Shrinkage in Empirical Bayes Estimates for Diagnostics … · Division of Pharmacokinetics and Drug...

41
Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University, Uppsala, Sweden Shrinkage in Empirical Bayes Estimates for Diagnostics and Estimation: Problems and Solutions Radojka M. Savić & Mats O. Karlsson

Transcript of Shrinkage in Empirical Bayes Estimates for Diagnostics … · Division of Pharmacokinetics and Drug...

Division of Pharmacokinetics and Drug TherapyDepartment of Pharmaceutical Biosciences

Uppsala University, Uppsala, Sweden

Shrinkage in Empirical Bayes Estimates for Diagnostics and Estimation:

Problems and Solutions

Radojka M. Savić & Mats O. Karlsson

Outline

Empirical Bayes Estimates

Use in Non-linear Mixed Effects Modelling

Shrinkage phenomenon

Shrinkage related problems:

Diagnostics

Estimation process (FOCE & NONP)

Solutions & Recommendations

Empirical Bayes Estimates

POSTHOC estimates – individual parameter estimates

Provide population PKPD modellers with:

EBE - individual parameter estimate IPRED – individual predictions IWRES – individual weighted residuals

IWRESij=(DVij-IPREDij)/SD(εij)

Use of EBEs

Diagnostics • IPRED vs DV• IWRES vs IPRED• EBE vs EBE• EBE vs Covariate• GAM

Estimation • FOCE• Nonparametric estimation

Predicition (TDM) Simulation

Diagnostics based on EBEs

Increases resolution by separating variability components

If data are uniformative:

1. EBE distribution will shrink towards 0 (population mean)EBE 0

2. Individual predictions (IPRED) will shrink towards the corresponding observation (DV)

IPRED DV

3. IWRES, residual components will shrink towards 0IWRES 0

R.M. Savic, J.J. Wilkins and M.O. Karlsson. (Un)informativeness of EBE-based diagnostics, AAPS J, Abstract T3360, 2006.

ω

Concept of EBE shrinkage

η distribution

No data

Sparse data

How well can we estimate this parameter?

TRUE parameter

0

Rich data

ηi

Shrinking EBE distribution towards 0

Post Hoc η values

Pro

babi

lity

Den

sity

Fun

ctio

n

Ω decrease

Shrinking IPRED towards DV

0 5 10 15 20 25

Time (h)

0

2

4

6

8

10

DV

/ P

RE

D /

IPR

ED

(pg

/ml) Observations

Population predictionsIndividual predictions

Shrinking IPRED towards DV

0 5 10 15 20 25

Time (h)

0

2

4

6

8

10

DV

/ P

RE

D /

IPR

ED

(pg

/ml) Observations

Population predictionsIndividual predictions

Shrinking IPRED towards DV

0 5 10 15 20 25

Time (h)

0

2

4

6

8

10

DV

/ P

RE

D /

IPR

ED

(pg

/ml) Observations

Population predictionsIndividual predictions

IPRED is shrinking towards DV

Shrinking IWRES towards 0

)(SD

IPREDDVIWRES ijij

ij

If IPRED DV

IWRES 0

IWRES values

Pro

babi

lity

Den

sity

Fun

ctio

n

Quantifying Shrinkage

ˆ( )1 ph

sh

SD

εsh

η sh

0 1

1Rich data

Sparse data

How do these values change with information content?

)(1 IWRESSDsh

1. ETA shrinkage

2. EPSILON shrinkage

How shrinkage may influence diagnostics?

Diagnostics explored:

1. EBE-related diagnostics (- shrinkage)• EBE distribution plots• EBE vs EBE plots• EBE vs Covariate plots

2. IPRED / IWRES - related diagnostics (ε - shrinkage)• IPRED vs DV plot• IWRES vs IPRED plot

Methods: MC simulations True model was fitted to data unless otherwise stated Graphical diagnostics showed on single simulation example

to facilitate visualization

-3 -2 -1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Value

Pro

babi

lity

-3 -2 -1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Value

Pro

babi

lity

-3 -2 -1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Value

Pro

babi

lity

Consequences of - shrinkage:(i) Change of distribution shape

Post Hoc η values

Pro

babi

lity

Den

sity

Fun

ctio

n

ETABAR IS THE ARITHMETIC MEAN OF THEETA-ESTIMATES, AND THE P-VALUE IS GIVENFOR THE NULL HYPOTHESIS THAT THE TRUE MEAN IS 0.

ETABAR: -0.75E-01 0.63E+00 -0.30E+00 SE: 0.34E-01 0.17E+00 0.17E+00

P VAL.: 0.28E-01 0.13E-03 0.71E-01

Significant change in mean value of ETAs!

ETA1

-1.1

-0.6

-0.1

0.4

0.9

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.1 -0.6 -0.1 0.4 0.9

ETA2

ETA1

-1.1

-0.6

-0.1

0.4

0.9

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.1 -0.6 -0.1 0.4 0.9

ETA2

correct shrunk

True data correlated(CORR=0.65)

Estimated data Correlation hidden

(CORR=0.2)Vc

Vcηsh=48%

CLηsh=22%

CL

ETA1

-1.1

-0.6

-0.1

0.4

0.9

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.1 -0.6 -0.1 0.4 0.9

ETA2

ETA1

-1.1

-0.6

-0.1

0.4

0.9

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.1 -0.6 -0.1 0.4 0.9

ETA2

correct shrunk

True data correlated(CORR=0.65)

True data correlated(CORR=0.65)

Estimated data Correlation hidden

(CORR=0.2)

Estimated data Correlation hidden

(CORR=0.2)Vc

Vcηsh=48%

CLηsh=22%

CL

Consequences of - shrinkage(iii) parameter correlation (hidden)

CL

-1.1

-0.6

-0.1

0.4

0.9

-1.0 -0.5 -0.0 0.5 1.0

-1.0

-0.5

-0.0

0.5

1.0

-1.1 -0.6 -0.1 0.4 0.9

V

CL

-1.1

-0.6

-0.1

0.4

0.9

-1.0 -0.5 -0.0 0.5 1.0

-1.0

-0.5

-0.0

0.5

1.0

-1.1 -0.6 -0.1 0.4 0.9

V

CL

-1.1

-0.6

-0.1

0.4

0.9

-1.0 -0.5 -0.0 0.5 1.0

-1.0

-0.5

-0.0

0.5

1.0

-1.1 -0.6 -0.1 0.4 0.9

V

CL

-1.1

-0.6

-0.1

0.4

0.9

-1.0 -0.5 -0.0 0.5 1.0

-1.0

-0.5

-0.0

0.5

1.0

-1.1 -0.6 -0.1 0.4 0.9

V

Correct shrinkage 20-30%

shrinkage 30-40% shrinkage 35-45%

Corr: 0.65 Corr: 0.38

Corr: 0.14 Corr: 0.02

Consequences of - shrinkage(iii) parameter correlation (hidden)

Consequences of - shrinkage(iii) parameter correlation (induced)

Commonly induced correlations:

ka ~ V EC50 ~ Emax EC50 ~ kout

ETA1

-1.0

-0.5

-0.0

0.5

-1.0 -0.5 -0.0 0.5

-1.0

-0.5

-0.0

0.5

-1.0 -0.5 -0.0 0.5

ETA2

ETA1

-1.0

-0.5

-0.0

0.5

-1.0 -0.5 -0.0 0.5

-1.0

-0.5

-0.0

0.5

-1.0 -0.5 -0.0 0.5

ETA2

correct shrunk

Emax

Emax

EC50 EC50

True datauncorrelated

Estimated dataCorrelated

(CORR=-0.9)

sh= 28%

sh= 53%

50 100 150Covariate - weight (kg)

10

20

30

40

50

60

CL

(L/h

)

Estimated relation

Consequences of - shrinkage(iv) parameters /s vs. Covariates

Shrinkagehides relation

50 100 150

True relation

Covariate – weight (kg)

10

20

30

40

50

60

CL

(L/h

)

(i) EBEs may, in addition to shrinkage, show non-normal distribution even when the underlying η distribution is normal

(ii) mean values of EBEs (“ETABAR”) may be significantly different from zero, even for a correctly-specified model (a result of asymmetric η-shrinkage)

(iii) EBE-EBE correlations may be hidden or even induced

(iv) covariate relationships may be hidden, falsely induced, or the shape of the true relationship distorted

Consequences of η- shrinkage - Summary

-7

-6

-5

-7.0 -6.5 -6.0 -5.5 -5.0

2970269882233533998147438594

206356527253176449884319266

78

29

2970

98

479835

708235784326

3176720

12

84505383149729266

668449

53

673

6320

5925123973

1972

78

5392

19598

53

6684

84669249

319272

8

89272

51

31

17

10064

52

66

7349594397778090137632053

78

Basic goodness-of-fit, Run 10a

-7.0

-6.5

-6.0

-5.5

-5.0

-7.0 -6.5 -6.0 -5.5

92

68

1

483871

163118724995

837325

50557

779036

8276

68

Basic goodness-of-fit, Run 8

sh= 69%sh= 6%

IPRED

Obs

erva

tion

s -

DV

Consequences of - shrinkage(i) Low power of IPRED to detect model misspecification

Plot is a clear indication ofmodel misspecification

Fitted model:first order absorptionTrue model:zero-order absorption model

-7

-6

-5

-7.0 -6.5 -6.0 -5.5 -5.0

2970269882233533998147438594

206356527253176449884319266

78

29

2970

98

479835

708235784326

3176720

12

84505383149729266

668449

53

673

6320

5925123973

1972

78

5392

19598

53

6684

84669249

319272

8

89272

51

31

17

10064

52

66

7349594397778090137632053

78

Basic goodness-of-fit, Run 10a

-7.0

-6.5

-6.0

-5.5

-5.0

-7.0 -6.5 -6.0 -5.5

92

68

1

483871

163118724995

837325

50557

779036

8276

68

Basic goodness-of-fit, Run 8

sh= 69%sh= 6%

”Perfect fit” phenomenon

IPRED

Obs

erva

tion

s -

DV

Consequences of - shrinkage(i) Low power of IPRED to detect model misspecification

Emax model fitted to data simulated with a sigmoidal Emax model

Line of identity

Linear regression

Loess smooth

εsh = 5% εsh = 29%εsh = 13%

Obs

erva

tion

s -

DV

IPRED

Karlsson MO & Savic RM, Diagnosing model diagnostics, To appear in CPT, July 2007

11 obs/ID (3 etas)

0

2

4

6

-9 -8 -7 -6 -5

9017

98

14

80

62

60

23

1967

4

19

35

63

35

22

47

73

42

5165

9280 9

14

69

95

6795 66816953 237 49 9815

1079 63

8725 707 7252 7067 69

8252 49

6196

abs(

Ind

ivid

ual

we

ight

ed r

esi

dua

ls)

0.0

0.5

1.0

1.5

2.0

2.5

-8 -7 -6 -5

86

23

87

4

47

18

36 14

29

53

32618

29

53

252936

13

42

Individual predictions

IIW

RE

SI

Informative dataNon-shrunk IWRES

Uninformative dataShrunk IWRES

0

2

4

6

-9 -8 -7 -6 -5

9017

98

14

80

62

60

23

1967

4

19

35

63

35

22

47

73

42

5165

9280 9

14

69

95

6795 66816953 237 49 9815

1079 63

8725 707 7252 7067 69

8252 49

6196

abs(

Ind

ivid

ual

we

ight

ed r

esi

dua

ls)

0.0

0.5

1.0

1.5

2.0

2.5

-8 -7 -6 -5

86

23

87

4

47

18

36 14

29

53

32618

29

53

252936

13

42

Individual predictions

IIW

RE

SI

Informative dataNon-shrunk IWRES

Uninformative dataShrunk IWRES

4 obs/ID (3 etas)

Misspecification indicated Misspecification NOT indicated

Consequences of - shrinkage(ii) Low power of IWRES to diagnose residual error

misspecification

-9 -8 -7 -6 -5

-9 -8 -7 -6 -5

Individual predictions

0

1

2

3

0

1

2

3

Ab

s (I

nd

ivid

ua

l we

igh

ted

re

sid

ua

ls)

Eps shrinkage < 10% Eps shrinkage 10%

Eps shrinkage 20% Eps shrinkage 30%

3obs / 3η

5obs / 3η

4obs / 3η

11obs / 3η

(ii) low power of IWRES to diagnose residual error model misspecification

Consequences of ε- shrinkage - Summary

(i) low power of IPRED to diagnose structural model misspecification (“perfect fit” phenomenon)

(ii) low power of IWRES to diagnose residual error model misspecification

Conclusions – part 1 Model diagnostics involving EBE, IPRED, IWRES is misleading in the presence of shrinkage

The problem of shrinkage in showed examples associated to the diagnostics solely. Estimation is not affected.

Consequences of shrinkage ignorance:- wrong decisions- increased time for data analysis- wrong models

Shrinkage phenomenon is likely to affect other type of model diagnostics such as:

- GAM- CWRES

Solutions

1. Report the shrinkage extent!- Inform modelers about relevance of the graphs

2. Estimate standard errors of ETAs - Refine EBEs and EBE-based diagnostics

3. Use other type of diagnostics- Simulation based diagnostics

4. Do more model testing inside NONMEM

EBE shrinkage & EstimationFOCE

Background:EBEs are computed at each iteration step

Question:How shrinkage may affect FOCE method?

EBE shrinkage & FOCEBias in FOCE parameter estimates with EBE shrinkage

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Model parameters

-40

-20

0

20

40

Rel

ativ

e es

timat

ion

erro

r (%

)1 2 3

CL V ωclωV σ CL V ωclωV σ CL V ωclωV σ

ηsh< 10% 10< ηsh< 25% ηsh> 25%

Conclusions - part 2

1. Increased bias & variance of FOCE parameter estimates in the presence of shrinkage

FOCE method is becoming more like FO method- Biased variance estimates

Solution new algorithms refine variance estimates (NONP)

EBE shrinkage & $NONP

1. Search for support pointsparametric step (FO/FOCE)

EBEs computation

Points of support

2. Probability estimation the joint probability the marginal cumulative probability

What if EBEs are shrunk?

Consequences of EBE shrinkage

QQ plot: true versus estimated distribution

-0.85 -0.60 -0.35 -0.10 0.15 0.40 0.65 0.90

True distribution

-1.0

-0.5

0.0

0.5

Est

imate

d d

istr

ibutio

n

POSTHOC distributiondefault NONP distribution

TRUE distribution

ES

TIM

AT

ED

dis

trib

utio

n

Default NONP distribution

NONP and EBE shrinkageHow to proceed?

1. Keep using default NONMEM support points

range of available support points may be sufficient range of available support points lower than expected

-results still may be improved compared to the parametric outcome

2. Inflate variances prior to EBE (POSTHOC) estimation(enough to inflate twice the variances )

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Improvement with the inflated variances method

TRUE distribution

ES

TIM

AT

ED

dis

trib

utio

n

Default NONP distributionNONP based on inflated variances

NONP & EBE shrinkage - How to proceed?Enriched grid method

There is a way to enhance the NONP grid with additional points of support

Additional points of support are generated via simulations from final model

Practicaly it requrires:

simulation from the final model computation of the individual contributions to the entire

NONP density

A general routine that automizes this is under development

Improvement with the enriched grid method

-0.85 -0.60 -0.35 -0.10 0.15 0.40 0.65 0.90

true distribution (V)

-1.0

-0.5

0.0

0.5

POSTHOC distributionDefault NONP distributionEnriched NONP distribution

TRUE distribution

ES

TIM

AT

ED

dis

trib

utio

n

Default NONP distributionNONP based on enriched grid

Conclusions

1. Model diagnostics involving EBE, IPRED, IWRES is misleading

Essential part of model building: - wrong decisions- increased time for data analysis- wrong models

2. FOCE method is becoming more like FO methodBiased variance estimates

3. NONP method may be biasedAt higher shrinkage extents

Solutions

1. Model diagnostics Report the shrinkage extent! Compute standard errors of ETAs Use other type of diagnostics More testing directly in NONMEM

2. FOCE new algorithms refine variance estimates (NONP)

3. NONP method Inflate varainces prior to EBE estimation Use extended grid method (soon available in PsN)

Falsely induced covariate relationships by EBE shrinkage

Simulations:

WT as covariate on V no covariance V-Kano influence of WT on ka.-1.5

-1

-0.5

0

0.5

1

0 50 100 150

WT (kg)

Eta

(KA

)