Simulation of crop evapotranspiration for an almond orchard using the ACASA … · 2012. 4. 10. ·...

27
Simulation of crop evapotranspiration for an almond orchard using the ACASA model Matthias Falk CSTARS, LAWR, UC Davis

Transcript of Simulation of crop evapotranspiration for an almond orchard using the ACASA … · 2012. 4. 10. ·...

  • Simulation of crop

    evapotranspiration for an almond

    orchard using the ACASA model

    Matthias Falk

    CSTARS, LAWR, UC Davis

  • Advanced Canopy-Atmosphere-Soil Algorithm (ACASA)

    ACASA uses fully diabatic, turbulent steady-state equations closed at the third order for

    estimating energy and mass fluxes and profiles for each layer, placing it among the most

    complex SVAT models.

    GOALS

    1. Test ACASA for an irrigated agricultural crop canopy such as almonds

    2. Evaluate model performance by comparing simulated energy and mass exchanges

    (flux densities) with long-term Eddy Covariance flux measurements

    3. Validate the use of ACASA to show suitability as a surface layer scheme in WRF-

    ACASA to provide more accurate estimates of spatial crop evapotranspiration (ETc)

    QUESTION:

    WHY DO WE NEED SO MUCH PHYSICS?

    Introduction

  • Location overview: (A) CIMIS Belridge and (B) Belridge Kc-testing EC tower site

  • Eddy-Covariance Tower at Belridge BE_004

    Almonds, zc = 5.5 meters, LAI ~ 1.5 m2m-2

  • Jan

    2009

    Feb

    2009

    Mar

    200

    9Ap

    r 200

    9M

    ay 2

    009

    Jun

    2009

    Jul 2

    009

    Aug

    2009

    Sep

    2009

    Oct 2

    009

    Nov

    200

    9Dec

    200

    9

    30

    40

    50

    250

    500

    750

    Tair [oC]

    Month Year

    Tair

    CIMIS Belridge (# 146)

    0

    5

    10

    15

    20

    25

    30

    35

    [mm]

    Precip ETo

    [Ly/Day]

    Rsolar

    Jan

    2008

    Feb

    2008

    Mar

    200

    8Ap

    r 200

    8M

    ay 2

    008

    Jun

    2008

    Jul 2

    008

    Aug

    2008

    Sep

    2008

    Oct

    200

    8Nov

    200

    8Dec

    200

    8

    30

    40

    50

    250

    500

    750

    Tair [oC]

    Month Year

    Tair

    CIMIS Belridge (# 146)

    0

    5

    10

    15

    20

    25

    30

    35

    ETo, Pcp [mm]

    Precip ETo

    Rs [Ly/Day]

    Rsolar

    ANNUAL CLIMATE DIAGRAMS FOR BELRIDGE CIMIS STATION (#146) FOR 2008 AND 2009

    Monthly Values for Average Air Temperature (Tair), Total Precipitation (Precip),

    Average Incoming Solar Radiation (Rs) and Total Reference Evapotranspiration (ETo)

    Climate

  • Belridge CIMIS Station (CIMIS #146)

    Climate: Hot Semi-arid climate or Hot-Summer Mediterranean climate

    Averages calculated for data from 1998 through 2010:

    Annual Average Temperature: 17.26 oC

    Average Annual Total Precipitation: 133.62 mm or 5.26 inches

    Average Annual Total CIMIS ETo: 1495.98 mm or 58.9 inches

    Annual Irrigation: 50+ in; so about 10x Precipitation

    Climate

  • ACASA Description

    10 Leaf Classes:

    • 9 different leaf angles

    • 1 shaded leaf

    (not angle dependent)

  • METEOROLOGY (hourly)

    Temperature (Tair),

    Relative Humidty (RH),

    Wind Speed (u),

    Solar Radiation (Rs)

    Precipitation (pcp)

    Pressure (p) ~ const.

    CO2-Concentration (CO2) ~ const.

    Downwelling Longwave Radiation (Ld) – modeled

    NEW: Leaf Area Index (LAI(t))

    ACASA Input

  • 3600.0 !deltat1 REAL time step length (s) [900,7200]

    35.509 !zlatude REAL latitude (oN) [-90,90]

    8760 !ntimesteps INTEGER total number of time steps in forcing dataset [any]

    1 !needtinf INTEGER ?need input downward LW radiation?(1='yes',0='no') [0,1]

    1 !ihumid INTEGER ?is input humidity relative(RH%)?,1='yes', RH(%)-->(g kg-1); 0='units (g kg-1) already' [0,1]

    1 !iprint7 INTEGER ?extra output? 1='yes', 0='no'

    8 !isoi3 INTEGER soil type (USDA 16 classification) [1,16]

    4 !nsoil0 INTEGER total number of soil layers [4,20]

    3 !nroot INTEGER total number of active root layers (KEEP

  • ACASA Input

    METEOROLOGY – ACASA needs high temporal resolution and continuous data

    BELRIDGE CIMIS STATION (#146) – 1998 to present

    Ta, RH, u, Rs

  • ACASA Input

    50 100 150 200 250 300 350

    0

    200

    400

    600

    800

    1000

    1200R

    s [Wm

    -2]

    DOY 2008

    Rs CIMIS

    Figure 1: CIMIS hourly incoming solar radiation (Rs) for 2008

    ?

  • ACASA Input

    0 60 120 180 240 300 360

    0

    50

    100

    150

    200

    250

    300

    350

    400Daily average R

    s (Wm

    -2)

    DOY 2008

    Rs CIMIS

    Rs SpatialCIMIS

    Figure 2: Daily Average Values for ground based and satellite based estimates of Rs in 2008 showing sudden drop in CIMIS Rs values.

    Practical application for the usefulness of

    remotely sensed products in micrometeorological studies

  • ACASA Input

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

    0

    50

    100

    150

    200

    250

    300

    350

    400CIM

    IS Belridge Station

    (daily average R

    s (a) and filtered (b))

    Sol Rad (W/m^2)

    Sol Rad (W/m^2)

    CIMISspatial

    Original Filtered

    Sol Rad (W/m^2)

    CIMIS spatial

    Equation y = a + b*x

    Weight No Weighting

    Residual Sum of Squares

    74598.5999

    Adj. R-Square 0.97577

    Value Standard Error

    Smoothed Y1 Intercept -32.50571 2.25941

    Smoothed Y1 Slope 1.11789 0.0097

    Figure 3: Scatter plot of daily average Rs from CIMIS and CIMISspatial

  • ACASA InputRenormalize the hourly CIMIS Rs data:

    Rs,corrected,hourly = Rs,CIMIS,hourly / Rs,CIMIS,daily * Rs,CIMISspatial,daily

    120.0 120.2 120.4 120.6 120.8 121.0

    0

    200

    400

    600

    800

    1000

    1200

    Rs [Wm

    -2]

    DOY 2008

    Rs (corrected)

    Rs (CIMIS)

    60 120 180 240 300 360

    0

    200

    400

    600

    800

    1000

    1200

    Hourly R

    s [Wm

    -2]

    DOY 2008

    Rs,corrected

    Rs,CIMIS

    Figure 6: Hourly values of CIMIS Rs for 2008. Original data in blue with corrected values in red.

  • ACASA Input

    120.0 120.2 120.4 120.6 120.8 121.0

    0

    200

    400

    600

    800

    1000

    1200Rs [Wm

    -2]

    DOY 2008

    Rs corrected,daily

    Rs CIMIS

    Rs GOES

    Figure 7: Diurnal for Rs on Julian Day 120, 2008 showing hourly values for CIMIS, corrected CIMIS and GOES based estimates.

  • 92 94 96

    0

    200

    400

    600

    800

    1000

    1200

    Rs [Wm

    -2]

    DOY 2008

    Rs corrected,daily

    Rs CIMIS

    Rs GOES

    ACASA Input

    Figure 8: Time series showing the three different estimates or Rs from CIMIS, corrected CIMIS and GOES

  • 0

    200

    400

    600

    800

    1000

    0 200 400 600 800 1000

    Good: RsCIMIS

    =0.973(+-0.007) * RsGOES

    ; R2=0.99

    Bad: RsCIMIS

    =0.811(+-0.005) * RsGOES

    ; R2=0.99

    good

    bad [94 < DOY < 117]

    Linear Fit of good

    Linear Fit of bad

    Rshourly,GOES

    [Wm-2]

    Rshourly,CIMIS [Wm

    -2]

    Figure 9: Scatter plot of GOES and CIMIS hourly estimates of Rs. Data from the period of bad CIMIS data are

    plotted in red and data from the rest of the year in black. Linear fit analysis was performed for both data sets.

    ACASA Input

  • 0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    0 60 120 180 240 300 360DOY

    LAI 2009

    LAI ACASA

    LAI 2008

    LAI (m

    2/m2)

    LAI

    ACASA Input

  • 130 131 132 133 134 135

    -400

    -200

    0

    200

    400

    600

    800

    Rn, LE [W m

    -2]

    day_of_year 2008

    Rn ACASA LE ACASA

    Rn EC LE EC

    196 197 198 199 200

    -400

    -200

    0

    200

    400

    600

    800

    Rn, LE [W m

    -2]

    day_of_year 2008

    Rn ACASA LE ACASA

    Rn EC LE EC

    ACASA Results

    Surface Energy Balance

    Rn – G = H + LE

    Measured quantities (Kc testing):

    Rn: Net Radiation (radiometer)

    G: Ground Heatflux (ground heat flux plates)

    H: Sensible Heatflux (sonic anemometer)

    LE = ETc is the residual

    LE = Rn - G - H

  • 130 131 132 133 134 135

    -400

    -200

    0

    200

    400

    600

    800

    Rn, LE [W m

    -2]

    day_of_year 2008

    Rn ACASA LE ACASA

    Rn EC LE EC

    ACASA Results

    Spike in hourly Ground Heat

    Flux due to sun-spots on

    the orchard floor

    Spike in hourly ETc

    due to sun-spots on the

    orchard floor

  • -200 0 200 400 600 800

    -200

    0

    200

    400

    600

    800 Rn=NetRadiation

    Rn [Wm

    -2]

    ACASA

    Rn [Wm-2]

    EC

    Equation y = a + b*x

    Weight No Weighting

    Residual Sum of Squares

    9.88926E6

    Adj. R-Square 0.97461

    Value Standard Error

    Rn=NetRadiatio Intercept -23.21348 0.68567

    Rn=NetRadiatio Slope 1.00743 0.00218

    ACASA Results

    The only ACASA inputs: No longwave observations, $200 pyranometer plus leaf + canopy parameters

  • ACASA Results

    -200 0 200 400 600 800

    -200

    -100

    0

    100

    200

    300

    400

    500

    600

    700

    800

    LE=LatentHeat [W

    m2]

    ACASA

    LE=LatentHeat [W m2]

    Eddy Covariance (Residual LE=Rn-G-H)

    Equation y = a + b*x

    Weight No Weighting

    Residual Sum of Squares

    1.77595E7

    Adj. R-Square 0.94612

    Value Standard Error

    LE=LatentHeat Intercept 0 --

    LE=LatentHeat Slope 0.96742 0.00334

    Equation y = a + b*x Var. Intercept

    Weight No Weighting

    Residual Sum of Squares

    1.402E7

    Adj. R-Square 0.91442

    Value Standard Error

    LE=LatentHeat Intercept 32.15875 1.04147

    LE=LatentHeat Slope 0.88973 0.00394

  • 50 100 150 200 250 300 350

    0.00

    0.25

    0.50

    0.75

    1.00

    1.25

    1.50

    0

    10

    20

    30

    39

    49

    59

    ET [in]

    ET [m]

    DOY 2008

    start at DOY 100

    complete data year

    2008 Growing season ET = 41.59 in / 1056 mm

    ACASA modeled ET for Belridge Almond Orchard

    ACASA Results

  • ACASA Results

    0 60 120 180 240 300 360

    0

    10

    20

    30

    40

    50

    60

    70

    0

    10

    20

    30

    40

    50

    60

    70

    day_of_year, 2009

    ACASA_ETc

    ΣETc [in]

    EC_ETc

  • ETo (CIMIS) ETc (EC) ETc (ACASA) Irrigation

    ET (in) 2008 39.09 40.79 41.59 40.40

    ET (in) 2009 38.7 41.8 43.24 39.62

    CIMIS: Reference Evapotranspiration from the Belridge CIMIS station

    EC: Evapotranspiration from Sonic Anemometer system on the Kc-testing tower

    Irrigation: Total Applied Irrigation for the growing season

    ACASA: Evapotranspiration Estimate based on the UC Davis ACASA model

    Estimates of evapotranspiration (ETc) from different methods for the Almond

    Orchard in 2008 (DOY 81 through 244) and 2009 (DOY 79 through 244)

    ACASA Results

  • Conclusions

    RESULTS

    1. With very few modifications ACASA ETc

    simulations for an irrigated almond

    orchard work.

    2. We evaluated the model performance

    by comparing simulated energy and

    mass exchanges (flux densities)

    derived from an independent

    meteorological data set (CIMIS) with

    long-term Eddy Covariance flux

    measurements (Kc testing) with very

    good results

    3. Used remotely sensed products! ☺

    WHY DO WE NEED SO MUCH PHYSICS?

    BECAUSE IT WORKS BETTER!