Shape from Single Scattering Yasuhiro Mukaigawa* …inoshita/paper/ECCV2012-s...Shape from Single...

1
0 50 100 150 200 250 0 20 40 60 80 100 120 140 160 180 200 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.80 0.00 [cm] 0.20 0.40 0.60 Shape from Single Scattering for Translucent Objects Outline Our proposal is Implementation [cm] 0.25 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 [cm] Estimated scattering parameters Scattering decomposition [Mukaigawa et al. CVPR2010] Phase function Represents scattering distribution 2 3 2 2 ) cos 2 1 ( 1 4 1 ) , ( g g g g p ) ( exp ) , ( 2 1 d d g p s I t g=0 g>0 g<0 Forward scattering Backward scattering Isotropic scattering Scaling constant Extinction coefficient Length of light path High frequency stripe pattern Single scattering Multiple scattering Projector Scattering in object Single scattering (Unique light path) Multiple scattering (Multiple light path) = + Chika Inoshita* Yasuhiro Mukaigawa* Yasuyuki Matsushita** Yasushi Yagi* *Osaka University **Microsoft Research Asia Measurement setting Single Scattering from Single scattering model Experimental results Light path to height Estimate surface shape h(x, y) from intensity of single scattering I(x, y) p out t in t g p y x F F s y x I , ) , ( ) , ( Height is related to observed intensity Target objects Single scatterings I(x, y) Estimated heights h(x, y) 0 0.2 0.4 0.6 0.8 1 1.2 0 1000 2000 3000 4000 [cm] I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 Synthesized intensities (Gaussian noise: σ=10) Estimated heights 0 0.2 0.4 0.6 0.8 1 1.2 [cm] -0.1 0 0.1 0.2 [cm] =0 (Estimation) =10 (Estimation) =20 (Estimation) Ground truth =0 (initial) =10 (initial) =20 (initial) Synthetic data and estimated results in 1D Scaling constant s Scattering parameter g Extinction coefficient σt RSME [cm] Ground truth - Noise: σ=0 Noise: σ=10 Noise: σ=20 Numerical evaluation Synthetic data and estimated result in 2D 1500 2500 3500 4500 5500 6500 0 0.9 0.6 0.3 [cm] 0.3 0.1 0 [cm] 0.2 Ground truth Estimated height Synthesized intensity (Gaussian noise: σ=5) s g σt Synthesized intensities Simultaneous estimation of surface shape h(x, y) and scattering parameters s, g, and σt Estimate initial shape and scattering parameters Refine shape and parameters h(xy) s, g, σt p=π/2 *ignoring refraction x d1 d2 dn Intensities Real intensities x d1 d2 dn Intensities No Yes end same? Shape r i t d y x h x sin ) , ( exp Projector (3M MPro110) Camera (Point grey Grasshopper2) Telecentric lens (Edmund optics) 21cm 15cm Target object Assumptions - Homogeneous material - Orthographic projection - Planar incident surface z (x, y) y x I(x, y) p Scattering point (x’, y’) r di h(x, y) Camera Light source d1 d2 p(g, ) I

Transcript of Shape from Single Scattering Yasuhiro Mukaigawa* …inoshita/paper/ECCV2012-s...Shape from Single...

Page 1: Shape from Single Scattering Yasuhiro Mukaigawa* …inoshita/paper/ECCV2012-s...Shape from Single Scattering for Translucent Objects Outline Our proposal is Implementation 0.00 0.05

0

50

100

150

200

250

020406080100120140160180200

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.80 0.00 [cm] 0.20 0.40 0.60

Shape from Single Scattering for Translucent Objects

Outline

Our proposal is

Implementation

[cm] 0.25 0.00 0.05 0.10 0.15 0.20

0.25 0.00 0.05 0.10 0.15 0.20 [cm]

Estimated scattering parameters

Scattering decomposition [Mukaigawa et al. CVPR2010]

Phase function Represents scattering distribution

2

3

2

2

)cos21(

1

4

1),(

gg

ggp

)(exp),( 21 ddgpsI t

g=0 g>0 g<0 Forward

scattering Backward scattering

Isotropic scattering

Scaling constant

Extinction coefficient

Length of light path

High frequency stripe pattern

Single scattering

Multiple scattering

Projector

Scattering in object

Single scattering (Unique light path)

Multiple scattering (Multiple light path)

= +

Chika Inoshita* Yasuhiro Mukaigawa* Yasuyuki Matsushita** Yasushi Yagi*

*Osaka University **Microsoft Research Asia

Measurement setting

Single Scattering from

Single scattering model

Experimental results

Light path to height

Estimate surface shape h(x, y) from intensity of single scattering I(x, y)

p

out

t

in

t gpyxFFsyxI , ),( ),(

Height is related to

observed intensity Target objects Single scatterings I(x, y)

Estimated heights h(x, y)

I1 I2 I3 I4

I5 I6 I7

I8 I9 I1

0

0 0.2 0.4 0.6 0.8 1 1.2 0

1000

2000

3000

4000

[cm]

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

Synthesized intensities (Gaussian noise: σ=10) Estimated heights

0 0.2 0.4 0.6 0.8 1 1.2 [cm] -0.1

0

0.1

0.2

[cm]

=0 (Estimation) =10 (Estimation) =20 (Estimation) Ground truth

=0 (initial) =10 (initial) =20 (initial)

Synthetic data and estimated results in 1D

Scaling constant s

Scattering parameter g

Extinction coefficient σt

RSME [cm]

Ground truth - Noise: σ=0

Noise: σ=10

Noise: σ=20

Numerical evaluation

Synthetic data and estimated result in 2D

1500

2500

3500

4500

5500

6500

1500

2500

3500

4500

5500

6500

0

0.9 0.6

0.3 [cm]

0.3

0.1 0

[cm]

0.2

Ground truth Estimated height

Synthesized intensity (Gaussian noise: σ=5)

s

g

σt

Synthesized intensities

Simultaneous estimation of surface shape h(x, y) and scattering parameters s, g, and σt

Estimate initial shape and scattering parameters

Refine shape and parameters

h(x,y) s, g, σt

p=π/2

*ignoring refraction

x

d1

d2

dn

Intensities

Real intensities

x

d1

d2

dn

Intensities No

Yes

end

same?

Shape

r

it

dyxhx

sin

),(exp

Projector (3M MPro110)

Camera (Point grey Grasshopper2)

Telecentric lens (Edmund optics)

21cm

15cm

Target object

Assumptions - Homogeneous material - Orthographic projection - Planar incident surface

z

(x, y)

y x

I(x, y)

p Scattering point (x’, y’)

r

di

h(x, y)

Camera

Light source

d1

d2

p(g, )

I