signals, antenna and measurements

download signals, antenna and measurements

of 19

Transcript of signals, antenna and measurements

  • 8/10/2019 signals, antenna and measurements

    1/19

    Spectral Measurements

    Case A: Bandwidth exceeds that of

    available amplifiers

    TA(f)

    S(f)

    channels

    f1

    fNreceivers and antennas

    detector noise, detect directly or

    split frequencies and then detect

    before amplification or detection

    f1

    fN

    f1

    fN

    f

    Receivers-G1

    1) Extreme bandwidth: use multiple

    2) If signal large compared to

    3) Use passive frequency splitters

  • 8/10/2019 signals, antenna and measurements

    2/19

    Spectral Measurements

    Case B: Bandwidth permits amplificationf1

    fN further frequency splitting

    Case C: Bandwidth permits digital spectral analysis

    (

    fResolution

    -~)f(V 2M

    2N

    )f()( NN

    (Permits ~100 more B per cm2 silicon)(Reference: Van Vleck and Middleton, Proc. IEEE, 54, (1966)

    )

    G2

    1) Amplify before either detection or

    1) If computer resources permit, compute

    N2B

    :transformpointNpermultiplysNlogN

    2) Or 1-bit (or n-bit) samples)(N

    spectraMaverage

  • 8/10/2019 signals, antenna and measurements

    3/19

    Examples of Passive Multichannel Filters

    IN

    f1 fnf2

    Zo

    2. Waveguides

    f1 resonant

    cavities at ff

    virtual

    short

    /4

    fN

    RCVRRCVR

    f1 f3f2

    filters

    passive

    channel-dropping filters

    Zo at f1

    f

    G3

    1. Circuits

  • 8/10/2019 signals, antenna and measurements

    4/19

    Examples of Passive Multichannel Filters

    3. Prism

    -bound electron(s)

    red blue fo

    f

    prism

    5. Cascaded Dichroics

    plane wave

    f2 >fn-1(f1>f2>fn)

    4. Diffraction grating

    (f)

    G4

  • 8/10/2019 signals, antenna and measurements

    5/19

    Digital spectral analysis example: autocorrelation

    0 0 f

    () (f)[W Hz-1]

    analog signals

    Possible analog implementation:

    1) max lag = max = NT2) sample lag, T sec

    3) finite integration time

    >> max

    )(v

    BRF

    0f

    fRF

    0f

    fIF

    delay line

    LO

    local oscillator

    v(t)

    )T(v

    )(v

    )NT(v

    NT = max

    BBRF

    G5

    :onbasedis

    T2

  • 8/10/2019 signals, antenna and measurements

    6/19

    Resolution of autocorrelation analysis

    )(W)()( yv =1)

    W(

    )

    0

    M = NT-

    M

    0f

    0f

    B

    v(f) W(f)

    ~1/2 M Hz

    Thus

    v(f)

    )f(W)f()f( vv

    M

    =

    7777 W(f)

    f0

    G6

    m

  • 8/10/2019 signals, antenna and measurements

    7/19

    Aliasing in autocorrelation spectrometers

    )f(I)f(

    )t(i)(

    )f(

    )(

    v

    v

    v

    v

    =

    =

    7777

    2)

    i(t)

    T0t

    I(f)

    0f(Hz)

    -1/T

    Aliasing is spectral overlap

    -1/T 0 1/T 2/T

    B)f(

    v

    3) Finite averaging time adds noise to )f(,)( vv

    G7

    1/T 2/T

  • 8/10/2019 signals, antenna and measurements

    8/19

    Autocorrelation of hard-clipped signals

    A/D

    ( )2

    counte

    r

    delay line

    LO

    x(t)

    vo(t)1

    v(t)

    )(v

    hard clipping

    A/D

    1

    +1

    -1

    0t

    +1 if v(t) > 0

    Receivers-I1

  • 8/10/2019 signals, antenna and measurements

    9/19

    Analysis of 1-bit autocorrelation

    ( ) ( ) 0-

    0xt 212211

  • 8/10/2019 signals, antenna and measurements

    10/19

    Power spectrum for 1-bit signal

    Change

    variables

    x2

    x1

    dr

    rdr

    x1 = r cos x2 = r sin dx

    1dx

    2= rdr d

    ( )

    =

    2

    0 0

    1

    12r

    2

    2

    x 1e

    12

    12rdd4)( 2

    2

    (

    )( )

    = 2

    0

    21

    12

    1d4

    I3

    2sin

    21

    21

    2sin

  • 8/10/2019 signals, antenna and measurements

    11/19

    Power spectrum for 1-bit signal

    (

    )( )

    =2

    0

    2

    112

    1d4

    ( )

    (

    )

    1sin22

    141dsin11

    414 1

    0x

    +

    =

    =

    ( )

    ( )

    =

    xv 2sin

    ( ) ( )( )Tx

    )Where =

    0 b0

    p(b)p(a)

    b

    (see Burns & Yao, Radio Sci., 4(5) p. 431 (1969))

    2Let

    I4

    a

    21

    2sin

    21

    -v(tsgnv(t)sgn

    exactnotbif

    biashas:Note

  • 8/10/2019 signals, antenna and measurements

    12/19

    Spectral response & sensitivity: autocorrelation receiver

    ;B

    f1

    f

    T)f( effrms

    channel bandwidth

    (S. Weinreb empirical result,

    MIT EE PhD thesis, 1963)

    Apodizing weighting functions:

    f

    1.099

    0.87

    0.69

    N

    s

    Nfs

    Ns

    first

    sidelobe

    -7 dB

    -16 dB

    -29 dB

    Note trade between spectral resolution, sidelobes in (f) and Trms

    =

    =

    N;NT1f

    Ms

    uniform

    raised cosine

    blackman

    0

    0

    0

    I5

    6.1

    f60.0

    f13.1

    taps#

  • 8/10/2019 signals, antenna and measurements

    13/19

    Spectral response & sensitivity: autocorrelation receiver

    If N delay-line taps, how many spectral samples Ns?

    1W()

    0 M

    Say uniform weighting of ():

    Then B = Ns f = Ns /2M) where spectral resolution f 1/2mfor orthogonal channels from boxcar W()

    (

    )

    (

    )B2N Ms ====

    W(f) for adjacent channel

    M

    f

    In practice: raised cosine widens f by 1/0.6 1.7, so Ns N/1.7

    W(f)

    I6

    (1

    taps#Nratenyquistat2B1TBNT2

    21

  • 8/10/2019 signals, antenna and measurements

    14/19

    Types of power

    Delivered

    AvailableExchangeable

    ( )

    {

    }

    { }j tev t R t sin t

    =

    +

    Vg

    gZ

    LZRg g

    +

    -

    +

    -

    V

    {

    }( )

    =

    gZP

    PVIR21P

    LDavailable

    Dedelivered

    Receivers-K1

    Receivers Gain and Noise Figure

    Ve Re V cos Im V

    + j X

    Zifi.e.,,Pmax

  • 8/10/2019 signals, antenna and measurements

    15/19

    Delivered and Available Power

    {

    }( )

    =

    gZP

    PVIR21P

    LDavailable

    Dedelivered

    RL

    ge ZR-

    ge ZR

    PD

    0Zf ge

    Zifi.e.,,Pmax

    R:I

    optionpowerleexchangeab

    ZIm

    R:I

  • 8/10/2019 signals, antenna and measurements

    16/19

    Definition of Gain

    gZ LZG1 2

    Gpower (= Gp)

    12 DDPP

    Gavailable

    (= GA

    ) 12 AA

    PP

    Gtransducer (GT)power

    12 AD

    PPGexchangeable (=GE)

    1

    2

    E

    E

    P

    P

    Ginsertion (= GI)

    1

    2

    D

    D

    P

    Pwithamplifier

    without

    amplifier

    Note: GA, GEdont depend on ZLdo depend on Zg (via PE2)

    K3

  • 8/10/2019 signals, antenna and measurements

    17/19

    Definition: Signal-to-Noise Ratio (SNR)

    First define:

    N1 =

    N2

    =

    S1 =

    S2 =

    1zWH

    222111 NSSNR;NS

    Vg

    1 2

    gZ

    LZ

    F

    G

    gE =

    K4

    exchangeable noise power spectrum @ Port 1

    same, at 2

    exchangeable signal power spectrum @ Port 1

    same, at 2

    SNRDefine

    ZfGRecall

  • 8/10/2019 signals, antenna and measurements

    18/19

    Definition: Noise Figure F

    kTNNS

    NS

    SNR

    SNRF oo1

    22

    11

    2

    1

    [Ref. Proc. IRE, 57(7), p.52 (7/1957); Proc. IEEE, p.436 (3/1963)]

    S2 = GES1 (see definition of GE)

    N2 = GEN1 + N2T transducer noise

    ( )N

    1NGNGS

    NSF

    111

    11 +=+

    = ( )EG

    o

    R

    o

    R

    1 T

    TN1F ==

    K5

    K290T,where,

    GNT2

    T2Glet

    T2

    GkT

    GkT

    GNexcess noise figure

    receiver noise temperature

  • 8/10/2019 signals, antenna and measurements

    19/19

    Receiver Noise Example

    (6FT

    F(2FT

    )F(1TT1FT

    R

    R

    o

    RR

    ==

    ===

    ==+==

    Examples:

    Excess noise corresponds toreceiver noise temperature TR

    + 1

    TR = (F 1) To

    290K

    noiseless

    G, FTA

    +1

    TA

    N2T

    TA

    TR

    K6dB)5.7~FK1500

    dB)3K290

    dB0K0

    F,G

    F,G