Side branch resonators modelling with Green's function...

22
1/22 Side branch resonators modelling with Green’s function methods E. Perrey-Debain, R. Mar´ echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe Acoustique, Universit´ e de Technologie de Compi` egne, France July 09-10, 2012 MATHmONDES 2012, Reading, U.-K.

Transcript of Side branch resonators modelling with Green's function...

Page 1: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

1/22

Side branch resonators modelling with Green’sfunction methods

E. Perrey-Debain, R. Marechal, J.-M. Ville

Laboratoire Roberval UMR 6253, Equipe Acoustique,Universite de Technologie de Compiegne, France

July 09-10, 2012

MATHmONDES 2012, Reading, U.-K.

Page 2: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

2/22

Outline

Introduction

Impedance matrix and Green’s function formalism

Simplified models

Low-frequency applications : Helmholtz and Herschel-Quinckeresonators

Medium-frequency applications : HQ-liner system for inlet fannoise reduction

Conclusions

Page 3: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

3/22

Introduction

Side branch resonators are commonly used for engine exhaust noisecontrol : (i) low-frequency applications with a single plane wavemode (automotive) (ii) medium-frequency applications and highlymultimodal context (aeronautics).

Pinc

Pref Ptr

Figure: Side branch resonator (cavity Ω) with two openings Γ.

Numerical predictions : (i) 1D approximations (with lengthcorrections) ; (ii) FEM, BEM -> computationally demanding (thisincludes mesh preparation etc...) especially in a highly multimodalcontext, lack of physical interpretation.

Page 4: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

4/22

Impedance matrix

In the frequency domain, the acoustic pressure must obey theHelmholtz equation

∆p + k2p = 0, k = ω/c ,

and q = ∂np = 0 everywhere except on Γ. The Green’s function forthe rigid-wall cavity is given by the infinite series

GΩ(r, r′) =

∞∑

n=0

φn(r)φn(r′)

λn − λ

where λ = ω2. Eigenfunctions φn are properly normalized so thatapplication of the Green’s theorem in the cavity yields

p(r) =

ΓGΩ(r, r

′) q(r′)dΓ(r′)

Page 5: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

5/22

Impedance matrix

We need to precompute a finite set of eigenfunctions and estimatethe truncation error...Consider the eigenvector Φn, the FE discretization of ntheigenmode φn :

A(λn)Φn = 0 where A(λ) = K − λM

After reduction to the interfacial nodes, we obtain the impedancematrix

Z(λ) = ITΓ A−1(λ) IΓ

with

A−1(λ) =∞∑

n=0

ΦnΦTn

λn − λ= ΦD(λ)ΦT

Finally,

p = Z(λ) F q = GΩ q

Page 6: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

6/22

Truncation

Keeping the first N eigenmodes gives

Z(λ) = (ΦD(λ) ΦT)|N + R(λ).

The correction term R remains weakly dependent on the frequency,so we can take the first order Taylor expansion

R(λ) ≈ R(λ) + (λ− λ)∂R

∂λ+ . . .

The residual matrices are computed via

R = ITΓ A−1 IΓ − (ΦD(λ) ΦT)|N∂λR = ITΓ A−1MA−1IΓ − (Φ ∂λD ΦT)|N

Page 7: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

7/22

Scattering matrix

The theory starts by introducing the hard-walled duct Green’sfunction

G (r, r′) =∞∑

l=0

ψl(x , y)ψ∗l (x

′, y ′)

2iβleiβl |z−z ′|

The transverse eigenmodes ψl are solution of the boundary valueproblem

(∂2xx + ∂2yy)ψl + k2ψl = β2l ψl

with ∂nψl = 0 on the boundary line ∂S . These modes arenormalized as

S|ψl |2 dS = 1

in particular ψ0 = 1/√Ad where Ad is the cross section area of the

main duct. For circular ducts :

ψl = Nm,nJm(αm,nr)eimθ, βl =

k2 − α2m,n

Page 8: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

8/22

Scattering matrix

The finite element discretization of the integral equation

p(r) =

ΓG (r, r′) q(r′)dΓ(r′) + pI (r)

gives (ri is the FE node location)

pi =N∑

j=1

Gijqj + pIi with Gij =

ΓG (ri , r

′) φj (r′)dΓ(r′)

The acoustic velocity is deduced from

q = (GΩ − G)−1 pI

Note :i. The computation is not trivial as ∂z′G is discontinuous at z′ = zi .

ii. The matrix GΩ − G is of small size.

Page 9: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

9/22

Simplified models : one opening

Starting with one opening only, the impedance matrix relation canbe averaged to give

p = Z (λ)q where Z(λ) =1

N

N∑

i=1

N∑

j=1

(Z(λ) F)ij

By the same token,

p =1

Wq + pI , where W =

2ikAd

A

and A denotes the area of the interface. An incident plane wavepI = e

ikz produces a transmitted pressure field

p = T eikz with T = 1 +

1

WZ(λ) − 1

Page 10: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

10/22

Helmholtz resonators

Figure: Classical (left) ; with extended neck (right).

Page 11: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

11/22

Helmholtz resonator, classical

60 70 80 90 100 110 1200

10

20

30

40

50

60

TL modèle mixteTL simplifiéTL Ingard

Frequency (Hz)

TL(dB)

60 70 80 90 100 110 120−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Zero100 modes1 mode2 modes10 modes50 modes

ZFrequency (Hz)

Page 12: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

12/22

Helmholtz resonator, with extended neck

60 70 80 90 100 110 1200

5

10

15

20

25

30

35

40

45

50

TL modèle mixteTL simplifié

Page 13: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

13/22

Simplified models : two openings

We consider a symmetric resonator connected to the main duct viatwo openings located at z = z1 and z = z2.

(

p1p2

)

=

(

Z11 Z12

Z12 Z11

)(

q1q2

)

Moreover,(

p1p2

)

=1

W

(

1 eikL

eikL 1

)(

q1q2

)

+

(

pI1pI2

)

where L = |z2 − z1|. This gives

T = 1 +2WZ11 − 2WZ12 cos(kL) + (e2ikL − 1)

(WZ11 − 1)2 − (WZ12 − eikL)2

Thus, no acoustic energy is transmitted if

Z 212 − Z 2

11 − A sin(kL)

kAdZ12 = 0

Page 14: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

14/22

Herschel-Quincke resonator

Page 15: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

15/22

Herschel-Quincke resonator

0 100 200 300 400 500 600 700 8000

10

20

30

40

50

60

70

80

TL simplifiéTL tube droitTL modèle mixte

Frequency (Hz)

TL(dB)

Page 16: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

16/22

Fan noise

Perforate sheet

The fan noise is one of the dominant components at take-offand landing for aircraft with modern high bypass ratioturbofan engines : broadband noise + Blade PassingFrequency (BPF) tones

Page 17: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

17/22

Fan noise

Actual configuration...

Soufflante

Redresseurs

Collecteur

Tube HQ

Model...

A+

A−

B+

Page 18: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

18/22

Validation on a small size configuration

0

0.1

0.2

0.3

0.4−0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

x (m) y (m)

z(m

)

0 500 1000 1500 2000 2500 30000

5

10

15

20

25

30

35

40

Frequency (Hz)

TL(dB)

Matrix size CPU time (Matlab)

Our model 500 1 h 50 min

FEM 82 000 31 h 15 min

Page 19: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

19/22

Optimal configuration (36 HQ tubes)

0 5 10 15 20 25 30 35 40 4586

88

90

92

94

96

98

100

ka

SPL(dB)

0 5 10 15 20 25 30 35 40 450

2

4

6

8

10

12

ka

TL(dB)

Incident Liner-HQ system

Page 20: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

20/22

What does the liner do ?

0 5 10 15 20 25 30 35 40 45

0

2

4

6

8

10

12

14

16

18

Re(β0,n)

Im(β

0,n)

0 5 10 15 20 25 30 35 400

5

10

15

20

25

30

35

40

45

Re(β20,n)

Im(β

20,n)

Surface wave modes at 1530 Hz :

Page 21: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

21/22

Influence of the number of tubes on the first BPF

(iso-surface)

Number of tubes

Modes

Modal

pow

er(dB)

72675545403736300 (Liner)0 (Incident)

(7,1)(4,2)

(8,1)(2,3)

(-5,2)(-9,1)

(-3,3)

30

50

70

90

Page 22: Side branch resonators modelling with Green's function methodsucahdhe/Mathmondes_Perrey-Debain.pdf · E. Perrey-Debain, R. Mar´echal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe

22/22

Conclusions and prospects

The proposed Green’s function based method allows to reduce thecomputational effort as only the acoustic velocity at the interfaceneeds to be calculated.A very high number of propagative modes (few hundreds) can behandled easily on a single PC.Gives access to physical interpretation in the low-frequency regime.

In prospect : - could be used for designing taylor-made resonatorsusing optimization procedures. - viscosity effects should be included