Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple...

33
1 Electric Circuits Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Transcript of Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple...

Page 1: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

1 Electric Circuits

Simple Resistive Circuits

Qi Xuan Zhejiang University of Technology

September 2015

Page 2: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Structure

•  Resistors  in  Series  •  Resistors  in  Parallel  •  The  Voltage/Current-­‐Divider  Circuit  •  Voltage/Current  Division  •  Measuring  Voltage  and  Current  

•  Measuring  Resistance-­‐The  Wheatstone  Bridge  

•  Delta-­‐to-­‐Wye  (Pi-­‐to-­‐Tee)  Equivalent  Circuit  

2 Electric Circuits

Page 3: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

A  Rear  Window  Defroster

Electric Circuits 3

A  Rear  Window  Defroster A  resisEve  circuit

Page 4: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Resistors  in  Series

Electric Circuits 4

Page 5: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Electric Circuits 5

In  general,  if k  resistors  are  connected  in  series,  the  equivalent   single   resistor   has   a   resistance   equal   to   the   sum   of   the   k  resistances,  or

Page 6: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Resistors  in  Parallel

Electric Circuits 6

Page 7: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Electric Circuits 7

Conductance

Page 8: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Typical  Cases

•  If  k =  2,  we  have    

•  If  R1 =R2 =…… = Rk  = R,  we  have   1/Req = k/R Req = R/k

Electric Circuits 8

Page 9: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Example  #1

•  For   the   circuit   shown,   find   (a)   the   voltage   v,  (b)   the   power   delivered   to   the   circuit   by   the  current  source,  and  (c)  the  power  dissipated  in  the  10  Ω  resistor.    

Electric Circuits 9

Page 10: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Electric Circuits 10

i1 i2

R1 v1

R1 = (10+6)×64 / (10+6+64) = 12.8 Ω

R = (7.2+12.8)×30 / (7.2+12.8+30) = 12 Ω v = 5R = 60 V

i1 = v / (7.2+R1) = 60 / (7.2+12.8) = 3 A

v1 = i1×R1 = 3×12.8 = 38.4 V

i2 = v1 / (6+10) = 38.4 / 16 = 2.4 A

p = i22×10 = 2.4×2.4×10 = 57.6 W

Solu5on  for  Example  #1

Page 11: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

The  Voltage-­‐Divider  Circuits

Electric Circuits 11

Page 12: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

The  current-­‐Divider  Circuit

Electric Circuits 12

Page 13: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Example  #2 a)  Find  the  value  of  R that  will  cause  4  A  of  current  to  

flow  through  the  80  Ω  resistor  in  the  circuit  shown.      b)  How  much  power  will  the  resistor  R from  part  (a)  

need  to  dissipate?    c)  How  much  power  will  the  current  source  generate  

for  the  value  of  R from  part  (a)?    

Electric Circuits 13

Page 14: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Solu5on  for  Example  #2

Electric Circuits 14

i vR

For (a), we have i = 20R / (40+80+R) = 4 A

R = 30 Ω

For (b), we have vR = (40+80)i = 120×4 = 480 V

pR = vR2 / R= 4802 / 30 = 7680 W

For (c), we have v = 60×20+vR = 1200+480 = 1680 V

p = 20v = 20×1680 = 33600 W

Page 15: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Voltage/Current  Division

Electric Circuits 15

Page 16: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Example  #3 a)  Use  voltage  division  to  determine  the  voltage  v0 across  the  

40  Ω  resistor  in  the  circuit  shown.    b)  Use  v0  from  part  (a)  to  determine  the  cur-­‐  rent  through  the  

40   Ω   resistor,   and   use   this   current   and   current   division   to  calculate  the  current  in  the  30  Ω  resistor.    

c)  How  much  power  is  absorbed  by  the  50  Ω  resistor?    

Electric Circuits 16

Page 17: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Solu5on  for  Example  #3

Electric Circuits 17

For (a), we have Req = 40+(20||30||(50+10))+70 = 40+10+70=120 Ω

vo = 60×40 / Req = 20 V

For (b), we have i = vo / 40 = 20 / 40 = 0.5 A

i1 = i Rp / 30 = 0.5×10 / 30 A = 166.67 mA

i

i1 i2

For (c), we have i2 = i Rp / 60 = 0.5×10 / 60 A = 1/12 A

p2 = 50i22 = 50 / 144 W = 347.22 mW

Rp

Page 18: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Measuring  Voltage  and  Current

Electric Circuits 18

An  ammeter  is  an  instrument  designed  to  measure  current;    A  voltmeter  is  an  instrument  designed  to  measure  voltage

An  ideal  ammeter  has  an  equivalent  resistance  of  0  Ω  and  funcEons  as  a  short  circuit  in  series  with  the  element  whose  current  is  being  measured.    An  ideal  voltmeter  has  an  infinite  equivalent  resistance  and  thus  funcEons  as  an  open  circuit  in  parallel  with  the  element  whose  voltage  is  being  measured.  

Page 19: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Digital  and  Analog  Meters

Electric Circuits 19

Page 20: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

d’Arsonval  Meter  Movement

Electric Circuits 20

 d'Arsonval  meter  movement  consists  of  a  movable  coil  placed  in  the  field  of  a  permanent  magnet.  When  current  flows  in  the  coil,  it  creates  a  torque  on  the  coil,  causing  it  to  rotate  and  move  a  pointer  across  a  calibrated  scale.  By  design,  the  deflec5on  of  the  pointer  is  directly  propor5onal  to  the  current  in  the  movable  coil.  The  coil  is  characterized  by  both  a  voltage  raEng  and  a  current  raEng.  

For example, one commercially available meter movement is rated at 50 mV and 1 mA. This means that when the coil is carrying 1 mA, the voltage drop across the coil is 50 mV and the pointer is deflected to its full-scale position.

Page 21: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

DC  Ammeter/Voltage  Circuit

Electric Circuits 21

Page 22: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Example    #4 a)  A  50  mV,  1  mA  d'Arsonval  movement  (le^)  is  to  be  used  in  an  

ammeter  with  a  full-­‐scale  reading  of  10  mA.  Determine  RA.  b)  Find  the  current  in  the  circuit  shown  (right).  c)  If   the   ammeter   (le^)   is   used   to  measure   the   current   in   the  

circuit  (right),  what  will  it  read?  

Electric Circuits 22

Page 23: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Solu5on  for  Example  #4

Electric Circuits 23

i iB iA vA

For (a) (left), we have iA = I - iB=10 mA -1mA = 9 mA

RA = vA / iA = 50 / 9 =5.56 Ω

For (b) (right), we have i = 1 / 100 A = 10 mA

For (c), we have Req = vA / i = 50 / 10 = 5 Ω

i = 1 / (100+Req) = 1 / 105 A= 9.524 mA

Req

Req

Page 24: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Measuring  Resistance:  The  Wheatstone  Bridge

Electric Circuits 24

ig = 0 i1 = i3 i2 = ix

i3R3 = ixRx i1R1 = i2R2

R1 / R2 = i2 / i1

R3 / Rx = ix / i3 = i2 / i1

Rx = R2R3 / R1

In   a   commercial  Wheatstone   bridge,  R1  and  R2   consist   of   decimal   values   of   resistances  that  can  be  switched  into  the  bridge  circuit.

Ba`ery

Page 25: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Example  #5   The  bridge  circuit  shown  is  balanced  when  R1=100 Ω,  R2 =1000 Ω,  and  R3 =150 Ω.  The  bridge  is  energized  from  a  5  V  dc  source.    a)  What  is  the  value  of  Rx?    b)  Suppose   each   bridge   resistor   is   capable   of   dissipaEng   250  

mW.   Can   the   bridge   be   le^   in   the   balanced   state   without  exceeding   the   power-­‐dissipaEng   capacity   of   the   resistors,  thereby  damaging  the  bridge?    

Electric Circuits 25

Page 26: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Solu5on  for  Example  #5

Electric Circuits 26

For (a), we have Rx = R2R3 / R1 = 1000×150 / 100 = 1500

For (b), we have i1= v / (R1+R3)= 5 / 250 = 0.02 A i2= v / (R2+Rx)= 5 / 2500 = 0.002 A

p1=i12R1 = 0.022×100 =0.04 W

p2=i22R2 = 0.0022×1000 =0.004 W

p3=i12R3 = 0.022×150 =0.06 W

px=i22Rx = 0.0022×1500 =0.006 W

i1 i2

Page 27: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Delta-­‐to-­‐Wye  (Pi-­‐to-­‐Tee)  Equivalent  Circuits

Electric Circuits 27

Δ π

Y T

Page 28: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

The  Δ-­‐to-­‐Y  Transforma5on

Electric Circuits 28

R1 = (Rab+Rca-Rbc) / 2 = RbRc / (Ra+Rb+Rc) R2 = (Rab+Rbc-Rca) / 2 = RcRa / (Ra+Rb+Rc) R3 = (Rbc+Rca-Rab) / 2 = RaRb / (Ra+Rb+Rc)

How  about  Y-­‐to-­‐Δ?

Page 29: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

The  Y-­‐to-­‐Δ  Transforma5on

Electric Circuits 29

Page 30: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Example  #6

Use  a  Y-­‐to-­‐Δ  transformaEon  to  find  the  voltage  v  in  the  circuit  shown.    

Electric Circuits 30

Page 31: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Solu5on  for  Example  #6

Electric Circuits 31

a

b

c

a b

c

Rc

Rb Ra

Ra = (20×10+20×5+10×5) / 20 =17.5 Ω Rb = (20×10+20×5+10×5) / 5 = 70 Ω Rc = (20×10+20×5+10×5) / 10 = 35 Ω

Page 32: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Electric Circuits 32

35Ω

a

b

c

28Ω 70Ω

105Ω 17.5Ω

2A v

Req = 35||[(28||70)+105||17.5] = 35||(20+15) = 17.5 Ω

v = 2Req = 35 V

Page 33: Simple Resistive Circuitsxuanqi-net.com/Circuit/Chapter3.pdf · Electric Circuits 1 Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015

Summary

•  Series/Parallel  resistors  •  Voltage/Current  division    •  Digital/Analog  voltmeter/ammeter  •  Wheatstone  bridge  •  Δ-­‐to-­‐Y/Y-­‐to-­‐Δ  transformaEon  

Electric Circuits 33