SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon...

28
SiC MOSFET Reliability for EV Drivetrain Don Gajewski, Brett Hull Wolfspeed, a Cree Company [email protected] [email protected] Paper Number 3547 1 of 5 Place your logo here APEC 15-19 Mar. 2020 New Orleans, LA (USA) Industry Session: Reliability of Wide Bandgap Semiconductors Session: IS23 Session Location: R07 Session Date: 2020-03-19 Session Time: 08:30 - 11:25 Acknowledgments: D Lichtenwalner, S Sabri, E Van Brunt, S-H Ryu, P. Steinman, A. Romero, J-H Park, S Ganguly, J Richmond, S Allen, and J Palmour

Transcript of SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon...

Page 1: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

SiC MOSFET Reliability for EV Drivetrain

Don Gajewski, Brett Hull

Wolfspeed, a Cree Company

[email protected]

[email protected]

Paper Number 3547 1 of 5

Place your logo here

APEC 15-19 Mar. 2020New Orleans, LA (USA)Industry Session: Reliability of Wide Bandgap SemiconductorsSession: IS23Session Location: R07Session Date: 2020-03-19Session Time: 08:30 - 11:25

Acknowledgments: D Lichtenwalner, S Sabri, E Van Brunt, S-H Ryu, P. Steinman, A. Romero, J-H Park, S Ganguly, J Richmond, S Allen, and J Palmour

Page 2: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

• Introduction– The device reliability and ruggedness of SiC vertical power MOSFETs parallels that

of Si devices, even while experiencing much higher drift fields

• Accelerated High-Field Testing– High Gate Field Tests

• Threshold voltage stability (PBTI/NBTI)

• Gate oxide breakdown (TDDB/RBD)

– High Drain Field Tests

• High-temperature reverse-bias (HTRB)

• Terrestrial neutron single-event breakdown (SEB)

– High Power Dissipation events

• Avalanche ruggedness

• Short Circuit capability

• Summary

Outline

Paper Number 3547 2 of 5

Page 3: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

Drivetrain Inverter

What: Silicon Carbide MOSFETs

Where: • 90 – 350kW+ EV drivetrain inverter• Single, dual, or in hub drives

Why: Maximize EV range while minimizing overall system and battery cost. Bi-directionality also enables regenerative braking.

SiC Advantage: • ~80% lower losses• ~30% smaller size• Lower system cost

SiC IN AUTOMOTIVE DRIVETRAIN

DC/AC(3-phase)

Traction motor

DC/DC400V/800V DC Battery

Paper Number 3547 3 of 5

Page 4: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

• Wolfspeed Commercial SiC Power Devices are Fully Qualified

• Tested packaged production parts for qualifications

• 3 lots x 25 parts each stress test: Industrial

• 3 lots x 77 parts each stress test: Automotive AEC-Q101

• Stresses performed typically at or near rated voltage and temperature for 1000hrs

Overview of SiC Power Device Reliability &

Ruggedness

HTGB HTGS ESDThermal

ShockH3TRB

Gate Mechanical StructureActive Structure, Passivation, Edge

HTRB

Stressed Device Component

Qualification Tests

Paper Number 3547 4 of 5

Page 5: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

ACCELERATED HIGH-FIELD TESTING

Paper Number 3547 5 of 5

Page 6: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

1) VT stability (PBTI/NBTI)

2) Oxide breakdown (TDDB & R-BD)

3) Accelerated HTRB (Vrated < VDS > Vaval)

4) Neutron SEB

SiC Power MOSFET Schematic

GatePoly Si

oxide

n-SiC

Nitrided MOS

interface Edrift & EOX(JFET)

increase with ↑VDS

Gate

Paper Number 3547 6 of 5

Page 7: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

• Wear-out:

• TDDB = f(VGS, T)

• HTRB = f(VDS, T)

• Random fail:

• Neutron-SEB

= f(VDS, VGS, h, T)

• Device design, oxide

quality & oxide

thickness affect

slopes of HTRB &

TDDB lifetime curves

Device Lifetime schematic: HTRB, TDDB,

Neutron SEB

Log

(Fai

lure

Rat

e)

Log (operation time)

General effects of HTRB, TDDB, and Neutron Radiation

SEBf(VDS, VGS, h, T)

HTRBf(VDS)

TDDBf(VGS)

‘Random fail’ region ‘Wear-out’ region

Paper Number 3547 7 of 5

Page 8: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

Positive and Negative Bias Temperature Instability (PBTI, NBTI)

THRESHOLD VOLTAGE STABILITY

Paper Number 3547 8 of 5

Page 9: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

Threshold Voltage (VT) Stability

• VT can shift over time and change the device on-state and/or blocking characteristics

• Threshold shift (DVT) relates to interface & oxide traps [1,2]:

• DVT = q*(DNox+DNIT)*[(q*Tox)/(Kox*eo)]

• DVT of Si MOSFETs depends on the gate electric field, temperature, and time [1,2]:

• DVT = Aexp(Eox)exp(-EA/kT)tn

• SiC has an order of magnitude more interface traps (NIT) than Si devices

• The nitrided oxide interface may introduce additional effects

• [1] J.H. Stathis and S. Zafar, “The negative bias temperature instability in MOS devices: A review,” Microelectronics Reliability 46 (2006) pp. 270-286.

• [2] D.K. Schroder, “Negative bias temperature instability: What do we understand?” Microelectronics Reliability 44 (2007) pp. 841-852.

Paper Number 3547 9 of 5

Page 10: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

PBTI, NBTI Test Procedure1. Heat sample to test temperature, and hold temperature constant

2. Apply Vgs stress for given time interval, with S = D = 0 V

3. Sweep Vgs from stress V towards Vgs = 0 V, with S = 0 V and D = 0.1 V1. Positive stress: sweep down

2. Negative stress: sweep up

4. Repeat 2) and 3) using logarithmically increasing time intervals at step 2)

5. Extract VT at a given current level to plot VT versus time

Paper Number 3547 10 of 5

Page 11: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

• For Wolfspeed devices, VT drifts only a few hundred mV under constant bias stress

• Weak power law -> DVT saturates over time

• Drift will be much lower than this in typical switching applications

VT Stability

0.5

1.0

1.5

2.0

2.5

3.0

0 30 60 90 120

VT

(V)

BTI time (hrs)

150°C PBTI 20Vg

NBTI -12Vg

1E-12

1E-9

1E-6

1E-3

1E+0

-3 -2 -1 0 1 2 3 4 5

I D(A

)

Gate Voltage (V)

150°C

PBTI 20Vg100 hr

NBTI -12Vg100 hr

n ~ 0.12

Wolfspeed Gen3 1200V 100A SiC MOSFETs (VGSop: +15V/-4V))

hysteresis

Paper Number 3547 11 of 5

Page 12: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

Ramped Voltage Breakdown

• Constant bias TDDB:

• Time consuming

• Limited sample size

• Ramped voltage

breakdown:

• On-wafer

• Capacitor test

structures: reduced

processing time

• Larger sample sizes

N-caps (4.3mm2) on 150mm SiC 150mm

Paper Number 3547 12 of 5

Page 13: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

• Linear field model used for lifetime extrapolation: BD ~ exp(-Eox)

Ramped Breakdown of Large-Area Ncaps

J.S. Suehle, “Ultrathin gate oxide reliability: Physical models, statistics, and characterization,” IEEE Trans. Electron Dev. 49 (2002) pp. 958-971.

Y-C. Yeo, Q. Lu, and C. Hu, “MOSFET gate oxide reliability: Anode hole injection model & applications,” Inter. J. High Speed Electron. & Systems 11 (2001) pp. 849-886.

H.C. Cramer, J.D. Oliver, and R.J. Porter, “Lifetime of SiN capacitors determined from ramped and constant voltage testing,” Proc. 2006 CS MANTECH Conf., pp. 91-94.

-7-6-5-4-3-2-1012

42 44 46 48 50 52 54 56

ln(-

ln(1

-F))

Failure Voltage (V)

Ramp Rates:0.20 V/s0.67 V/s1.67 V/s

150 °C750 devices~4.3mm2

Paper Number 3547 13 of 5

Page 14: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

• TDDB median lifetime @ 15 VGS ~3 x 108 hrs at 150°C

• Lifetime prediction consistent with ramped voltage breakdown prediction

MOSFET Time-dependent dielectric-

breakdown (TDDB)

10%

90%

Paper Number 3547 14 of 5

Page 15: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

ACCELERATED HIGH-FIELD HTRB TESTING

Paper Number 3547 15 of 5

Page 16: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

• 1200V 20A G2 MOSFETs, VGS= 0 V

(C2M0080120D)

• Groups of devices stressed at VDS @

1460V, 1540V, or 1620V

• Extrapolation line gives predicted mean

failure time at given VDS (each data point is a

mean failure time)

• Failure acceleration limited by Vaval

• HTRB median lifetime @ 800 VDS ~3x107

hrs

High-temperature reverse-bias (HTRB)

accelerated testing

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

600 1,000 1,400 1,800

Tim

e (

hrs

)

Drain Voltage (V)

109

107

105

103

101

VavalVuse

Paper Number 3547 16 of 5

Page 17: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

ACCELERATED HIGH-FIELD TESTING FOR

TERRESTRIAL-NEUTRON SINGLE-EVENT BURNOUT

Paper Number 3547 17 of 5

Page 18: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

• Los Alamos National Lab spallation

neutron source: ~109 X the sea level flux

• No lifetime extrapolation required!

• We measure the actual failure rate due to

neutron irradiation @ device use fields

• FIT = failures per 109 devices*hrs scaling

to sea level n flux

• Modeling: ABB Appl. note 5SYA 2046-03

• FIT = C3*exp(C2/(C1-VDS))

Single-Event Burnout (SEB) due to

terrestrial Neutrons

After failure

Paper Number 3547 18 of 5

Page 19: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

0.1

1

10

100

1000

10000

100000

400 1000 1600 2200 2800 3400

Sea

leve

l FIT

/cm

2

Drain-Source Voltage, VDS (V)

C3M0065090

X3M0010090

TJ = 25 °C

900V MOSFET

Wolfspeed SiC MOSFET FIT rates: scaling

by active area• FIT/cm2 vs VDS for different

Wolfspeed SiC MOSFET devices:– 900V 65 mohm– 900V 10 mohm– 1200V 80 mohm– 1200V 25 mohm– 1700V 1000 mohm– 1700V 45 mohm– 3.3kV 45 mohm

• Each data point is the mean FIT rate for that sample group •

0.1

1

10

100

1000

10000

100000

400 1000 1600 2200 2800 3400

Sea

leve

l FIT

/cm

2

Drain-Source Voltage, VDS (V)

C3M0065090

X3M0010090

C2M0080120

C2M0025120

TJ = 25 °C

900V MOSFET 1200V

MOSFET

0.1

1

10

100

1000

10000

100000

400 1000 1600 2200 2800 3400

Sea

leve

l FIT

/cm

2

Drain-Source Voltage, VDS (V)

C3M0065090X3M0010090C2M0080120C2M0025120C2M1000170C2M0045170

TJ = 25 °C

900V MOSFET 1200V

MOSFET

1700V MOSFET

0.1

1

10

100

1000

10000

100000

400 1000 1600 2200 2800 3400

Sea

leve

l FIT

/cm

2

Drain-Source Voltage, VDS (V)

C3M0065090X3M0010090C2M0080120C2M0025120C2M1000170C2M0045170X3M0045330

TJ = 25 °C

3.3kV MOSFET

900V MOSFET 1200V

MOSFET

1700V MOSFET

no fails

D.J. Lichtenwalner et al., Mat. Sci. Forum, vol. 924, pp. 559-562 (2018)

Page 20: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

Wolfspeed SiC MOSFET FIT rates: scaling

by drift field• All SiC MOSFET FIT rates scale similarly with active area & drift field

(relative to avalanche)

0.1

1

10

100

1000

10000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sea

leve

l FIT

/cm

2

VDS/Vaval

Wolfspeed MOSFETs

C3M0065090X3M0010090C2M0025120C2M0080120C2M0045170C2M1000170X3M0045330

D.J. Lichtenwalner et al., Mat. Sci. Forum, vol. 924, pp. 559-562 (2018)

Paper Number 3547 20 of 5

Page 21: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

Wolfspeed SiC MOSFET vs Wolfspeed SiC Diode

• Measured FIT rates for Wolfspeed

1200V 20A MOSFET & 20A Diode

under neutron irradiation

• MOSFETs act like Diodes…

– Active area & drift effects

dominate failure characteristics

– No indication of MOSFET parasitic

NPN turn-on, or gate-rupture

0.1

1

10

100

1000

10000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

FIT/

cm2

VD / Vaval

Sea-level Neutron FIT/cm2

TJ = 25 °C

C2M0080120 1200V MOSFET

C4D020120 1200V Diode

JBS diodeMOSFET

Parasitic NPN Gate OxideSchottky contact

D.J. Lichtenwalner et al., Mat. Sci. Forum, vol. 924, pp. 559-562 (2018) Paper Number 3547 21 of 5

Page 22: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

0.001

0.01

0.1

1

10

100

700 800 900 1000 1100 1200 1300

Sea

leve

l FIT

/Am

p

Drain-Source Voltage, VDS (V)

0/6 failed

TJ = 25 °C

Wolfspeed SiC MOSFET

1200V 25mohm 0/6

failed

Si IGBT41200V 60A

SiC vs Si: 1200V Wolfspeed MOSFET vs Si

IGBT4• Si IGBTs show sharper failure onset, but higher max failure rate

• Both the SiC & Si parts may require a VDS derating, but SiC is more

immune to VDS overshoot

Si IGBT – IGW60T120-ND

SiC MOSFET

SiC MOSFET has 10X lower FIT rate

at high VDS

D.J. Lichtenwalner et al., Mat. Sci. Forum, vol. 924, pp. 559-562 (2018) Paper Number 3547 22 of 5

Page 23: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

UNCLAMPED INDUCTIVE SWITCHING (UIS)

AVALANCHE RUGGEDNESS TESTING

Paper Number 3547 23 of 5

Page 24: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

Unclamped Inductive Switching (UIS)

RuggednessAlso known as Avalanche Ruggedness (Non-

Repetitive)

• Turn the MOSFET on with a pre-set inductance (L)

in series

• Current ramps over time

• Turn the MOSFET off when a pre-set current is

reached

• MOSFET is forced into avalanche breakdown to

dissipate the current that continues to flow through

the inductor

– The inductance is incrementally increased with successive tests until

MOSFET failure is observed

– Statistics are collected over a range of currents to create a SOA curve

of Avalanche Current vs. Time in Avalanche

Paper Number 3547 24 of 5

Page 25: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

1

10

100

1,000

1 10 100 1,000

Curr

ent

(A)

Time (us)

C3M0075120D

C2M0080120D

UIS Comparison of Cree Gen 2 and Gen 3

MOSFETs

• The safe operating area (SOA) is

defined from a statistical margin

of safety applied to the typical

last surviving test

Gen 3 MOSFETs match the UIS

Ruggedness of Gen 2 MOSFETs,

despite the smaller chip size

Paper Number 3547 25 of 5

Page 26: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

Avalanche SOA: Silicon versus SiC devices

• SiC devices (Gen2 1200V

160mohm SiC MOSFETs) behave

in general similarly to Si

MOSFETs, with an avalanche

ruggedness SOA as below

• Lateral devices (such as GaN)

typically cannot survive a single

high VDS event, as the structure

does not support sustained

semiconductor avalanche

breakdown

Safe operation

area

Si MOSFETs

Paper Number 3547 26 of 5

Page 27: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

Summary• Wolfspeed SiC diodes & MOSFETs are qualified under JEDEC standards, and some device

families are also automotive (AEC) qualified

• Accelerated testing reveals:

• Long predicted lifetime in standard use conditions for:

• MOS threshold stability (VT)

• Oxide lifetime in TDDB

• Accelerated HTRB measurements

• Neutron SEB failure in SiC devices is sufficiently low for reliable device operation.

Failure scales by the drift field & the active area.

• SiC MOSFETs have a demonstrated avalanche safe operating area (SOA)

Paper Number 3547 27 of 5

Page 28: SiC MOSFET Reliability for EV Drivetrain · 19.03.2020  · Drivetrain Inverter What: Silicon Carbide MOSFETs Where: • 90 –350kW+ EV drivetrain inverter • Single, dual, or in

Questions?

• Don Gajewski, Brett Hull

• Wolfspeed, a Cree Company

[email protected]

[email protected]

APEC 15-19 Mar. 2020New Orleans, LA (USA)Industry Session: Reliability of Wide Bandgap SemiconductorsSession: IS23Session Location: R07Session Date: 2020-03-19Session Time: 08:30 - 11:25 Paper Number 3547 28 of 5