technical Product Manager, Fatigue, COMSOL Bio: Mateusz works as the Technical Product Manager for the Fatigue Module. He studied Aerospace Engineering at the University of Michigan and Vehicle Engineering at the Royal Institute of Technology. In 2008, he completed his PhD in Solid Mechanics at the Royal Institute of Technology. Before joining COMSOL, he worked at SKF’s European Research Centre as a researcher and project leader.

Transcript of Simulation with Nonlinear Structural Materials

Page 1: Simulation with Nonlinear Structural Materials

Simulation  with  Nonlinear   Structural  Materials  

Page 2: Simulation with Nonlinear Structural Materials

Sponsored By:

Page 3: Simulation with Nonlinear Structural Materials

q  This webinar will be available afterwards at designworldonline.com & via email

q  Q&A at the end of the presentation q  Hashtag for this webinar: #DWwebinar

Before We Start

Page 4: Simulation with Nonlinear Structural Materials

Moderator

Leslie Langnau Design World

Presenter

Mateusz Stec COMSOL

Page 5: Simulation with Nonlinear Structural Materials

Simula'on  with    Nonlinear  Structural  Materials  

Mateusz  Stec  Technical  Product  Manager  

COMSOL  

Page 6: Simulation with Nonlinear Structural Materials

Agenda  •  Mul'physics  Simula'on  •  Structural  Modeling  

–  Nonlinear  Materials  –  Sources  of  Nonlinearity  –  Modeling  op'ons  

•  Video  Demo  •  Q&A  •  How  To  

–  Try  COMSOL  Mul'physics  –  Contact  Us  

Compression of a hyperelastic seal

Page 7: Simulation with Nonlinear Structural Materials

Why  Do  We  Simulate  Nonlinear  Materials?  

•  Concept  and  understanding  

•  Design  and  op'miza'on  

•  Tes'ng  and  verifica'on  

Reinforced concrete

Page 8: Simulation with Nonlinear Structural Materials

Modeling  with  COMSOL  Mul'physics  •  Electrical,  Mechanical,  Fluid,  and  Chemical  Simula'ons  •  Mul'physics  –  Coupled  phenomena  

–  Two  or  more  physics  phenomena  that  affect  each  other  with  no  limita'on  on  which  combina'ons  or  how  many  combina'ons  

•  Single  physics  –  One  integrated  environment  –  different  physics  and  applica'ons  –  One  day  you  work  on  Heat  Transfer,  next  day  Structural  Analysis,  then  

Fluid  Flow,  etc.  –  Same  workflow  for  any  type  of  modeling  

•  Enables  cross-­‐disciplinary  product  development  and  a  unified  simula'on  plaUorm  

Page 9: Simulation with Nonlinear Structural Materials

Enables  Technology  Design  Innova'ons  

Microwave Three-port Circulator

Porous Reactor

Fluid-Structure Interaction of a

Solar Panel

Acoustics Speaker Systems

Radiation Pattern of a Broadband Conical Antenna

Page 10: Simulation with Nonlinear Structural Materials

Op'miza'on  for  Green  Technology  Design  •  Solar  panels  are  subject  to  

wind  loads  •  Must  be  engineered  to  bend  

with  the  flow  •  Fluid-­‐structure  interac'on  

(FSI)  –  Fluid  flow  –  Structural  displacement  

Solar panel subjected to wind load

Page 11: Simulation with Nonlinear Structural Materials

All-­‐Inclusive  Interac've  Modeling  Environment  

Graphics  Ultrafast  graphic  presenta'on,  stunning  visualiza'on,  and  mul'ple  plots  

COMSOL  Desktop™  StraighUorward  to  use,  it  gives  full  insight  and  control  over  the  modeling  process  

Model  Builder  Provides  instant  access  to  any  part  of  the  model  se]ngs  •  CAD/Geometry  • Materials  •  Physics  • Mesh  •  Solve  •  Results  

Page 12: Simulation with Nonlinear Structural Materials

Product  Suite  –  COMSOL  Version  4.3b  

Page 13: Simulation with Nonlinear Structural Materials

Cons'tu've  Modeling  •  Structural  

–  Linear  elas'c  –  Linear  viscoelas'c  

•  Nonlinear  –  Creep  –  Hyperelas'c  –  Elastoplas'c  –  Viscoplas'c  

•  Geomechanics  –  Concrete  –  Rock  –  Soil  plas'city  

σ

ε

σ

ε Hyperelastic material Elasto-plastic material

Page 14: Simulation with Nonlinear Structural Materials

Predefined  Creep  Models  •  Norton  •  Norton-­‐Bailey  •  Garofalo  •  Nabarro-­‐Herring  •  Coble  •  Weertman  •  Poten'al  •  Volumetric  •  Deviatoric  •  User-­‐defined  

Stress response of a combined Norton and Norton-Bailey material

Page 15: Simulation with Nonlinear Structural Materials

Predefined  Hyperelas'c  Models  •  Neo-­‐Hookean  •  St  Venant-­‐Kirchhoff  •  Money-­‐Rivlin  •  Yeoh  •  Ogden  •  Storakers  •  Varga  •  Arruda-­‐Boyce  •  Blatz-­‐Ko  •  Gao  •  Murnaghan  •  User  defined  

Rubber velocity joint, model courtesy of Metelli S.p.A., Italy

Page 16: Simulation with Nonlinear Structural Materials

Predefined  Elastoplas'c  Models  •  Large  strain  plas'city  •  Yield  criteria  

–  Tresca  –  von  Mises  –  Hill  plas'city  

•  Hardening  –  Isotropic  –  Orthotropic  –  Kinema'c  

•  Plas'c  flow  –  Associated  –  Non-­‐associated  

•  User  defined  

Stress distribution in a stent during balloon inflation

Page 17: Simulation with Nonlinear Structural Materials

Predefined  Viscoplas'c  Model  •  Anand    

Viscoplastic creep in solder joints under thermal loading

Page 18: Simulation with Nonlinear Structural Materials

Predefined  Concrete  and  Rock  Models  •  Bresler-­‐Pister  •  Willam-­‐Warnke  •  Oeosen  •  Material  op'on  

–  Tension  cut-­‐off  

•  Hoek-­‐Brown  •  Generalized  Hoek-­‐Brown    

Stress distribution in a concrete beam

Page 19: Simulation with Nonlinear Structural Materials

Predefined  Soil  Models  •  Mohr-­‐Coulomb  •  Drucker-­‐Prager  •  Lade-­‐Duncan  •  Matsuoka-­‐Nakai  •  Cam-­‐Clay  •  User-­‐defined  •  Material  op'ons  

–  Compressive  cap  –  Tension  cut-­‐off  

 

Stress distribution around an excavated tunnel

Page 20: Simulation with Nonlinear Structural Materials

Model  Builder  and  Se]ngs  

Page 21: Simulation with Nonlinear Structural Materials

CAD  &  Meshing  Interoperability  3D  CAD  File  Formats  ACIS®  Ca'a®  V5  Creo™  Parametric  IGES  Inventor®  Parasolid®  Pro/ENGINEER®  SolidWorks®  STEP  

Meshing  Products  Mimics®  +FE  Module  (Simpleware®)  Avizo®  

2D  CAD  File  Formats  DXF  

E-­‐CAD  File  Formats  GDS/NETEX-­‐G  ODB++   Mesh  File  Formats  

NASTRAN    STL  VRML  

Page 22: Simulation with Nonlinear Structural Materials

Thermal  Stress  •  Mul'physics  interface  •  Coupled  structural  and  

thermal  analysis  •  Mechanical  boundaries  

–  Loads  –  Constraints  

•  Thermal  boundaries  –  Conduc'on  –  Heat  flow  –  Heat  genera'on  –  Radia'on  

Bipolar plate in a fuel cell: Thermal stresses in a constrained plate

Page 23: Simulation with Nonlinear Structural Materials

Joule  Hea'ng  and  Thermal  Expansion  •  Mul'physics  interface  •  Physics  coupling  

–  Electric  current  conduc'on  –  Heat  conduc'on    –  Heat  genera'on  –  Structural  stresses  and  strains  due  to  

thermal  expansion  

Thermal actuator: Temperature gradient

Page 24: Simulation with Nonlinear Structural Materials

Piezoelectric  Devices  •  Mul'physics  interface  •  Cons'tu've  modeling  

–  Piezoelectric    –  Purely  solid  –  Purely  dielectric  

•  Ini'al  electric  displacement  •  Electrosta'c  boundary  •  Piezoelectric  damping    

Sandwich beam with piezoelectric ceramic actuator: Bending deflection due to shear stress

Page 25: Simulation with Nonlinear Structural Materials

Geometric  Nonlinearity  •  The  response  of  the  majority  of  the  structures  can  be  analysed  

under  the  assump'on  of  small  displacement  theory  

•  In  some  situa'ons  the  change  in  the  configura'on  cannot  be  ignored  –  It  is  necessary  to  calculate  the  equilibrium  with  respect  to  the  deformed  

configura'on  

•  The  classical  strain  measures  (engineering  strains)  are  no  longer  able  to  describe  large  displacements  and/or  large  rota'ons  

–  New  strain  measures  must  be  considered  (Green-­‐Lagrange    strains)  

Page 26: Simulation with Nonlinear Structural Materials

Strain  Evalua'on  Op'on  •  Small  plas'c  strains    

–  Addi've  decomposi'on    of  strains  

•  Large  plas'c  strains  –  Mul'plica've  decomposi'on  of  

deforma'on  gradient  large  

small  

Necking of an elastoplastic metal bar

Page 27: Simulation with Nonlinear Structural Materials

Modeling  Op'ons  •  Enable  plas'city  in  sub-­‐

domain  •  Combine  different  material  

nonlineari'es  –  Plas'city  +  creep  –  Creep  +  creep  –  Thermal  expansion  +  creep  +  plas'city    

•  Geometry  directed  material  orienta'on  

Plasticity in an orthotropic container

Page 28: Simulation with Nonlinear Structural Materials

Creep  and  Viscoplas'city  Op'ons  •  Olen  refer  to  as  rate-­‐

dependent  plas'city  •  Creep  strains  are  added  as  

inelas'c  strains  •  Combine  predefined  materials  •  Predefined  temperature  

dependency  •  Dissipated  energy  •  User-­‐defined  creep  proper'es  

Page 29: Simulation with Nonlinear Structural Materials

Soil  Plas'city  Op'ons  •  Ellip'c  cap  •  Tension  cut-­‐off  •  Dilata'on  angle  in  plas'c  

poten'al  •  Parameter  match  to  Mohr-­‐

Coulomb  

Page 30: Simulation with Nonlinear Structural Materials

Hyperelas'c  Energy  Evalua'on  •  Nearly  incompressible  materials  

–  Pressure  (mixed  formula'on)  –  Prevent  locking  

•  User-­‐defined  energy  func'ons  

Page 31: Simulation with Nonlinear Structural Materials

User-­‐Defined  Inelas'c  Strains  •  Materials  which  exhibit  a  

nonlinear  stress-­‐strain  rela'on,  even  at  infinitesimal  strains  –  Briele  materials  (ceramics,  metal  alloys)  –  Ramberg-­‐Osgood  –  Damage  func'on  

•  You  can  add  distributed  ODEs  or  PDEs  to  account  for  inelas'c  strains  

•  Add  inelas'c  strains  with  the  Ini'al  Stress  and  Strain  node  

Page 32: Simulation with Nonlinear Structural Materials

Variable  Material  Parameters  

Temperature-dependent plasticity in a pressure vessel

Page 33: Simulation with Nonlinear Structural Materials

Infinite  Element  Domains  

Page 34: Simulation with Nonlinear Structural Materials

Model  Library  •  Combined  creep  •  Arterial  wall  mechanism  •  Hyperelas'c  seal  •  Bar  necking  •  Sheet  metal  forming  •  Viscoplas'c  solder  joints  •  Tunnel  excava'on  •  Concrete  beam  

Page 35: Simulation with Nonlinear Structural Materials

Video  Demo:  Orthotropic  Container  

•  A  container  made  of  rolled  steel  is  subjected  to  an  internal  overpressure  where  one  of  the  three  material  principal  direc'ons  has  a  higher  yield  stress  than  the  other  two  –  Hill’s  orthotropic  plas'city  is  used  to  model  the  differences  in  yield  

strength  

Page 36: Simulation with Nonlinear Structural Materials

Q&A  Session  

Page 37: Simulation with Nonlinear Structural Materials

Product  Suite  –  COMSOL  Version  4.3b  

Page 38: Simulation with Nonlinear Structural Materials

Try  COMSOL  Mul'physics®  •  North  America  

–  Vancouver,  BC  –  Richardson,  TX  –  Windsor,  ON  –  Nashville,  TN  –  Burlington,  MA  –  Southfield,  MI  –  Saskatoon,  SK  –  Lubbock,  TX  –  Ithaca,  NY  –  Buffalo,  NY  

•  Europe  –  Freiburg,  Germany  –  Linz,  Austria  –  Gö]ngen,  Germany  –  Antwerpen,  Belgium  –  Bologna,  Italy  –  Wien,  Austria  –  Wrocław,  Poland  –  Toulouse,  France  –  Lyon,  France  –  Biella,  Italy  –  Roma,  Italy  

•  Register  for  our  free  hands-­‐on  workshops  at  www.comsol.com/events  

Page 39: Simulation with Nonlinear Structural Materials

COMSOL  Conference  

Boston  ·∙  Bangalore  ·∙  Roeerdam  ·∙  Singapore  ·∙  Seoul  ·∙  Taipei  ·∙  Tokyo    

Page 40: Simulation with Nonlinear Structural Materials
Page 41: Simulation with Nonlinear Structural Materials

Contact  Us  •  Ques'ons?  

www.comsol.com/contact  

•  www.comsol.com  –  User  Stories  –  Videos    –  Model  Gallery  –  Discussion  Forum  –  Blog  –  Product  News    

Page 42: Simulation with Nonlinear Structural Materials

Thank You q  This webinar will be available at designworldonline.com & email

q  Tweet with hashtag #DWwebinar

q  Connect with q  Twitter: @DesignWorld

q  Facebook: facebook.com/engineeringexchange

q  LinkedIn: Design World Group

q  YouTube: youtube.com/designworldvideo

q  Discuss this on EngineeringExchange.com

Page 43: Simulation with Nonlinear Structural Materials