Shell and Tube Heat Exchanger

118
Kelompok 3: 1. Wahyudi Mahaputra 2. Ikhwan Mutaqqin 3. Vania Anisya Albels 4. Eka Syafei 5. M. Ilham Chairat 6. Olivia Cesarah Tarigan 7. Aula Arief Heat Exchanger Shell & Tube University of Indonesia

description

Unit Operation is a complicated thing. Here i shared a quality presentation about heat exchanger, shell and tube one

Transcript of Shell and Tube Heat Exchanger

Page 1: Shell and Tube Heat Exchanger

Kelompok 3:

1. Wahyudi Mahaputra

2. Ikhwan Mutaqqin

3. Vania Anisya Albels

4. Eka Syafei

5. M. Ilham Chairat

6. Olivia Cesarah Tarigan

7. Aula Arief

Heat Exchanger Shell & Tube

University of Indonesia

Page 2: Shell and Tube Heat Exchanger

RANGKA PRESENTASI

KONSEP STANDAR RULES OF THUMB

PROSEDUR PERHITUNGA

N

SOAL HITUNGAN

P e r a n c a n g a n A l a t P r o s e s 2 0 1 4 – K e l o m p o k 3

University of Indonesia

Page 3: Shell and Tube Heat Exchanger

KONSEP HE SHELL & TUBEP e r a n c a n g a n A l a t P r o s e s 2 0 1 4 – K e l o m p o k 3

University of Indonesia

Page 4: Shell and Tube Heat Exchanger

Definisi Shell and Tube Heat Exchanger

STHE terdiri dari beberapa tube yang dibungkus oleh silinder shell dengan posisi tube yang sejajar dengan shell.

Fluida satu akan mengalir pada tube dan fluida lainnya mengalir di shell.

STHE dapat memberikan luas area perpindahan panas yang besar dan efisiensi perpindahan panas yang besar.

Dapat digunakan pada kondisi tekanan tinggi dan suhu tinggi

University of Indonesia

Page 5: Shell and Tube Heat Exchanger

Tujuan

STHE merupakan jenis HE yang sangat berguna dan banyak digunakan dalam proses industri.

Hal ini dikarenakan, industri membutuhkan jumlah hairpin double pipe yang cukup banyak.

University of Indonesia

Page 6: Shell and Tube Heat Exchanger

Komponen Utama

1. Shell

2. Nozzles

3. Channels

4. Channel covers

5. Baffles

University of Indonesia

Page 7: Shell and Tube Heat Exchanger

Perbandingan

Single Pass Multiple Passes

• Saat fluida dalam HE saling

melewati hanya satu kali disebut

singgle pass heat exchanger.

• Tidak dapat menyediakan heat

recovery

• Saat fluida dalam HE saling

melewati lebih dari satu kali disebut

multi pass heat exchanger.

• Untuk membuat fluida yang

multiple passes ialah menggunakan

U-tube HE dan menambah baffle.

• Contoh 1-4,1-6,1-8,2-4. Angka

pertama menunjukan jumlah shell

dan angka kedua menunjukan

jumlah passes.

University of Indonesia

Page 8: Shell and Tube Heat Exchanger

Single Pass & Multi Pass

University of Indonesia

Page 9: Shell and Tube Heat Exchanger

MULTIPASS STHE

X-X SHELL TUBE STHE

University of Indonesia

JUMLAH PASS DALAM

TUBES

JUMLAH PASS DALAM

SHELL

Page 10: Shell and Tube Heat Exchanger

MULTIPASS STHE

University of Indonesia

4-8 SHELL TUBE STHE

Page 11: Shell and Tube Heat Exchanger

Istilah-istilah dalam HE Shell&Tube

BAFFLE

Merupakan penyokong agar tubes tidak bergetar atau bergerak

Terbagi 2 tipe: PLATE ROD

University of Indonesia

Page 12: Shell and Tube Heat Exchanger

PLATE BAFFLEJ e n i s B a ffl e p a d a S T H E

Drag picture to placeholder or click icon to add

University of Indonesia

Page 13: Shell and Tube Heat Exchanger

ROD BAFFLE

Drag picture to placeholder or click icon to add

J e n i s B a ffl e p a d a S T H E

University of Indonesia

Page 14: Shell and Tube Heat Exchanger

Istilah-istilah dalam HE Shell&Tube

BAFFLE CUT

Sejumlah persenan dari tinggi yang dipotong dari keseluruhan setiap baffle untuk mempengaruhi aliran di dalam shell

Salah satu parameter penting dalam desain sebuah STHE

Pengaruhi keefisienan perpindahan panas di shellside

Biasa digunakan sekitar 15%-40% dari shell inside diameter

University of Indonesia

Page 15: Shell and Tube Heat Exchanger

Effect of Baffle Cut

University of Indonesia

B a ffl e c u t m e m p e n g a r u h i a l i r a n p a d a s h e l l s i d e

Page 16: Shell and Tube Heat Exchanger

Istilah-istilah dalam HE Shell&Tube

TUBE LAYOUT PATTERNS

Triangular

Rotated Triangular

Square

Rotated Square

Tipe 30° memberi lebih banyak tubes dalam shell

Tipe 60° lebih bersih karena pitch nya dekatpitch

University of Indonesia

Page 17: Shell and Tube Heat Exchanger

Aplikasi HE Shell&Tube

Aplikasi sangat luas

STHE jenis Heat Exchanger yang paling umum dipergunakan pada proses Revinary, Oil and Gas, Petrochemical, dan perusahaan-perusahaan energi Dapat bekerja pada range T dan P yang luas Dapat terbuat dari berbagai macam material Banyak supplier Well established – desain dan kode nya sudah berkembang melalui

pengalaman

Pada power plants biasanya menggunkan 2-4 STHE Desain dikarenakan lebih simple karena aliran masuk dan keluar disisi yang sama (economizer)

University of Indonesia

Page 18: Shell and Tube Heat Exchanger

AplikasiS h e l l a n d t u b e h e a t e x c h a n g e r p a d a o i l a n d g a s i n d u s t r y

University of Indonesia

Page 19: Shell and Tube Heat Exchanger

STANDAR HE SHELL & TUBEP e r a n c a n g a n A l a t P r o s e s 2 0 1 4 – K e l o m p o k 3

University of Indonesia

Page 20: Shell and Tube Heat Exchanger

Shell and Tube Heat Exchanger Standards

American Petroleum Institute

(API)ANSI/API Standard 660 (8th

Ed) tahun 2007

TEMA (Tubular Exchanger

Manufactures Association)

University of Indonesia

Page 21: Shell and Tube Heat Exchanger

Design STHE Temperatur

Cladding for Corrosion Allowance

Harus mempunyai Maximum Design Temperaute dan

Minimum Design Metal Temperature (MDMT)

Design Temperature harus dipengaruhi oleh

shell dan tube

Ketebalan Minimum 10 mm (3/8 in)

University of Indonesia

Page 22: Shell and Tube Heat Exchanger

Tubes

Diameter minimim luar tubes harus 19.05 mm (3/4 in),

Radius rata-rata dari lengkungan-U, tidak boleh kurang dari 1.5 kali diameter luar.

Design

University of Indonesia

Page 23: Shell and Tube Heat Exchanger

Materials

Tubes

Integrally finned tubes of copper alloy shall be furnished in the annealed-temper condition, such as described in ASTM B 359/B 359M.

Gaskets – seal mekanis yang mengisi

ruang antara dua permukaan rapat untuk mencegah kebooran

Gaskets shall not contain asbestos.

University of Indonesia

Gasket

Page 24: Shell and Tube Heat Exchanger

Fabrication

University of Indonesia

Page 25: Shell and Tube Heat Exchanger

Fabrication

University of Indonesia

Page 26: Shell and Tube Heat Exchanger

TEMA (Tubular Exchanger Manufactures Association)

University of Indonesia

Page 27: Shell and Tube Heat Exchanger

TEMADesignation

University of Indonesia

Page 28: Shell and Tube Heat Exchanger

RULES OF THUMB HE SHELL & TUBEP e r a n c a n g a n A l a t P r o s e s 2 0 1 4 – K e l o m p o k 3

University of Indonesia

Page 29: Shell and Tube Heat Exchanger

RULE OF THUMB #11. Kecepatan maksimum pada shellside

Kecepatan harus dijaga tidak terlalu cepat , hal ini ditujukan untuk mencegah terjadinya erosi ketika terdapat moisture dan partikel dalam aliran.

Untuk mengurangi pressure drop yang tinggi dapat menggunakan kecepatan aliran di bawah maksimum pada kondisi operasi tertentu

Kecepatan pada nozzle boleh diizinkan sampai 1,2 dan 1,4 kali lipatnya

University of Indonesia

Page 30: Shell and Tube Heat Exchanger

RULE OF THUMB #22. Kecepatan maksimum pada nozzle

Penurunan tekanan dalam heat exchanger harus selalu diperhatikan ,

terutama pada sistem yang menggunakan aliran

bertekanan rendah

University of Indonesia

Page 31: Shell and Tube Heat Exchanger

RULE OF THUMB #33. Jangan digunakan untuk menurunkan temperatur yang terlalu tinggi

Ilustrasi : pada pencairan Hidrogen dan neon

Udara (umpan dimana mengandung hidrogen dan neon), tidak langsung didinginkan menggunakan nitrogen cair, akan tetapi didinginkan secara bertahap dahulu, yaitu didinginkan dengan air pada kondisi normal, lalu kemudian didinignkan menggunakan cairan nitrogen.

4. Penempatan fluida pada heat exchanger

• Fluida korosif ditempatkan pada bagian tubeside• Fluida yang memiliki tekanan dan temperatur tinggi diletakkan

dalam tubeside• Fluida yang memiliki kecepatan tinggi ditempatkan dalam tubeside• Fluida yang memiliki kekotoran, ditempatkan pada bagian tubeside• Aliran yang memiliki debit besar diletakkan pada bagian yang

berdiameter lebih besar, begitu sebaliknya

University of Indonesia

Page 32: Shell and Tube Heat Exchanger

RULE OF THUMB #4

Untuk sistem yang relatif

bersih (kotoran) dan

memiliki perbedaan

temperatur antara shell

dan tube yang tidak

terlalu tinggi, maka

digunakan BEM

Untuk sistem yang heat

exchanger yang akan

mengakomodasi ekspansi

thermal yang secara

signifikan antara tube

dan shell, maka digunaan

BEU

University of Indonesia

Page 33: Shell and Tube Heat Exchanger

PROSEDUR PERHITUNGAN HE SHELL & TUBEP e r a n c a n g a n A l a t P r o s e s 2 0 1 4 – K e l o m p o k 3

University of Indonesia

Page 34: Shell and Tube Heat Exchanger

Shell and Tube Design Flowsheet

University of Indonesia

Page 35: Shell and Tube Heat Exchanger

Determining R,S

University of Indonesia

Page 36: Shell and Tube Heat Exchanger

Determining Temperature Difference

University of Indonesia

Page 37: Shell and Tube Heat Exchanger

Determining Physical Properties

University of Indonesia

Page 38: Shell and Tube Heat Exchanger

Determining Heat Transfer Overall Coefficient

University of Indonesia

Page 39: Shell and Tube Heat Exchanger

Determining Uo

University of Indonesia

Page 40: Shell and Tube Heat Exchanger

Determining Tube Side Coefficient

University of Indonesia

Page 41: Shell and Tube Heat Exchanger

Determining Bundle Diameter

University of Indonesia

Page 42: Shell and Tube Heat Exchanger

Shell Diameter and Baffle Spacing

University of Indonesia

Page 43: Shell and Tube Heat Exchanger

Colborn Coefficient (jH)

University of Indonesia

Page 44: Shell and Tube Heat Exchanger

Overall Coefficient

University of Indonesia

Page 45: Shell and Tube Heat Exchanger

Tube Side Friction Factor

University of Indonesia

Page 46: Shell and Tube Heat Exchanger

Shell Friction Factor

University of Indonesia

Page 47: Shell and Tube Heat Exchanger

Check Pressure Drop

University of Indonesia

Page 48: Shell and Tube Heat Exchanger

EXAMPLE 8.1 (KERN)P e r a n c a n g a n A l a t P r o s e s 2 0 1 4 – K e l o m p o k 3

University of Indonesia

Page 49: Shell and Tube Heat Exchanger

Calculation of a 2-4 Oil Cooler

A 33.5˚API oil has viscosity of 1.0 centipoise at 180˚F and 2.0 centipoise at 100˚F.49,600lb/hr of oil leaving a distilling column at 358˚F and is to be used in an absorption process at 100˚F.Cooling will be achieved by water from 90˚F to 120˚F.Pressure drop allowances of 10psi may be used on both streams along with a combined dirt factor of 0.004.

University of Indonesia

Page 50: Shell and Tube Heat Exchanger

Available for this service from a discontinued operation is 35in.ID 2-4exchanger having 454 1in.OD ,11BWG tubes 12 ״0׳ long laid out on 1¼-in.squre pitch. The bundle is arranged for six tube passes and vertical cut baffles are spaced 7in. apart. The longitudinal baffle is welded to the shell.

Is it necessary to use a 2-4 exchanger?

Will the available exchanger fulfill the requirements?

University of Indonesia

Page 51: Shell and Tube Heat Exchanger

2-6 Shell and tube heat exchanger

University of Indonesia

Page 52: Shell and Tube Heat Exchanger

Temperature profile:

T1(358)

t2(120)

T2(100)

t1(90)

L

Page 53: Shell and Tube Heat Exchanger

Solution:-

Exchanger

shell side Tube side

ID=35in. Number=454

Baffle spacing=7in. Length=12 ״0׳

Passes=2 OD,BWG=1in.,11

Pitch=1¼in.squre

Passes=6

Page 54: Shell and Tube Heat Exchanger

Hot fluid Cold fluid

difference

T1=358˚F t2=120˚F ∆t1=238˚F

T2=100˚F t1=90˚F ∆t2=10˚F

Temperature range:-

(T1-T2) (t2-t1)

258˚F 30˚F

Page 55: Shell and Tube Heat Exchanger

LMTD:-

LMTD= ∆t1-∆t2

ln(∆t1/∆t2)

LMTD = 238-10

ln(238/10)

LMTD =72˚F

Page 56: Shell and Tube Heat Exchanger

Correction factor:-

R= (T1-T2)/(t2 - t1)

R=238/30

R=8.6

S=(t2-t1)/(T1-t1)

S=30/(358-90)

S=0.112

Page 57: Shell and Tube Heat Exchanger
Page 58: Shell and Tube Heat Exchanger

True temperature difference:-

∆t=FT×LMTD

From table: FT=0.93

LMTD=72˚F

∆t=0.93×72

∆t=66.96˚F

Page 59: Shell and Tube Heat Exchanger

Heat balance:-

Oil Q=W ×cp×(T1-T2) Q=49,600×0.545×(358-100) Q=6,980,000Btu/hr

Water Q=m×cp×(t2-t1) Q=23,2666.67×1.0×(120-90) Q=6,980,000.1Btu/hr

Page 60: Shell and Tube Heat Exchanger
Page 61: Shell and Tube Heat Exchanger

Caloric temperatures:-

∆t2/∆t1=10/238=0.042

For

API=33.5˚ and temperature range(258˚F) Kc=0.47(from table)

For Kc=0.47 and ∆t2/∆t1=0.042

Fc=0.267

Page 62: Shell and Tube Heat Exchanger
Page 63: Shell and Tube Heat Exchanger

Caloric temperature of hot fluid:

Tc=T2+Fc×(T1-T2)

Tc=100+0.267×(258)

Tc=165˚F

Caloric temperature of cold fluid:

tc=t1+Fc×(t2-t1)

tc=90+0.267×(30)

tc=98˚F

Page 64: Shell and Tube Heat Exchanger

Hot fluid: shell sideFlow area

as=1/2(ID×C׳×B)/144PT

as=1/2(35×0.25×7)/144×1.25

as=0.17ft2

Mass velocity

Gs=W/as

Gs=49,600/0.17

Gs=292000lb/(hr)(ft2)

Page 65: Shell and Tube Heat Exchanger

Viscosity:

At Tc=165F (from table)

µ=1.12cp

µ=1.12×2.42

µ=2.71lb/(ft)(hr)

Equivalent diameter:

De=0.99 in. (from table)

De=0.99/12

De=0.0825ft

Page 66: Shell and Tube Heat Exchanger
Page 67: Shell and Tube Heat Exchanger
Page 68: Shell and Tube Heat Exchanger

Reynolds number: Res=DeGs/µ Res=0.0825×292000/2.71 Res=8900 jH=52.5 (from table)

Prandtl number:- Pr=(cµ/k)

For API=33.5˚ and µ=2.71 (from table) k(Pr)⅓=0.20Btu/(hr)(ft2)(˚F)

Page 69: Shell and Tube Heat Exchanger
Page 70: Shell and Tube Heat Exchanger
Page 71: Shell and Tube Heat Exchanger
Page 72: Shell and Tube Heat Exchanger

Film coefficient: ho=jH× (k/De) × (Pr)⅓×Φs ho/Φs= 52.5 ×0.2/0.0825 ho/Φs=127

Cold fluid: tube sideFlow area:

a׳t=0.455 in. square at=(Nt×a׳t)/(144×n) at=(454×0.455)/(144×6) at=0.239ft2

Page 73: Shell and Tube Heat Exchanger
Page 74: Shell and Tube Heat Exchanger

Mass velocity:

Gt=m/at

Gt=232666.67/0.239

Gt=973500lb/(hr)(ft2)

Fluid velocity:

V=Gt/(3600×ρ)

V=973500/(3600×62.37)

V=4.33fps

Page 75: Shell and Tube Heat Exchanger

Diameter:

D=0.76 in./12 (from table)

D=0.0633ft

Viscosity:

At tc=98˚F

µ=0.73 cp (from table)

µ=0.73×2.42

µ=1.77 lb/(hr)(ft)

Page 76: Shell and Tube Heat Exchanger
Page 77: Shell and Tube Heat Exchanger

Reynolds number:

Ret=D× Gt/μ

Ret=(0.0633 ×973500)/1.77

Ret=348156

Film coefficient:

For

V=4.33fps (from table)

hi=1010×0.96

hi=970 Btu/(hr)(ft2)(ºF)

Page 78: Shell and Tube Heat Exchanger
Page 79: Shell and Tube Heat Exchanger

hio=hi×(ID/OD)

hio=970×(0.76/1.0)

hio=737 Btu/(hr)(ft2)(ºF)

Tube-wall temperature:

tw=tc+ ho × (Tc-tc)

(ho+hio)

tw=98+ 127 × (165-98)

(127+737)

tw=108ºF

Page 80: Shell and Tube Heat Exchanger

At tw:

μw=1.95×2.42

μw=4.72 lb/(hr)(ft)

Φs=(μ/μw)¼

Φs=(2.71/4.72)¼

Φs=0.92

ho=127×0.92

ho=117 Btu/(hr)(ft2)(ºF)

Page 81: Shell and Tube Heat Exchanger

Clean overall coefficient Uc:

Uc= (hio×ho)/ (hio+ho)

Uc=(737×117)/(737+117)

Uc=101 Btu/(hr)(ft2)(ºF)

Page 82: Shell and Tube Heat Exchanger

Design overall coefficient UD:

UD=Q/(A× ∆t)

A(total)=454×12ft×(0.2618ft2/lin ft)

A=1425ft2

UD=6980000/(1425×66.96)

UD=73.15 Btu/(hr)(ft2)(ºF)

Page 83: Shell and Tube Heat Exchanger

Dirt factor Rd:

Rd=(Uc-UD)/UcUD

Rd=(101-73.15)/(101×73.15)

Rd=0.00377 (hr)(ft2)(ºF)/Btu

Rd (required) 0.004

Rd(calculated) 0.00377

Page 84: Shell and Tube Heat Exchanger

Pressure drop: (on shell side)

For Res=8900 (from table)

f=0.00215ft2/in.2

No of crosses, N+1=12L/B

N+1=(12 × 12)/7

N+1=20.1 ( Say,21)

Ds=35 in./12

Ds=2.92ft

Page 85: Shell and Tube Heat Exchanger
Page 86: Shell and Tube Heat Exchanger

S( specific gravity)=0.82 (from fig.)

Page 87: Shell and Tube Heat Exchanger

∆Ps = f×Gs2×Ds×(N+1)

5.22×1010×De×s×Φs

∆Ps =0.00215×2920002×2.92×42

5.22×1010×0.0825×0.82×0.92

∆Ps =7.0psi (allowable=10psi)

Page 88: Shell and Tube Heat Exchanger

Pressure drop: (on tube side)Ret =34815.6 (from fig.)

f=0.000195ft2/in.2

∆Pt=(f×Gt2×L×n)/(5.22×1010×Ds×Φt)

∆Pt= 4 psi

Gt=973500,v2/2g=0.13 (from fig.)

∆Pr=(4×n×v2)/(2g×s)

∆Pr=3.2 psi

∆PT=∆Pt+∆Pr=7.2psi(allowable=10psi)

Page 89: Shell and Tube Heat Exchanger
Page 90: Shell and Tube Heat Exchanger
Page 91: Shell and Tube Heat Exchanger

2-4 Shell and tube heat exchanger:-

Page 92: Shell and Tube Heat Exchanger

Only replace value of n=6 to n=4

At=0.3585

Gt=649000

V=2.89fps

Ret=23210

hi=760 Btu/(hr)(ft2)(ºF)

hio=577 Btu/(hr)(ft2)(ºF)

tw=110ºF

ho=117 Btu/(hr)(ft2)(ºF)

Page 93: Shell and Tube Heat Exchanger

Uc=94 Btu/(hr)(ft2)(ºF)

Rd=0.003 (hr)(ft2)(ºF)/Btu

F=0.00025

∆Pt=1.53 psi ,v2/2g =0.065

∆Pr=1.04 psi

∆PT=∆Pt+∆Pr=2.57psi

(allowable=10psi)s

So,2-6 STHE is more suitable as compare to 2-4 STHE.

Page 94: Shell and Tube Heat Exchanger

EXAMPLE 8.2 KERNC O N T O H P E R H I T U N G A N S T H E

University of Indonesia

Page 95: Shell and Tube Heat Exchanger

CALCULATION OF AN ACETONE-ACETIC ACID EXCHANGERAcetone (s=0.79) at 250oF is to be sent to storage at 100oF and at a rate of 60,000 lb/hr. The heat will be recieved by 168,000 lb/hr of 100 per cent acetic acid (s=1.07) coming from storage at 90oC and heated to 150oC. Pressure drops of 10.0 psi are available for both fluids, and a combined dirt factor of 0.004 should be provided.

Available for the service are a large number of 1-2 exchangers having 21 ¼ in. ID shells with 270 tubes ¾ in. OD, 14 BWG, 16’0’’ long and laid out 1-in. Square pitch. The bundles are arranged for two tube passes with segmental baffles spaced in. apart.

How many of the 1-2 exchangers should be installed in series?

 Diketahui :

Page 96: Shell and Tube Heat Exchanger

Table 9. Tube Sheet Layout

Table 10. Heat Exchanger and Condenser Tube Data

Page 97: Shell and Tube Heat Exchanger

PEMBAHASAN1. HEAT BALANCE Q = WC (T1-T2)

AcetonAcetic acid

Q = 60,000 x 0.57 (250-100) = 5,130,000 Btu/hr Q = 168,000 x 0.51 (150-90) = 5,130,000 Btu/hr2. TEMPERATURE DIFFERENCE (

= LMTD. FT

Fig. 18 (HE 1-2) FT = tidak memotong

Fig. 19 (HE 2-4) FT = 0.67 (masih terlalu rendah, minimal 0.75)

Fig. 20 (HE 3-6) FT = 0.88 (pilih tipe HE 3-6)

FT merupakan pertimbangan pemilihan jumlah shell and tube. Terlebih dahulu menghitung R dan S

= LMTD. FT = 39.1 x 0.88 = 34.4 F

Page 98: Shell and Tube Heat Exchanger

FIG. 18

Page 99: Shell and Tube Heat Exchanger

FIG. 19

0.67

Page 100: Shell and Tube Heat Exchanger

FIG. 20 0.88

Page 101: Shell and Tube Heat Exchanger

3. CALORIC TEMPERATURE

Tc and tc. These liquids are not viscous, and the viscosity correction will be negligible, . Average temperatures may be used.

Aceton Ta = (250+100)/2 = 175 F , Acetic acid ta = (150+90)/2 = 120 F

4. FLOW AREA

Keterangan : ID = Inner DiameterC’ = PT – OD tubeB = Baffle

Page 102: Shell and Tube Heat Exchanger

5. MASS VELOCITY

6.

Page 103: Shell and Tube Heat Exchanger

Aceton 100%Ta = 175 Fx = 14.5y = 7.2

Acetic acid 100%ta = 120 Fx = 12.1y = 14.2

Page 104: Shell and Tube Heat Exchanger

Shell : acetonD = de/12 [Fig. 10]

Tube : acetic acidD = ID/12 [Fig. 10]

Page 105: Shell and Tube Heat Exchanger

7. Colburn Coefficient (jH)

Page 106: Shell and Tube Heat Exchanger

137

Page 107: Shell and Tube Heat Exchanger

55

Page 108: Shell and Tube Heat Exchanger

8. Ta, c, k

Page 109: Shell and Tube Heat Exchanger

FIG. 2

Page 110: Shell and Tube Heat Exchanger

9. ho, hi

10. hio

13. CLEAN OVERALL COEFFICIENT(Uc)

Page 111: Shell and Tube Heat Exchanger

14. DESIGN OVERALL COEFFICIENT (Uc)

Page 112: Shell and Tube Heat Exchanger

15. DIRT FACTOR (Rd)

Page 113: Shell and Tube Heat Exchanger

15,800

Page 114: Shell and Tube Heat Exchanger

FIG. 29

0.00155

Page 115: Shell and Tube Heat Exchanger

FIG. 26

0.00024

Page 116: Shell and Tube Heat Exchanger
Page 117: Shell and Tube Heat Exchanger

FIG. 27

0.63

Page 118: Shell and Tube Heat Exchanger

THANK YOU P e r a n c a n g a n A l a t P r o s e s 2 0 1 4 – K e l o m p o k 3