Simple Harmonic Motion (SHM) and Electrical Oscillations · 2016. 11. 8. · Simple Harmonic Motion...

32
Simple Harmonic Motion (SHM) and Electrical Oscillations Dr Andrew French 2 2 0 0 2 2 i t dx dx x Ae dt dt

Transcript of Simple Harmonic Motion (SHM) and Electrical Oscillations · 2016. 11. 8. · Simple Harmonic Motion...

  • Simple Harmonic Motion (SHM) and Electrical Oscillations Dr Andrew French

    22

    0 022 i t

    d x dxx A e

    dt dt

  • SHM equation from driven mechanical oscillations

    x

    m

    -29.81msg l

    l

    0cosmg F t

    2dx

    m k x ldt

    Consider a particle of mass m suspended from a light elastic string from a fixed surface. The string has natural length l. Assume a Hookean law of elasticity i.e. restoring force is proportional to extension. The elastic constant in this case is k. Also assume mass is subject to air resistance which is proportional to velocity and mass m. The mass is also pulled ‘driven’ via an oscillatory force of magnitude F0 and frequency f = /2p

    In the absence of any driving force, the mass rests at string extension l. It is assumed at time t = 0 that extension from this equilibrium point, (x), is zero and the mass is at instantaneous rest.

    By Newton’s Second Law: 2

    02cos 2

    d x dxm mg F t m k x l

    dt dt

    2 f p oscillation frequency

  • SHM equation from driven mechanical oscillations

    x

    m

    -29.81msg l

    l

    0sinmg F t

    2dx

    k x ldt

    By Newton’s Second Law:

    2

    02sin 2

    d x dxm mg F t m k x l

    dt dt

    At equilibrium x = 0, F0 = 0

    0 mg k l

    mgl

    k

    Hence:

    2

    02

    2

    0

    2

    2 sin

    2 sin

    d x dxm m kx F t

    dt dt

    Fd x dx kx t

    dt dt m m

    This equation has a very similar form to the generic equation of Simple Harmonic Motion (SHM)

    22

    0 022 sin

    d x dxx A t

    dt dt

  • 2 20( ) cos sintx t Ae t B t

    0 01

    2 2

    0 0

    0

    sin costan

    sin

    sin

    cos

    x x B B

    x B

    x BA

    0

    22 2 2 2

    0

    1

    2 2

    0

    4

    2tan

    AB

    2 2

    max 0when 2B

    22

    0 022 sin

    d x dxx A t

    dt dt can have oscillatory solutions if 0

    The general solution is:

    ‘Transient solution’ (which exponentially decays) Steady state oscillation at same frequency as driving force

    The steady state amplitude exhibits resonance phenomenon i.e. it has a maximum at a particular ‘resonance frequency’

    Transient amplitude and phase

  • ( ) sinx t B t

    0

    22 2 2 2

    0 4

    AB

    2 2

    max 0when 2B

    22

    0 022 sin

    d x dxx A t

    dt dt can have oscillatory solutions if 0

    Steady state oscillation at same frequency as driving force

    The steady state amplitude exhibits resonance phenomenon i.e. it has a maximum at a particular ‘resonance frequency’

    22 2 2 2

    max 0

    2 2 2

    0

    2 2 2

    0

    2 2 2

    0

    2 2

    0

    when 4 0

    2 ( 2 ) 8 0

    2 0

    2

    2

    dB

    d

  • 2 2

    max 0

    22 2 2 2

    0

    22 2 2 2 2 2

    0 0 0

    4 2 2 4

    0

    2 2 4

    0

    0max 2

    2 2 2 2

    0

    0max 2 2 4

    0

    0max 2 2

    0

    2

    4

    2 4 2

    4 4 8

    4 4

    4

    4 4

    2

    AB

    AB

    AB

    22

    0 02

    0

    22 2 2 2

    0

    1

    2 2

    0

    2 sin

    sin

    4

    2tan

    d x dxx A t

    dt dt

    Ax t

  • SHM parameters for the driven mechanical oscillator

    x

    m

    -29.81msg l

    l

    0sinmg F t

    2dx

    k x ldt

    22

    0 022 sin

    d x dxx A t

    dt dt

    2

    0

    22 sin

    Fd x dx kx t

    dt dt m m

    10 2

    00

    kf

    m

    FA

    m

    p

    2 2

    res 0 2 Resonance frequency

    Mechanical oscillator

    SHM

    Natural oscillation frequency

    0 02 f p

  • ( )

    2 2 ( )

    0 0

    2 2

    0 0

    0

    2 2

    0

    0

    22 2 2 2

    0

    2 2

    0

    1

    2 2

    0

    2

    2

    2

    4

    arg 2

    2tan

    i t

    i t i t

    i

    x Be

    i Be A e

    i Be A

    AB

    i

    AB

    i

    ( )

    cos sin

    i tx Be

    x B t iB t

    22

    0 02

    0

    22 2 2 2

    0

    1

    2 2

    0

    2 cos

    cos

    4

    2tan

    d x dxx A t

    dt dt

    Ax t

    22

    0 02

    0

    22 2 2 2

    0

    1

    2 2

    0

    2 sin

    sin

    4

    2tan

    d x dxx A t

    dt dt

    Ax t

    Solving the SHM equation (steady state) using complex variables

    22

    0 022 i t

    d x dxx A e

    dt dt

  • Inductor Capacitor

    Resistor ‘driving’ AC input V RV

    I

    0

    2

    02

    2

    012

    1

    1cos

    sin

    sin

    R C L

    R

    C

    L

    RL LC

    V V V V

    V IR

    V IdtC

    dIV L

    dt

    dIIR Idt V t L

    C dt

    dI I d IR L V t

    dt C dt

    d I dI VI t

    dt dt L

    Q CV

    dQI CV Idt

    dt

    LV CV

    22

    0 02

    0

    22 2 2 2

    0

    1

    2 2

    0

    2 sin

    sin

    4

    2tan

    d x dxx A t

    dt dt

    Ax t

    2 00 0

    1, ,

    2

    VRA

    L LC L

    Steady state solution to the LCR circuit

    Steady state solution to SHM equation

    0 cosV V t

    Sum of potential differences

    EMF – ‘back EMF’ due to induction in the coil

    Let current I flow through the circuit. The net EMF V - VL must equal the sum of the potential drops across each electrical component.

  • Inductor Capacitor

    Resistor ‘driving’ AC input R

    V

    I

    2

    0

    2

    2 00 0

    sin

    1, ,

    2

    Vd I R dI It

    dt L dt LC L

    VRA

    L LC L

    0 cosV V t

    LV CV

    Steady state solution to the LCR circuit .... cont

    02 2

    2 2

    1

    2

    sin

    1

    tan1

    V LI t

    RC

    LC LC

    RC

    LC

    2 2

    max 0

    2

    max

    2

    max 0

    22

    max 0 0

    when 2

    1 1

    2

    1

    1 4

    I

    RCf

    LC LC

    RCf f

    LC

    f f f

    p

    p

    10 2

    2 2

    0

    2

    1

    1

    4

    f

    fLC

    RC

    LCf

    p

    p

    p

    22

    0

    10 2

    4 1f

    fp

    p

    Steady state solution to SHM equation

    22

    0 02

    0

    22 2 2 2

    0

    1

    2 2

    0

    2 sin

    sin

    4

    2tan

    d x dxx A t

    dt dt

    Ax t

  • 2

    0

    2

    2 00 0

    sin

    1, ,

    2

    Vd I R dI It

    dt L dt LC L

    VRA

    L LC L

    22

    0 02

    00 2

    0 0 0

    0

    22 2 2

    1

    2

    2 sin

    2

    sin

    1

    tan1

    d x dxx A t

    dt dt

    Ax z k

    xx t

    z k z

    kz

    z

    10 2

    0

    0 00 0 0 02

    0

    0

    0

    0 0

    22 2 2

    1

    2

    1

    22 2

    12

    2sin

    1

    tan1

    fLC

    fz

    f

    V fV LCI fCV zf CV

    L L

    R R LC Ck R RC f RC

    L L L LC

    zf CVI t

    z k z

    kz

    z

    p

    pp p

    p

    p

    Using dimensionless variables ...

    Note 0 0f CV

    is the average current when the maximum amount of charge stored in the capacitor is discharged over one complete period at frequency f0

  • 0 0

    22 2 2

    2sin

    1

    zf CVI t

    z k z

    p

    1

    2tan

    1

    kz

    z

    10 2

    0

    0

    1

    2

    ff z

    LC f

    k f RC

    p

    p

  • Inductor Capacitor

    Resistor ‘driving’ AC input V RV

    I

    Let current I flow through the circuit. The net EMF V - VL must equal the sum of the potential drops across each electrical component.

    0

    1

    1

    R C L

    R

    C

    L

    i t

    V V V V

    V IR

    V IdtC

    dIV L

    dt

    dIIR Idt V e L

    C dt

    Q CV

    dQI CV Idt

    dt

    LV CV

    Complex impedance

    0

    i tV V e

    0

    0 0

    arg( )

    1

    1e

    1

    arg( )

    i t

    i t i t

    i Z

    dIIR Idt L V e

    C dt

    I R i L V ei C

    Z R i Li C

    V I Z e

    Z

    V IZ

    0

    i tI I e

    Inductor Capacitor

    Resistor ‘driving’ AC input

    LZ i L1

    CZi C

    RZ R0

    i tV V e

    VI

    Z

    L C RZ Z Z Z

    Ohm’s Law, generalized for AC

    Impedances for L,C,R components

    Sum of potential differences

    EMF – ‘back EMF’ due to induction in the coil

  • Inductor Capacitor

    Resistor ‘driving’ AC input inV outV

    LZ i L1

    CZi C

    RZ R

    I

    0

    i tV V e

    out

    in

    out

    in

    out

    2in

    1

    1

    R

    L C R

    V Z

    V Z Z Z

    V R

    VR i L

    C

    V RC

    V RC i LC

    out

    2 2in

    2 2

    0

    out 0

    2in 0

    out

    2in

    2

    42 1

    4

    2

    2 1

    2

    2 1

    V f

    V ff i

    f

    V xf

    V xf i x

    V x

    V x i x

    p

    pp

    p

    p

    p

    p

    p

    10 2

    0

    0

    1fx f

    f LC

    RC f

    p

  • Inductor

    Capacitor

    Resistor

    ‘driving’ AC input inV outV

    LZ i L

    1CZ

    i C

    RZ R

    I

    0

    i tV V e

    out

    in

    out

    in

    out

    2in

    1

    1

    1

    1

    C

    L C R

    V Z

    V Z Z Z

    V i C

    VR i L

    C

    V

    V iRC LC

    out

    2 2in

    2 2

    0

    out

    2in 0

    out

    2in

    1

    42 1

    4

    1

    2 1

    1

    2 1

    V

    V ff i

    f

    V

    V xf i x

    V

    V x i x

    pp

    p

    p

    p

    10 2

    0

    0

    1fx f

    f LC

    RC f

    p

  • Inductor

    Capacitor Resistor

    ‘driving’ AC input inV outVLZ i L

    1CZ

    i C

    RZ R

    I

    0

    i tV V e

    out

    in

    out

    in

    2

    out

    2in

    1

    1

    L

    L C R

    V Z

    V Z Z Z

    V i L

    VR i L

    C

    V i LC

    V RC i LC

    2 2

    2 2

    out 0

    2 2in

    2 2

    0

    out

    2in

    4

    4

    42 1

    4

    2 1

    fi

    V f

    V ff i

    f

    V ix

    V x i x

    p

    p

    pp

    p

    p

    10 2

    0

    0

    1fx f

    f LC

    RC f

    p

  • No voltage gain here! better to take output voltage across the capacitor or inductor

  • LCR circuits can be used as electrical filters. If a signal consists of a superposition of oscillations at different frequencies, an LCR circuit can be tuned to preferentially boost signal components whose frequencies are near the resonance peak of the circuit. This has enormous application in communications or Radar technology, whereby a weak signal of a known frequency (e.g. a local radio station, or indeed the broadcasts from Voyager!) may be buried in electrical noise ‘across the waveband’.

  • Designing a mains noise filter In many applications we would like to filter out electrical signals associated with mains AC at 50Hz

    10 2

    2 2

    0

    1

    1

    4

    fLC

    LCf

    p

    p

    If L = 0.05, therefore C = 2.03 x 10-4 F

  • inV outV

    LZ i L1

    CZi C

    RZ R

    I

    0

    i tV V e

    out

    in

    out

    in

    out

    in

    1

    1 1

    1

    1

    1

    11

    R

    R

    C L

    V Z

    VZ

    Z Z

    V R

    VR

    i Ci L

    V

    VRC

    i RC iLC

    0

    10 2

    0

    1

    fx

    f

    fLC

    RC

    f

    p

    ‘Knotch filter’

    RZ RCZ

    out

    in

    out

    in

    1

    12

    11 2

    RCi RC i

    V LCRCV

    i RC iLC

    i xV x

    Vi x

    x

    p

    p

  • A 50Hz knotch filter which could be used to remove ‘mains hum’ from a signal

  • Low pass filter

    Band stop filter Band stop filter

    High pass filter Band pass filter

    Band pass filter

    Other types of filter using just R,L,C configurations

  • More complicated L,C,R filter circuits

    LZ i L

    1CZ

    i C

    RZ R

    Write down equations for the currents in each loop ... Apply V = IZ ... Solve simultaneously!

  • Impedance matching

    Note maximum power is transferred from input to output if impedances

    if source impedance is fixed. (If it is adjustable, then setting ZS = 0 will maximise the power dissipated in the load). A change in impedance will cause a fraction of the signal to be reflected, which results in a loss of power conveyed to the output

    *

    L SZ Z

    21

    2

    2 2 2

    2 2

    22

    2

    12 2 2

    L L L S S S

    L rms L L

    S S L S S L

    S L L L S S

    S L L S L S

    S L

    L

    S L S L

    Z R iX Z R iX

    P I R I R

    V I Z Z V I Z Z

    Z Z R iX R iX

    Z Z R R i X X

    V RP

    R R X X

    PL is maximized when

    *

    L S

    L S

    L L S S

    L S

    R R

    X X

    R iX R iX

    Z Z

    See next page!

  • Maximizing the load power in the ‘power dissipation theorem’ is equivalent to maximizing y given constant a in the equation

    2

    xy

    a x

    1a

    0.5a

    0.3a

    2, 0

    xy x

    a x

    2

    4

    4

    3

    (1) 2

    2

    0x a

    a x x a xdy

    dx a x

    a x a x xdy

    dx a x

    dy a x

    dx a x

    dy

    dx

    Hence maxima at

    2

    1

    4

    x a

    ay

    aa a

  • Radiated electromagnetic waves

    Guglielmo Marconi Wireless transmission pioneer 1874-1937

    James Clerk Maxwell 1831-1879

    Henrich Hertz 1857-1894

    Maxwell developed the experimental work of Faraday and others into a mathematical theory of electric and magnetic fields. It is a vector theory, encapsulated in four equations which are now know as Maxwell’s Equations. One can combine them to form a wave equation in both the electric and magnetic fields. In each case, the velocity of waves (in ‘free space’ i.e. a perfect vacuum) is

    0 0

    1c

    i.e. the speed of light c = 2.998 x 108 ms-1. This is independent of the frame of reference! ..... A big clue that Albert Einstein used to help him develop the theory of Relativity.

  • 1 2

    2

    0

    1

    4

    Q QF

    rp

    Permittivity & permeability

    Coulomb’s Law of force (F) between two charges (Q1,Q2) separated by distance r

    Charles-Augustin de Coulomb 1736-1806

    12 -1 2

    0

    -3 48.85418782 10 kg m s A

    0

    2

    0

    NIB

    l

    N AL

    l

    7 2 2

    0

    - 10 s A4 kgm p

    Magnetic field strength inside a solenoid of N turns and cross section A

    Inductance of a coil of N turns and cross section A

    Joseph Henry 1797-1878

  • 2

    2

    2 2

    2

    2

    2 2

    0 0

    1

    1

    1

    c t

    c t

    c

    EE

    BB

    Wave equations for electric fields E and magnetic fields B

    c = 2.998 x 108 ms-1 independent of any coordinate system! So no matter how fast you are moving, electromagnetic waves always propagate at the same speed .....

  • The Electromagnetic Spectrum

    c f

    f

    f

  • Maxwell’s Equations (from Woan, The Cambridge Handbook of Physics Formulas)