Shashi Prabhakar , S. Gangi Reddy, A. Aadhi , Ashok Kumar, Chithrabhanu P.,

48
shi Prabhakar, S. Gangi Reddy, A. Aadhi, Ashok Kumar, Chithrabhanu P G. K. Samanta and R. P. Singh Physical Research Laboratory, Ahmedabad. 380 009. Feb 27, 2014 IPQI 2014 Orbital angular momentum of light: Applications in quantum information 1 R. P. Singh

description

Orbital angular momentum of light: Applications in quantum information. Shashi Prabhakar , S. Gangi Reddy, A. Aadhi , Ashok Kumar, Chithrabhanu P., G. K. Samanta and R. P. Singh Physical Research Laboratory, Ahmedabad. 380 009. Feb 27, 2014 IPQI 2014. Whirlpools. Tornadoes. - PowerPoint PPT Presentation

Transcript of Shashi Prabhakar , S. Gangi Reddy, A. Aadhi , Ashok Kumar, Chithrabhanu P.,

Page 1: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Shashi Prabhakar, S. Gangi Reddy, A. Aadhi, Ashok Kumar, Chithrabhanu P.,

G. K. Samanta and R. P. Singh

Physical Research Laboratory,Ahmedabad. 380 009.

Feb 27, 2014IPQI 2014

Orbital angular momentum of light: Applications in quantum information

1 R. P. Singh

Page 2: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Whirlpools

Tornadoes

Page 3: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Outline of the talk

• How light acquires orbital angular momentum (OAM)• Experimental techniques to produce light with OAM

• Spontaneous Parametric Down-Conversion (SPDC)– Why– What– How

• Experiments and results• Hyper and hybrid entanglement• Applications – recent experiments• Future plan• Conclusion

3 R. P. Singh

Page 4: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Poynting showed classically for a beam of circularly polarized light

1

EnergyMomentumAngular

WJ z

Spin Angular Momentum

4 R. P. Singh

Angular momentum, Polarized: per photon

BethPhys. Rev. 50, 115, 1936

Page 5: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Can a light beam possess orbital angular momentum?

What would it mean?

L = r x p

Does each photon in the beam have the same orbital angular momentum?

Is the orbital angular momentum an integral number of ?

5 R. P. Singh

Orbital Angular Momentum

Page 6: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

For a field amplitude distribution where

ilzruzru exp ,, 0

zz l

WJ

Energy

MomentumAngular

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw and J. P. WoerdmanPhys. Rev. 45, 8185, 1992

6 R. P. Singh

Orbital Angular Momentum contd…

Page 7: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

7 R. P. Singh

Difference in SAM and OAM

Page 8: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Intensity and phase plot of a beam carrying OAM

Helical Wavefront

Each photon carries anOrbital Angular Momentumof lħ, l order of vortex, can be any integer

2π 4π

0

2

Topological charge8 R. P. Singh

Optical Vortex

Page 9: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Optical vortices are generated as natural structures when light passes through a rough surface or due to phase modification while propagating through a medium.

Controlled generation

1. Computer generated hologram (CGH)

2. Spiral phase plate

3. Astigmatic mode converter

4. Liquid crystal (Spatial light modulator)

9 R. P. Singh

Generation of Vortices in light

Page 10: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

He-Ne Laser

10 R. P. Singh

Generation using CGH

Page 11: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

He-Ne Laser B1

M1 M2

B2

ACGH L

Screen

CCD

11 R. P. Singh

Finding vortex order with Interferometry

Page 12: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

The number of rings present in the Fourier transform of intensity

The number dark lobes present at the focus of a tilted lens

Opt. Lett. 36, 4398-4400 (2011)  Phys. Lett. A 377, 1154-1156 (2013) 

m=1 m=2

m=2 m=3

Finding order, other than Interferometry

12 R. P. Singh

Page 13: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Entanglement

While generation of entangled particles

• Total energy is conserved• Total (spin/orbital/linear) momentum is conserved• Annihilation happens• Generated simultaneously from the source• Preserve non-classical correlation with propagation

13 R. P. Singh

Page 14: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Entanglement contd…

Variables that can be chosen for entanglement• Polarization• Spin• Orbital angular momentum• Position and momentum

1. Among these, polarization is the one which can be easily handled and manipulated in the lab using λ/2, λ/4 plates and polarizing beam-splitters.

2. The most common method to generate entangled photons in lab is Spontaneous parametric down conversion (SPDC).

14 R. P. Singh

Page 15: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Spontaneous parametric down conversion

Energy Conservation

p: Pump beams: Signal beam (High ω)i: Idler beam (Low ω)

Phase-matching condition

ωi

ω pωs

Phy. Rev. A 31, 2409 (1985)

ii k,pp k,

ss k,

isp isp kkk

iksk

pk

15 R. P. Singh

Page 16: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Phase matching (Birefringence)

birefringence Δn = ne – no

16 R. P. Singh

Incident light

e-ray(polarized)

o-ray(polarized)

Optics axis

Page 17: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Type-I SPDC

λ2λ

BBO crystal

|H>

|V>

|H>

• e o + o type interaction• Produces single cone• The two output photons (signal and idler) generated will be non-

collinear

Collimated pump Strongly focused pump

Phy. Rev. A 83, 033837 (2011)

17 R. P. Singh

Page 18: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Type-II SPDC

λ2λ

BBO crystal

|V>

|V>

|H>

• e o + e type interaction• Produces double cone• The two output photons (signal and idler) generated can be both

non-collinear and collinear

Phy. Rev. A 68, 013804 (2003)

18 R. P. Singh

e-ray

o-ray

pump

e-ray

o-ray

Page 19: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Specification of components usedBBO Crystal• Size: 8×4×5 mm3

• θ = 26˚ (cut for 532 nm)• Cut for type-1 SPDC• Optical transparency: ~190–

3300 nm• ne = 1.5534, no = 1.6776

Diode Laser• Wavelength: 405 nm• Output Power: 50 mW

Interference filter• Wavelength range 810±5

nm19 R. P. Singh

Page 20: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

20 R. P. Singh

First OAM entanglement experiment

Mair et al., Nature, 2001

10 0,1 2, 1 1,2 3, 21 0 0 1 2 1 1 2 3 2 ....C C C C C

12

Polarization entanglement :

Page 21: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Mair et al., Nature 2001

21 R. P. Singh

First OAM entanglement experiment contd…

Page 22: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Fig. 1 Left panel: Schematic sketch of the setup.

R Fickler et al. Science 2012;338:640-643

22 R. P. Singh

Quantum Entanglement of High Angular Momenta

Robert Fickler, Radek Lapkiewicz, William N. Plick, Mario Krenn, Christoph Schaeff, Sven Ramelow, Anton Zeilinger, Science 338, 640-643 (2012).

Page 23: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

R Fickler et al. Science 2012;338:640-643

Published by AAAS

23 R. P. Singh

Quantum Entanglement of High Angular Momenta contd

Measured coincidence counts as a function of the angle of one mask and different angles of the other mask.

Page 24: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Related works at PRL

• Spatial distribution of down-converted photons by• Gaussian pump beam• Optical vortex pump beam• Bell inequality violation for light with OAM• OAM qubit generation

24 R. P. Singh

Page 25: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Generating correlated photon pairs

25 R. P. Singh

Page 26: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Generating correlated photons

Generating correlated photons

Blue Laser

405 nm & 50 mW

Lensf = 5 cm

BBOcrystal

IF

EMCCD

λ/2plate

Angle(λ/2) = 45˚ and 0˚ Background subtracted

IF: Interference filter 810±5 nmEMCCD: Electron Multiplying

CCD

26 R. P. Singh

Page 27: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Observing SPDC at varying pump intensity

3mW 5mW 8mW

Width of the SPDC ring is independent of the intensity of the light beam.

50 100 150

Width of the SPDC ring is independent of number of accumulations taken by EMCCD camera.

27 R. P. Singh

Page 28: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

SPDC with Gaussian pump beam

1.0 mm

1.0 mm

28 R. P. Singh

Page 29: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

SPDC with Gaussian pump beam (theory)

1.0 mm

1.0 mm

29 R. P. Singh

Page 30: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

SPDC with gaussian pump beam

300 400 500 600 700

300

400

500

600 rin

g ( m

)

pump ( m)

Numerical Experimental

30 R. P. Singh

Page 31: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

SPDC with optical vortex beam

BBOcrystal

IF λ/2plate

EMCCDCamera

Lens

Collimating Lens Combination

M

M

SLM

A

A

λ=405 nm, P=50 mW

Blue Laser

A

Lens

31 R. P. Singh

S. Prabhakar et al., Optics Communications

Page 32: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

SPDC with optical vortex pump beam

1.0 mm

1.0 mm

Order of vortex m=1 m=3 m=5

32 R. P. Singh

Page 33: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

SPDC with optical vortex pump beam

33 R. P. Singh

0 1 2 3 4 5

600

800

1000

1200

1400

1600

1800

2000

2200

F

WH

M (m

)

Order (m)

Numerical Experimental

Page 34: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Orbital angular momentum conservation: mp = ms + mi

Our approach:

34 R. P. Singh

Multi-photon, multi- dimensional entanglement can be achieved using OPO

Page 35: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

R. P. Singh 35

Classical Entanglement

2,,,, baEbaEbaEbaEBThe Bell-CHSH inequality

For continuous variables, Wigner Distribution Function can be used instead of E(a, b)

2

,2;,2,2;,1 ,1;,2,1;,1

2221

1211

YXYX

YXYX

PYPXWPYPXWPYPXWPYPXW

B

Here, (X, PX) and (Y, PY) are conjugate pairs of dimensionless quadratures

P. Chowdhury et al. Phys. Rev. A 88, 013803 (2013).

Violation of Bell’s inequality for light beams with OAM

Page 36: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

36

Classical Bell’s Violation for Optical Vortex beams

Wigner Distribution Function (WDF) can be defined as

exp,,,,,, 212121,,

dRdRpRpRiRRyxppyxW yxmnyxmn

2/,2/2/,2/,,,

as defined and (TPCF)function correationpoint -Two is where

21,*

21,21,

,

RyRxERyRxERRyx mnmnmn

mn

In other words, WDF is the Fourier Transform of TPCF. Experimentally, TPCF can be determined by using Shearing-Sagnac Interferometry.n (azimuthal) and m (radial) are the two indices in the electric field for LG beams with OAM.

R. P. Singh

Violation of Bell’s inequality contd…

Page 37: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

R. P. Singh 37

Experimental setup for determining TPCFViolation of Bell’s inequality Experiment

Page 38: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

R. P. Singh 38

Variation of non-locality with order of vortex (n)

Magnitude of violation of Bell inequality increases with the increase in the order of vortex

Violation of Bell inequality contd…

Page 39: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

39

ResultsOrder (n) Theoretical (|Bmax|) Experimental (|Bmax|)0 2 2.01350 ± 0.012691 2.17 2.18460 ± 0.059332 2.24 2.26326 ± 0.08063

Violation of Bell’s inequality contd…

R. P. Singh

m=0, n=1, X1 = 0; PX1 = 0; X2 = X; PX2 = 0; Y1 =0; PY1 = 0; Y2 = 0; PY2 = PY ,

xPY

Page 40: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

All the OAM Qubits on the Poincare sphere can be realized by projecting the non separable state of polarization and OAM into different polarization basis.

Non separable polarization – OAM state 22 VHThis state can be generated from Q-plate or modified Sagnac interferometer with vortex lens.

Polarization Poincare sphere OAM Poincare sphere

R. P. Singh

Generation of OAM qubits

40

Page 41: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

OAM qubit

OV lens λ/2

PBS State Preparation

λ/2 (α)λ/4 (β)

PBSProjective measurements in polarization basis

2l

Horizontal polarization will acquire OAM of +2 Vertical polarization will get OAM of -2.

HWP (λ/2(α)) and QWP (λ/2(β)) with PBS will project the state in to different polarization basis.

Each combination of HWP and QWP will generate corresponding points on the Poincare sphere of OAM.

Generation of non separable state

H

V2l

22 VH

R. P. Singh 41

Page 42: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

α=0 ̊ α= 22.5 ̊ α=45 ̊ α=67.5 ̊ α=90 ̊ α=112.5 ̊ α=135 ̊ α=157.5 ̊ α=45 ̊ β=0 ̊ β = 0 ̊ β =0 ̊ β =0 ̊ β =0 ̊ β =0 ̊ β =0 ̊ β=0 ̊ β =90 ̊

Experimental results

Page 43: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Conclusion and future outlook• Optical Vortices and orbital angular momentum of

light• Spontaneous Parametric Down-conversion can be

used to generate entangled photons in different degrees of freedom

• Spatial distribution of SPDC ring with higher order optical vortices

• Proposal to generate multi-photon, multi- dimensional entanglement

• Bell inequality violation for light beams with OAM• OAM qubit generation with non separable OAM-

polarization state • Using hybrid entanglement for quantum teleportation

and quantum key distribution

43 R. P. Singh

Page 44: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Thank you!

44 R. P. Singh

Page 45: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

OAM entanglement

Future plan

l = -2 -1 +1 +2

The rotation in phase provides orbital angular momentum of lћ to the photons.

Rotation of phase front as the beam propagates

45 R. P. Singh

Page 46: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Generating correlated photon pairs

Blue Laser

405 nm & 50 mW

Lensf = 5 cm

BBOcrystal

IF

EMCCD

λ/2plate

IF: Interference filter 810±5 nmEMCCD: Electron Multiplying

CCD

46 R. P. Singh

Page 47: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

SPDC with gaussian pump beam

λ=405 nm, P=50 mWBBO

crystalIFλ/2

plate

A

EMCCDCamera

Blue Laser

47 R. P. Singh

Page 48: Shashi Prabhakar , S.  Gangi  Reddy, A.  Aadhi , Ashok Kumar,  Chithrabhanu  P.,

Generating optical vortices

Computer generated holography technique for the generation of optical vortices.

2 ,21 lxkModT xblazed

48 R. P. Singh