Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

40
CA08104001E For more information, visit: www.eaton.com/consultants April 2017 Contents Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage 6.0-1 i ii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Sheet 06 Drawout Vacuum Breakers 001 Metal-Enclosed Switchgear— MEF Front-Access Medium-Voltage Drawout Vacuum Breakers Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage Drawout Vacuum Breakers General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.0-2 Technical Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.0-19 Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.0-31 Specifications See Eaton’s Product Specification Guide, available on CD or on the Web. CSI Format: . . . . . . . . . . . . . . . . . . . . . . . . . 1995 2010 Section 16347A Section 26 13 19.11 MEF Switchgear (5–15 kV) Note: Viewing windows shown in the photo are illustration only.

Transcript of Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

Page 1: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

CA08104001E For more information, visit: www.eaton.com/consultants

April 2017

Contents

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage 6.0-1

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum Breakers001

Meta

l-E

nclo

sed

Sw

itch

gear—

ME

F F

ron

t-A

ccess M

ed

ium

-Vo

ltag

eD

raw

ou

t V

acu

um

Bre

akers Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

Drawout Vacuum Breakers

General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.0-2

Technical Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.0-19

Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.0-31

Specifications

See Eaton’s Product Specification Guide, available on CD or on the Web.CSI Format: . . . . . . . . . . . . . . . . . . . . . . . . . 1995 2010

Section 16347A Section 26 13 19.11

MEF Switchgear (5–15 kV)

Note: Viewing windows shownin the photo are illustration only.

Page 2: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

6.0-2

For more information, visit: www.eaton.com/consultants CA08104001E

April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersGeneral Description

002

Medium-Voltage Drawout BreakerEaton’s newest Type MEF metal-enclosed front-accessible switchgear with Type VCP-T/VCP-TL drawout vacuum circuit breakers provide centralized control and protection of medium-voltage power equipment and circuits in industrial and commercial installations involving:

■ Transformer primary switching■ Transformer secondary main■ General purpose feeder circuit■ Bus tie circuit■ Generator main■ Across-the-line starting of medium-

voltage motors■ Automatic transfer switching

using main-main or main-tie-main configurations

■ Harmonic filter bank switching■ Any combination of above

applications

Type MEF metal-enclosed switchgear is designed for application at voltages up to 15 kV. It is a modularized design that can be assembled in various com-binations to satisfy user application requirements. The switchgear can be supplied with one-high or two-high breaker arrangements. Type MEF switchgear is a front-accessible design, suitable for installation against the wall.

For metal-clad, rear-access switchgear design, refer to Tab 5, type VCP-W switchgear.

StandardsMEF metal-enclosed switchgear is designed to meet requirements of C37.20.3, IEEE® standard for metal-enclosed switchgear. Drawout circuit breakers and auxiliary drawers are designed to meet requirements of C37.20.2, IEEE standard for metal-clad switchgear.

MEF also meets Canadian Standard, CSA® C22.2 No. 31-04.

Type VCP-T/VCP-TL vacuum circuit breakers used in MEF switchgear meet or exceed ANSI and IEEE standards applicable to ac high-voltage circuit breakers rated on symmetrical current basis; C37.04, C37.06, C37.09.

Third-Party Certifications ■ UL®

■ CSA

MEF Switchgear—Indoor Unit

VCP-T/VCP-TL Circuit Breaker

Seismic Qualification

Refer to Tab 1 for information on seismic qualification for this and other Eaton products.

VCP-T/VCP-TL Circuit Breaker with Integral Protective Relay

VCP-T/VCP-TL Circuit Breaker—Side View

Ratings■ Rated maximum voltage:

4.76 kV, 15 kV■ Rated main bus continuous current:

1200, 2000 A■ Circuit breaker ratings: continuous

current 600, 1200, 2000 A■ Rated short-circuit current:

16, 20, 25, 32 and 40 kA■ Refer to Table 6.0-3 and

Table 6.0-4 for more details

Page 3: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

CA08104001E For more information, visit: www.eaton.com/consultants

6.0-3April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersGeneral Description—VCP-T/VCP-TL Vacuum Circuit Breaker

003

Advantages■ Reduced footprint■ Front-access design■ Maintenance-free bus joints■ Full benefits of switching and

interrupting capabilities of vacuum breakers

■ Integral relaying and metering by use of breaker mounted protection that allows full short-circuit and overload coordination with upstream devices

■ External control power is not required when using integral protection

■ Optional external relays and meters■ MEF fills the application gap

between metal-enclosed fusible load interrupter and metal-clad breaker switchgear designs

■ Breakers shipped installed in the switchgear; no mismatch or misplaced circuit breakers at site and reduced installation cost

Features—VCP-T/VCP-TL Vacuum Circuit Breaker■ Vacuum circuit breakers provide

high duty cycle, fast interruption, reduced maintenance, and are environmentally friendly

■ Very compact and lightweight circuit breaker rated to 15 kV; weighs only 250–440 lb (114–200 kg)

■ Fully horizontal drawout feature with connect, test and disconnect positions provides ease of operation and interchangeability. Levering-in (racking) system is an integral part of the breaker

■ All circuit breaker functions, indica-tors and controls are grouped on an easily accessible panel on front of the circuit breaker

■ Levering interlock prevents the breaker from being racked out when in connected position and closed

■ Trip-free interlock prevents breaker from closing, manually or electri-cally, while it is being levered or when in an intermediate position

■ Secondary control connector inter-lock prevents breaker being moved into the connected position if the breaker control wiring connector is not correctly engaged with its com-partment control wiring connector. Interlocking also prevents discon-nection of circuit breaker control wiring connector, manually or auto-matically, while the circuit breaker is in the connected position and in any position between the connected and the test/disconnected

■ Breaker frame remains grounded throughout its travel and in the connected position

■ Choice of manually or electrically operated circuit breakers

■ Integral spring charging handle■ Choice of breaker mounted protec-

tion for automatic short-circuit and overload protection without a need for external control power

■ Can also be used with external relays when equipped with optional shunt trip and external control power

■ Easy-to-see contact erosion indicator is provided on the moving stem of the breaker. Only visual inspection is required to verify that the contacts have not worn out

■ Easy-to-see contact wipe indicator is provided for verification by simple visual inspection that the loading springs are applying proper pressure to the contacts when the circuit breaker is closed

■ One auxiliary switch (5a, 5b) included as standard on all breakers for breaker contact status

■ Quality Assurance Certificate is included with each circuit breaker

VCP-T/VCP-TL Circuit Breaker Fully Withdrawn on Extension Pan

Page 4: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

6.0-4

For more information, visit: www.eaton.com/consultants CA08104001E

April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersGeneral Description—VCP-T/VCP-TL Vacuum Circuit Breaker

004

Choice of Breakers

VCP-T Breaker

VCP-T Breaker

■ ANSI rated—drawout■ Equipped with stored energy spring operating

mechanism■ 5/15 kV, 600/1200/2000 A■ 25 kA and 40 kA rms symmetrical■ K = 1■ Rated interrupting time = 3 cycle■ Operating mechanism = 10,000 operations■ Vacuum interrupters = 30,000 operations

VCP-T Breaker

VCP-TL Breaker

VCP-TL Breaker

■ ANSI rated—drawout■ Equipped with linear magnetic actuator operating

mechanism■ 5/15 kV, 600/1200 A■ 25 kA rms symmetrical■ K = 1■ Rated interrupting time = 3 cycle■ Operating mechanism = 100,000 operations■ Vacuum interrupters = 30,000 operations

VCP-TL Breaker

u Magnetic Actuatorv Capacitorw Controllerx Power Supply

Notes:

1. VCP-TL breakers are designed such that in event of control power loss, internal capacitors provide sufficient energy to perform an electrical open operation up to 48 hours after the loss of control power.

u Secondary Wiringv Through-the-Window

Accessoriesw Electric Charging Motorx Manual Charging Handley Contact Status (Open-Close)U Spring Status (Charged-

Discharged)V Manual “OFF” PushbuttonW Manual “ON” PushbuttonX Operations Counterat 5A/5B Auxiliary Switch

ak Opening Springal OFF Key Lock Locationam Motor Cutoff Switchan Integral Protective Relay

(Optional)ao Cradle with Levering

Mechanismap Shock Bolt Handleaq Shock Boltar Packing Screw Lock Plateas Levering Drive Nutbt Push/Pull Handle

bt

y

x

v

u

w

V

X

U

W

aq

ar

aa

as

ac

ad

at

af

ag

al

ao

u

v

w

x

x

Page 5: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

CA08104001E For more information, visit: www.eaton.com/consultants

6.0-5April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersGeneral Description—MEF Switchgear

005

Features—MEF Switchgear AssemblyType MEF is metal-enclosed front- accessible switchgear with many metal-clad features.

■ Drawout circuit breaker and auxiliary (VT, CPT) compartments with automatic shutters to prevent accidental contact with high-voltage circuits when breaker/auxiliary is removed

■ No high-voltage connections or circuits are exposed by opening of circuit breaker, VT or CPT compartment door

■ All drawout elements are provided with mechanical interlocks for proper operating sequence under normal operating conditions as described in IEEE C37.20.2

■ All low-voltage control wiring, devices and control compartments are isolated from high-voltage circuits

MEF Switchgear is Compact ■ Breaker and auxiliary cells are

26.00-inch wide, 61.50-inch deep, 92.00-inch tall (660.6 mm wide, 1562.1 mm deep, 2336.8 mm tall)

■ Cable pull sections are 19.00 inches wide, 61.50 inches deep, 92.00 inches tall (482.6 mm wide, 1562.1 mm deep, 2336.8 mm tall)

■ Reduced front aisle space for breaker withdrawal saves overall floor space

■ Shipping groups can be moved in place by forklift, or overhead lifting means

MEF Switchgear is ModularAvailable configurations include:

■ Breaker over auxiliary■ Breaker over breaker■ Auxiliary over auxiliary■ Pull sections with various cable

entry combinations

MEF Switchgear is Front Accessible■ Allows primary cable connections

from the front of the switchgear■ All drawout elements (breaker,

VT, CPT) are front accessible after opening their compartment door

■ All field connections required at shipping splits are accessible and made from the front

■ No rear access space is required. The switchgear can be installed against the wall

■ All non-accessible primary bus joints and connections are maintenance-free—do not require inspection or re-torque

MEF Switchgear—Indoor Unit

ControlCompartment

VT Drawer

CPT Drawer

MEF Switchgear—Breaker Over Breakerand Adjacent Pull Section

MEF Switchgear—Single Breaker with Cables Out the Bottom

ControlCompartment

Page 6: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

6.0-6

For more information, visit: www.eaton.com/consultants CA08104001E

April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersGeneral Description—MEF Switchgear

006

Circuit Breaker Compartment■ Each circuit breaker compartment

is provided with steel shutters (breaker driven) that automatically rotate into position to cover station-ary cell studs to prevent contact with high-voltage circuit when the breaker is moved from connected to disconnected position. Provisions for padlocking the shutters open or closed is included as standard

■ Rejection interlock pins prevent insertion of the circuit breaker if the circuit breaker and structure ratings are not compatible

■ A silver-plated copper ground bus keeps the breaker grounded throughout its travel and in its connected position

Circuit Breaker Compartment—Breaker in Connected Position

Circuit Breaker in Connected Position Indicator

SteelShutters

Provisionfor PadlockShutters

CellStabs

Panel Spacefor LVControlDevices

VCP-T Circuit Breaker Compartment(Shutters Shown Open for Illustration)

VCP-T Circuit Breaker Compartment

Page 7: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

CA08104001E For more information, visit: www.eaton.com/consultants

6.0-7April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersGeneral Description—MEF Switchgear

007

Auxiliary CompartmentsMEF switchgear permits use of up to four auxiliary drawers in one vertical unit. Those drawers can be used for installation of voltage or control power transformers.

■ Each drawer can be fully withdrawn on extension rails, thus allowing easy access to VT, CPT and their primary fuses

■ Safety shutter protects against acci-dental contact with primary stabs when the drawer is withdrawn

■ A VT drawer can accommodate two VTs, each connected line-to-line (open delta), or three VTs, each connected line-to-ground

■ A CPT drawer can accommodate a maximum of single-phase, 5 kVA CPT

■ Mechanical interlock is included on CPT drawer that requires CPT secondary breaker to be opened prior to withdrawing the drawer to ensure that the primary circuit can only be disconnected under no-load

■ Primary fuses are automatically grounded as the drawer is withdrawn from connected to disconnected position

VT Drawer

CPT Drawer

VT Secondary Fuse Block

Primary Shutter

Primary Fuse Grounding Straps

Secondary Disconnect Teeter-

Totter Assembly

Drawout VT and CPT Auxiliary Drawer Compartment

VT Withdrawn on Extension Rails

Primary Fuse

VT

CPT Withdrawn on Extension Rails

Primary Fuse

CPT

Interlock

CPT SecondaryMain Breaker

Ground Bus

Page 8: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

6.0-8

For more information, visit: www.eaton.com/consultants CA08104001E

April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersGeneral Description—MEF Switchgear

008

Cable Pull Sections

MEF Cable Pull Section Adjacent to 2-High Breaker Cell

Cable pull sections are included as required to allow top or bottom primary cable terminations from the front of the switchgear. Current sensors for use with breaker mounted integral protective relay, or current transformers for use with door mounted external relays are mounted in the primary circuits in the pull sections. Pull sections are also used as needed for bus transition and bus connections to other equipment. Pull section is metal-enclosed.

Pull Section Close-Up View CT/Sensor Mounting

Pull Section Close-Up View Cable Termination and Zero Sequence CT/Sensor

CT/SensorPrimary Bushings

Single-PhaseCurrent Sensors

Three-Phase CT

CT/SensorSecondary Wires

Customer’s CableTerminal Pads

Surge Arresters

Zero SequenceSensor

Zero SequenceCT

Page 9: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

CA08104001E For more information, visit: www.eaton.com/consultants

6.0-9April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersGeneral Description—MEF Switchgear

009

Bus Compartments

Top View—Main Bus Access

Type MEF switchgear is completely front accessible, designed to be installed against a wall. Access necessary for customer’s primary cable terminations, joining of bus joints (main bus and ground bus) at shipping splits, and terminations of customer’s control wires are provided from the front of the switchgear. Main bus is accessible from the top front of the switchgear. All bus bars are insulated throughout by epoxy coating using Eaton’s fluidized bed process, and covered with PVC boots at joints. All joints are silver-plated. All bus joints that are not accessible are bolted with special hardware to eliminate need for future inspection or re-torque. Minimum 24.00-inch (609.6 mm) clearance to ceiling is recommended for main bus access.

Rear View (Shown with Rear Covers Removed for Illustration Purposes)

Main BusJoint withPVC Boot

Main Bus

Main BusSupport

Risers toMain Bus

Copper Ground Bus(Accessible in Pull Section)

Run Backs to Pull Section

Breaker CellPrimary Insulators

Pull Section

Breaker Over Breaker Cell

Page 10: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

6.0-10

For more information, visit: www.eaton.com/consultants CA08104001E

April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersGeneral Description

010

Protection and Metering Type MEF switchgear with VCP-T/VCP-TL circuit breakers can be sup-plied with integral breaker mounted protective relays for overload and short-circuit protection and metering. The integral relays are self-powered from specially designed and tested current sensors. MEF switchgear can be supplied with external relays and meters connected to current trans-formers and powered from an external auxiliary power.

Integral Protection and Metering ■ Type VCP-T/VCP-TL circuit breakers

can be equipped with Eaton’s Type Digitrip 520MCV or Digitrip 1150V protection relays

■ The Digitrip 520MCV is used for basic overcurrent protection

■ The Digitrip 520MCV relay includes an Arcflash Reduction Maintenance System™ (ARMS) feature that may be activated at the breaker or from remote. When activated, the ARMS feature lowers the available arc flash energy at the connected down-stream device by faster clearing of the downstream fault

■ The Digitrip 1150V is used for advanced current and voltage protections, and metering and communication functions. ARMS feature is included on 1150V relay as standard

■ The 520MCV and 1150V relays are designed and tested to work with Eaton’s Type V current sensors only

The power required to operate the protective relay’s basic overcurrent protection functions is provided by secondary output from the current sensors once the three-phase primary current through the circuit breaker exceeds approximately 10 to 12% of the current sensor rating or single-phase primary current exceeds approximately 30% of the current sensor rating.

The relay continuously analyzes secondary current signals from the current sensors and when preset cur-rent levels and time delay settings are exceeded, sends and a trip signal to the trip actuator of the circuit breaker. The trip actuator causes tripping of the circuit breaker by providing the required mechanical force for tripping. The trip actuator is automatically reset each time the circuit breaker opens.

The current sensors, protective relay and circuit breaker are fully tested as a system for time-overcurrent response over the entire current range up to the interrupting rating of the circuit breaker.

An optional Overcurrent Trip Switch (OTS) with one latching type Form C contact can be provided to indicate tripping of the circuit breaker by the action of an integral protective relay.

Rating PlugA rating plug matched to phase current sensor rating is installed on all integral protective relays. The rating plug and phase current sensors define maxi-mum continuous current rating (In) of the circuit breaker. The rating plug and phase current sensors also determine the maximum instantaneous setting.

If the rating plug is removed from the protective relay, the circuit breaker will trip if it is carrying current. See Page 6.0-25 for available phase current sensors and rating plugs.

Page 11: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

CA08104001E For more information, visit: www.eaton.com/consultants

6.0-11April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersGeneral Description

011

Digitrip 520MCV Integral Protective RelayThe Digitrip 520MCV integral protective relay is used when basic three-phase (50/51) and ground (50/51N or 50/51G) overcurrent protection is required. The relay is a microprocessor-based device that operates from secondary output of current sensors and provides true rms sensing of each phase and ground, and is suitable for application at either 50 or 60 Hz systems. The sensing current for ground protection can be derived from residual connections of the phase sensors or from an optional Type-V zero sequence current sensor. The relay does not require external control power for its protection functions and can be applied with Manually or Electrically Operated circuit breakers.

The 520MCV relay provides a number of time-overcurrent response curves and settings for phase, as well as ground protection and coordination with upstream or downstream devices. It can also be zone interlocked with other upstream or downstream relays for faster selective tripping.

The 520MCV includes an Arcflash Reduction Maintenance System (ARMS) feature when enabled, it reduces arc flash incident energy during equip-ment maintenance.

Figure 6.0-1. VCP-T Vacuum Circuit Breaker Digitrip Model 520MCV

Table 6.0-1. Digitrip 520MCV Protection and Coordination

1 In = Current Sensor/Rating Plug rating in amperes.2 M1 = Maximum Setting based on In

= (12 x In) for In = 1600 and 2000 A; = (14 x In) for all other values of In

3 st1 and st2 settings are based on InIn st1 st2100 A 0.5 sec 0.5 sec200–400 A 0.5 sec 1.0 sec600–2000 A 1.0 sec 2.0 sec

4 I2t response is applicable to currents less than (8 x Ir).For currents greater than (8 x Ir), the I2t response reverts to FLAT response.

5 When using phase residual connection scheme, In is current sensor/rating plug rating in ampere. When using zero sequence connection scheme, In is zero sequence current sensor rating in ampere.

6 I2t response is applicable to currents less than (0.625 x In).For currents greater than (0.625 x In), the I2t response reverts to FLAT response.

IEEE

Device

Number

Protection

Function

Available Settings (50 or 60 Hz)

Phase Long Delay51 Pickup setting (Ir) 1

Time delay, I2tThermal memory

(0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1.0) times In(2, 4, 7, 10, 12, 15, 20, 24 seconds) at 6 times IrEnable/disable

Phase Short Delay50T Pickup setting 2

Time delay, FLAT 3Time delay, I2t 4

(1.5, 2, 3, 4, 6, 8, 10) times Ir, M10.1,0.3,0.4, st1, st2 seconds(0.1, 0.3, 0.5 seconds) at 8 times Ir

Phase Instantaneous50 Pickup setting 2 (2, 3, 4, 6, 8, 10) times In, M1, OFF

Ground Fault51/50G Pickup setting 5

Time delay, FLATTime delay, I2t 6

(0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.75) times In, OFF0.1, 0.2, 0.3, 0.4, 0.5 second(0.1, 0.3, 0.5) at 0.625 times In

Zone Selective Interlocking— Phase short delay and ground fault Enable/disable

ARMS Mode SettingsSettings

R5R4R3R2R1

Pickup

2.5 x rating plug amperes4.0 x rating plug amperes6.0 x rating plug amperes8.0 x rating plug amperes

10.0 x rating plug amperes

Page 12: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

6.0-12

For more information, visit: www.eaton.com/consultants CA08104001E

April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersGeneral Description

012

Digitrip 1150V Integral Protective Relay

Figure 6.0-2. VCP-T Vacuum Circuit Breaker Digitrip Model 1150V

The Digitrip 1150V integral protective relay is used for advanced current and voltage protection, and metering and communication.

The Arcflash Reduction Maintenance System (ARMS) feature is included on 1150V units as standard. When enabled, it reduces arc flash incident energy during equipment maintenance.

The relay is a microprocessor-based device that operates from secondary output of current sensors and external voltage transformers, provides true rms sensing of each phase and ground, and is suitable for application at either 50 or 60 Hz systems. The sensing current for ground protection can be derived from residual connec-tions of the phase sensors or from an optional Type-V zero sequence current sensor.

The basic overcurrent protection func-tions of this relay are self-powered from the current flowing in the second-ary of the current sensors. It does require external auxiliary power for its voltage and frequency related protec-tion and alarm functions, and metering displays. The relay can be applied with manually or electrically operated circuit breakers.

The 1150V relay provides following ANSI/IEEE protection functions:

51/50, 51/50N or 51/50G, 37, 46, 27, 59, 81U, 81O, 47 and 32.

The 1150V relay provides a number of time-overcurrent response curves and settings for phase, as well as ground protection and coordination with upstream or downstream devices. It can also be zone interlocked with other upstream or downstream relays for faster and selective tripping.

In addition to display of metering values as noted in Figure 6.0-2 above, the relay provides data through its front panel display to help plan inspection and maintenance schedules of the circuit breaker and the circuit it is protecting. Those data include:

■ Total number of Close Operations by circuit breaker since last reset

■ The last time the circuit breaker was operated (Opened or Closed or Tripped) with time and date

■ Total number of instantaneous and short delay trip operations by the circuit breaker since last reset

■ Total number of overloads (long delay trips) and ground fault trips since last reset

The 1150V relay is also suitable for communication using the INCOM communications system. All moni-tored values, trip/alarm events, and captured waveforms can be displayed on a remote computer. Breakers can also be opened/closed remotely with pass-word protection. Peripheral translator/gateway devices are available to convert INCOM to other protocols, such as Modbus® RTU, Modbus TCP, etc.

The relay has a built-in 24-character alphanumeric LED display to allow programming and viewing of settings, menus, trip and alarm logs, and real time metering data. Because the relay is installed on the circuit breaker, the breaker compartment door must be opened for viewing or programming of the relay functions. An optional Breaker Interface Module can be used for monitoring, viewing and program-ming of multiple relays from an alter-nate location, eliminating the need to open circuit breaker compartment door. Also available is wireless transceiver for short-range infrared wireless communi-cation between a hand-held Palm™ personal data assistant (PDA) and the Digitrip 1150V relays with compartment doors closed.

Page 13: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

CA08104001E For more information, visit: www.eaton.com/consultants

6.0-13April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersGeneral Description

013

Table 6.0-2. Digitrip 1150V Protection and Coordination

1 In = Current Sensor/Rating Plug rating in amperes.2 Thermal memory feature is available when using I2t or I4t curves only.3 Maximum Setting is based on In:

= (12 x In) for In = 1600 and 2000 A;= (14 x In) for all other values of In

4 Upper limit of this setting is 0.5 for 100 A sensor/rating plug, 1.0 for 200 to 400 A sensor/rating plug, and 2.0 for sensors/rating plugs rated above 600 A.

5 I2t response is applicable to currents less than (8 x Ir).For currents greater than (8 x Ir), the I2t response reverts to FLAT response.

6 I2t response curve for phase short delay is only available when phase long delay response selected is I2t.

7 When using phase residual connection scheme, In is current sensor/rating plug rating in amperes. When using zero sequence connection scheme, In is zero sequence current sensor rating in amperes.

8 I2t response is applicable to currents less than (0.625 x In). For currents greater than (0.625 x In), the I2t response reverts to FLAT response.

IEEE

Device

Number

Protection

Function

Available Settings

(50 or 60 Hz)

Phase Long Delay51 Pickup setting (Ir)

Time delay, I2tTime delay, I4tIEEE moderately inverseIEEE very inverseIEEE extremely inverseThermal memory

(0.4–1.0, in steps of 0.05) times In 1(2–24 seconds, in steps of 0.5) at 6 times Ir(1–5 seconds, in steps of 0.5) at 6 times IrTime dials of 0.1–5.0, in steps of 0.1Time dials of 0.2–5.0, in steps of 0.1Time dials of 0.2–5.0, in steps of 0.1Enable/disable 2

Phase Short Delay50T Pickup setting

Time delay, FLATTime delay, I2t

(1.5–12 or 1.5–14, in steps of 0.5) times Ir 30.1–2 seconds, in steps of 0.05 4(0.1–2 seconds, in steps of 0.05) at 8 times Ir 456

Phase Instantaneous50 Pickup setting (2–12 or 2–14) times In, OFF 3

Ground Fault51/50G Pickup setting

Time delay, FLATTime delay, I2tThermal memory

(0.24–1.0, in steps of 0.01) times In, OFF 70.1–0.5 seconds, in steps of 0.05.(0.1–0.5 seconds, in steps of 0.05) at 0.625 times In 8Yes

Zone Selective Interlocking— Phase short delay and ground fault Enable/disable

Phase Loss (Current Based)37 Pickup

Time delay75% current unbalance, OFF1–30 seconds

Current Unbalance46 Pickup

Time delay5–25% current unbalance, OFF0–240 seconds

Undervoltage27 Pickup

Time delay45–110% of phase-to-phase voltage, OFF1–250 seconds

Overvoltage59 Pickup

Time delay80–135% of phase-to-phase voltage, OFF1–250 seconds

Underfrequency81U Pickup—50 Hz system

Pickup—60 Hz systemTime delay

48–52 Hz, in steps of 0.1, OFF58–62 Hz, in steps of 0.1, OFF0.2–5 seconds, in steps of 0.02

Overfrequency81O Pickup—50 Hz system

Pickup—60 Hz systemTime delay

48–52 Hz, in steps of 0.1, OFF58–62 Hz, in steps of 0.1, OFF0.2–5 seconds, in steps of 0.02

Voltage Unbalance47 Pickup

Time delay5–50% voltage unbalance, OFF1–250 seconds

Reverse Power32 Pickup

Time delay1–65000 kW1–250 seconds

ARMS Mode Available Trip Current SettingsThe 1150V unit provides the following pick-up settings:

■ 2.5 x rating plug amperes■ 4.0 x rating plug amperes■ 6.0 x rating plug amperes■ 8.0 x rating plug amperes■ 10.0 x rating plug amperes

Metering, Power Quality and Other Features ■ Individual phase and ground

currents in rms amperes, real time■ Individual phase and ground

currents in rms amperes, 5-minute average

■ Individual phase and ground currents, maximum and minimum since last reset

■ Line-to-line voltages■ Forward/reverse kW, kW demand

and maximum kW demand■ kVA, kVA demand and maximum

kVA demand■ Watt and VA demand, maximum W

and VA demand■ Forward/reverse kWh■ kVAh■ kVAh and kWh pulse initiate■ Total harmonic distortion for

each phase current■ Individual harmonic currents

up through 27th harmonic for each phase

■ Power factor, minimum and maximum

■ Frequency■ Circuit breaker operations count■ Programmable alarms■ Programmable output contacts

(breaker close, alarm, trip)

Metering Accuracy■ ±1% of full-scale (In) for currents in

the range of 5–100% of (In)■ ±3% of full-scale for voltages

(full scale is equal to phase-to-phase voltage)

■ ±4% of full-scale for power and energy readings

Page 14: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

6.0-14

For more information, visit: www.eaton.com/consultants CA08104001E

April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersGeneral Description

014

External Protection and MeteringType MEF switchgear with VCP-T circuit breakers can be supplied with external relays, such as Eaton’s EDR-3000, EDR-5000 and EMR-3000, and meters such as Eaton’s Power Xpert Meter family. The external relays and meters are typically installed on the circuit breaker or control compartment doors and connected into the secondary circuits of conventional CTs and VTs. External control power may be required for correct operation of the external relays depending on the type of relays used.

Eaton’s EDR-3000 is a microprocessor-based multifunction overcurrent protection relay designed to provide the following ANSI protection functions:

51/50, 51N/50N or 51G/50G.

EDR-3000 relays can be zone inter-locked for faster selective tripping. Refer to Tab 4 for more details of EDR-3000.

Eaton’s EDR-5000 is a microprocessor-based multifunction protection and metering unit designed to provide the following ANSI protection functions:

51/50, 51N/50N, 51G/50G, 50BF, 25, 32, 46, 67, 27, 59, 47, 78V, 81-O, 81-U, 86.

The EDR-5000 can be zone interlocked for faster selective tripping. It can also be used for automatic open or closed transition transfer of three breaker main-tie-main systems. Refer to Tab 4 for more details of the EDR-5000.

Eaton’s EMR-3000 is a microprocessor-based motor protection relay designed to provide the following ANSI protec-tion functions:

49, 50, 51, 46, 50G, 51G, 37, 38, 66, 2/19, 74, 86.

Refer to Tab 4 for more details of the EDR-3000.

Eaton’s Power Xpert and IQ microprocessor-based metering and communication devices can be provided in MEF for use with conventional CTs and VTs. Refer to Tab 3 for further information on these devices.

Page 15: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

CA08104001E For more information, visit: www.eaton.com/consultants

6.0-15April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersGeneral Description—Partial Discharge Sensing and Monitoring

015

Partial Discharge Sensing and Monitoring for Switchgear

Partial Discharge in SwitchgearPartial discharge is a common name for various forms of electrical discharges such as corona, surface tracking and discharges internal to the insulation. It partially bridges the insulation between the conductors. These discharges are essentially small arcs occurring in or on the surface of the insulation system when voltage stress exceeds a critical value. With time, airborne particles, contaminants and humidity lead to conditions that result in partial discharges. Partial discharges start at a low level and increase as more insulation becomes deteriorated. Examples of partial discharge in switchgear are surface tracking across bus insulation, or discharges in the air gap between the bus and a support, such as where a bus passes through an insulating window between the sections of the switchgear. If partial discharge process is not detected and corrected, it can develop into a full-scale insulation failure followed by an electrical fault. Most switchgear flashover and bus failures are a result of insulation degradation caused by various forms of partial discharges.

RFCT Sensor

InsulGard Relay(PD Monitoring)

Sensing and MonitoringEaton’s Type MEF metal-enclosed switchgear (2.4–15 kV) is corona-free by design. By making switchgear assemblies corona-free, Eaton has made its standard switchgear more reliable. However, as indicated above, with time, airborne particles, contaminants and humidity lead to conditions that cause partial discharges to develop in switchgear operating at voltages 4000 V and above. Type MEF switch-gear can be equipped with factory-installed partial discharge sensors and partial discharge sensing relay for continuous monitoring of the partial discharges under normal operation. Timely detection of insulation degradation through increasing partial discharges can identify potential problems so that corrective actions can be planned and implemented long before permanent deterioration develops. Partial discharge detection can be the foundation of an effective predictive maintenance program. Trending of partial discharge data over time allows prediction of failures, that can be corrected before catastrophic failure occurs.

The PD sensing and monitoring system consists of Eaton’s InsulGard™ relay and PD sensors specifically developed for application in the switchgear to work with the relay.

Partial discharges within the MEF switchgear compartment are detected by the installation of a small donut type radio frequency current trans-former (RFCT) sensor over floating stress shields of the specially designed CT/sensor primary bushings. Partial discharges in the customer’s power cables (external discharges) are detected by the installation of the

RFCT around ground shields of the incoming or outgoing power cables termination.

Output signals from sensors (RFCTs) are wired out to terminal blocks for future or field use, or connected to the InsulGard relay. One InsulGard relay can monitor up to 15 output signals, including temperature and humidity. The temperature and humidity sensors are included with each InsulGard relay system.

The relay continuously monitors the switchgear primary system for partial discharges and provides an alarm sig-nal (contact closure) when high PD level is detected. Data analysis and diagnostics by Eaton engineers can also be provided by remote communi-cation with the InsulGard relay.

The sensors and InsulGard relay are optional in MEF switchgear.

In 5/15 kV MEF switchgear (refer to Figure 6.0-4), primary epoxy bush-ings with stress shield and RFCT sen-sors for measurement of internal, as well as external partial discharges are all optional. InsulGard relay is also optional. When specified, one set of CT/sensor primary bushings (located on the line side) with stress shield and associated RFCT sensor is provided in every incoming and outgoing primary circuit. An additional RFCT sensor for each incoming and outgoing power cable circuits can be provided as required. The RFCT output signals can be connected directly to InsulGard relay for continuous monitoring of partial discharges or can be used for periodic field measurements. One InsulGard relay can monitor up to 15 output signals.

Figure 6.0-3. InsulGard Relay System

InputTerminalBlock

InsulGardRelay Optional

Modem

Temp Sensor

Humidity Sensor

OutputAlarmStatus

120 VacAuxiliaryPowerSignals (up to 15 Total) from

PD Sensors (Coupling Capacitors,RFCT Sensor, RTD Input, etc..)

Page 16: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

6.0-16

For more information, visit: www.eaton.com/consultants CA08104001E

April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersGeneral Description—Partial Discharge Sensing and Monitoring

016

Figure 6.0-4. Typical Partial Discharge Sensor Connections in MEF Switchgear (5–15 kV)

Note: Use one set of CT/sensor bushings for all incoming and outgoing primary circuits.

RFCT #1 detects partial discharges internal to switchgear compartment.

RFCT #2 detects partial discharges in customer’s cables up to 100 ft from switchgear.

Page 17: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

CA08104001E For more information, visit: www.eaton.com/consultants

6.0-17April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersGeneral Description

017

Communication SystemsEaton’s power management products provide hardware and software solutions that allow customers to interface with their switchgear at vary-ing levels of sophistication. Power Xpert and IQ Meters monitor common electrical parameters and communicate the data via standard industry protocols and optional Web interfaces. Power Xpert Gateways consolidate devices into a single Web browser interface and provide Ethernet connectivity. Eaton’s Power Xpert Insight® and Foreseer Web-based software systems display, analyze and store data from multiple devices across the facility to enable management of the customer’s power system. Refer to Tab 2 for more infor-mation on communication systems.

Standard Accessories

Levering CrankUsed for moving the breaker between the disconnected/testand connected position.

Breaker Extension PanUsed for installing/removing the breaker to/from its compartment.

Breaker Lifting YokeUsed with the breaker for installation/removal of the breaker onto/from the breaker extension pan using optional breaker lifter or other overhead lifting means.

Test JumperAllows connection of breaker secondary controls disconnect to cell disconnect when the breaker is outside its compartment.

VT/CPT Drawer Extension RailsAllows withdrawal of VT/CPT auxiliary drawer for inspection and access to primary fuses and VT/CPT.

Optional Accessories

Breaker Lifting DeviceUsed for installing/removing the breaker onto/from the Breaker Extension Pan.

Manual Ground and Test DeviceThe ground and test device is a drawout element that may be inserted into a breaker compartment in place of a circuit breaker to provide accessto the primary circuits to permit the temporary connections of grounds or testing equipment to the high-voltage circuits.

The device includes six terminals for connections to primary circuits. Selection of upper or lower terminals for grounding is accomplished manually by cable connections before the device is inserted into the desired breaker compartment. The circuit selected for grounding using this device must be checked by some other means, prior to insertion of the device into the compartment, to be sure it is de-energized.

High potential testing of cable or phase checking of circuits are typical tests that may be performed. The device is insulated to suit voltage rating of the switchgear and will carry required levels of short-circuit current, but it is not rated for any current interruption.

Before using a ground and test device, it is recommended that each user develop detailed operating procedure consistent with safe operating prac-tices. Only qualified personnel should be authorized to use the ground and test device.

Dummy ElementDummy element is a drawout element with primary disconnects similar to a drawout circuit breaker, but consists of solid copper conductors in place of vacuum interrupters, and is designed for manual racking. It is typically used as drawout disconnect link in the primary system for circuit isolation or bypass. The device is insulated to suit the voltage rating of the switch-gear and will carry required levels of short-circuit current, but it is not rated for any current interruption. It must be key interlocked with all source devices such that it can only be inserted into or removed from its connected position only after the primary circuit that it is to be applied is completely de-energized.

Before using a dummy element, it is recommended that each user develop detailed operating procedure consistent with safe operating practices. Only qualified personnel should be authorized to use the dummy element.

Functional Test Kit (for Testing of Digitrip 520V and 1150V Relays)Functional Test Kit is a hand-held battery powered tester capable of testing trip elements of 520V and 1150V protective relays. The test kit allows testing of: Relay Power Up, Instantaneous Trip, Short Delay Trip, Long Delay Pickup and Trip, and Ground Fault Trip, when applicable.

Page 18: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

6.0-18

For more information, visit: www.eaton.com/consultants CA08104001E

April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersApplication

018

MEF Switchgear with Automatic Transfer Control (ATC)

ApplicationEaton’s MEF switchgear with an automatic transfer control system is an integrated assembly of drawout VCP-T/VCP-TL breakers, sensing devices and control components available in 5 through 15 kV classes.

Automatic transfer control is typically applied where the continuity of service for critical loads from two power sources in either a two-breaker (one load) or three-breaker (two loads) configuration is desired.

MEF switchgear with an automatic transfer control system can meet most automatic throwover requirements as it has a wide variety of operational sequences embodied in one standard automatic transfer control system.

ATC ControllerEaton’s ATC-900 controller is equipped to display history information either via the front panel or over the Power-Net power monitoring system. ATC-900 controller stores 320 time stamped events. Oscillographic data for last 10 events can be downloaded via USB port or displayed in the controller’s display window. Controller allows communications via RS-232 or Modbus through RS-458 port, Ethernet or via USB interface.

ATC Controller

Standard Features■ Voltage sensing on both sources is

provided by the ATC controller■ Lights to indicate status of switches,

sources, and so on■ Interlocking to prevent paralleling of

sources via software■ Control power for the automatic

transfer control system is derived from the sensing voltage transformers

■ Manual override operation■ Selectable closed with sync check or

open transition on return to normal■ Programmable time delays on both

sources, “OFF DELAY” and “ON DELAY”■ Four programmable digital inputs

and outputs■ Single-source responsibility; all

basic components are manufac-tured by Eaton

Optional Features■ Lockout on phase and/or ground

overcurrents and/or internal bus faults■ Load current, power and PF metering

with optional DCT module■ 24 Vdc control power input■ Up to four additional I/O modules,

each with four programmable digital inputs and digital outputs

Typical Two-Breaker Automatic Transfer Control Using ATC Controller Eaton’s ATC controller continuously monitors all three phases on both sources for correct voltages. Should the voltage of the normal source be lost while the voltage of the alternate source remains normal, the voltage sensing function in the ATC controller will change state starting the time delay function. If the voltage of the normal source is not restored by the end of the time delay interval, the normal breaker will open and the alternate source breaker will close, restoring power to the load.

Typical Three-Breaker (Two Mains and Normally Open Tie) Automatic Transfer ControlThe automatic transfer switchgear assembly includes two main breakers and one tie breaker, and an integrated automatic transfer control system containing sensing devices, low- voltage logic control and auxiliary equipment. The transfer control system monitors both sources for correct voltages. An automatic-manual transfer selector switch is provided for selection of manual or automatic operating mode. In manual mode, all three breakers can be manually operated. Interlocking is provided in manual mode of operation to prevent closing all three breakers at the same time. In the automatic mode, the basic sequence of operation based upon two normally energized sources is carried out as follows. Normal operation is with the main breakers closed and the tie breaker open. Upon detection of an undervoltage(s) to the line side of a main breaker, and after a field-adjustable time delay, that main breaker opens and after an additional field-adjustable time delay, the tie breaker closes to restore power to the affected portion of the facility. Upon restoration of voltage to the line side of the main breaker, and after a field-adjustable time delay, the tie breaker opens and after a field-adjustable time delay, the opened main breaker closes. An interlocking is provided to prevent closing all three breakers simultane-ously in manual mode.

Page 19: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

CA08104001E For more information, visit: www.eaton.com/consultants

6.0-19April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersTechnical Data—Switchgear Assembly and Circuit Breakers

019

Technical DataTable 6.0-3. MEF Switchgear Assembly Rated Per ANSI Standards

Table 6.0-4. Available Type VCP-T Vacuum Circuit Breakers Rated Per ANSI Standards (C37.04, C37.09) 12

1 Rated interrupting time for all VCP-T circuit breakers is 3 Cycle (50 ms).2 Operating duty for all VCP-T circuit breakers is O-0.3sec-CO-3min-CO.3 Tested for capacitor switching capabilities. “General Purpose” to ANSI C37: Cable charging = 25 A. “Definite Purpose” to ANSI C37: Back-to-back equals

250 and 1000 A. Ratings of 250 and 1000 A cover capacitor bank applications from 75 to 1000 A. Inrush current and frequency rating = 18 kApk at 2.4 kHz.

Table 6.0-5. Capacitor Switching Capability of Type VCP-T Circuit Breakers

Note: Type VCP-T breakers shown in the table above are considered definite purpose breakers per ANSI C37.04.

Rated

Maximum

Voltage

Insulation Level Rated

Main Bus

Continuous

Current

Rated Short-Time

Short-Circuit

Current Withstand

(2-Second)

Rated Momentary

Short-Circuit

Current Withstand

(10 Cycle)

Power Frequency

Withstand Voltage,

60 Hz, 1 Minute

Impulse

Withstand

Voltage (BIL)

I 2.6 * I 1.55 * I

(for Reference Only)

kV rms kV rms kV Peak Amperes kA rms Symmetrical kA Crest kA rms Asymmetrical

4.764.764.764.76

19191919

60606060

1200200012002000

25254040

6565

104104

39396262

15151515

36363636

95959595

1200200012002000

25254040

6565

104104

39396262

Circuit

Breaker

Type 12

Rate

d M

axim

um

Vo

ltag

e

Insulation Level Rated

Continuous

Current

Rated

Short-Circuit

Current

at Rated

Maximum

VoltageR

ate

d V

olt

ag

e

Ran

ge F

acto

r

Maximum

Symmetrical

Interrupting

& 2-Second

Short-Time

Current

Carrying

Capability

Closing and

Latching

Capability

(Momentary)

Cable

Charging

Breaking

Current

Three-Phase

MVA

at Rated

Maximum

Voltage (for

Reference

Only)

Mech

an

ica

l E

nd

ura

nce

No

Lo

ad

C-O

Op

era

tio

nsPower

Frequency

Withstand

Voltage

60 Hz,

1 Minute

Impulse

Withstand

Voltage

(BIL)

1.2 x 50

microsec

V I K K * I 2.6 * K * I Amperes 1.732 * V * I

kV

rms

kV rms kV Peak Amperes kA rms

Symmetrical

kA rms

Symmetrical

kA Crest MVA

50VCP-T1650VCP-T1650VCP-T20

4.764.764.76

191919

606060

6001200600, 1200

161620

111

161620

424252

101010

130130165

20,00010,00010,000

50VCP-T2550VCP-T3250VCP-T40

4.764.764.76

191919

606060

600, 1200, 2000600, 1200, 2000600, 1200, 2000

2531.540

111

2531.540

6582

104

101010

210260330

10,00010,00010,000

150VCP-T16150VCP-T20150VCP-T25

151515

363636

959595

600, 1200600, 1200600, 1200, 2000

162025

111

162025

425265

252525

420520650

10,00010,00010,000

150VCP-T32150VCP-T40

1515

3636

9595

3

331.540

11

31.540

82104

2525

8301040

10,00010,000

Circuit

Breaker

Type

Rated Continuous

Current

Cable Charging

Current

Isolated Shunt

Capacitor Bank Current

Back-to-Back Capacitor Switching

Capacitor Bank Current Inrush Current Inrush Frequency

A A A A kA peak kHz

50VCP-T25 2000 10 75–1000 75–1000 18 2.4

50VCP-T32 60012002000

101010

75–40075–63075–1000

75–40075–63075–1000

181818

2.42.42.4

50VCP-T40 60012002000

101010

75–40075–63075–1000

75–40075–63075–1000

181818

2.42.42.4

150VCP-T25 2000 25 75–1000 75–1000 18 2.4

150VCP-T32 60012002000

252525

75–40075–63075–1000

75–40075–63075–1000

181818

2.42.42.4

150VCP-T40 60012002000

252525

75–40075–63075–1000

75–40075–63075–1000

181818

2.42.42.4

Page 20: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

6.0-20

For more information, visit: www.eaton.com/consultants CA08104001E

April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersTechnical Data—Switchgear Assembly and Circuit Breakers

020

Technical DataTable 6.0-6. Available Type VCP-TL Vacuum Circuit Breakers Rated Per ANSI Standards (C37.04, C37.09) 123

1 Rated interrupting time for all VCP-TL circuit breakers is 3 Cycle (50 ms).2 Operating duty for all VCP-TL circuit breakers is O-0.3sec-CO-3min-CO.3 Tested for capacitor switching capabilities. “General Purpose” to ANSI C37: Cable charging = 25 A. “Definite Purpose”” to ANSI C37: Back-to-back equals

250 and 1000 A. Ratings of 250 and 1000 A cover capacitor bank applications from 75 to 1000 A. Inrush current and frequency rating = 18 kApk at 2.4 kHz.

Table 6.0-7. Capacitor Switching Capability of Type VCP-TL Circuit Breakers

Note: Ratings of 250 and 630 A cover capacitor bank applications from 75 to 630 A.

Note: Type VCP-TL breakers are considered definite purpose breakers per ANSI C37.04.

Switchgear Heat LossThe heat-loss data for circuit breakers given in Table 6.0-8 includes portion of main bus conductors and load run-backs. Please note that the estimated wattage given for each component is at its full rating. For example, the chart shows 600 W for 1200 A breaker. It simply means an estimated 600 W loss in breaker in a 1200 A, 5/15 kV compartment when the circuit breaker is carrying full 1200 A. The actual loss, of course, will depend on the actual current being carried by the breaker.If the full load current of the loadconnected to that 1200 A breaker, for example, is only 200 A, the heat-loss in that compartment will be much less. By simple “I x I x R” calculations, one can easily calculate actual loss at 200 A as = 600 x (200/1200) x (200/1200) = 16.67 W. Also, in case of lineup consisting of many feeders, all feeders might not be carrying or supplying loads at all times. If that is the case, then one can further reduce total watt loss for the lineup by apply-ing a utilization factor.

Table 6.0-8. MEF Equipment Losses

Circuit

Breaker

Type 12

Rate

d M

axim

um

Vo

ltag

e

Insulation Level Rated

Continuous

Current

Rated

Short-Circuit

Current

at Rated

Maximum

Voltage

Rate

d V

olt

ag

e

Ran

ge F

acto

r

Maximum

Symmetrical

Interrupting

& 2-Second

Short-Time

Current

Carrying

Capability

Closing and

Latching

Capability

(Momentary)

Cable

Charging

Breaking

Current

Three-Phase

MVA

at Rated

Maximum

Voltage (for

Reference

Only)

Mechanical

Endurance

No Load C-O

Operations

Power

Frequency

Withstand

Voltage

60 Hz,

1 Minute

Impulse

Withstand

Voltage

(BIL)

1.2 x 50

microsec

V I K K * I 2.6 * K * I Amperes 1.732 * V * I

kV

rms

kV rms kV Peak Amperes kA rms

Symmetrical

kA rms

Symmetrical

kA Crest MVA Vacuum

Interrupter

Mechanism

50VCP-TL1650VCP-TL2050VCP-TL25

4.764.764.76

191919

606060

600, 1200600, 1200600, 1200

162025

111

162025

425265

101010

130165210

30,00030,00030,000

100,000100,000100,000

150VCP-TL16150VCP-TL20150VCP-TL25

151515

363636

959595

600, 1200600, 1200600, 1200

162025

111

162025

425265

252525

420520650

30,00030,00030,000

100,000100,000100,000

Cable

Charging

Grounded Capacitor Banks

Single Bank Back-to-Back

25 A 250 and 630 A 250 A with inrush current 15 kApk at 5 kHz and630 A with inrush current 15 kApk at 1.5 kHz

Equipment Watts Loss

Medium-Voltage Switchgear (Indoor, 5 and 15 kV)600 A breaker

1200 A breaker2000 A breaker

400600

1400

Page 21: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

CA08104001E For more information, visit: www.eaton.com/consultants

6.0-21April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersTechnical Data—Circuit Breakers

021

Type VCP-T Circuit Breaker Operating TimesThe closing time (initiation of close signal to contact make) and opening time (initiation of the trip signal to contact break) are shown in Table 6.0-9. Figure 6.0-5 below shows the sequence of events in the course of circuit interruption, along with applicable VCP-T circuit breaker timings.

Table 6.0-9. Closing and Opening Times for Electrically Operated VCP-T Breakers, at Rated Control Voltage

1 For manually operated breakers with integral protective relay, refer to applicable relay time-current curves for clearing time.

Figure 6.0-5. Sequence of Events for VCP-T Circuit Breakers with Shunt Trip2 For manually operated breakers with integral protective relay, refer to applicable relay time-current curves for clearing time.

Figure 6.0-6. Typical Transfer Times—Fast Sequential Transfer—VCP-T Circuit Breakers

Rated

Control Voltage

Breaker

Rating

Closing Time

Milliseconds

Opening Time

Milliseconds 1

48 V, 125 V, 250 Vdc All 28–40 17–27

120 V, 240 Vac All 28–40 —

120 V or 240 Vac capacitor trip All — 17–27

Optional—undervoltage trip release 48 V, 125 V, 250 Vdc All — 40–60

Clearing Time �

Interrupting Time

Contact Parting Time

Release (Tripping) Delay Time Opening Time

Shunt TripOperating Time

MechanismOperating Time

Protecting RelayOperating Time

Auxiliary RelayOperating Time

3 Cycles (50 ms)

(S-Factor Based on This)(S = 1.2 For All VCP-T Breakers)

1/2 Cycle (8 ms) Minimum2 Seconds Maximum

25 – 33 msec

Arcing Time

(5 – 17 msec)

Short-CircuitBegins

Rated ControlVoltage Energizes

Trip Coil

2 – 2.5 Cycles Based on1/2 Cycle Tripping Delay

LastPole

Clears

MainContact

Parts

Opening Time

Trip 52-1

ControlSupply

Source #1

52-1

Close 52-2

Source #2

TransferInitiate

52-1b

Load 52-2

52-2

Standard”b“ Contact

TransferInitiateSignal

52-1

0

Dead Time (With Arcing)

52-1 “b” ContactMakes

29 ms

4ms

ArcingTime

12 ms

29

Dead Time (No Arcing)64 ms

Closing Time

60 ms

52 ms

Time (msec)89

+

Page 22: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

6.0-22

For more information, visit: www.eaton.com/consultants CA08104001E

April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersTechnical Data—Circuit Breakers

022

Type VCP-TL Circuit Breaker Operating TimesThe closing time (initiation of close signal to contact make) and opening time (initiation of the trip signal to contact break) are shown in Table 6.0-10. Figure 6.0-7 below shows the sequence of events in the course of circuit interruption, along with applicable VCP-TL circuit breaker timings.

Table 6.0-10. Closing and Opening Times for Electrically Operated VCP-TL Breakers, at Rated Control Voltage, Typical

1 For manually operated breakers with integral protective relay, refer to applicable relay time-current curves for clearing time.

Figure 6.0-7. Sequence of Events for VCP-TL Circuit Breakers with Shunt Trip2 For manually operated breakers with integral protective relay, refer to applicable relay time-current curves for clearing time.

Figure 6.0-8. Typical Transfer Times—Fast Sequential Transfer—VCP-TL Circuit Breakers

Rated

Control Voltage

Breaker

Rating

Closing Time

Milliseconds

Opening Time

Milliseconds 1

36–60 Vac, 36–72 Vdc All 60 25–33

100–240 Vac, 100–353 Vdc All 60 25–33

Clearing Time �

Interrupting Time

Contact Parting Time

Release (Tripping) Delay Time Opening Time

Shunt TripOperating Time

MechanismOperating Time

Protecting RelayOperating Time

Auxiliary RelayOperating Time

3 Cycles (50 ms)

(S-Factor Based on This)(S = 1.2 For All VCP-T Breakers)

1/2 Cycle (8 ms) Minimum2 Seconds Maximum

25 – 33 msec

Arcing Time

(5 – 17 msec)

Short-CircuitBegins

Rated ControlVoltage Energizes

Trip Coil

2 – 2.5 Cycles Based on1/2 Cycle Tripping Delay

LastPole

Clears

MainContact

Parts

Opening Time

Trip 52-1

ControlSupply

Source #1

52-1

Close 52-2

Source #2

TransferInitiate

52-1b

Load 52-2

52-2

Standard”b“ Contact

TransferInitiateSignal

52-1

0

Dead Time (With Arcing)

52-1 “b” ContactMakes

29 ms

4ms

ArcingTime

12 ms

29

Dead Time (No Arcing)64 ms

Closing Time

60 ms

52 ms

Time (msec)89

+

Page 23: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

CA08104001E For more information, visit: www.eaton.com/consultants

6.0-23April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersTechnical Data—Circuit Breaker Control Power Requirements

023

Table 6.0-11. Shunt Trip Coil Ratings, VCP-T Breakers 1

1 These electrical accessories are optional for VCP-T circuit breaker, and require external control power. Please specify each of these accessories as required for the application.

Table 6.0-12. Spring Release Coil (Closing Coil) Ratings, VCP-T Breakers 2

2 These electrical accessories are optional for VCP-T circuit breaker, and require external control power. Please specify each of these accessories as required for the application.

Table 6.0-13. Undervoltage Release Coil Ratings, VCP-T Breakers 3

3 These electrical accessories are optional for VCP-T circuit breaker, and require external control power. Please specify each of these accessories as required for the application.

Table 6.0-14. Spring Charging Motor Ratings, VCP-T Breakers 4

4 These electrical accessories are optional for VCP-T circuit breaker, and require external control power. Please specify each of these accessories as required for the application.

Table 6.0-15. VCP-TL Circuit Breaker Control Power Requirements

5 Data provided are for charging of internal capacitors from a fully discharged state. In normal operation, the capacitors recharge in about 15 seconds after each closing operation.

Rated

Control

Voltage

Operational

Voltage

Range

Inrush Power

Consumption

at Rated Voltage

Remark

Volts VA

24 Vdc48 Vdc

110 Vdc

14–2828–5677–121

250250450

———

125 Vdc220 Vdc250 Vdc

70–140154–242140–280

450450450

———

110 Vac120 Vac220 Vac240 Vac

77–121104–127154–242208–254

450450450450

Capacitor TripCapacitor TripCapacitor TripCapacitor Trip

Rated

Control

Voltage

Operational

Voltage

Range

Inrush Power

Consumption

at Rated Voltage

Volts VA

24 Vdc48 Vdc

110 Vdc

20–2738–5694–121

250250450

125 Vdc220 Vdc250 Vdc

100–140187–242200–280

450450450

110 Vac120 Vac220 Vac240 Vac

94–121104–127187–242208–254

450450450450

Rated

Control

Voltage

Operational

Voltage

Range

Dropout

Voltage Range

(35–60%)

Inrush

Power

Consumption

Continuous Power

Consumption

at Rated Voltage

Volts Volts VA VA

24 Vdc48 Vdc

110 Vdc

20–2641–5394–121

8–1417–2939–66

250275450

181810

125 Vdc220 Vdc250 Vdc

106–138187–242213–275

44–7577–13288–150

450450450

101010

110 Vac120 Vac220 Vac240 Vac

94–121102–132187–242204–264

39–6642–7277–13284–144

450450400400

10101010

Rated

Control

Voltage

Operational

Voltage

Range

Running

Current

Inrush

Current

Power

Consumption

at Rated Voltage

Spring

Charging

Time

Volts Ampere Ampere VA Seconds

24 Vdc48 Vdc

110 Vdc

20–2738–5694–121

843

321612

250250250

555

125 Vdc220 Vdc250 Vdc

100–140187–242200–280

322

1288

250250250

555

110 Vac120 Vac220 Vac240 Vac

94–121104–127187–242208–254

3322

121288

250250250250

5555

Rated

Control

Voltage

Electro-Magnetic Controller Internal Capacitors Charging 5 Minimum Close, Carry and Interrupting

Current Ratings Needed for External

ContactsMaximum Inrush

Peak

Inrush Duration Charging Current

Peak

Maximum Charging

Duration

A ms A Sec. Close Contact Trip Contact

48 Vdc125 Vdc250 Vdc

0.521422

3.53.53.5

111

303030

11 mA at 96 Vdc11 mA at 96 Vdc11 mA at 96 Vdc

4 mA at 96 Vdc4 mA at 96 Vdc4 mA at 96 Vdc

120 Vac240 Vac

1722

3.53.5

11

3030

11 mA at 96 Vdc11 mA at 96 Vdc

4 mA at 96 Vdc4 mA at 96 Vdc

Page 24: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

6.0-24

For more information, visit: www.eaton.com/consultants CA08104001E

April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersTechnical Data—Circuit Breaker Auxiliary and Other Switches

024

Breaker Auxiliary SwitchAll VCP-T/VCP-TL circuit breakers are supplied with an auxiliary switch with 5NO and 5NC contacts. On Manually Operated breakers, all 5NO and 5NC contacts are available for customer’s use. On Electrically Operated circuit breakers, 1NO and 1NC contacts are used for breaker status indicating lights (red and green lights) and remaining 4NO and 4NC contacts are generally available for other control functions or customer’s use.

The auxiliary switch is a heavy-duty, double-break type switch with wipe type contacts. The switch contact ratings and operating times are given in Table 6.0-16 and Figure 6.0-9.

MOC SwitchThe mechanism operated cell (MOC) switch is not available in MEF switch-gear. When number of NO and NC contacts available from the Breaker Auxiliary Switch are not sufficient for controls or customer’s use, an auxiliary relay energized by one of the available NO or NC contacts must be used as needed. The use of auxiliary relay requires external control power.

TOC SwitchThe optional truck operated cell (TOC) switch operates when the circuit breaker is levered into or out of the operating (connected) position. In MEF TOC option includes two micro switches, one for connected position, and one for test/disconnected position, each with 1 Form C contact. If addi-tional contacts are required, auxiliary relay must be used. The use of auxil-iary relay requires external control power. The TOC switch contact ratings are given in Table 6.0-17.

Table 6.0-16. Breaker Auxiliary Switch Contact Ratings

Figure 6.0-9. Breaker Auxiliary Switch Operating Times, at Rated Control Voltage

Table 6.0-17. TOC Switch Contact Ratings

Continuous

Current in

Amperes

Control Circuit Voltage

120 Vac 240 Vac 24 Vdc 48 Vdc 125 Vdc 250 Vdc

Non-Inductive Circuit Interrupting Capacity in Amperes20 15 10 16 16 10 5

Inductive Circuit Interrupting Capacity in Amperes20 15 10 16 16 10 5

Continuous

Current in

Amperes

Control Circuit Voltage

120 Vac 240 Vac 24 Vdc 48 Vdc 125 Vdc 250 Vdc

Non-Inductive Circuit Interrupting Capacity in Amperes20 15 15 6 0.5 0.5 0.2

Inductive Circuit Interrupting Capacity in Amperes20 12.5 12.5 5 0.05 0.05 0.03

Initiation ofClose Signal

Signal: Initiation ofShunt Trip Signal

Closed

OpenOpening TimeΔt = 17 – 27 ms

Δt ±3 ms

"a" Breaks 7 msBefore "b" Makes

Δt +10 msto +4 ms

Δt –6 msto –3 ms

"b" Breaks 6 msBefore "a" Makes

Δt ±3 ms

Closing TimeΔt = 28 – 40 ms

VCP-TCircuit BreakerMain Contacts

Breaker AuxiliarySwitch"a" Contact

Breaker AuxiliarySwitch"b" Contact

C

T

Closed

Open

Closed

Open

Page 25: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

CA08104001E For more information, visit: www.eaton.com/consultants

6.0-25April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersTechnical Data—Current Sensors and Instrument Transformers

025

Phase Current SensorsEaton Type-V phase current sensors are specifically designed and tested to function with Eaton’s 520V and 1150V integral protective relays and the Type VCP-T/VCP-TL circuit breaker.

The phase current sensors are installed in the primary circuit, external to the circuit breaker, over a set of specially designed insulated bushings. The bushings and current sensors are tested as an assembly for the same impulse withstand (BIL) rating as that of the switchgear in which they are installed.

The power required to operate the relay’s basic overcurrent protection functions is provided by secondary output from the current sensors once the three-phase primary current through the circuit breaker exceeds approximately 10 to 12% of the current sensor rating or single-phase primary current exceeds approximately 30% of the current sensor rating.

The current sensors are designed to supply sensing and operating power to Eaton’s 520V and 1150V integral pro-tective relays. They are not suitable for use with any other relays or meters.

Primary current rating of the current sensors defines maximum continuous current rating (In) of the primary circuit in which they are installed, regardless of the circuit breaker frame rating. For example, an 800 A current sensor installed in a primary circuit controlled by 1200 A rated circuit breaker, defines 800 A as the maximum continuous current that can be carried through that circuit. The current sensors also determine the maximum instantaneous setting that can be set on the relays.

Phase Current Sensors and Rating Plugs—Available Ratings■ 100, 200, 250, 300, 400, 600,

630, 800, 1000, 1200, 1250, 1600 and 2000

Zero Sequence Current SensorsEaton Type-V zero sequence current sensors are specifically designed and tested to function with Eaton’s 520V and 1150V integral protective relays and type VCP-T/VCP-TL circuit breaker. The zero sequence sensor, as its name implies, measures zero sequence current (vector summation of phase currents) and provides sensitive method for ground fault sensing. Refer to Table 6.0-18 for available zero sequence sensors.

Table 6.0-18. Zero Sequence Current Sensors—Available Ratings

1 For use with 1150V relay only and with auxiliary power to the relay.

Phase and Zero Sequence Current TransformersConventional current transformers with 5A secondary are used when using external relays. CTs used for phase protection and metering are installed over the specially designed insulated bushings in the primary circuit. Maximum of two sets of CTs, or one set of CT and one set of current sensor can be installed over those insulated bushings. Ground fault sensing, when used, can be accom-plished by residual sensing of phase currents, or by using an optional zero sequence current transformer. Refer to Table 6.0-19 for the available current transformers and their ratings and accuracies.

Table 6.0-19. Phase and Zero Sequence Current Transformers—Available Ratings

Voltage TransformersVoltage transformers supply voltage signal proportional to primary circuit voltage for relaying and metering. Refer to Table 6.0-20 for available VT ratings and accuracies.

When two VTs are used, they are typically connected L-L, and provide phase-to-phase voltages, (Vab, Vbc, Vca) for metering and relaying.

When three VTs are used, they are connected line-to-ground, and provide phase-to-phase (Vab, Vbc, Vca), as well as phase-to-ground (Va, Vb, Vc) voltages for metering and relaying.

If metering or relaying application requires phase-to-ground voltages, use three VTs, each connected L-G. If not, use of two VTs connected L-L is sufficient.

For ground detection, three VTs connected in line-to-ground/broken-delta are used.

A single VT, when used, can be connected line-to-line (it will provide line-to-line output, for example Vab or Vbc, or Vca), or line-to-ground (it will provide line-to-ground output, for example Va or Vb or Vc). Generally, a single VT is used to derive voltage signal for synchronizing or Over Voltage/Under Voltage function.

Description Ratio

ID = 4.80 inch (121.9 mm) 50:1 1

(tap selectable), ID = 4.80 inch (121.9 mm)

100/200:1

CT Ratio Metering Accuracy Classification at 60 Hz Relay

ClassBurden

B 0.1

Burden

B 0.2

Burden

B 0.5

Burden

B 0.9

Burden

B 1.8

50:5100:5200:5

1.20.60.6

2.40.60.6

—1.20.6

—2.41.2

—4.82.4

—C10C20

250:5300:5400:5

0.30.30.3

0.60.30.3

0.60.30.3

1.20.60.3

1.21.20.6

C20C20C50

500:5600:5800:5

0.30.30.3

0.30.30.3

0.30.30.3

0.30.30.3

0.30.30.3

C50C50C100

1000:51200:51500:5

0.30.30.3

0.30.30.3

0.30.30.3

0.30.30.3

0.30.30.3

C100C100C100

1600:52000:5

0.30.3

0.30.3

0.30.3

0.30.3

0.30.3

C100C100

50:5 Zero sequence100:5 Zero sequence

——

——

——

——

——

C10C20

Page 26: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

6.0-26

For more information, visit: www.eaton.com/consultants CA08104001E

April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersTechnical Data—Circuit Breaker Control, CPT and Surge Protection

026

Table 6.0-20. Voltage Transformers—Available Ratings 1

1 All voltage transformers are rated for meter-ing accuracy of 0.3% at 10 VA burden, and rated for thermal VA of 200 at 55 degrees C.

Circuit Breaker Control

VCP-T Circuit BreakersType VCP-T circuit breakers are available as either Manually Operated (MO) or Electrically Operated (EO). All circuit breakers are equipped with spring charging handle integral to the circuit breaker, and push-to-close and push-to-open pushbuttons.

Manually charging the closing springs and then pressing the push-to-close pushbutton accomplish closing of the MO breaker. Closing of the breaker charges the tripping springs. Manually pressing the push-to-open pushbutton accomplishes tripping of the MO breaker. If the MO breaker is equipped with integral protective relay, the relay provides tripping impulse via trip actuator to open the breaker, without a need for external control power supply.

Electrically operated breakers are equipped with electric motor for spring charging, spring release coil (close coil) and shunt trip coil. All EO breakers can be manually operated as described above. In order to electrically operate the EO breakers, external control power is required.

Also, when using microprocessor-based or solid-state external relays, external control power is required for relay logic.

For ac control, a capacitor trip device is used with each circuit breaker shunt trip to ensure energy is available for tripping during fault conditions. When ac control power is derived from within the switchgear, CPT should be connected on line side of the main breaker. For main-tie-main lineups, CPT connected on source side of each main with automatic transfer control device on the secondary should be used.

VCP-TL Circuit BreakersAll VCP-TL circuit breakers are equipped with linear actuator mechanism, comprising of: the linear actuator, electro-magnetic controller (EM controller), three closing capacitors, and internal power supply modules for the EM controller. An ac or dc control supply (selected by breaker style number) is required to operate the linear actuator mechanism. Internal power supply modules convert input control voltage and supplies 96 Vdc for operation of the EM controller and charging of capacitors. The linear actuator mechanism is designed for OCO duty cycle with control power on. Initial charging of capacitors (from fully discharged state) takes about 30 seconds. In normal operation with control power connected, the capaci-tors recharge in about 15 seconds after each closing operation. All circuit breakers include a standard anti-pump feature.

Once the capacitors are charged, circuit breaker can be closed and opened through: the use of manual ON and OFF pushbuttons mounted on the breaker itself, control switch mounted on the breaker compartment door, or any external dry contacts. In the event that control power is lost, the circuit breaker is capable of per-forming a manual or electrical OPEN operation up to 48 hours after the loss of control power. If the control power loss lasts longer than 48 hours, the circuit breaker can be opened using the integral EMERGENCY OPEN handle located on the front of the circuit breaker, by grasping the handle firmly and then pulling down.

Control Power TransformersControl power transformer is used for auxiliary power for space heaters, light, receptacle and control of electri-cally operated breakers when external auxiliary power source is not available. Control power transformer when used for control of electrically operated breakers should be connected on source side of the main breaker so that the control power is available to close the main breaker. Refer to Table 6.0-21 for available control power transformer ratings in MEF switchgear.

Table 6.0-21. Control Power Transformers—Available Ratings, Single-Phase, 60 Hz 2

2 Line-to-Line connection only available.

Surge ProtectionSurge arresters and or surge capacitors can be provided in MEF switchgear. Refer to Tab 5 for surge protection guidelines and recommended ratings.

Primary

Voltage

Ratio Secondary

Voltage

240042004800

20:135:140:1

120120120

72008400

12000

60:170:1

100:1

120120120

124801320014400

104:1110:1120:1

120120120

Voltage kVA

Rating

BIL

kV Primary Secondary

2400 V4000 V4160 V

240/120 V240/120 V240/120 V

555

606060

4800 V6900 V7200 V

240/120 V240/120 V240/120 V

555

959595

8320 V8400 V

11500 V

240/120 V240/120 V240/120 V

555

959595

12000 V12470 V13200 V

240/120 V240/120 V240/120 V

555

959595

13800 V14400 V

240/120 V240/120 V

55

9595

Page 27: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

CA08104001E For more information, visit: www.eaton.com/consultants

6.0-27April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersTechnical Data

027

Typical Three-Line Diagrams, Integral Protection

Figure 6.0-10. Typical MEF Switchgear with Digitrip 520MCV Integral Protective Relay

Figure 6.0-11. Typical MEF Switchgear with Digitrip 1150V Integral Protective Relay

Page 28: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

6.0-28

For more information, visit: www.eaton.com/consultants CA08104001E

April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersTechnical Data

028

Typical Three-Line Diagrams, External Protection

Figure 6.0-12. Typical MEF Switchgear with EDR-3000 Overcurrent Protective Relay

Figure 6.0-13. Typical MEF Switchgear with EDR-5000 Multi-Function Protective Relay

MV Supply

Ph 1 2 3

VCP-T/VCP-TLDrawout Breaker Note:

External Control PowerRequired for BreakerControl and EDR-3000.

CS

AuxiliaryPower (ac, dc)

EDR-3000Phase and

GroundOvercurrent

(1) Three-PhaseCurrent Transformer

(1) BYZZero Seq. CT(optional)

Load

Ground Fault Sensingvia Phase Residual,or Zero Sequence

MV Supply

Ph 1 2 3

VCP-T/VCP-TLDrawout Breaker Note:

External Control PowerRequired for BreakerControl and EDR-5000.CS = Control SwitchCS

AuxiliaryPower (ac, dc)

EDR-5000Multi-FunctionProtection and

Metering

(1) Three-PhaseCurrent Transformer

(1) BYZZero Seq. CT(optional)

Load

Ground Fault Sensingvia Phase Residual,or Zero Sequence

3P-3A

VTs(3-LG or 2-LL)

Page 29: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

CA08104001E For more information, visit: www.eaton.com/consultants

6.0-29April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersTechnical Data

029

Electrically Operated Breakers—Control Schemes

Figure 6.0-14. Typical ac Control Circuit—VCP-T Breaker

Figure 6.0-15. Typical dc Control Circuit—VCP-T Breaker

T

+

Sp

are

N

Co

ntr

ol S

up

ply

Ph

120

Vac

1P–15A

B14TRMVTUTRMVTUTRCS_TRCS_TRSSTRSSLLOCOCAATIONTION

A24B13LLOCOCAATIONTIONTRSSTRSSTRCS_TRCS_TRMVTUTRMVTU LLOCOCAATIONTIONCGLCGL

A26LLOCOCAATIONTIONCRLCRL

B15 B12 A25A23

B11LLOCOCAATIONTIONTRSSTRSSTRCS_TRCS_TRMVTUTRMVTU

B10

(+)

B21A29 B19

A30 B20 B22

CapacitorTrip

BREAKER

RES

RES

G R

B29B23 B25 B27

B24 B26LLOCOCAATIONTION B28 B30

52

b a

A16

W

A28

A27

SpringCharged

Indicating Light

(Optional)

Control Switch Close

Control Switch

Trip

ProtectiveRelay

TripCoil

MotorCircuit

a a a a ab b b b

RES

Sp

are

Sp

are

Sp

are

Sp

are

Sp

are

Sp

are

Sp

are

ac

COMCOM

CloseCircuit(Spring

Release Coil)

(+)P

(-)N

dc

Co

ntr

ol S

up

ply

A26B13 A24TRMVTUTRCS_TRSSLOCATION CGLLOCATION CRLLOCATION

b a

A23B12 A25

B11TRMVTUTRCS_TRSSLOCATION

A30 B20 B22

B10 A29 B19 B21

G R

B24 B26LOCATION B28 B30

B23 B25 B27 B29

2P–15ABREAKER

BREAKER

52

A16B15

W

B14LOCATIONTRSSTRCS_TRMVTU

A28

A27

SpringCharged

Indicating Light

(Optional)

Control Switch Close

Control Switch

Trip

ProtectiveRelay

MotorCircuit

a a a a ab b b b

TripCoil

Sp

are

Sp

are

Sp

are

Sp

are

Sp

are

Sp

are

Sp

are

Sp

are

RES

RES

RES

CloseCircuit(Spring

Release Coil)

Page 30: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

6.0-30

For more information, visit: www.eaton.com/consultants CA08104001E

April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersTechnical Data

030

Electrically Operated Breakers—Control Schemes

Figure 6.0-16. Type VCP-TL Circuit Breaker—Typical Control Circuit

2P–15A (dc Control)1P–15A (ac Control)

(+) or PhR

es

Res

G R

(-) or N

Co

ntr

ol V

olt

age

ac

or

dc

(sel

ecte

d b

y b

reak

er p

art

nu

mb

er)

VCP-TL Breaker

A27 A29 B15 B12 B13 A25 B19 B21 B23 B25 B27 B29

A28 A30 B14 A26 B20 B22 B24 B26 B28 B30

B10 B11

52b

52a

52b

52a

52b

52a

52b

52a

PowerSupply

Local BkrOpen PB

Local BkrClose PB

SystemHealthyAlarm Spare Spare Spare Spare Spare Spare

(+)

CSC

Remote Close

CST

RelayTrip

RemoteTrip

Page 31: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

CA08104001E For more information, visit: www.eaton.com/consultants

6.0-31April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersLayouts and Dimensions

031

MEF Switchgear Available Configurations with Metering Compartment■ Available MEF configurations are shown in Figure 6.0-

17. For other configurations, contact Eaton■ If utility metering compartment is required, use MVS

or VCP-W (rear-access) switchgear■ Shipping group maximum length = 104.00 inches

(2642.0 mm)■ All units are 92.00 inches (2367.0 mm) tall, 61.50 inches

(1562.0 mm) deep■ Main bus—1200 or 2000 A■ 2000 A breakers—1-high (one breaker/vertical section) only,

except as noted in Figure 6.0-17■ 600 and 1200 A breakers can be stacked 2-high

(breaker/breaker)■ Auxiliary shown can be either VTs (two or three) or

single-phase 5 kVA CPT■ CTs or current sensors cannot be placed on main-bus side

of the breaker■ CTs shown can be either one or two sets; or one set of

CT and one set of current sensors■ Zero sequence CT shown can be replaced with

Zero sequence current sensor■ Zero sequence CT and surge arresters shown are optional■ Maximum number of cables per phase is limited as shown

in Table 6.0-22

Table 6.0-22. Maximum Number of Cables per Phase

1 Multiple cables per phase are based on the use of a maximum wire size of 500 kcmil for each cable. One cable per phase is based on the use of maximum wire size of 1000 kcmil.

2 When using a zero sequence sensor (for use with an integral protective relay), the number of cables is limited to one per phase with a maximum wire size of 750 kcmil.

Figure 6.0-17. MEF Switchgear—Available Configurations

Note: = No shipping split here.

Configuration Cable

Entry

Direction

Number of Power

Cables/Phase 1

26.00-Inch

(660.4 mm)

Wide Cell

Adjacent

19.00-Inch

(482.6 mm)

Wide Pull

Section

When

Using

Zero

Sequence

CT 2

Without

Zero

Sequence

CT or

Sensor

Breaker/blank None Bottom 4 4

Breaker/auxiliary Yes Bottom 4 4

Top 4 4

Breaker/breaker Yes Top/top 1 2

Bottom/bottom 1 2

Top/bottom 4 4

Page 32: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

6.0-32

For more information, visit: www.eaton.com/consultants CA08104001E

April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersLayouts and Dimensions

032

MEF Switchgear Available ConfigurationsNote: Refer to Page 6.0-31 for notes.

Figure 6.0-17. MEF Switchgear—Available Configurations (Continued)

Note: = No shipping split here.

Page 33: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

CA08104001E For more information, visit: www.eaton.com/consultants

6.0-33April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersLayouts and Dimensions

033

MEF Switchgear Available ConfigurationsNote: Refer to Page 6.0-31 for notes.

Figure 6.0-17. MEF Switchgear—Available Configurations (Continued)

Note: = No shipping split here.

Page 34: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

6.0-34

For more information, visit: www.eaton.com/consultants CA08104001E

April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersLayouts and Dimensions

034

MEF Switchgear Available ConfigurationsNote: Refer to Page 6.0-31 for notes.

Figure 6.0-17. MEF Switchgear—Available Configurations (Continued)

Note: = No shipping split here.

Page 35: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

CA08104001E For more information, visit: www.eaton.com/consultants

6.0-35April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersLayouts and Dimensions

035

Front and Sectional Views

Figure 6.0-18. Typical 1-High Breaker Unit, Cables Out the Bottom

Figure 6.0-19. Typical Breaker/Auxiliary Unit and Pull Section, Cables Out Top or Bottom

Side ViewFront View

CT Bushing

VCP-T

ControlCompartment

92.00(2337.7)

61.50 (1561.7)

26.00(660.4)

Breaker

3 SA

Main BusMain Bus Access

Zero Seq CT orCurrent Sensor

3-PH CT

(3) Current Sensors

CablePull Box

600–1200ABreaker

Compartment

Side View—Breaker CellFront View

DrawoutVTs or CPT

19.00(482.6)

Side View—Pull Section

PullSection

BreakerVCP-T

VTs

CPT 1-PH

CTBushing

(3) SA

3-PH CT

(3) Current Sensors

ControlCompartment

600–2000ABreaker

Compartment

DrawoutVTs or CPT

Main BusMain Bus Access

92.00(2337.7)

61.50(1561.7)

26.00(660.4)

61.50(1561.7)

Zero Seq CT orCurrent Sensor

Page 36: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

6.0-36

For more information, visit: www.eaton.com/consultants CA08104001E

April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersLayouts and Dimensions

036

Front and Side Views

Figure 6.0-20. Typical Breaker/Breaker Unit and Pull Section, Cables Out the Bottom

Figure 6.0-21. Typical Breaker/Breaker Unit and Pull Section, Cables Out the Top

BreakerVCP-T

CTBushing(3) SA

3-PH CT

VCP-TBreaker

Side View—Breaker/Breaker CellFront View

19.00(482.6)

Side View—Pull Section

61.50(1561.7)

26.00(660.4)

61.50(1561.7)

Zero Seq CT orCurrent Sensor

ControlCompartment

600–1200ABreaker

CompartmentPull

Section

600–1200ABreaker

Compartment

(3) Current SensorsMain BusMain Bus Access

92.00(2337.7)

CT Bushing

3-PH CT

(3) SA

Breaker

VCP-T

VCP-T

Breaker

ControlCompartment

600–1200ABreaker

CompartmentPull

Section

600–1200ABreaker

Compartment

Side View—Breaker/Breaker CellFront View

19.00(482.6)

Side View—Pull Section

61.50(1561.7)

26.00(660.4)

61.50(1561.7)

(3) Current SensorsMain BusMain Bus AccessZero Seq CT orCurrent Sensor

92.00(2337.7)

Page 37: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

CA08104001E For more information, visit: www.eaton.com/consultants

6.0-37April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersLayouts and Dimensions

037

Front and Side Views

Figure 6.0-22. Typical Bus Tie Breaker Unit and Pull Section

Breaker

VCP-T

VTs

CPT 1-PH

Main Bus-2

Side View—Tie BreakerFront View

19.00(482.6)

Side View—Pull Section

61.50(1561.7)

26.00(660.4)

61.50(1561.7)

DrawoutVTs or CPT

PullSection

ControlCompartment

600–2000ABreaker

Compartment

DrawoutVTs or CPT

Main Bus-1Main Bus Access

92.00(2337.7)

Page 38: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

6.0-38

For more information, visit: www.eaton.com/consultants CA08104001E

April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersLayouts and Dimensions—Floor Plan Details

038

MEF 26.00-Inch (660.4 mm) Wide Unit

Figure 6.0-23. MEF 26.00-Inch (660.4 mm) Wide Unit Floor Plan1 Suggested locations for 0.50 inch bolts or welding.2 Secondary control wiring conduit openings (top or bottom) conduit projection must not exceed 3.00 inches (76.2 mm).3 Minimum front clearance when using portable lifter. Local jurisdictions may require a larger distance.4 Minimum clearance for door opening: door hinged on left A = 15, B = 6.5 Primary cable entrance space, available only with 1-high breaker with cables from below.

Primary conduit projection must not exceed 3.00 inches (76.2 mm). See shop order base plan for conduit location.6 Minimum rear clearance, local jurisdictions may require a larger distance.7 Finished foundations surface shall be level within 0.06-inch (1.5 mm) in 36.00 inches (914.4 mm) left to right, front-to-back and diagonally,

as measured by a laser level.8 Location of station grounding lug.9 Minimum clearance recommended on top of the switchgear for main bus access is 24.00 inches (609.6 mm).

Front

3

4

5

1

Rear

4

6

1

8

9.00(228.6)

60.00(1524.0)

22.25(565.2)

4.00(101.6)

8.38(212.9)

30.25(768.4)

18.00(457.2)

60.00(1524.0)

2.00(50.8)

2.50(63.5)

2.00(50.8)

2.50(63.5)

2.50(63.5)

8.50(215.9)

26.00(660.4)

9.80(249.2)

1.25(31.8)

2

12.00(304.8)

7.00(177.8)

1.25(31.8)

BA

5.00(127.0)

1.63(41.4)

7

9

6.00(152.4)

ForSeismic

1.75(44.5)

60.00(1524.0)

28.50(723.9)

Load Bearing Surfaces

26.00(660.4)

3.00(76.2)

3.00(76.2)

3.00(76.2)

3.00(76.2)

1.25(31.8)

Page 39: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

CA08104001E For more information, visit: www.eaton.com/consultants

6.0-39April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersLayouts and Dimensions—Floor Plan Details

039

MEF 19.00-Inch (482.6 mm) Wide Pull Section

Figure 6.0-24. MEF 19.00-Inch (482.6 mm) Wide Pull Section Floor Plan1 Suggested locations for 0.50 inch bolts or welding.2 Secondary control wiring conduit openings (top or bottom) conduit projection must not exceed 3.00 inches (76.2 mm).3 Minimum front clearance when using portable lifter. Local jurisdictions may require a larger distance.4 Minimum clearance for door opening: door hinged on left A = 15, B = 6.5 Minimum rear clearance, local jurisdictions may require a larger distance.6 Finished foundations surface shall be level within 0.06-inch (1.5 mm) in 36.00 inches (914.4 mm) left to right, front-to-back and diagonally,

as measured by a laser level.7 Location of station grounding lug.8 Primary cable entrance space (top or bottom entry). Primary conduit projection must not exceed 3.00 inches (76.2 mm).

See shop order base plan for conduit location.9 Minimum clearance recommended on top of the switchgear for main bus access is 24.00 inches (609.6 mm).

2

4

3

5

8

1

4

1

7

60.00(1524.0)

22.25(565.2)

4.00(101.6)

8.38(212.9)

30.25(768.4)

60.00(1524.0)

2.50(63.5)

2.50(63.5)

2.50(63.5)

9.81(249.2)

1.25(31.8)

1.25(31.8)

5.00(127.0)

2.00(50.8)

Front

6.00(152.4)

19.00(482.6)

11.00(279.4)

BA

Rear

7.00(177.8)

1.63(41.4)

6

9

6.00(152.4)

ForSeismic

1.75(44.5)

60.00(1524.0)

28.50(723.9)

Load Bearing Surfaces

3.00(76.2)

3.00(76.2)

3.00(76.2)

3.00(76.2)

1.25(31.8)

19.00(482.6)

Page 40: Sheet 06001 Metal-Enclosed Switchgear— MEF Front-Access ...

6.0-40

For more information, visit: www.eaton.com/consultants CA08104001E

April 2017

Metal-Enclosed Switchgear—MEF Front-Access Medium-Voltage

i

ii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sheet 06

Drawout Vacuum BreakersLayouts and Dimensions

040

Table 6.0-23. MEF Switchgear Units Less Circuit Breakers—Approximate Weights

Table 6.0-24. VCP-T/VCP-TL Circuit Breakers—Approximate Weights

Note: Breaker impact weight = 1.5 x static weight.

Type of Structure Structure

Width

Inches (mm)

Structure Weight in Lb (kg)

25 kA Switchgear 40 kA Switchgear

Main Bus Rating Main Bus Rating

1200 A 2000 A 1200 A 2000 A

600–1200 A Breaker over cable entry600–1200 A Breaker over 600–1200 A breaker, with an adjacent pull section600–1200 A Breaker over blank, with an adjacent pull section

26.00 (660.4)45.00 (1143.0)45.00 (1143.0)

1350 (614)2000 (909)1550 (706)

1500 (682)2250 (1023)1700 (773)

1560 (709)2670 (1214)1785 (811)

1710 (777)2920 (1327)1935 (880)

600–1200 A Breaker over auxiliary, with an adjacent pull section2000 A Breaker over blank, with an adjacent pull section2000 A Breaker over auxiliary, with an adjacent pull section

45.00 (1143.0)45.00 (1143.0)45.00 (1143.0)

2000 (909)——

2150 (977)2210 (1005)2660 (1209)

2235 (1016)——

2385 (1084)2210 (1005)2660 (1209)

1200 A Stand-alone breaker, cable-in/cable-out, with an adjacent pull section2000 A Stand-alone breaker, cable-in/cable-out, with an adjacent pull sectionAuxiliary over blank or blank over auxiliary

45.00 (1143.0)45.00 (1143.0)26.00 (660.4)

2000 (909)—1500 (682)

2150 (977)2210 (1005)1600 (727)

2235 (1016)—1500 (682)

2385 (1084)2210 (1005)1600 (727)

Auxiliary over auxiliaryBlank structure (with main bus only)Transition section (for close coupling to MCC, liquid or dry transformer)Blank pull section (with main bus only)

26.00 (660.4)26.00 (660.4)19.00 (482.6)19.00 (482.6)

1900 (864)1000 (455)800 (364)550 (250)

2000 (909)1100 (500)900 (409)650 (295)

1900 (864)1000 (455)800 (364)600 (273)

2000 (909)1100 (500)900 (409)700 (318)

Circuit Breaker

Type

Continuous

Current Rating

Amperes

Static

Weight

in Lb (kg)

50 VCP-T16, 50 VCP-T20, 50 VCP-T2550 VCP-T32, 50 VCP-T40

150 VCP-T16, 150 VCP-T20, 150 VCP-T25150 VCP-T32, 150 VCP-T40

1200200012002000

250 (114)440 (200)250 (114)440 (200)

50 VCP-TL16, 50 VCP-TL20, 50 VCP-TL25

150 VCP-TL16, 150 VCP-TL20, VCP-TL25

6001200600

2200

232 (105)234 (106)232 (105)234 (106)