prajwal-solanki
• Category

## Documents

• view

229

0

Embed Size (px)

### Transcript of SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

1/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 1

I I T P ACE- ian ’s   Edu.Pvt.Ltd. SIMPLE HARMONIC MOTION Rg - SHM - 12

IN CHAPTER EXERCISE 1

SOLUTION

1. 0.5 s

5 5sin t, sin t 1 sin2

or 1

t s2 = 0.5 s

2. x = 4sin10πt

amplitude = 4 cm; frequency , v = 5 Hz

angular frequency, 2 v 10 rad s-1

At t = 0, 0 asin   or 0

Use x a sin( t )

3. (i) 8 cm s-2 (ii) 4 cm s-2

(i) acceleration =2

2

2

4A A

T

=2

2

2

42cms

= 8 cm s-2

(ii) acceleration =

2

224x xT

=2

2

2

41cms

= 4 cm s-2

4. (a) 0.02 m (b) 4s

(c) 3.142 × 10-2 m s-1 (d) 4.94 × 10-2 ms-2

Comparing with 0x Asin( t ) , we get(a) A= 0.02 m

(b)2

0.5 ;2 T 2

or T = 4s

(c)1

maxv A 0.02 ms2

= 0.01× 3.142 ms-1 = 3.142 × 10-2 ms-1

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

2/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 2

I I T P A CE- i an ’ s   Edu.Pvt.Ltd. SIMPLE HARM ON IC MOTION Rg - SHM - 12

(d)2

2 2maxa A 0.02ms

4  =

2484 0.02 ms49 4

= 4.94 × 10-2 ms-2

IN CHAPTER EXERCISE 2

SOLUTION

1. (i) 4.4 × 10-5 J (ii) 3.3 × 10-5 J (iii) 1.1 × 10-5 J

Total energy =2

2 2 2 21 1 4m A 0.2 (2 10 ) J2 2 36

= 4.4 × 10-5 J

Kinetic energy =2 2 21 m (a x )

2  =

24 41 40.2 [4 10 1 10 ]J

2 36

= 3.3 × 10-5 J

Potential energy = (4.4 × 10-5 – 3.3 × 10-5) J

= 1.1 × 10-5

J

2. (i)A

2(ii)

3± A

2

(i)2 2 21 1k(A x ) kx

2 2

(ii) when max1

v v2

2max

1 1K.E. (K.E.) kA4 8

2 2 21 1k(A x ) kA

2 8

3. (a) 0.314 ms-1 (b) 0.1 J (c) 0.1 J (d) 0.083 J

(a)2 1

max

22v A 2.5 10 2 2 ms

7  = 0.314ms-1

(b)2 2 2

max1 1E m A mv2 2

= 1 2 0.314 J2

= 0.1 J

(c) Maximum potential energy = 0.1 J

(d) Kinetic energy =2 2 21 m (A x )

2  =

2

2 2 2 21 222 2 2 [(2.5 10 ) (1 10 ) ]2 7

= 0.083 J

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

3/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 3

I I T P ACE- ian ’s   Edu.Pvt.Ltd. SIMPLE HARMONIC MOTION Rg - SHM - 12

4. (a) 2 2v A x

or  2 2 2 2v (A x )

Now, 2 2 2 20.03 (A 0.04 )

and  2 2 2 20.04 (A 0.03 )

On simplification, A = 0.05 m and  = rad s-1

Time period,2

T 2 s

= 2 × 3.142 s = 6.284 s

(b) Energy =2 21 mA

2

=31 50 10 0.05 0.05 1 1J

2

= 6.25 × 10-5 J

IN CHAPTER EXERCISE 3

SOLUTION

1. 8.5 s

LT 2

g ,

2 1

1 2

T g

T g

Required time period =10

3.4

1.6

2. The time period is independent of the mass of bob.

3. Due to electric force of attraction between the bob and the plate, the effective value of g shall

increase. Since T 2g

l

therefore T shall decrease.

4. 0.16 ms-1

v A  = 0.05 × 22

5. -1 2 -20.02π ms , 0.02π ms

Time period = time taken in one oscillation = 2 s

v A 22

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

4/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 4

I I T P A CE- i an ’ s   Edu.Pvt.Ltd. SIMPLE HARM ON IC MOTION Rg - SHM - 12

2

2 2 2a A100 2

IN CHAPTER EXERCISE 4

SOLUTION

k m

2. 1 2

1 2

m(k + k )2π

k k

The equivalent force constant is1 2

1 2

k k

k k

3. 0.54 s

Effective force constant = 40 Nm-1

Time period,0.3

T 2 s40

= 0.54 s

4. (a) 0.31 s (b) 20 ms-2 (c) 1.0 ms-1

(a)m

T 2k

(b) max.k

acc. Am

(c) max. velocity =k

Am

5. 1.1 × 102

N m-1

, 36 kg2

2

m 2 mT 2 ; k

2k T

Here m = 12 kg and T = 1.5 s

After the block has been placed on the tray, mass is (M + 12)kg.

Now, M 12T 22k

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

5/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 5

I I T P ACE- ian ’s   Edu.Pvt.Ltd. SIMPLE HARMONIC MOTION Rg - SHM - 12

EXERCISE 1

1. A 2. C 3. D 4. A 5. D 6. D

7. C 8. D 9. C 10. C 11. D 12. D 13

C 14. B 15. C 16. B 17. A 18. C 19. B

20. C 21. B 22. D 23. A 24. B 25. A

26. C 27. C 28. B 29. (B) 30. (A) 31. (D)32. (C) 33. (B) 34. (C) 35. (B) 36. (C) 37. (B)

38. (A) 39. (A) 40. (A) 41. (C) 42. (C) 43. (B)

44. (B) 45. (D)

SOLUTION

1. (A)

v A 2 cos 2 t 3

max.v v cos 2 t 13

2 t3

t = 1/3

2. (C)

2

a A v

v AA

2

2

va A

A

2va

A 'A' doubled  'a' halved

3. (D)

P.E.min at mean position = 5 JT.E. = 9 Jmax K.E. = 4 J

2 21 mA 4J2

200

2T sec.

200 100

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

6/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 6

I I T P A CE- i an ’ s   Edu.Pvt.Ltd. SIMPLE HARM ON IC MOTION Rg - SHM - 12

4. (A)

max. acceleration of plank should not exceed g2A g

2A 10 / a = g (when block leaves contact)

5. (D)

Particle starts from mean position.

x Asin( t) at t = 1

1

2x Asin 1

8

1

Ax

2

at t = 2

x2 = A

distance covered in 1st second =A

2

distance covered in 2nd  secondA

A2

ratio1/ 2 1

2 11 2 112

6. (D)

Circular representation at t = 0Phase difference = 2 / 3Phase covered by each particle =  / 3

Time takenT T

60360 6

7. (C)

For max distance Vres. = 0

v1 = v2 x1 = x2x1 + x2 = 20 cmx1 = 10 cm

Phase difference between x = 0 and x = 1 11x

x sinA

6

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

7/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 7

I I T P ACE- ian ’s   Edu.Pvt.Ltd. SIMPLE HARMONIC MOTION Rg - SHM - 12

Phase difference between x = 0 and x = 2x6

Phase difference between x1 and x2 =  / 3

8. (D)

Let v0 is maximum velocity of each particle.

When particles are on opposite sides of x = 0, let their phase by + & –  (1 1P B 0

v v v cos 1.2 )

When they cross each other let the phase be ,2 2P B 0

v v v cos 1.6

Phase travelled by Q is  +

Phase travelled by P is2 2

(Since 'P' goes to one extreme then comes back to cross Q)since angular frequency is same, phase moved would also be same.

2 2

2

2P 0 0v v cos 1.6 v sin

2

2 20v (1.2) (1.6)

0v 2 m / s

9. (C)

From extreme to x = a/2 phase covered = /3

–A

A/2

1/3

/2

+A

60º

30ºtime taken = T/6

a / 2 3av

T / 6 T

10. (C)

K.E. at D =1

max K.E.4

2 2 2 2 21 1m (A x ) m A2 4

(CD)

3 'A 'x

2

AE 2A 2R   A 2R BD = 2CD

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

8/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 8

I I T P A CE- i an ’ s   Edu.Pvt.Ltd. SIMPLE HARM ON IC MOTION Rg - SHM - 12

3

2 R 3R  2

11. (D)

Let v A cos( t) 2a A sin( t)

2 2

2 2 2 4v a 1

A A

2 2 2 2

2

1v a A

Straight line with '–ve' slope

12. (D)

Phase moved in T/82 T

T 8 4

x a sin( t)

ax

2

13. (C)

2 2 2x A x x = 1, A = 2

2 1 4 1

3

frequency f3

2 2

14. (B)

K in parallel = 2k K in series = k/2

15. (C)

gel. = (g + a) when the elevator accelerates up.

P

LT 2 (g a) S MT 2 k

TP - downwards, Ts - same

16. (B)

Lsin60ºT 2

g

60º

m

l

s   i  n    6

0   º

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

9/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 9

I I T P ACE- ian ’s   Edu.Pvt.Ltd. SIMPLE HARMONIC MOTION Rg - SHM - 12

17. (A)

y sin( t) 3 cos( t)

y 2sin t3

3

160º

2

(max. accl.)A g g

A

for maximum acceleration

y max sin t 13

g

t3 2

t6

2

t 6 g

18. (C)

IT 2

mga

23 mR 22mgR

3R

22g

3

2g

For equivalent length of simple pendulumL

T 2g

L = 3

19. (B)

2 4U ax bx for equilibrium (mean position)

3duF 0 2ax 4bx 0dx

x = 0,2a

x4b

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

10/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 10

I I T P A CE- i an ’ s   Edu.Pvt.Ltd. SIMPLE HARM ON IC MOTION Rg - SHM - 12

let y be the displacement from mean position3F 2ax 4bx

puttinga

x y2b

3

a aF 2a y 4b y

2b 2b

2a a ay 2a 4b y 2 y2b 2b 2b

2a a ay 2a 4b 4by 4b.2 .y2b 2b 2b

2a a2 .y 4b 4b.2 y 02b 2b

mF 4ay

4a

m

20. (C)

Particle executes SHM of amplitude 'R'. Initially they col-lide at the centre since their time periods are same

3

GM

2mR mR 3mA

R A

3 ( A   new amplitude)

21. (B)

Suppose collision occurs at

Phase covered by 1 is 12

–A +AO

Phase covered by 2 is 22 2

–A

1

2

+A

90º –

1 2  (T-same)

2 2 2

4

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

11/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 11

I I T P ACE- ian ’s   Edu.Pvt.Ltd. SIMPLE HARMONIC MOTION Rg - SHM - 12

phase 13

2 4

time takenT 3

2 4

3T

8

22. (D)

mT 2

mT' 2

T' = T

23. (A)

elevator g (g a)

2

LT 2

g a

1 2T T

24. (B)

x Asin( t)

2 Tx Asin

T 12

x = A / 2

a

2 2 2

2 2

1

m (A x )K.E. 321P.E. 1m x2

25. (A)

1maxv A ( constant)

2maxv 2A 2v

26. (C)

T 2t 1sec

2 2 k

27. (C)

1y sin3

2y sin t

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

12/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 12

I I T P A CE- i an ’ s   Edu.Pvt.Ltd. SIMPLE HARM ON IC MOTION Rg - SHM - 12

Phaser  2 2max 1 2 1 2A A A 2A A cos

1

1 1 22

maxA 3

28. (B)

1y Asin t

2y Acos t

1 2y y 2 Asin t4

energy 2

21 m 2A2

2 2m A

30. (A)

Let x Asin( t) 2a A

3da A cos( t)dt

for maxda

cos t 1dt

at x = 0

for min da cos t 0dt

x A

31. (D)

centre of mass falls as water comes out, then suddenly amount regainits original position as total of water goes out.

32. (C)

1L L

T 2 2g g

mgT 2

Ag

density of liquid   density of solid

x 1Ag L Ag

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

13/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 13

I I T P ACE- ian ’s   Edu.Pvt.Ltd. SIMPLE HARMONIC MOTION Rg - SHM - 12

1

LL

33. (B)

atteractive force b/w change and metal plate, geff

increases.

34. (C)

K.E. = 2 2 21 m (A x )2

T.E. = 2 21 m A E2

at x = A/2

K.E. =2

2 21 Am A2 4

=2 21 3 3Em A

2 4 4

35. (B)

1 1 2 2 totalk l k l k l

1

lk k l

4

1k 4k

mT 2

m Tnew T ' 2

4k 2

36. (C)

2

22

2

mgx

mLmx

l

for minimum T is maximum

22

22

222

2

mLmx x.2mx

ld 0 mg

dx mLmx

l

L Lx

12 2 3

Super position of two SHM's in the same direction will be another SHM if their frequencies are

equal. Resultant equation of option (B) is1 3y 5sin t tan

4

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

14/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 14

I I T P A CE- i an ’ s   Edu.Pvt.Ltd. SIMPLE HARM ON IC MOTION Rg - SHM - 12

y 10cos 2 t6

dy20 sin 2 t

dt 6

at t = 1/6

pv 20 sin3 6

= –0.628 m/s

39. (A)

1y 3sin( t)

2y 4sin t 3sin( t)2

using phasor method

3

454

sin t

12

4y 5sin t tan

3

phase difference 14

tan3

40. (A)

If particle motion starts from extreme

x Acos( t)

at t / 6

x Acos6

maxV V sin( t)

t / 6

maxV V sin6

maxVV

2

P m v

maxmV m2E mE

02 2 2

41. (C)

1

2

3

2

2

5

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

15/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 15

I I T P ACE- ian ’s   Edu.Pvt.Ltd. SIMPLE HARMONIC MOTION Rg - SHM - 12

Relative  = 1 – 2

time taken to come back in same phaserel

2t

1

2 15t 7.5s

2 2 5 3

3 5

42. (C)

Let the spring is further extended by y when the cylinder is given small downward push. Then the restoring forceson the spring are,(i) Ky due to elastic properties of spring

y(ii) upthrust =  yAdg = weight of liquid displaced  Total restoring force = (K  +  Adg)  y   M a (K Adg)y

Comparing with 2a y,  we get

M   or

M

1

2 2

f  M

.

43. (B)

Maximum tension in the string is at lowest position.

Therefore2

Mv

T Mg L

To find the velocity v at the lowest point of the path, we apply law of conservation of energyi.e.

21 (1 cos )2

Mv Mgh MgL [ , cos ]   h L x h L L

or  2 2 (1 cos ) v gL

or 2 (1 cos ) v gL

2 (1 cos ) T Mg Mg

x   L

ah

Mv L2/

Mg

21 2 2sin

2

T Mg

2

1 42

T Mg [ sin( / 2) / 2 for small amplitudes]

2[1 ] T Mg

From figure   a

L

2

1

aT Mg

L  .

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

16/39

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

17/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 17

I I T P ACE- ian ’s   Edu.Pvt.Ltd. SIMPLE HARMONIC MOTION Rg - SHM - 12

3. (B)

2 2v 108 9x 2 2v 9(12 x ) 2 2 2 2v (A x )

3

amplitude A 12 acceleration 2a x

at x = 3  a = –9 × 0.03  = – 0.27 m/s2

4. (A, B, C, D)

The block loses contact with plank when the plank is at its amplitude

acceleration of block  ba g ( N 0)

acceleration of plank 2 pa a

to just leane 2A g

the contact2

2

10

40 10

2

T5

at lowest point of SHM.

upward acceleration of block = acceleration of plank  g N = 2mg

= 2A g

at half waydown acceleration of blockg

2

mg 3

N mg mg2 2

At mean position, velocity in maximum a = 0  N = mg

5. (B, C, D)

2 2v A y

alsody

vdt

v 0  atT

t2

2a y max at t T

F = ma = 0 at3

t T4

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

18/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 18

I I T P A CE- i an ’ s   Edu.Pvt.Ltd. SIMPLE HARM ON IC MOTION Rg - SHM - 12

atT

t2

v = 0  K.E. =0

P.E. = T.E.

6. (B, C, D)

2U 5x 20x

dvF 10 20

dx

= 10(x 2)

k = 10F = 0 at x = 2 (mean position)

mT 2

=0.1

210

T

5

7. (A, B)

Ax Asin( t)

2

t6

Tt

12

00

vv v cos( t) 3

2

00

aa a sin( t)

2

8. (A, B, C)

2 21 m A2

= KEmax

2 2 21 m (A x )2

= 0.64 × KEmax

2 2 2A x 0.64A 2 2x 0.36A

x = 0.6 A = 6 cm

22 21 AK.E. m A

2 4

atA

x 52

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

19/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 19

I I T P ACE- ian ’s   Edu.Pvt.Ltd. SIMPLE HARMONIC MOTION Rg - SHM - 12

3K.E.

4

2 21 3m A2 4

max P.E.

9. (B, D)

x = 3 sin 100 t + 8 cos2 50 t  = 3 sin 100 t + 4 + 4 cos 100 t

x = 5sin(100t ) 4    SHM

Amplitude = 5maximum x = 5 + 4 = 9

10. (D)2a x

a

x=0x

Slope = 2straight line

11. (C, D)

xsin( t)

a

y1 cos( t )

a

22

2

x y1 1

a a

uniform circle

x

dxv a cos( t)

dt

4

dyv a sin( t)dt

2 2x 4v v v  = constant

distance  time

12. (B, C, D)

2 2

2 2 2

x v1

A A

ellipse

2

a x    straight line2 2

2 4 2 2

a v1

A A

ellipse

13. (A, B, C)

2 2

2 2 2

x v1

A A

at x = 0 v A 1.0

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

20/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 20

I I T P A CE- i an ’ s   Edu.Pvt.Ltd. SIMPLE HARM ON IC MOTION Rg - SHM - 12

at v = 0 x = A = 2.5

4

2T

4

= 1.575

2a A   = 40 cm/s2

2 2

v A x 2 2v 4 (2.5) (1)

= 4 5.25

= 2 21

14. (C)

y A(1 cos2 t)

y A(2sin t )

1

2

A 2A 1

1 1 1

2 2 2

V A A 2

V A 2A

21 1 1

22 2 2

a A 2

a A 1

15. (B, D)

Let x Asin( t ) at t = 0

Ax

2

5,

6 6

also 0 0v v v cos( t )

5

6

5x Asin t

6

x Asin t2 3

= Acos t3

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

21/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 21

I I T P ACE- ian ’s   Edu.Pvt.Ltd. SIMPLE HARMONIC MOTION Rg - SHM - 12

16. (A, B, C, D)

for equilibriumkx = mgx = 1 cmif released from natural lengthA = 2x = 2 cm

mf 2 5

frequency doesn't depend on value of g.

17. (B)

The block has v0 at equilibrium

0

0

vA

00

0

vx sin( t)

initial phase is zerosince the block is moving is +ve direction.

18. (A, C)

Distance of mean position from water level = immersed length= maximum amplitude for equilibrium

60 a g 3 Lag maximum amplitude = L = immersed length = 20 cm

mT 2

3 ag

19. (A, C)

Average total energy =2 21 m A

2

= maximum K.E.

root mean square velocity =0v

2

mean velocity = 0

20. (B, C)

Average 2 21

KE m A4

=Average P.E.

2 f

2 2 21KE m A cos ( t)2

=2 21 1 cos2 tm A

2 2

f KE= 2 f

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

22/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 22

I I T P A CE- i an ’ s   Edu.Pvt.Ltd. SIMPLE HARM ON IC MOTION Rg - SHM - 12

EXERCISE 3

Comprehension - I

1. (B)

in experiment Ifrequency = no. of oscillations/sec

=

20/ s

60

=1

Hz3

2. (C)

frequency is independent of amplitude

3. (B)

frequency is also independent of mass

4. (D) part icle stops at extreme so it drops vertically.

Comprehension-II

5. (B)

Spring cut into 3 equal parts then spring constant of each part becomes 3k   in parallel

eff 1 2 3k k k k   = 9k

mT' 2 9k

TT'

3

6. (D)

x cos 60

x

x cos 60

60 60

x

kx cos 60 kx cos 60

6060

kx

2netF kx 2kx cos 60

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

23/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 23

I I T P ACE- ian ’s   Edu.Pvt.Ltd. SIMPLE HARMONIC MOTION Rg - SHM - 12

=3

kx2

eff

3k k

2

7. (C)

eff k in series = k

eff k in parallel = 9k

Comprehension-III

8. (D)

When spring of 2k displaces x, spring of k displaces by 2s (torque balanced about mid  point)

mid point displacesby 03x

y2

02yx3

netF 2kx k2x

= 4 kx

0net

4k2yF

3  = 0

8k y

3

energy stored =2

0

1 8k (y )

2 3

= 204k y3

9. (A)

mT 2

8k

3

10. (B)

gravity springexternal

gravity gravity

w www w

=

2 23m3x 1 1k(2x) 2kx2 2 2

mg3x

2

k(2x)2k(x)

mg

putting mg = 4kx =1

2

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

24/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 24

I I T P A CE- i an ’ s   Edu.Pvt.Ltd. SIMPLE HARM ON IC MOTION Rg - SHM - 12

Comprehension-IV

11. (A)

Total energy remains constant

12. (D)

d Asin( t)

11 d t sinA

13. (B)

2 2v A x at x = 0 v   maximumx A v = 0

Match the Column

14. (A)  P, R, (B)  R, (C)  P, Q, (D)  P, Q

m   resF g Ax

mT 2

Ag

(B)  R

m

res

xF (mg vg)

L

(C)  P, Q

Liquid will behave as a point mass(D)  P, Q

a   area

x x

resF g(2x)a

resF ( g2a)x

m LT 2 2

( g2a) 2g

15. A  Q, B R, C P, D P

eff

LT 2

g

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

25/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 25

I I T P ACE- ian ’s   Edu.Pvt.Ltd. SIMPLE HARMONIC MOTION Rg - SHM - 12

eff g | g a |

(A) eff 3g

g2

(B) eff g

g2

(C)   2

2eff g g 3g

(d)eff  22 2

GMGM GM2g 2 2gR R R

2

16. (A)  R, (B)  S, (C)  P, (D)  P

17. (A)

P, Q, (B)

P, Q, (C)

S, (D)

R

18. A Q, B P, C R, D  S

y Asin( t)

v A cos( t)

(A)21K.E. mv max at t 0

2

(B) PE = min at t = 0

EXERCISE 4

1. x 0.2cos5 t

Time period2

T 0.4s5

Particle is at x = 0.2 at t = 0

-A x=0 +A

t=0

from x = + A to x = 0it takes 0.1s

Total distance convered in 0.7 s iss = 7 × A = 7 × 0.2 = 1.4 m

average speed < v > =Totaldistance

Totaltime =

1.4

0.7= 2m/s

2. From the given graph

x x

comparing with

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

26/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 26

I I T P A CE- i an ’ s   Edu.Pvt.Ltd. SIMPLE HARM ON IC MOTION Rg - SHM - 12

2a x

frequency1

f 2 2

3. T 2 mgd

=

2 22mL mLmL

12 32

3L2m

4

m 3L4cm

m

=17L

218g

4. F = –10 x + 2F = – 10 (x – 0.2)k =10

x=0 mean positionv=0x=-2   0.2

Amplitudem = 0.1 kg

10

0.1 = 10 rad/s Time period =

2s

10

mean position at x = 0.2Amplitude A = + 2 + 0.2 = 2.2m

equation since particle starts from extremex 0.2 2.2cos t

x 2.2cos t 0.2

5. 2U x 4x 3

(i)dv

F 2x 4dx

= –2(x –2) (SHM) equilibrium position at x = + 2

(ii)

1

T 2 22

(iii) V A

2 6 A 2 , 2 3m A

6. Water doesn't roll as the cylinder so it is treated as point mass a.about constant poit

restoringk(R )R

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

27/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 27

I I T P ACE- ian ’s   Edu.Pvt.Ltd. SIMPLE HARMONIC MOTION Rg - SHM - 12

2I kR

2 2 2

wateras pointmass

(2MR mR ) kR

2 k

2M m

when water becomes ice (neglecting change in volume)ice behaves as solid cylinder

2I kR  2 2 232MR mR kR

2

32M m

2

7. (a) For small amplitude, the two blocks oscillate together. The angular frequency is

=k

M m

and so the time period T = 2 M m

.

(b) The acceleration of the blocks at displacement x from the mean position is

a = – 2x =kx

M m

The resultant force on the upper block is, therefore,

ma =mkx

M m

This force is provided by the friction of the lower block.

Hence, the magnitude of the frictional force ism k | x |

M m

(c) Maximum force of friction required for simple harmonic motion of the upper block is

mkA

M m at the extreme positions. But the maximum frictional force can only be µ mg. Hence

mkA

M m = µ mg

or, A =µ(M m)g

8. When the elevator is stationary, the spring is stretched to supportthe block. If the extension is x, the tension is kx which should balancethe weight of the block.Thus, x = mg/k. As the cable breaks, the elevator starts falling withacceleration ‘g’. We shall work in the frame of reference of theelevator. Then we have to use a psuedo force mg upward on the block.This force will ‘balance’ the weight. Thus, the block is subjected to a net force kx by the spring

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

28/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 28

I I T P A CE- i an ’ s   Edu.Pvt.Ltd. SIMPLE HARM ON IC MOTION Rg - SHM - 12when it is at a distance x from the position of unstretched spring. Hence, its motion in the elevator is simple harmonic with its mean position corresponding to the unstretched spring. Initially, thespring is stretched by x = mg/k, where the velocity of the block (with respect to the elevator) iszero. Thus, the amplitude of the resulting simple harmonic motion is mg/k.

9. The situation is shown in figure. The moment of inertia of the disc about the wire is

=2mr

2 =

2 2(0.200kg)(5.0 10 m)

2

= 2.5 × 10 –4 kg - m2.

The time period is given by

T = 2 C

or, C =2

2

4

T

=

2 4 2

2

4 (2.5 10 kg m )

(0.20s)

= 0.25

2

2

kg m

s

.

10. If the string is displaced slightly downward by  x , we can write,the net (restoring)force( 2 )2  x x g

2  xg

A B

Peg

(5 ) 2   x xg

or 2

5

g x x

2

5

g

or 2 5

2

T g

11. When the plank is situated symmetrically on the drums,the reactions on the plank from the drums will be equaland so the force of friction will be equal in magnitude but opposite in direction and hence, the plank will be inequilibrium along vertical as well as in horizontaldirection. Now if the plank is displaced by x to the right, the reactionwill not be equal. For vertical equilibrium of the plank

A B

R R mg …(i)

R R

f A f B

2L

mgR BR A

f A f B

A Bmgx

A B

And for rotational of plank, taking moment about center of mass we have

( ) ( )  A B R L x R L x …(ii)Solving Eqns. (i) and (ii), we get

2

A

L x R mg

L

and 2

B

L x R mg

L

Now as  f R , so friction at  B will be more than at  A and will bring the plank back, i.e.,

restoring force here

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

29/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 29

I I T P ACE- ian ’s   Edu.Pvt.Ltd. SIMPLE HARMONIC MOTION Rg - SHM - 12

( ) ( )  B A B Amg

F f f R R x L

As the restoring force is linear, the motion will be simple harmonic motion with force constant

mgk

L

So that 2 2 m L

T k g

.

12. (a) If , the ball does not collide with the wall and it performs full oscillations like a

simple pendulum.

period 2

g

(b) If , the ball collides with the wall and rebounds

with same speed. The motion of ball from A to Q isone part of a simple pendulum.time period of ball 2( )   AQt  .

AQ

l

l   l

Consider A as the starting point (t = 0)

Equation of motion is ( ) cos  x t A t

( ) cos ,  x t t

( ) cos ,  x t t   because amplitude  A

time from A to Q is the time t when x becomes

cos   t

11/ cos

AQt t

The return path from Q to A will involve the same time interval.

Hence time period of ball 2   AQt

1 12 cos 2 cos

g

12 2 cos

g g

13. Suppose that the liquid is displaced slightly from equilibrium so that itslevel rises in one arm of the tube, while it is depressed in the second arm by the same amount,  x .

h+xh-x

If the density of the liquid is , then, the total mechanical energy of the

liquid column is :

2

1( ) ( ) .

2

dx

E A h x A h xdt

( ) ( )2 2

h x h x A h x g A h x g

2

2 21 1(2 ) 2 ( )2 2

dx

Ah A g h xdt

(i)

After differentiating the total energy and equating it to zero, one finds acceleration

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

30/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 30

I I T P A CE- i an ’ s   Edu.Pvt.Ltd. SIMPLE HARM ON IC MOTION Rg - SHM - 122   x

The angular frequency of small oscillations, , is:

2

2

A g g

Ah h(ii)

14. Suppose that the plank is displaced from its equilibrium position by  x  at time t  , the centre of the

cylinder is, therefore, displaced by

2

x

the mechanical energy of the system is given by,

. . E K E  . . E K E  (Plank) + P.E.(spring) + K.E. (cylinder)22

21 1 1 22 2 2 2

dx d x E m kx m

dt dt

2

21 1 12 .2 2 2

d xm R

R dt

2

21 7 1( )2 4 2

dx

m kxdt

After differentiating the total energy and equating it to zero, one finds acceleration 2   x

The angular frequency,

4

7

k

m

15. Suppose that the particle is displaced from its equilibrium position at O , and that its x-coordinate at time t   is given by  x .The total energy of the particle at time t  is given by,,

2 21

2

dx dy E m mgy

dt dt   (i)

Differentiating the equation of the curve, we get,

2 4dx dy

x a

dt dt

2 22

2

11

2 4 4

dx x mg E m x

dt a a

The oscillations are very small, both  x  anddx

dt  are small. We ignore terms which are

of higher order than quadratic terms in  x  or,dx

dt  or, mixed terms.

2

21 1

2 2 2

dx mg E m x

dt a(ii)

After differentiating the total energy and equating it to zero, one finds acceleration = 2   x The angular frequency of small oscillations is, consequently,

2 . 2

mg g

a m a(iii)

16. At equilibrium the net force on the cylinder is zero in the vertical direction:

0 net

F B W  ,  B  the buoyancy and W  the weight of the cylinder..

When the cylinder is depressed slightly by  x , the buoyancy increases from  B  to  B B  where:

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

31/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 31

I I T P ACE- ian ’s   Edu.Pvt.Ltd. SIMPLE HARMONIC MOTION Rg - SHM - 12| |

B x Ag

while the weight W   remains the same.

the net force, net F B B W

B | |  x Ag

The equation of motion is, therefore,2

2

s

d x Ah x Ag

dt

the minus sign takes into account the fact that  x  and restoring force are in opposite directions.

2

2

s

gd x  xdt h

and the angular frequency, , is

s

g

h

17. Suppose that the rod is displaced by a small angle  as shown in the figure. The totalmechanical energy of the system is given by,

2 21 (1 cos )3 2

E m mg21 ( )

2 k

2 21

3 m

2 21

2 2

mg

k  (i)

the angular frequency of small oscillations is,

A   k kx

mg

O

2

2

3 321 23

mgk

k g

mm

(ii)

The condition for the system to be oscillation is,

3 3

2

k g

m or, 2

mgk

(iii)

18. Suppose that the block is depressed by  x . The pulley (owing to the constraint) is depressed by

2

x. Suppose that the tension in the string are &   T T   on both sides. We can write:

For block:     mg T mx ...(i)

For pulley: 0( )2

x

T T mg k x x m … (ii)

The angular acceleration of the pulley, / 2    x

R… (iii)

mg

m

TT’ x( )

2

xT T R I

R… (iv)

From (i), (ii), (iii) and (iv) we get,

0 2

53 ( )

2 2

m I

mg k x x x R

… (v)

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

32/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 32

I I T P A CE- i an ’ s   Edu.Pvt.Ltd. SIMPLE HARM ON IC MOTION Rg - SHM - 12

The frequency of small oscillation,

2

1

522 2

k  f

m I

R

19. (a) At equilibrium, the net torque on the pulley is zero.

1 sin m g R mg R … (i)

or, 1sin  mm

or,1 1sin

m

m… (ii)

Om

m1

mg

mg

T

O

(b) If the system is displaced slightly from the equilibrium position, it oscillates. Suppose that the position of the particle is given by the angular variable , at some instant.The total mechanical energy is given by:

. . . .  E K E P E

Om

m1

Owhere,2 2 2 2 2 2

1

1 1 1 1. . ( )

2 2 2 2

K E MR mR m R

and, P.E.= loss in P.E. of 1m  + gain in P.E. of m

1

( ) (cos cos ) m gR mgR

1 ( ) 2 sin sin2 2

m gR mgR

1 2 sin sin2 2

m gR mgR

2

1 2 sin 2 cos2 2

m gR mgR mgR

where  is defined by the expression : ,  being a small quantity. Since the frequency

depends only on terms which are quadratic in , we can write,

2 2 211 1 1 cos ( )

2 2 2  E M m m R mgR + terms linear in  or, constants.

After differentiating the total energy and equating it to zero, one finds acceleration = 2 x

the angular frequency,2

1

cos

1

2

mgR

M m m R

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

33/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 33

I I T P ACE- ian ’s   Edu.Pvt.Ltd. SIMPLE HARMONIC MOTION Rg - SHM - 12

and the frequency,

1

1 cos

12

2

mg f

M m m R

.

20. (a) Since the system is in equilibrium, we can write the tension in the string, T   as:2

1 0 T m r

and, 2T m g

21 0 2 m r m g … (i)

(b) Suppose that the block 2m  is depressed by  x . The radius of the circle of rotation is now

given by,

r r x .

and the angular speed  is given by,,

2 21 0 1 ( )   m r m r x

B’ A’

(f-x)( +x)l

C’

mg

T

m g1

m w (r-x)1 22

or,2

0

2( )

r x  (ii)

The free body diagram as well as the geometry of

the problem are as shown in the adjacent figure.

22

1 12( ) ( )

d m r x m r x T

dt   (iii)

2

2 22( )

d m x m g T

dt    (iv)

The first term on the RHS of the equation (iii) can be rewritten as,

2 42 1 0

1 3( )

( )

m r m r x

r x

3

21 0 1

xm r

21 0

31

x

m r r

(after binomial expansion and assuming  x r )

Equation (iii) and (iv) become

21 1 0

31

x

m x m r T  r

2 2 m x T m g .

1 2 1 0 2

3( ) 1

x

m m x m r m gr

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

34/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 34

I I T P A CE- i an ’ s   Edu.Pvt.Ltd. SIMPLE HARM ON IC MOTION Rg - SHM - 12

21 0

1 2

3

m x x

m m (v)

Thus the angular frequency of small oscillations, , is given by,,

10

1 2

3

m

m m  (vi)

EXERCISE 5

1. (A)

Potential energy3

V(x) k | x |

By the conservation of energy,2 3 31 mv kx ka

2  (in the region x > 0)

3 32k v (a x )m

3 3dx 2k  (a x )dt m

0t

3 3 0a

m dxdt

2k  a x

Substituting 2x a sin

0

3/2 62

m 2a sin cos d

2k  a 1 sin

= –t

0

2

1 mt f ( )d

k a

1T

a

2. (D)2x

xU k(1 e )

2

xdU

F ke .( 2x)dx

2xk2xe F ( x )  for x   small

3. (A), (C)

1 2 3y a sin t; y asin t ; y a sin t4 4

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

35/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 35

I I T P ACE- ian ’s   Edu.Pvt.Ltd. SIMPLE HARMONIC MOTION Rg - SHM - 12

1 2 3y y y a 1 2 sin t Energy  (amplitude)2

Energy 2 2 2a (1 2) a (3 2 2)

4. (A)

Effective value of g :g ' g cos

LT 2 gcos

5.F Y L

A L

YA LF

L

Frequency1 YA

2 LM

6. (A)

From 0 A / 2

Phase covered as6

From 0 A

Phase covered as2

1T6

22 6T

2

1

T2

T

T2 > T

1

7. (A)

x Acos t . At t = 0, the particle is at the extreme position.At the extreme position, the potential energy is maximum and displacement is maximum.

8. 1 1 2 2 1 2 0m x m x (m m )v t

12 0

2

Amx v t (1 cos t)

m

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

36/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 36

I I T P A CE- i an ’ s   Edu.Pvt.Ltd. SIMPLE HARM ON IC MOTION Rg - SHM - 12

1 0v v A sin( t)

When 1 0v v

sin t 0 cos t 1

12 0

2

Amx v t 2

m

1 0x v t 2A

12 1 0

2

mx x 2 2A 1

m

l

1 20

2

m mA

m

l

9. (B)

k 2m

Maximum acceleration of P

for P friction provides resortoringF

2FF m A

=k kA

m A2m 2

10. (B)

We have,2

2 2

2

d yy kt , 2k 2m / s

dt

2122

T g 2 6

T g 5

11. Speed of block at * 2 2y A y

Height h attaind by block after detachment =

2 2 *2(A y )

2g

Total height attached by the block

2 2 *2*(A y )H y

2g

For H to be maximum, *dH

0dy

* 2y g /

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

37/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 37

I I T P ACE- ian ’s   Edu.Pvt.Ltd. SIMPLE HARMONIC MOTION Rg - SHM - 12

12. (B), (C)

If A  B and C 0 then 2 2x Asin t Bcos t Csin t cos t (Not SHM)

If A = B and C = 2B then x B 2Bsin t cos t B Bsin 2 t (SHM)If A = –B and C = 2B then x Bcos2 t Bsin 2 t (SHM)If A = B and C = 0 then x = A (Not SHM)

13. (C)

res L L2 k ( )2 2

2kL

2

L2

L2

2

2

KL6k 2

ML M

12

14. (D)

1 2eff

1 2

k k k

k k

eff 1 1k A k A

21

1 2

k AA

k k

15. (D)

x Asin( t) T 8s 4

t , x 1sin t ,3 4

2

8 4

4x 1sin

4 3

3x

2

Acceleration 2a x 2

3

4 2

223 cm/s

32

16. (C)

At first only left spring (k) is compressed by x

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

38/39

IIT - ian's PACE Education Pvt.Ltd ; Andheri /Dadar/ Chembur /Thane /Delhi/Lucknow/Nerul/Powai # 38

I I T P A CE- i an ’ s   Edu.Pvt.Ltd. SIMPLE HARM ON IC MOTION Rg - SHM - 12

2 2 21 1 1kx mv 4ky2 2 2

xy

2

y 1

x 2

COMPREHENSION TYPE QUESTIONS

PASSAGE-1 ( QNO 17 TO 19)

17. (C)

Energy should not exceed 0V

0V E 0

18. (B)

2 4 41 mv (A x )2

4 42v A xm

x

4 40

dx

A x  =

t

0

2dt

m

1 mt

A

19. (D)

for | x | > x0

potential energy is constantF = 0 a = 0

PASSAGE 2( Q NO 20 TO 23)

20. (C)

0v A At a displacement (x)

2kxacm

232kxR mR  2

cm

4k x R a

3M

4k

3m

• 8/18/2019 SHM SOLUTION 1,2,3,4,5 - Solutions.pdf

39/39

I I T P ACE- ian ’s   Edu.Pvt.Ltd. SIMPLE HARMONIC MOTION Rg - SHM - 12

at x = A22kA mg m A

m4k 2kA mg A

3m

3 mgA

2k

03mv A gk

21. (D)

4k

3m

22. (D)

2net

m4k F m x x3m

=4k

x3

23. (A)

F = QE is a constant forceHence no change in time period

24. (A, D)

In case A2 2

2m MR mg( / 2)sin Mg sin M3 2ll l l

In case B2

2mmg( / 2)sin Mg sin M3

ll l l

torque A = torque Bfrequency A < frequency B