Shedding (Quasar) Light on High Redshift Galaxies

16
Shedding (Quasar) Light on High Redshift Galaxies Joseph F. Hennawi UC Berkeley Hubble Fellowship Symposium April 2, 2007

description

Shedding (Quasar) Light on High Redshift Galaxies. Joseph F. Hennawi UC Berkeley. Hubble Fellowship Symposium April 2, 2007. Suspects. Hubble Fellow Class of 2001. Jason X. Prochaska (UCSC). Hubble Fellow Classes of 2006 and 2004. Juna Kollmeier (Carnegie) & Zheng Zheng (IAS). Outline. - PowerPoint PPT Presentation

Transcript of Shedding (Quasar) Light on High Redshift Galaxies

Page 1: Shedding (Quasar) Light on High Redshift Galaxies

Shedding (Quasar) Light on High Redshift Galaxies

Shedding (Quasar) Light on High Redshift Galaxies

Joseph F. HennawiUC Berkeley

Hubble Fellowship SymposiumApril 2, 2007

Page 2: Shedding (Quasar) Light on High Redshift Galaxies

Suspects

Jason X. Prochaska(UCSC)

Juna Kollmeier (Carnegie) & Zheng Zheng (IAS)

Hubble Fellow Class of 2001

Hubble Fellow Classes of 2006 and 2004

Page 3: Shedding (Quasar) Light on High Redshift Galaxies

OutlineOutline

• Finding close projected quasar pairs

• IGM Physics Primer

• Fluorescent Ly Emission

Bottom Line: The physical problem of a quasar illuminating a high redshift galaxy is very simple compared to other problems in galaxy formation.

Page 4: Shedding (Quasar) Light on High Redshift Galaxies

The AGN Unified ModelThe AGN Unified Model

BLAGN Steffen et al. (2003)

unidentified

non-BLAGN

The AGN unified model breaks down at high luminosities.

“Nearly all (~ 90%) luminous quasars are unobscured . . . ”

Barger et al. (2005)

AGN unified model

BLAGN

obscured non-BLAGN

Ω=4πnBLAGN

nhard X-ray

Page 5: Shedding (Quasar) Light on High Redshift Galaxies

Mining Large SurveysMining Large SurveysApache Point Observatory (APO) • Spectroscopic QSO survey

– 5000 deg2

– 45,000 z < 2.2; i < 19.1– 5,000 z > 3; i < 20.2– Precise (u,g,r, i, z) photometry

• Photometric QSO sample– 8000 deg2

– 500,000 z < 3; i < 21.0– 20,000 z > 3; i < 21.0 – Richards et al. 2004; Hennawi et al. 2006

SDSS 2.5m

ARC 3.5m

Jim Gunn

Follow up QSO pair confirmation

from ARC 3.5m and MMT 6.5m

MMT 6.5m

Page 6: Shedding (Quasar) Light on High Redshift Galaxies

= 3.7”

2’55”

ExcludedArea

Finding Quasar PairsFinding Quasar Pairs

SDSS QSO @ z =3.13

4.02.0

3.0

2.03.0

3.0

2.04.0

low-zQSOs

f/g QSO z = 2.29

b/g QSO z = 3.13

Keck LRIS spectra (Å)

Page 7: Shedding (Quasar) Light on High Redshift Galaxies

Cosmology with Quasar PairsCosmology with Quasar PairsClose Quasar Pair Survey

• Discovered > 100 sub-Mpc pairs (z > 2)

• Factor 25 increase in number known

• Moderate & Echelle Resolution Spectra

• Near-IR Foreground QSO Redshifts

• 45 Keck & Gemni nights. 8 MMT nights

= 13.8”, z = 3.00; Beam =79 kpc/h

Spectra from Keck ESI

Keck Gemini-N

Science

• Dark energy at z > 2 from AP test

• Small scale structure of Ly forest

• Thermal history of the Universe

• Topology of metal enrichment

• Transverse proximity effects

Gemini-S MMT

Collaborators: Jason Prochaska, Crystal Martin, Sara Ellison, George Djorgovski, Scott Burles, Michael Strauss

Ly Forest Correlations

CIV Metal Line Correlations

Nor

mal

ized

Flu

x

Page 8: Shedding (Quasar) Light on High Redshift Galaxies

Quasar Absorption LinesQuasar Absorption Lines

DLA (HST/STIS)

Moller et al. (2003)

LLS

Nobody et al. (200?)

Lyz = 2.96

Lyman Limitz = 2.96

QSO z = 3.0 LLS

Lyz = 2.58

DLA

• Ly Forest– Optically thin diffuse IGM / ~ 1-10; 1014 < NHI < 1017.2

– well studied for R > 1 Mpc/h

• Lyman Limit Systems (LLSs)– Optically thick 912 > 1

– 1017.2 < NHI < 1020.3

– almost totally unexplored

• Damped Ly Systems (DLAs)– NHI > 1020.3 comparable to disks

– sub-L galaxies?

– Dominate HI content of Universe

Page 9: Shedding (Quasar) Light on High Redshift Galaxies

Self Shielding: A Local ExampleSelf Shielding: A Local Example

Sharp edges of galaxy disks set by ionization equilibrium with the UV background. HI is ‘self-shielded’ from extragalactic UV photons.

Braun & Thilker (2004)M31 (Andromeda) M33 VLA 21cm map

DLA

Ly forest

LLS

What if the MBH = 3107 M black hole at Andromeda’s center started accreting at the Eddington limit? What would M33 look like then?

bump due

to M33

Average HI of Andromeda

Page 10: Shedding (Quasar) Light on High Redshift Galaxies

Fluorescent Ly EmissionFluorescent Ly Emission

• In ionization equilibrium ~ 60% of recombinations yield a Ly photon

• Since 1216 > 104 912 , Ly photons must ‘diffuse’ out of the cloud

• Photons only escape from tails of velocity distribution where Ly is small

• LLSs ‘reflect’ ~ 60% of UV continuum in a fluorescent double peaked line

Zheng & Miralda-Escude (2002)

In self shielding skin

912 ~ 1; Ly ~ 104

Self-Shielded HI

UV Background

x =ν −ν0

νD

= 0e−(x2 /2)

Only Ly photons in tail can escape

P(x)

Escape Probability

Resonant Line Emission Profile

x

Page 11: Shedding (Quasar) Light on High Redshift Galaxies

Imaging Optically Thick AbsorbersImaging Optically Thick Absorbers

Cantalupo et al. (2005)

Column Density Ly Surface Brightness

• Expected surface brightness:

• Still not detected. Even after 60h integrations on 10m telescopes!

or

Sounds pretty hard!

SBLy =3.7 ×10−20 J −22

912

4⎛

⎝⎜⎞

⎠⎟1+ z4

⎛⎝⎜

⎞⎠⎟

−4

ergs cm-2s-1W" μLyα = 30 mag/W"

Page 12: Shedding (Quasar) Light on High Redshift Galaxies

Help From a Nearby QuasarHelp From a Nearby Quasar

Adelberger et al. (2006)

DLAtrough

2-d Spectrum of Background Quasar

Spatial Along Slit (”)W

avel

engt

h

extended emission

r = 15.7!

Doubled Peaked Resonant Profile?

Background QSO spectrum

Transverse flux = 5700 UVB!

f/g QSO

R = 384 kpc

11 kpc

4 kpc

Page 13: Shedding (Quasar) Light on High Redshift Galaxies

Transverse Fluorescence?Transverse Fluorescence?

Implied transverse flux

gUV = 6370 UVB!

fLy< 410-18 erg/cm2/s

Could detect signal to

R|| < 7.5 R = 170 kpc/hbackground QSO spectrum

2-d spectrum

f/g QSO z = 2.29

PSF subtracted 2-d spectrum

(Data-Model)/Noise

Hennawi & Prochaska (2007)

b/g QSO z = 3.13

2 hours Keck LRIS-B

f/g QSO

R||

b/g QSO

R = 22 kpc/h

Probability of null detection:

P(Ω=4) = 9%

P(Ω=2) = 77%

Page 14: Shedding (Quasar) Light on High Redshift Galaxies

Near-IR Quasar RedshiftsNear-IR Quasar Redshifts

Page 15: Shedding (Quasar) Light on High Redshift Galaxies

Transverse Fluorescence?Transverse Fluorescence?

metals at this zBackground QSO spectrum

2-d spectrum

f/g QSO z = 2.27

PSF subtracted 2-d spectrum

(Data-Model)/Noise

Hennawi & Prochaska (2007)

b/g QSO z = 2.35

6 hours Gemini GMOS

Implied ionizing flux

gUV = 7870 UVB!

fLy< 510-18 erg/cm2/s

Could detect signal to

R|| < 7.8 R = 295 kpc/h

f/g QSO

R||

b/g QSO

R = 38 kpc/h

near-IR f/g z

Probability of null detection:

P(Ω=4) = 5%

P(Ω=2) = 76%

Page 16: Shedding (Quasar) Light on High Redshift Galaxies

PunchlinePunchline

• With projected QSO pairs, QSO environments can be studied down to ~ 20 kpc where ionizing fluxes are as large as 104 times the UVB.

• QSO-absorber pairs provide new laboratories to study Ly fluorescent emission without at 30m telescope.

R

f/g QSO

b/g QSO

Absorber

Aperture SpectraLy Emissivity

Kollmeier et al. (2007); Hennawi, Kollmeier, Prochaska, & Zheng (2007)

• The physics of self-shielding and Ly resonant line radiative transfer are very simple compared to other problems in galaxy formation.