Shaista Ikram Thesis{faruq} -...

109
Chapter Chapter Chapter Chapter-1 INTRODUCTION INTRODUCTION INTRODUCTION INTRODUCTION

Transcript of Shaista Ikram Thesis{faruq} -...

Page 1: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

ChapterChapterChapterChapter−1111

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION

Page 2: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

1

The American Heritage Dictionary of the English Language (1992 edition) defines pollution

as, “the act or process of polluting or the state of being polluted, especially the contamination

of soil, water or the atmosphere by the discharge of harmful substances’’ [Rana, 2007]. An

introductory college text book defines pollution in its glossary as a process, to make foul,

unclean, and dirty; any physical, chemical, or biological change that adversely affects the

health, survival, or activities of living organisms or that alters the environment in undesirable

ways (Saigo and Cunningham, 1992). In 21st century the definition of pollution becomes

wider and more complex as to include natural and social system affecting the quality of our

environment. An expanded definition of pollution includes terms such as ecological

restoration, ecosystem rehabilitation and revitalization as well as aesthetic pollution, cultural

eutrophication and anthropogenic impacts. Human activities increased dramatically,

frequently and chronically resulting into unforeseen problems of diverse nature.

Anthropogenic activities “aesthetically” polluted natural landscapes, “culturally” eutrophied

lakes and deliberately allowed poisonous gasses to enter the atmosphere. Beginning with the

industrial revolution in the 18th century, pollution became a more noticeable phenomenon in

the middle of 19th century, particularly following the American civil war. The phenomenon of

acid rain was first described in the 17th century. The major events, one in the Meuse valley in

Belgium in 1930 and the other in Donora, Pennsylvania in 1948 were responsible for raising

alarm against air pollution in scientific community. Bhopal gas tragedy (1984) affected 3.5

lacks peoples of Bhopal (India).

Environmental pollution in general can be classified as follows.

1. Air pollution

The presence of one or more contaminants in the atmosphere in such quality and for such

duration as is injurious, or tends to be injurious to human health or welfare, animal or plant

life. It is the contamination of air by the discharge of harmful substances. Air pollution can

cause health problems and it can also damage the environment and properties. It has cause

thinning of the protective ozone layer of the atmosphere. Industries, vehicles, increase in the

population, and urbanisation are some of the major factors responsible for air pollution. The

following industries are among those that emit a large quantity of pollutants into the air:

thermal power plants, cement, steel, refineries, petrochemicals and mines. The source of

pollution may be in one country but the impact of pollution may be felt elsewhere.

Page 3: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

2

Carbon monoxide is a toxic gas. It is a product of incomplete combustion of organic matter

due to insufficient oxygen supply to enable complete oxidation to carbon dioxide. Exposures

at 100 ppm or greater can be dangerous to human health [Prockop and Chichkova, 2007].

Carbon monoxide mainly causes adverse effects in humans by combining with hemoglobin to

form carboxyhemoglobin (HbCO) in the blood. This prevents oxygen binding to hemoglobin,

reducing the oxygen-carrying capacity of the blood, leading to hypoxia. Inhaling even

relatively small amounts of the gas can lead to hypoxic injury, neurological damage, and even

death. Carbon dioxide is a naturally occurring atmospheric gas that is considered safe at

levels below 0.5% according to OSHA standards [CCOHS, 2005]. It is also produced by

human activities. CO2

is considered to be a potential inhalation toxicant and a simple

asphyxiate [Aerias, 2005; NIOSH, 1976; Priestly, 2003]. It enters the body from the

atmosphere through the lungs, is distributed to the blood, and may cause an acid-base

imbalance, or acidosis, with subsequent CNS (Central Nervous System) depression [Nelson

2000; Priestly 2003]. Chlorofluorocarbon (CFC) released mainly from air conditioning

system and refrigeration. When released into the air, CFC rise to the stratosphere, where they

come in contact with other gases like ozone and lead to a reduction of the ozone layer. Ozone

occurs naturally in the stratosphere of the atmosphere. This important gas shields the earth

from the harmful ultraviolet rays of the sun. However at the ground level it is a pollutant with

highly toxic effects. Ground level ozone is powerful oxidant and eye irritating. Nitrogen

oxide causes smog and acid rain. It is produced from burning fossil fuels like petroleum and

coal. Nitrogen oxide can make children susceptible to respiratory diseases in winters.

Suspended Particulate matter (SPM) consists of solids in the air in the form of smoke, dust,

and vapours that can remain suspended for extended period and is also the main source of

haze which reduce visibility. The finer of these particles, when breathed in can lodged in

lungs and causes lung damage and respiratory problems. Sulphur dioxide (SO2) gas is

produced from burning coal, mainly in thermal power plants. Some industrial processes, such

as production of papers and smelting of metals, produce sulphur dioxide. It is a major

contributor to smog, acid rain and can lead to lung diseases.

2. Land pollution

It is the pollution of the earth’s natural land surface by industrial, commercial, domestic and

other agricultural activities. Some of the common sources of land pollution are chemical and

Page 4: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

3

nuclear plants, industries, oil refineries, human sewage, mining, littering, debris from

construction work and deforestation.

3. Water pollution

The indiscriminate disposal of water after use in the form of wastewater causes water

pollution. Water pollution could be in the form of any change in the physical, chemical and

biological properties of water which has harmful effect on living things. It could take place in

various water sources, like ponds, lakes, rivers, seas and oceans. Water is the most abundant

compound on earth, covering nearly three quarters of the planet’s surface. Although the total

amount of water on earth is enormous, only a small percentage is fresh water and much of

that is not readily available for human use. Over 97% of the world’s total supply of water is

found in oceans which is too salty for drinking, irrigation, and most industrial and household

needs. Lakes and rivers, which are the major sources of the world’s drinking water, account

1% of earth’s total water (Fig. 1.1).

Fig. 1.1. Distribution of water on earth’s surface

One of the causes of water pollution is the release of waste into the water bodies, for example

domestic waste, industrial effluents, agricultural wastes. In addition infection agents, plant

Page 5: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

4

nutrients, exotic organic chemicals, inorganic materials and compounds sediments and heat

totally spoil the quality of water. Several legislations starting from 1899 till date have been

passed in various states (Including Maharashtra India since 1964) to preserve the quality of

water because the water quality is of major concern for everyone. Other causes of pollution in

the sea include events such as oil spills and atmospheric deposition (where pollutants enter

water bodies through falling particles, dissolving in rain, snow, or direct dissolving in water.

Types of water pollution

The growing human population is putting undue pressure on the planet’s water resources

resulting in various type of water pollution. The qualities of major water bodies such as

rivers, lakes, oceans and ground water is greatly reduced by human activities. Ground water

is important to man since a large section of people in every country, including the developed

nations depends on it. Moreover, this recourse is an integral component of hydrologic cycle.

Ground water pollution falls into two broad categories: Point source and Non-Point source

pollution. Point source pollution refers to contamination originating from a single tank or a

single disposal site. Leakage of gasoline from a storage tank is an example of point source

pollution. Non-point source pollution also called diffuse source pollution refers to

contamination that is spread out over an extensive area. For example, fertilizers and

pesticides that are spread over large fields may percolate into groundwater at a number of

places, causing non-point source pollution. Since non-point source pollution affects a larger

area, it is generally considered to be more hazardous than point source pollution.

Chemical pollutants are subdivided into organic and inorganic pollutants (Table 1.1 and 1.2).

Organic pollution is the most common form of water pollution. It is caused by the naturally

occurring compounds like proteins, fats, carbohydrates etc, as well as by synthetic

compounds like dyes pesticides herbicides etc. The synthetic organic derivatives cause more

harm to the environment than the naturally occurring one. Some important organic pollutants,

along with the sources of their origin, are listed in Table 1.1. These pollutants can be

classified into two groups named biodegradable in which naturally occurring compounds are

placed and non-biodegradable which includes synthetic compounds. When a biodegradable

organic polluting load is discharged into a water body it is decomposed or degraded by

aerobic bacteria. However non-biodegradable pollutants like detergents, pesticides,

herbicides, paints, plasticizers, pharmaceuticals, industrial effluents and aromatic derivatives

are resistant to microbial decomposition and also toxic in nature. Their biodegradation occurs

Page 6: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

5

extremely slowly, consuming massive amount of dissolved oxygen [Sodhi, 2009]. For such

reactions, the rate of oxygen consumption is greater than the rate of oxygen replenishment.

Under these circumstances, depletion of dissolved oxygen occurs, resulting in severe

consequences for the aquatic biota and before they are acted upon by micro-organisms they

manifest their toxic effects on the aquatic living community. Thus such compounds elicit a

wide range of environmental hazards.

Biological pollutants

Those aquatic organisms which either multiplied excessively or are otherwise undesirable,

harmful or injurious are classified as biological pollutants. These pollutants generally arise as

secondary result of pollution by sewage or trade wastes. Excessive growth of fresh water

weeds like chest nuts is because of the discharge of untreated sewage or effluents into water.

Algae multiply at an accelerated pace, causing odours in water. When they die, their cell

decompose, encouraging the growth of bacteria and fungi which thrive on dead cell

constituents, moreover, the decomposition of algae cells consume oxygen. The depletion of

dissolve oxygen causes eutrophic conditions in water bodies likes lacks. High density of

algae may also produce toxins which are lethal to animals for example; Prymnesium parvum

produces a toxin which is harmful to the fish. The faecal contamination of water can

introduce a variety of pathogenic bacteria in water. Salmonella can cause acute gastro-

enteritis with diarrhea, fever and vomiting. Escherichia coli produce diarrhea in children.

Salmonella typhi causes typhoid while Vibrio cholerae causes cholera. Viruses are inducted

into natural water through faeces. Although these organisms are present in water in much

lower number than bacteria, yet they pose a considerable health hazards because they cause

greater resistance to disinfection. Many of the common infection of man are viral diseases.

Influenza, small pox, poliomyelitis and yellow fever are some of the common ailments

caused by viruses. Hepatitis A is transmitted by virus contaminated water. Faecal

contamination of drinking water is the major source of transmission of pathogenic protozoa.

Amoebic dysentery is caused by the parasitic protozoan, Entamoeba histolytica. It is endemic

in the tropical and subtropical region. Another parasitic protozoan, Naegleria fowleri causes

amoebic meningoencephalitis, a fatal disease.

Page 7: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

6

Table. 1.1. Common organic pollutants.

Pollutants Representative Examples Source

Proteins Gelalin, Keratin Casein Food processing, Cannery waste,

Slaughter house waste, tannery

waste

Fats Glycerol palmitate, glycerol stearate. Fat refining, wool scouring

waste, edible oil waste.

Carbohydrates Starch, Cellulose Paper and pulp industry, textile

industry

Resins Amber, Rosin Paint manufacture, textile

industry, lacquer industry

Soaps Sodium palmitate, potassium stearate Laundry waste, textile waste

Detergents Sodium louryl sulphate, polyglycol

ether

Laundry waste, textile waste

Dyes Fluorescein magenta Dyeing and printing textile,

paper, leather

Agro chemicals DDT, 2,4-D Agricultural run-off

Table.1.2. Common inorganic pollutants.

Pollutants Representatives examples Sources

Acids Sulphuric acids, phosphoric acids Mine run-off, wool scouring

waste, iron pickle liquor.

Alkalis Caustic soda, lime Tannery waste, cotton

processing waste.

Both acids and alkalis destroy bacteria and so inhibit self purification of stream.

Heavy metal pollution

Bjerrum’s definition of “Heavy Metal” is based upon the density of the elemental form of the

metal and he classifies “heavy metals” as those metals with elemental densities above

7 g cm-3. A little later, in 1989, 1991 and 1992, Parker [Parker, 1989], Lozet and Mathieu

[Lozet and Mathieu, 1991] and Morris [Morris, 1992] chose a defining density “greater than

Page 8: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

7

5 g cm-3”. However, Streit [Streit, 1994] used a density of 4.5 g cm-3 as his reference point,

and Thornton [Thornton, 1995] Chose 6 g cm-3. In terms of atomic weights heavy metals are

the metals with high atomic weight; (e.g. Chromium, Cadmium and Lead) can damage living

things at low concentration and tends to accumulate in the food chain [USEPA, 2000] or

those metals which have atomic weight greater than Sodium (23) that forms soaps on reaction

with fatty acid [Lewis Sr, 1993]. In terms of atomic number metals with an atomic number

greater than 20 [Hale and Margham, 1988] or those metals having atomic number between 21

and 92 [Lyman, 1995] are termed as heavy metals. Heavy metals are natural components of

the earth’s crust. They cannot be degraded or destroyed. To a small extent they enter in

human bodies via food, drinking water and air. As trace elements some heavy metals are

essential to maintain the metabolism of the human body. However, at higher concentration

they can lead to poisoning [Vinodh et al., 2011]. They can enter a water supply by industrial

and consumer waste, or even from acidic rain breaking down soils and releasing heavy metals

into streams, lakes, rivers and groundwater. Heavy metal pollution has become a serious

problem with the rapid increase of global industrial activities. The pollution of water by toxic

heavy metals is considered as a threat due to their immense toxicity and their non-

biodegradability. These heavy metal ions can be accumulated through the chain even at lower

concentration, leading to a threat to aquatic life as well as to animal, plant life and human

health as shown in Table 1.3.

Page 9: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

8

Table. 1.3. Some important heavy metals with their toxic effects and sources.

Heavy

Metals

Health Effects Sources

Copper

Cadmium

Chromium

Nickel

Zinc

Lead

Wilson disease, cancer, gastrointestinal catarrh,

cramps in calves, anaemia, diarrhea, fatigue,

loss of hair colour, low hormone production,

osteoporosis, atherosclerosis, demyelination of

nerve, alopecia, anxiety, arthritis, cancer,

diabetes, migraine.

Renal dysfunction, alopecia, anaemia,

cardiovascular diseases, enlarged heart,

migraines, itai-itai disease, lung cancer, damage

to human respiratory system.

Severe mucosal irritation, cancer, renal failure,

haemolysis, Lung cancer, Long-term exposure

can cause kidney and liver damage and damage

too circulatory and nerve tissue.

Haemorrhages, intestinal cancer, oral cancer,

lung cancer, respiratory symptoms, nausea,

dermatitis.

Abdominal pain, vomiting, diarrhea,

sideroblastic anaemia, leukopenia, hypochromic

microcytic anaemia, red urine, icterus, liver

failure, kidney failure.

In children low level of lead can cause learning

disabilities, nervous system damage, speech and

language impairment, decreased muscle and

bone growth, kidney damage; high level of lead

can cause seizures, unconsciousness and death.

In adults it causes increased chance of illness

Electroplating industries, pulp

and paper mills, fertilizer

plants, petroleum refineries,

copper water pipes, and copper

cookware.

Phosphate fertilizers, Cigarette

smoke, electroplating, Welding

metal, ceramics, Water pipe,

Coal combustion.

Metal alloys and pigment for

paints, cement, paper, rubber

and other materials, cooling

towers, leather tanning

industries.

Industrial waste, tobacco

smoke, Nuclear device testing,

etc.

Galvanized coating on iron and

steel, automotive parts,

batteries, fungicides, zinc

oxides based skin cream (such

as diaper rash cream and sun

screen) etc.

Lead paint, industries that use

lead (battery manufacturing,

pipe fitting, firing ranges,

demolition glass production,

smelting operations etc),

imported glazed pottery and

Page 10: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

9

Mercury

during pregnancy, harm to fetus, including

brain damage or death, fertility problem in both

men and women, high blood pressure, digestive

issue, nerve disorder, Abdominal pain, arthritis,

blindness, Parkinson’s disease, schizophrenia.

Adrenal dysfunction, allergy, alopecia, brain

damage and the central nervous system, hearing

loss, vision loss, etc. Minamata disease, at high

exposure there may be kidney effects,

respiratory failure, and death.

leaded crystal.

Drinking contaminated water,

eating fish contaminated with

mercury, leaching of mercury

from badly fitting dental

filling, from vaccinations

containing thimerosal, air

conditioner filters, and broken

thermometers.

Cadmium

It is a chemical element with symbol Cd(II) and atomic number 48. It prefers +2 oxidation

state. The average concentration of Cadmium in the Earth’s crust is between 0.1 and 0.5 parts

per million (ppm). It was discovered in 1817 simultaneously by Stromeyer and Hermann,

both in Germany as an impurity in Zinc carbonate [Kirk-Othmer, 1994]. Cd(II) ions are

relatively scare in the earth’s crust [Friberg et al., 1971]. Cadmium is one of the heavy metal

found at the top of the toxicity list [Volesky, 1994]. The most significant use of Cadmium is

in Nickel/Cadmium batteries, as rechargeable or secondary power sources exhibiting high

output, long life, low maintenance and high tolerance to physical and electrical stress. Other

uses of Cadmium are as pigments, stabilizers for PVC, in alloys and electronic compounds.

Cadmium is also present as an impurity in several products including phosphate fertilizers,

detergents and refined petroleum products. Cd(II) ions exist in the effluents produced by

metal finishing industry (e.g. electroplating), battery industry and paint industry. It is fairly

mobile in soil and is primarily present as an organically bound, exchangeable and water

soluble species [Holm et al., 1995; Chlopecka, 1996]. It will result in the deterioration of the

environment which will threaten the health and development of humans and other life form

[Shao et al., 2011; Aklil et al., 2004]. Cadmium poisoning includes kidney [Nogawa et al.,

2008], lung insufficiency, cancer, it changes the constitution of bone, liver and blood

[Schroede, 1965]. Cadmium accumulated in the rice crops, it developed itai-itai disease and

Page 11: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

10

renal abnormalities including proteinuria and glucosuria. Cadmium containing compounds

are known as carcinogens [Bui et al., 1975, IARC, 1996]. Cadmium is non-biodegradable and

once absorbed by an organism remains there for many years (over decades for human). The

long term exposure is associated with renal dysfunction. Cadmium may also produce bone

defects (Ostomalacia and Osteoporosis) in human and animals. The average daily intake for

human is estimated as 0.15 µg from air and 1 µg from water. Smoking a packet of 20

cigarettes can lead to the inhalation of around 2-4 µg of cadmium, but levels may vary widely

[HSDB, 1996]. The drinking water guideline value is 0.005 mg L-1 [Central Pollution Control

Board]. Cadmium can be removed by using three precipitation process [Islamoglu et al.,

2006] which include (a) acid treatment with HNO3 (b) alkali precipitation by NaOH (c)

sulphide precipitation by Na2S. Cadmium can also be precipitated by addition of lime and

magnesium [Lin et al., 2005]. Gould et al., 1986 reported that Cadmium can be removed by

cementation with magnesium while Younesi et al., 2006, Ku et al., 2002 used Zinc powder

for Cadmium removal by cementation. Various types of membranes have also been used to

remove cadmium from aqueous solution such as liquid membrane [Urtiaga et al., 2000],

hollow fiber supported liquid membrane [Breembroek et al., 1998], emulsion liquid

membrane [Mortaheb et al., 2009] and supported liquid membrane [Swain et al., 2006]. Many

researchers studied Cadmium removal by ion-exchange technique using different resins like

Amberlite IR 120 [Kocaoba, 2007], dolomite [Kocaoba, 2007], Dowex 50 W [Pehlivan and

Altun, 2006]. Liquid-liquid extraction by using specific extractants has also been reported for

separation of Cadmium [Nogueira and Delmas, 1999]. The removal of Cadmium from

thiocyanate solutions with bis-2-ethylhexyl sulphoxide (EHSO) in benzene has been

demonstrated by Reddy et al., 2006.

Chromium

Chromium takes its name from the Greek word for colour, ‘Chroma’. The element was

discovered by Bauquelin in 1797. Chromium is generally found in two oxidation states. The

Hexavalent Cr(VI) is toxic and a suspected carcinogen, whereas trivalent Cr(III) is much less

toxic and is a nutrient. It is also the second most abundant inorganic contaminant of

groundwater. Due to its acute toxicity and strong carcinogenic activity to humans, Cr(VI) has

been listed as one of the priority pollutants by the United State Environmental Protection

Agency (USEPA) [Keith et al., 1979; JTesta et al., 2004] and the Chinese Environmental

Protection Board (EPB) [Gulay and Arica, 2008; Krishna et al., 2004]. The maximum

Page 12: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

11

permissible limit of Cr(VI) in potable water, inland surface water and industrial wastewater

are 0.05, 0.1 and 0.25 mg L-1 respectively [Bandegharaei et al., 2004]. Chromium is known as

mutagen and carcinogen [Costa, 2003; Park et al., 2005]. It is highly reactive pollutant which

dissipates into the ecosystems from a variety of industrial activities such as electroplating,

leather tanning, mining, textile dyeing, wood preserving, chromate preparation and metal

finishing [Kim et al., 2002]. Hexavalent Chromium modifies DNA transcription process

causing important chromosomic aberrations. Furthermore it causes cancer in the digestive

tract and lungs and may cause epigastric pain, nausea, vomiting, severe diarrhea and

haemorrhage [PHSA, 1991; Mohanty et al., 2005]. According to the World Health

Organization (WHO) drinking water guideline, the maximum allowable limit for total

Chromium is 0.05 mg L-1 [WHO, 1984]. Dzyazko, 2007 used Inorganic ceramic membranes

such as hydrated zirconium dioxide (HZD) for Cr(VI) removal from dilute solutions. Cr(VI)

can also be removed from aqueous dilute solutions using polymer enhanced ultra filtration

(PEUF) process. Nanofiltration composite polyamide membranes [Muthukrishnan and Guha,

2008] and nonmatted polyacylonitrile fiber (PAN) membranes and aromatic polyamide thin

film membranes were also used to remove Cr(VI) [Bohdziewicz, 2000]. Ion-exchange

technique is a physicochemical method to remove Chromium from wastewater. Sapari et al.,

1996 used Synthetic Dowex 2-X4 ion exchange resins to remove Cr(VI) from plating

wastewater. Other synthetic ion exchange resin, Ambersep 132 was also explored to remove

chromic acid in a four step ion-exchange process [Lin and Kiang, 2003]. Kabay et al., 2003

revealed that Aliquat 336 can be effectively used for the removal of Cr(VI) from aqueous

solution. Rana et al., 2004 reported that electrochemical removal of Cr(VI) from industrial

wastewater is also possible using carbon aerogel electrodes. Kongsricharoern and Polprasert,

1995 used electrochemical precipitation (ECP) process for Cr(VI) removal from an

electroplating wastewater.

Lead

Lead has been recognized as one of the most toxic metals, mainly in ionic state. Due to its

severe toxicity and great potential hazards to the environment and organisms, Lead (Pb) is

regarded as one of “the big three” of the heavy metal (other are Cadmium and Mercury) Lead

poisoning is also known as plumbism colica piuctonum, saturnism is a medical condition

caused by increased level of Lead in the body [Volesky, 1990; Hamidpour et al., 2010]. The

major sources of Lead release into the environment are industrial activities such as

Page 13: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

12

electroplating, battery, manufacture, metallurgy. More than half of the world’s Lead

production (at least 1.15 million metric tons) is used in automobiles, especially in car battery.

Lead is a traditional base metal organ pipes, mixed with varying amounts of tin to control the

tone of the pipe. The exposure of the human to Lead contamination can cause health problem

including high blood pressure, anaemia, kidney damage, abdominal pain, confusion,

headache, irritability, memory and learning deficiencies and in severe cases seizures, coma

and death [Sgarlata et al., 2008]. Unlike other metals Lead does not naturally exists in the

human body, and thus there is not a minimum Lead level which to be considered non-toxic.

According to the USEPA regulation the acceptable concentration of Pb (II) in drinking water

is of 0.015 mg L-1 [USEPA, 2009]. Therefore, nowadays the removal of Lead ions from

wastewater is a problem of outmost importance [Alvarez et al., 2005]. Conventional methods

that have been used to remove Pb (II) ions from various industrial effluents by various

researchers such as The Jordanian chabazite- phillipsite tuff and faujasite- phillipsite tuff

have been used as ion exchange materials (Ibrahim and Akashah, 2004). Emulsion liquid

membrane (ELM) technique consisted of kerosene, surfactant Span 80, di-2-ethylhexyl

phosphoric acid (D2EHPA) and sulphuric acid (H2SO4) was used to remove lead from battery

industry wastewater (Levent et al., 2005).

Zinc

Zinc is the 24th most abundant element on the earth’s crust. German Chemist Andreas

Sigismund Marggraf is normally given credit for discovering pure metallic Zinc in 1746. Zinc

is considered as an essential trace element for life and acts as a micronutrient, it is one of the

components of certain proteins inside the human body, but at elevated as well as insufficient

concentrations Zinc may be detrimental on human health [Tapiero and Tew, 2003; Maret and

Sandstead, 2006]. It is known as an inorganic pollutant of the priority pollutants list [Hsieh et

al., 2004]. Zinc has been shown to bioaccumulate through the food chain [Kantola et al.,

2000; Thompson et al., 2003]. On the other hand, although Zinc is a key element for humans,

free Zinc ions in solution are highly toxic to plants, invertebrates and even vertebrates fish.

Trace amounts of free Zinc ions can cause heavy damage to the environment and kill some

organisms. Excessive intake of Zinc can promote deficiency in other dietary minerals. WHO

recommended the maximum acceptable concentration of Zinc in drinking water as 5.0 mg L-1

[Mohan and Singh, 2002]. Zinc toxicity to human occurs in both acute and chronic forms

[I.M., F.N.B, 2001]. Zinc deficiency symptoms in human and animals are failure to eat,

Page 14: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

13

severe growth depression, skin lesion and sexual immaturity [Dimirkou et al., 2002; Kiekens,

1990; Zhang et al., 2009; Haroun et al., 2007]. The main indications of Zinc poisoning are

desiccating muscles, imbalance of electrolytes, stomach, vertigo and disharmony [Veli and

Alyuz, 2007]. However, at large concentrations it is phytotoxic and therefore reduces soil

fertility [Sawalha et al., 2007]. Also reported that Zn(II) accumulates in living organisms

causing diseases and other toxic effects. Therefore there is significant interest regarding zinc

removal from wastewater [Moore and Rama Moorthy, 1985; Bhattacharya et al., 2006]. In

the ‘Dangerous substances Directive (76/464/EEC)’ of European Union, Zinc has been

registered as list 2 dangerous substance with environmental quality standards being set at 40

g L-1 for estuaries and marine waters and at 45-500 g L-1 for fresh water depending on water

hardness [Directive 76/464/EEC, 1976]. Zinc is a raw material for corrosion-resistant alloys

and brass, and for galvanization of steel and iron products. Zinc oxide is a white pigment for

rubber and paper. It is also utilized in paints, plastics, cosmetics and pharmaceuticals [Weng

and Huang, 2004; Arias and Sen, 2009]. Zinc is released into aquatic and soil environments

largely from various natural and anthropogenic activities. Metal mining, metallurgy

industries, coating and sludge produce large quantities of wastewater containing high

concentration of Zn(II) ions. Zinc has many commercial applications such as coatings to

prevent rust, in dry cell batteries and in the production of die castings compounds of zinc are

used in the manufacture of dyes, wood preservatives and cosmetics. Zinc occurs in the list of

primary contaminant elements proposed by the U.S. Environmental Protecting Agency

(EPA), since it has caused serious poisoning events. Due to its high production and

application, Zinc can be found in emission, effluents, sludge and waste for instance Zinc

concentrations of over 620 mg L-1 have been recorded in drainage from abandoned Copper

mines in Montana, USA [Volesky, 2003]. Zinc can be removed from electroplating

wastewater by chemical coagulation and precipitation process [Charerntanyarak, 1999]. Saari

et al., 1998 used Sodium xylenesulfonate (SXS) combined with Polyaluminum chloride

(PAC) as new technology in Zinc removal through hydroxide precipitation. Complexation-

Membrane Filtration is a conventional process to remove Zinc from industrial wastewater

[Borbelya and Nagy, 2009].

Page 15: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

14

Copper

The element was discovered in prehistoric times and has its name from the island of Cyprus

(Latin: Cuprum). Copper is an essential trace element and necessary for the functioning of

several enzymes involved in electron transfer (cytochrome oxidase), free radical defense

(catalase, superoxide dismutase) and melanin formation (tyrosiwase). Copper is also essential

for the utilization of iron and formation of hemoglobin. The recommended dietary allowance

(RDA) of Cu(II) for an adult male is 3.0 mg kg-1 of the body weight [NRC/NAS, 1980].

Exposure to copper above RDA is fatal to both vegetations and creatures [Mohan et al.,

2006]. Although Copper is an essential element for life in minute amounts, at higher levels of

exposure it shows magnetic and carcinogenic effect. Owing to the toxicity of Cu(II), the

world health organization (WHO) recommended the maximum acceptable concentration of

this element in drinking water to be 2.0 mg L-1 [WHO, 2008]. Cu(II) creates stress in the

gastrointestinal and respiratory tracts. Excessive level of Cu(II) may damage liver and

kidney, and may be responsible for anaemia, immunotoxicity and developmental toxicity.

The co-carcinogenic character of Cu(II) is also implicated in stomach and lung cancer

[Ahmad et al., 2009]. Cu(II) is widely used in many industries including metal cleaning and

plating baths, paints and pigments, fertilizers, paper board, wood pulp etc [Aksu and Isoglu,

2005; Zhu et al., 2009]. The effluents from these industries usually contain considerable

quantity of Copper, which spreads into the environment through soils and water streams and

finally accumulates along the food chain which causes human health hazards. Many

researchers remove Cu(II) ions from wastewater by using various techniques. Negrea et al.,

2008 remove Cu(II) ions through precipitation method by using 15% NaOH and 20%

Na2CO3 solutions as precipitation agents. Liehr, 1995 removed Cu(II) through effect of pH

on metal precipitation in denitrifying biofilms.

Nickle

The name of the element is derived from the German and Kupftrnickle meaning ‘Old Nick’s

(=Satan’s) Copper’. Nickel was discovered by Cronstedt in 1751. Enzymes of some

microorganisms and plants contain Nickel as an active centre, which makes the metal an

essential nutrient for them. Nickel is the 24th element in order of natural abundance in earth

crust [Krishnamurti and Viswanathan, 1991]. Nickel is a common metal and it is frequently

used in different industries, electroplating dyeing, storage, batteries, porcelain enamelling,

pigment and steel manufacturing etc. [Ewecharoen et al., 2008; Xu et al., 2006]. The

Page 16: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

15

tolerance limit of Nickel in drinking water is 0.01 mg L-1 and for industrial wastewater it is

2.0 mg L-1 [Kadivelu et al., 2001]. Nickel is known as one of the most common toxic metal,

and the US Environmental Protection Agency (EPA) has established 0.5 mg L-1 as the

permissible concentration for Nickel in drinking water [Gupta et al., 2010]. However,

effluents of different industries generally contain higher concentrations of Nickel than its

acceptable limit. Although Nickel is an essential micronutrient for animals and takes part in

synthesis of vitamin B12, its higher concentration causes cancer of the lungs, nose and bones

and may also cause nausea, rapid respiration, head ache, cyanosis and dry cough [Periyasamy

and Namasivayam, 1995; Malkoc, 2006]. It is thus necessary to treat industrial effluents rich

in Ni(II) before their discharge. Many researchers removed Ni(II) ions from wastewater by

using various techniques. Papadopoulos et al., 2004 removed Ni(II) by using ion exchange

and precipitation methods, Chiying et al., 1988 removed Ni(II) through precipitation

treatment of spent electroless nickel plating baths.

Standards of drinking water in India are reported in Table 1.4 and 1.5.

Table. 1.4. Drinking water’s standard in India (mg L -1).

Property Level Level

Maximum Minimum

Property Level Level

Maximum Minimum

Turbidity

Colour

pH

Hardness

Mg

Fe

Mn

Cu

5.0 (NTU)

5.0(Hazen unit)

7.0−8.5

100 (mg L-1)

30 (mg L-1)

0.1 (mg L-1)

0.05 (mg L-1)

0.05 (mg L-1)

25.0(NTU)

50.0(Hazen unit)

6.5−9.2

500 (mg L-1)

150 (mg L-1)

1.0 (mg L-1)

0.50 (mg L-1)

1.0 (mg L-1)

Cl-

SO42-

F-

NO3-

Zn

Oils

Detergents

200 (mg L-1)

200 (mg L-1)

1.0 (mg L-1)

4.5 (mg L-1)

5.0 (mg L-1)

0.01

0.20

600 (mg L-1)

400 (mg L-1)

1.5 (mg L-1)

45.0 (mg L-1)

15.0 (mg L-1)

0.30

1.0

Page 17: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

16

Table. 1.5. Standard for potable water (as described by W.H.O.) (mg L-1).

Parameters Average W.H.O.

Maximum Minimum

Turbidity

pH

Total solids

Hardness

Calcium

Magnesium

Iron

Chloride

Sulphate

Fluoride

Nitrate

Lead

5.0 (NTU)

7.0-8.5

500.0 (mg L-1)

100.0 (mg L-1)

75.0 (mg L-1)

30.0-50.0 (mg L-1)

0.1-0.3 (mg L-1)

200.0 (mg L-1)

200.0 (mg L-1)

1.0 (mg L-1)

45.0 (mg L-1)

0.05 (mg L-1)

25.0 (NTU)

6.5-9.2

1500.0 (mg L-1)

200.0 (mg L-1)

200.0 (mg L-1)

150.0 (mg L-1)

1.0 (mg L-1)

600.0 (mg L-1)

400.0 (mg L-1)

1.5 (mg L-1)

45.0 (mg L-1)

0.05 (mg L-1)

2.50 (NTU)

7.0-8.5

500.0 (mg L-1)

100.0 (mg L-1)

75.0 (mg L-1)

30.0 (mg L-1)

0.1 (mg L-1)

200.0 (mg L-1)

200.0 (mg L-1)

1.0 (mg L-1)

4.5 (mg L-1)

0.10 (mg L-1)

Characterization of wastewater

Different quality parameters such as colour, odour, pH, temperature, taste, conductivity,

transparency, turbidity, TDS (total dissolved solid), DO (dissolved oxygen), BOD

(biochemical oxygen demand) and COD (chemical oxygen demand) are important to be

assured before discharging water to commercial and domestic water supplies.

Colour

In natural waters is due to the presence of fulvic ions, metal ions, suspended mater,

phytoplankton weeds and industrial effluents. The drinking water should be colourless,

odourless and pleasant to taste.

pH

It is defined as a measure of hydrogen ions concentration in water or solution. The pH of

natural water is nearly about 7 (neutral). According to pH scale, the water is acidic if pH is

below 7 and alkaline if pH is above 7. The alkalinity of water is due to the presence of

carbonates, silicates, bicarbonates and sometimes due to the presence of weak organic acids.

Page 18: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

17

Temperature

Temperature of water can have a tremendous influence on aquatic environment. All the

physical, chemical and biological properties are affected by temperature variation. Increase in

water temperature increase oxygen demand, leading to serious oxygen depletion problem in

water resources.

Transparency

Transparency is inversely proportional to the turbidity. It is important because clearer the

water, the deeper sunlight will penetrate which is required for photosynthesis.

Conductivity

Conductivity is the measure of the ability or power of water to conduct electricity.

Conductivity measures the concentration of dissolved ions.

Total dissolved solid (TDS)

TDS is the residue left after evaporation of water at 103◦C to 105◦C. It is an aggregate amount

of the entire floating, suspended, separable and dissolved solids present in water. The solids

may be organic or inorganic in nature.

Dissolved oxygen (DO)

DO is the amount of gaseous oxygen dissolved in an aqueous solution. When DO level in

water drops below 5.0 mg L-1, aquatic life is put under stress and environment shifts towards

anaerobic condition.

Biochemical oxygen demand (BOD)

BOD is a standard method for indirect measurement of organic pollution. The BOD of pure

water is 0−3 mg L-1. If BOD is 5.0 mg L-1 or more, water is said to be contaminated with

organic pollutants.

Chemical oxygen demand (COD)

Biologically resistant organic compounds cannot be decomposed by bacteria. Therefore their

contents cannot be determined in terms of depletion of dissolved oxygen. They are oxidized

Page 19: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

18

by strong oxidizing agent like potassium dichromate and oxidant consumed is measured in

terms of chemical oxygen demand.

The characteristics of industrial wastewater generated by some important industries are

described below.

Slaughter houses and meat packing industry

Effluents from the fat and meat industry arise chiefly in slaughterhouses. Stockyard wastes

mainly contain cattle manure. Slaughter house effluents and those from the quartering of

carcasses, etc.; chiefly contain organic compounds such as blood, the contents of the

alimentary canal, urine, pieces of flesh, hide and bowels, grease, bristles and horsehair. These

wastes have a characteristic brownish, bloodlike appearance and a repugnant odour. The

organic compounds occur both as suspended matter and as true solutions and colloids. Due to

the large albumin content, these wastes putrefy easily. Slaughterhouse wastes are much more

polluted than those from meat processing plants but are very similar in composition and

characteristic. The effluents from a slaughterhouses or meat packing factory may contain

pathogenic micro-organisms affecting the bowels, germs of anthrax and other animal

diseases, and ovules of earthworms and bowl parasites.

The dairy industry

Dairy wastes, i.e. those from plants processing milk, contain typical organic pollutants, such

as casein and other albuminous substances, lactose and fats. These substances impose a

severe load on the receiving waters which are usually only small rivers or streams. All wastes

which come directly from milk processing plants contain chemicals (e.g. soda and detergents)

used in the cleaning of vessels and apparatus’. Dairy wastes (except cheese-factory wastes

which usually contain small particles of casein) have only a very small content of suspended

solids. They are turbid, whitish-yellow in colour and contain up to 160 mg L-1 of total

nitrogen almost entirely converted into ammonium nitrogen during putrefaction, 2-3 mg L-1.

The inorganic pigments (paint) industry

The composition and properties of the wastes vary according to the manufacturing process.

The wastes generated during the manufacture of Milori blue, for example, consist of an acid

liquor from the reaction vessel and wash water; they contain free sulphuric acid (pH=1.5),

sulphates, chlorides, iron compounds and cyanides. They may also contain large amounts of

Page 20: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

19

suspended solids. In the manufacture of white lead, the wastes (wash waters) usually contain

lead acetate, lead bicarbonate and residual acetic acid. Lead salts also occur in the waste

waters from the production of chrome yellow.

The tanning industry

Tannery wastes are a special problem among effluents polluted with organic compounds

because a high proportion of the pollutants consist of toxic inorganic compounds and

chemically altered albumen. It chiefly consists of waste liquors from the technological

processes (85-90% of the total), but also contain wastes from auxiliary processes which are

no different from ordinary household wastes. The quantity of wastes from the tanning process

average 80-100 per kg of material processed.

The plastic industry

The plastic industry, like that dyes and intermediates, discharges relatively small amounts of

polluted water. The greater proportions of the effluents are cooling waters, which are only

slightly polluted or not polluted at all. The wastes contained a number of organic acids, a

tetrahydric alcohol and pentaerythritol, as well as resin acids, formaldehyde and sodium

formate.

The pharmaceutical industry

It is difficult to make any generalizations regarding effluents discharged from pharmaceutical

products factories. The problem is even more complicated by the fact that the pharmaceutical

industry uses both inorganic and organic raw materials, the latter being synthetic or of

vegetable and animal origin.

The pulp and paper industry

The composition and properties of the effluents from pulp mills differ considerably from

those from paper mills, but since large plants usually produce pulp and paper, the waste are

considered together. The common features of these wastes are the inevitable presence of

cellulose fibres. The pulp and paper mill is a major industrial sector utilizing a huge amount

of lignocellulosic materials and water during the manufacturing process, and releases

chlorinated lignosulphonic acids, chlorinated resin acids, chlorinated phenols and chlorinated

hydrocarbons in the effluents.

Page 21: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

20

Industrial wastewater treatment technologies

a) Primary treatment

It includes screening, grinding, sedimentation, flocculation or coagulation and sedimentation.

In screening the larger suspended and floating materials such as paper, rags, wooden, pieces,

wires etc are removed. Screening system consists of two units. The first unit (coarse screen)

consists of metal bars or heavy wires spaced 25-40 mm apart, and the second unit consists of

fine screens. The materials that are removed by screening are usually incinerated. The

grinding is carried out in grinders of rotating screens with cutting teeth. These are used to

chop the solid materials to size smaller than 6 mm chemical treatment precipitates the solids

by flocculation or coagulation. These coagulates settle down rapidly. The coagulants of

importance are ferric sulphate or chloride or aluminium sulphate lime. These coagulates are

then removed either by sedimentation or by filtration.

b) Secondary treatment

The next stage is a biological process which breaks down dissolved and suspended organic

solids by using naturally occurring micro-organisms. These processes may be either aerobic

or anaerobic. In aerobic process, bacteria and other micro-organism consume organic matter

as food, at the expense of dissolved oxygen. Thus aerobic treatment reduces Biochemical

Oxygen Demand (BOD). It also removes appreciable amounts of oil and phenol. However,

commissioning and maintenance of aerobic treatment systems are expensive. Anaerobic

treatment is mainly employed for the digestion of sludge. Generally organic liquid wastes

from dairy, slaughter houses etc., are treated economically and effectively by anaerobic

treatment. In anaerobic treatment process methane and carbon dioxide are the major products

along with a liquid effluent that contains all the water and mineral from the upcoming

material. It is used to produce heat and electricity and also reduce the overall cost of sewage

treatment. The efficiency of anaerobic treatment process depends upon pH, temperature,

waste loading, absence of oxygen and toxic materials.

c) Tertiary treatment

The aim of tertiary treatment is further purification of wastewater as well as its recycling. The

most important purpose of tertiary treatment is an effective and efficient removal of

pollutants than primary and secondary treatment and it can be applied at any stage of the total

Page 22: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

21

treatment. It is the final treatment meant for “polishing” the effluent from the secondary

treatment processes, to improve the quality further.

Depending upon the required quality of the final effluent and the cost of treatment that can be

afforded in a given situation, any of the following treatment methods can be employed.

Chemical precipitation

Chemical precipitation method can be used to remove metals, fats, oil and greases,

contaminants, suspended solids, organic and inorganic.

Ion-exchange

In this process, metal ions from dilute solutions are exchanged with ions held by electrostatic

forces on the exchange resin. The natural materials such as zeolites can be used as ion

exchange media (Vander Heen, 1977). The modified zeolites like zeocarb and chalcarb have

greater affinity for metals like Ni and Pb (Groffman et al., 1992). The limitations on the use

of ion exchange for inorganic effluent treatment are primarily high cost, partial removal of

certain ions and the requirements for appropriate pre-treatment systems. Ion exchange is

capable of providing metal ion concentrations to parts per million levels. However in the

presence of large quantities of competing mono and divalent ions such as Na and Ca, ion

exchange is almost totally ineffective.

Electrodeposition

Some metals found in waste solutions can be recovered by electrodeposition using insoluble

anodes. For example spent solutions resulting from sulphuric acid cleaning of Cu(II) may be

saturated with copper sulphate in the presence of residual acid. These are ideal for electro-

winning where the high quality cathode copper can be electrolyticaly deposited while free

sulphuric acid is regenerated.

Reverse osmosis and ultra filtration

Reverse osmosis uses semi permeable membrane to achieve separation of dissolved salts

from the wastewater by applying pressure greater than the osmotic pressure causes by the

dissolved salts using high pressure pumps. Pre-treatment steps of effluents water before going

for reverse osmosis process is necessary and usually this is made possible by using ultra

filtration to first remove large molecules and colloidal materials so that this will help to

Page 23: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

22

protect the membranes. The spiral wound configuration of the membranes support structure

proves to be the best and most effective in use when it comes to municipal wastewater

reclamation. However, problems that are still needed to be solved are [Cushnie, 1994]

membrane durability problems, sensitive to hard water salts, fouling of membrane.

Electrodialysis

In this process, the ionic components (heavy metals) are separated through the use of semi

permeable ion-selective membranes. Application of an electrical potential between the two

electrodes causes a migration of cations and anions towards respective electrodes. Because of

the alternate spacing of cations and anions permeable membranes, cells of concentrated and

dilute salts are formed. The disadvantage is the formation of metal hydroxides which clog the

membrane.

These technologies are useful but sometimes create problems like separation of sludge and

disposal of secondary waste generated.

Adsorption

During the 1970’s increasing environmental awareness and concern led to a search for new

techniques capable of inexpensive treatment of polluted wastewater with metals. The search

for new technologies involving the removal of toxic metals from wastewater has directed

attention to adsorption, base of binding capacities of molecules or particles to a surface. Till

date, research in the area of adsorption suggests it to be an ideal alternative for

decontamination of metal/dye containing effluents. Adsorbents are attractive since naturally

occurring biomass/adsorbents or spent biomass can be effectively used. Adsorption is rapid

phenomenon of passive metal sequestration by the non-growing biomass/adsorbents are

comparable with the commercial synthetic cation exchange resins. The biosorption process

involves a solid phase (sorbent or biosorbents; biological material) and a liquid phase

(solvent, normally water) containing a dissolved species to be adsorbed (adsorbate,

metal/dyes). Due to the higher affinity of the adsorbent for the adsorbate species, the latter is

attracted and bound there by different mechanisms. The process continues till equilibrium is

established between the amount of solid−bound adsorbate species and its portion remaining

in the solution. The degree of adsorbent affinity for the adsorbate determines its distribution

between the solid and liquid phases. Adsorption is a power tool for the environmental

engineer for the removal of trace amounts of organic and inorganic contaminants present in

Page 24: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

23

municipal and industrial wastewater. Adsorption is a process that occurs when a gas or a

liquid solute accumulates on the surface of a solid or a liquid (adsorbent), forming a

molecular or atomic film (the adsorbate). It is different from adsorption, in which a

substance diffuses into a liquid or solid to form a solution. The term sorption encompasses

both process, while desorption is the reverse process. Adsorption is operative in most natural

physical, biological and chemical systems and is widely used in industrial applications. The

exact nature of the bonding depends on the details of the species involved, but the adsorbed

material is generally classified as exhibiting physisorption or chemisorptions. Physisorption

or physical adsorption is a type of adsorption in which the adsorbate adheres to the surface

only through Vander Waals (weak intermolecular) interactions, which are also responsible for

the non-ideal behaviour of real gases. Chemisorption is a type of adsorption where by a

molecule adheres to a surface through the formation of chemical bond. Adsorption is usually

described through isotherms, that is, function which connect the amount of adsorbate on the

adsorbent, with its pressure (if gas) or concentration (if liquid). One can find in literature

several models describing process of adsorption, namely Langmuir, Freundlich, Temkin and

Dubinin-Raduskevicvh isotherms etc. Adsorption from an aqueous solution is influenced

largely by the competition between the solute and the solvent molecule for adsorption sites.

The tendency of a particular solute to get adsorbed is determined by the difference in the

adsorption potential between the solute and the solvent. In general the lower the affinity of

the adsorbate for the solvents, the higher will be the adsorption capacity for solutes. Activated

carbon and polymeric adsorbents have high adsorption capacities in water primarily because

of low adsorption potential [Rai et al., 1998]. Three steps must take place for adsorption to

occur.

(i) The adsorbed molecules must be transferred from the bulk phase of the solution to the

surface of the adsorbent particles. In so doing, it must pass through a film of solvent

that surrounds the adsorbent particles. This process is referred to as film diffusion.

(ii) The adsorbate molecule must be transferred to the adsorption site on the inside of the

pore. This process is termed as ‘pore diffusion’ .

(iii) The particle must be attached to the surface of the solute, i.e., be adsorbed.

There are many factors that influence the rate of adsorption and the extent to which a

particular solute can be adsorbed for instance adsorbent characteristics; size and shape of

adsorbent particles, solubility of solute, pH, temperature, agitation time and concentration.

Adsorption rate usually decreases as the size of adsorbent particles becomes large. Highly

Page 25: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

24

soluble compounds having strong affinity to solvent are less easily adsorbed. Adsorption

capacity is inversely proportional to solubility. Adsorption rate also increases with increase in

concentration. The solution pH has strong influence on adsorption primarily due to change in

the ionic concentrations of water and solutes. Temperature is also a factor that affects the rate

and extent of adsorption.

Conventional and non-conventional adsorbents are used in this approach. Activated carbon is

a black solid substance resembling granular or powder charcoal and is carbonaceous material

that has highly developed porosity, internal surface area of more than 400 m2 g-1 and

relatively high mechanical strength. They are widely used as adsorbents in wastewater and

gas treatments as well as catalyst. Activated carbon is prepared by carbonisation and

activation of large number of raw materials [Rodrignes-Reinoso and linares-solano, 1998].

Activated carbon is the most widely used adsorbent, as it has good capacity towards organic

molecules and heavy metals from wastewater [Bansal et.al. 1998] but high cost limits its use.

Shortcoming of using activated carbon, as an adsorbent is its regeneration cost which makes

it uneconomical. The increasing usage and competitiveness of activated carbon prices has

prompted a considerable research work in the search of inexpensive adsorbents especially

developed from various agricultural waste materials therefore to make adsorption an

economically feasible process non-conventional adsorbents have come into application. Non-

conventinal adsorbents include inorganic adsorbents, organic adsorbents and biosorbents.

These adsorbents are capable of removing heavy metal ions and organic pollutants from

wastewater. Materials like chitin, chitosan, modified cotton, keratin, flyash, oil cakes, fruit

peels, barks etc. are few of the non-conventional adsorbents used for the removal of heavy

metals. Some important non-conventional adsorbents studied by various researchers during

the period 2000-2012 are listed in Table 1.6.

Page 26: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

25

Table 1.6. Summary of various adsorbents used for the removal of heavy metals from water and wastewater (2000-2012).

Cu(II) selective adsorbents (2000 to 2012)

Metal Removed

Adsorbent Remarks Reference

Cu(II) Iron oxide coated sand % Removal 74.9 %, time-20 min, conc. 5 mg/l,

adsorbent 30 g/l

Kwak et al., 2000

Cu(II) Pyrite Oxidation is accompanied by the reduction of

Cu(II) to Cu(I)

Weisener and Gerson, 2000

Cu(II) Sawdust Provide strong evidence to support the hypothesis

of adsorption mechanism

Yu et al., 2000

Cu(II) Tyre Rubber Al-Asheh and Banat, 2000

Cu(II) Iron coated sand Results of the study developed an innovative

technology.

C. H. Lai et al., 2000

Cu(II) Pseudomonas stutzeri Hur et al., 2001

Cu(II) Perlite Alkan and Dogan, 2001

Cu(II) Activated carbons Goyal et al., 2001

Cu(II) Kyanite Ajmal et al., 2001

Cu(II) Pecan shell activated carbon Dastgheib and D.A. Rockstraw, 2001

Cu(II) Peanut hull pallets 75% and 92% removal of copper was affected

within 20 and 50 min respectively.

Jonson et al. 2002

Cu(II) Ulothrix zonata Nuhoglu et al. 2002

Page 27: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

26

Cu(II) Chitosan and cross-linked chitosan

beads

WanNgah, 2002

Cu(II) Chitosan in prawn shell Chu, 2002

Cu(II) Almond shell carbons and

commercial carbons

Toles and Marshall, 2002

Cu(II) Natural and Modified Radiata Bark

Pine

Montes et al., 2003

Cu(II) Savanna Acid Soil pH ≥ 3.0 Agbenin, J. O., 2003

Cu(II) Olive Mill Residues Veglio et al., 2003

Cu(II) Sewage Sludge Ash Pan et al., 2003

Cu(II) Organosolv Lignin Acemiolu et al., 2003

Cu(II) Loess with high carbonate content Jinren, 2003

Cu(II) Activated and Non-activated Oak

Shells

Cu(II) uptake increased with decreasing sorbent

concentration or with an increase in Cu(II)

concentration or solution pH

Al-Asheh et al., 2003

Cu(II) Micaceous Mineral of Kenyan

Origin

Adsorption capacity of 0.850 g/g for Cu(II) Attahiru et al., 2003

Cu(II) Powdered Marble Wastes 100 % Cu(II) was attained Ghazy et al., 2003

Cu(II) Vineyard soils of Genera Celardin et al., 2003

Cu(II) Organic Manure Bolan et al., 2003

Cu(II) A 1.10 Phenanthroline-grafted De Leon et al., 2003

Page 28: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

27

Brazilian Bentonite

Cu(II) Caustic Treated Waste Baker’s

Yeast Biomass

Goksungur et al., 2003

Cu(II) Chlorella vulgaris Chu and Hashim, 2004

Cu(II) Humic substance Alvarez-Puebla et al., 2004

Cu(II) Chitosan Wan et al., 2004

Cu(II) Peat Petroni and Pires, 2004

Cu(II) Poly acrylonitrile-immobilized dead

cells of Saccharomyces Cerevisiae

Godjevargova and Mihova, 2004

Cu(II) Montmorillonites Ding and Frost, 2004

Cu(II) Herbaceous Peat Gundoan et al., 2004

Cu(II) Sawdust Larous et al., 2005

Cu(II) H3PO4-activated Rubber Wood

Sawdust

Kalavathy et al., 2005

Cu(II) Cu-ZSM-5 Zeolite Kazansky and Pidko, 2005

Cu(II) Phosphate Rock Sarioglu et al., 2005

Cu(II) Paenibacillus polymyxa Cells and

their (EPS) Exopolysaccharide

Acosta et al., 2005

Cu(II) Kaolinite Peacock and Sherman, 2005

Cu(II) Chemically Modified Thin Chitosan

Membranes

Cestari et al., 2005

Page 29: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

28

Cu(II) Chitosan-Cellulose Hydrogel Beads Li and Bai, 2005

Cu(II) Bentonite Al-Qunaibit et al., 2005

Cu(II) Goethite and Birnessite Huerta-Diaz, M. A., 2006

Cu(II) Microwave Stabilized Heavy Metal

Sludge

Hsieh et al., 2006

Cu(II) Kaolinite, montmorillonite and their

modified derivatives

Bhattacharyya and Gupta, 2006

Cu(II) Thin Vanillin-Modified Chitosan

Membranes

Cestari et al., 2006

Cu(II) Tectona grandis L.F. (teak Leaves

Powder)

King et al., 2006

Cu(II) Kaolinite Li and Dai., 2006

Cu(II) Spirogyra Species Gupta et al., 2006

Cu(II) Schwertmannite and Goethite Jonsson et al., 2006

Cu(II) Heavy metal precipitant N,N-bis-

(dithiocarboxy)piperazine

Fu et al., 2006

Cu(II) Chitosan and Chitosan/PVA Beads Ho, Yun-Shan, 2006

Cu(II) Activated Carbon Boari et al., 2006

Cu(II) Glycidyl methacrylate chelating

resin containing Fe2O3 particles

Donia et al., 2006

Cu(II) Activated Carbon from Alkaline Sayan, E., 2006

Page 30: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

29

Impregnated Hazelnut Shell

Cu(II) Chelating Cellulose Connell et al., 2006

Cu(II) Cellulosic-adsorbent Resin Bao-Xiu et al., 2006

Cu(II) Montmorillonite Qin and Shan, 2006

Cu(II) Activated Carbon (Chemviron C-

1300)

Kalpakli and Koyuncu, 2007

Cu(II) Rice husk Nakbanpote et al. 2007

Cu(II) Spent activated clay Weng et al. 2007

Cu(II) Sour orange residue Khormaei et al., 2007

Cu(II) Modified carbon nano tube Chung-Hsin, 2007

Cu(II) Citric acid modified Soyabean

straw

At pH 6 maximum adsorption occur. Zhu et al. 2008

Cu(II) 8-hydroxy quinoline immobilized

bentonite

The maximum adsorption capacity was found to be

56.55 mg g-1.

Gok et al. 2008

Cu(II) Modified agricultural by-products Sciban et al. 2008

Cu(II) Steel making slag Kim et al. 2008

Cu(II) Raw and acid activated bentonite Eren and Afsin, 2008

Cu(II)

Marrubium globosum sp. globosum

leaves powder

Kilic et al. 2009

Cu(II) Cross-linked magnetic chitosan

beads

Huang et al. 2009

Page 31: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

30

Cu(II) Chest nut shell and grapeseed

activated carbon

Ozcimen and Mericboyu, 2009

Cu(II) Biosolids Sarioglu et al. 2009

Cu(II) Recycled tire rubber Calisir et al. 2009

Cu(II) Pine cone powder Ofomaja et al. 2010

Cu(II) Palm shell activated carbon Issabayeva et al. 2010

Cu(II) Trametes versicolor (Fungi) Sahan et al. 2010

Cu(II) Grape stalk wastes Florido et al., 2010

Cu(II) Palm kernel fiber Ofomaja, 2010

Cu(II) Cashew nut shell Maximum adsorption at pH 5 Senthilkumar et al., 2011

Cu(II) Natural and acid activated clays Bhattacharya and Gupta , 2011

Cu(II) Rice hulls Maximum adsorption at pH 4 Jeon, 2011

Cu(II) Activated carbon Chikhi et al. 2011

Cu(II) Pyrolytic tire char Quek and Balasubramanian, 2011

Cu(II) Biochars were produced through

hydrothermal treatment and

pyrolysis.

Pyrolysis biochars present higher adsorption

efficiency than hydrothermal biochars.

Frantseska−Maria Pellera, 2012

Cu(II) Polymer supported nano-iron oxide Hui Qiu et. al, 2012

Cu(II) Silica-gel functionalized with

amino-terminated dendrimer-like

polyamidoamine polymers

Qu et al., 2012

Page 32: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

31

Cu(II) Anatase mesoporous TiO2 Vu et al., 2012

Cu(II) Agricultural by-products Pellera et al., 2012

Cd(II) selective adsorbents (2000 to 2012)

Metal

Removed

Adsorbent Remarks Reference

Cd(II) Transcarpathian Clinoptilolite Vasylechko et al., 2000

Cd(II) Pyrolusite Temp 30οC, pH 7, conc. 1-100 mg L-1. Koyanaka et al., 2000

Cd(II) Bone char Cheung et al., 2000

Cd(II) White-fungus Trametes versicolor Arica et al., 2001

Cd(II) C. vulgaris Aksu, 2001

Cd(II) Calcium hydroxyapatite McGrellis et al., 2001

Cd(II) Dealginated seaweed waste Romero-Gonzalez et al., 2001

Cd(II) Geothite-coated sand Lai et al., 2002

Cd(II) Perlite Mathialagan and Viraraghavan et al.,

2002

Cd(II) Chitin Benguella and Benaissa, 2002

Cd(II) Chitosan-based crab shells Evans et al., 2002

Cd(II) Perlite Mathialagan and Viraraghava, 2002

Cd(II) Muloorina Illite and Related Clay

Minerals

Lackovic et al., 2003

Cd(II) Sugarcane Bagasse Pith Krishnan and Anirudhan, 2003

Page 33: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

32

Cd(II) Fungus Aspergillus niger. Junior et al., 2003

Cd(II) Activated carbon from coconut

coirpith

Kadirvelu and Namasivayam, 2003

Cd(II) Rice husk Ajmal et al., 2003

Cd(II) Alginate coated Loofa Sponge Disc Iqbal, M., 2004

Cd(II) Tree Fern Ho and Wang, 2004

Cd(II) Brown, Green and Red Seaweeds Hashim and Chu, 2004

Cd(II) Tree fern Ho et al., 2004

Cd(II) Spirulina platensis Rangsayatorn et al., 2004

Cd(II) Chemically Modified Australian

Coals

Burns et al., 2005

Cd(II) Natural and Oxidized Corncob Leyva-Ramos et al., 2005

Cd(II) Protonated Macroalga Sargassum

muticum

Lodeiro et al., 2005

Cd(II) Agricultrual Waste ‘Rice Polish’ Singh et al., 2005

Cd(II) Commercial activated carbon

(CAC) and chemically prepared

activated carbons (CPACs) from

raw materials such as straw, saw

dust and dates nut

Kannan and Rengasamy, 2005

Cd(II) Hydrous Al(III) Floc in the McCullagh and Saunders, 2005

Page 34: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

33

Presence of a Modified Form of

Polyethylenimine

Cd(II) Highly Mineralized Peat Gabaldon et al., 2006

Cd(II) Hydrous Manganese Dioxide Tripathy et al., 2006

Cd(II) Husk of Lathyrus sativus Panda et al., 2006

Cd(II) Chitosan-Coated Perlite Beads Hasan et al., 2006

Cd(II) Arable and Forest Soils Palagyi et al., 2006

Cd(II) Coconut Copra Meal Ho and Ofomaja, 2006

Cd(II) Haro River Sand Ahmed et al., 2006

Cd(II) Kaolinite Harris et al., 2006

Cd(II) Wheat Bran Singh et al., 2006

Cd(II) Kaolinite-based Clays Hizal and Apak, 2006

Cd(II) Pyrite Borah and Senapati., 2006

Cd(II) Green Coconut Shell Powder Pino et al., 2006

Cd(II) Treated Rice Husk Kumar and Bandyopadhyay, 2006

Cd(II) Modified Sodium Alginate Hashem and Elhmmali, 2006

Cd(II) Sugarcane Bagasse Ibrahim et al., 2007

Cd(II) Coconut copra meal E. Ofomaja and Y. S. Ho, 2007

Cd(II) Orange peel Li et al., 2007

Cd(II) Coconut copra meal Ofomaja, and Ho, 2007

Cd(II) Orange peel cellulose Li et al., 2007

Page 35: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

34

Cd(II) Spirulina platensis biomass Solisio et al. 2008

Cd(II) Activated carbon Kula et al., 2008

Cd(II) Clarified sludge Naiya et al., 2008

Cd(II) Olive cake Al-Anber et al., 2008

Cd(II) Clinoptilolite-based Zeolites Gedik, Imamoglu et al., 2008

Cd(II) D152resin Xiong and Yao et al., 2009

Cd(II) surfactant-modified carbon

adsorbents

Nadeem et al., 2009

Cd(II) Fennel biomass (Foeniculum

vulgari)

Rao et al., 2009

Cd(II) Manganese dioxide (β-MnO2) Zaman et al., 2009

Cd(II) the marine brown alga Fucus

vesiculosus

Brinza et al., 2009

Cd(II) Modified corn stalk Zheng et al., 2010

Cd(II) Eleocharis acicularis Miretzky et al., 2010

Cd(II) Mercapto-silica Buhani et al., 2010

Cd(II) Tunisian palygorskite Frini-Srasra and Srasra, 2010

Cd(II) Mixed oxides of iron and silicon Mustafa et al., 2010

Cd(II) GMZ Bentonite Zhao et al., 2011

Cd(II) Wheat Maximum adsorption at pH 6 Farooq et al., 2011

Cd(II) Syzygium cumini Leaf powder Maximum adsorption was 29.08 mg/g at pH 5.5, Rao et al., 2011

Page 36: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

35

conc. 100 mg/L

Cd(II) Nano composite silica aerogel

activated carbon

Givianrad etbal., 2011

Cd(II) Multi-functional membrane Zhang et al., 2011

Cd(II) Humic acid coated titanium dioxide Chen et al., 2012

Cd(II) Municipal solid waste leachate Wu et al., 2012

Cd(II) Orange peel and Fe2O3

nanoparticles

Gupta and A. Nayak, 2012

Cd(II) Modified Corncob Leyva-Ramos et al., 2012

Cd(II) Humic acid-immobilized sodium

alginate and hydroxyl ethyl

cellulose blending porous

composite membrane adsorbent

Chen et al., 2012

Cr(VI) selective adsorbents (2000 to 2012)

Metal

Removed

Adsorbent Remarks Reference

Cr(VI) Avena monida (Oat) biomass Cr(VI) is reduced to Cr(III) in polluted water Gardea-Torresdey et al., 2000

Cr(VI) Cow dung cake 90 % removal Das et al., 2000

Cr(VI) Sheep hair Maximum adsorption at pH 0.75-1.25 and 3.25-3.75 Sarvanam et al., 2000

Cr(VI) Black locus leaves Maximum adsorption at pH 3 Aoyama et al., 2000

Page 37: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

36

Cr(VI) Coniferous leaves Adsorption increases with increase in pH Aoyama et al., 2000

Cr(VI) Hazelnut shell Cimino et al., 2000

Cr(VI) Rice straw Samanta et al., 2000

Cr(VI) Chitosan Tang et al., 2001

Cr(VI) Used tyres and sawdust Hamadi, et al., 2001

Cr(VI) Hazelnut shell activated carbon Kobaya, 2001

Cr(VI) Spirogyra species Gupta, et al., 2001

Cr(III) Fly Ash of Poultry Litter Kelleher et al., 2002

Cr(VI) Cone biomass of Pinus sylvestris Uncun, et al., 2002

Cr(VI) Dunaliella species Donmez and Aksu, 2002

Cr(VI) Low cost abundantly available

adsorbent

Dakiky, et al., 2002

Cr(VI) Soya Cake Danishvar, et al., 2002

Cr(VI) Distillery Sludge Selvaraj, et al., 2003

Cr(VI) Calcined Mg-Al-CO3 Hydrotalcite Lazaridis and Asouhidou, 2003

Cr(VI) Indigenous Low-cost Material Sharma, Y. C., 2003

Cr(VI) Ferrous Saponite Pandey et al., 2003

Cr(VI) Maple Sawdust Yu, et al., 2003

Cr(VI) Fe-modified Steam Exploded

Wheat

Chun et al., 2004

Cr(III) Chinese Reed (Miscanthus sinensis) Namasiyam and Holl, 2004

Page 38: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

37

Cr(VI) Persimmon Tannin gel Nakajima and Baba, 2004

Cr(VI) Activated Rice Husk and Activated

Alumina

Bishnoi et al., 2004

Cr(VI) Hazelnut shell Kobya, M., 2004

Cr(VI) Chemically Modified Activated

Carbons

Zhao et al., 2005

Cr(VI) Brasilinesis Sawdust Activated

Carbon

Rajgopal, S. and Miranda, L.R., 2005

Cr(VI) Maghemite Nanoparticles Hu et al., 2005

Cr(VI) Rice Bran Singh et al., 2005

Cr(VI) Used Black Tea Leaves Maximum Cr(VI) adsorption achieved at initial

Cr(VI) concentration < 150 mg/I; initial pH of

solution 1.54-2; processing temperature <50oC

Hossain et al., 2005

Cr(III) Activated Carbon Lyubchik et al., 2005

Cr(VI) Live and Pretreated Biomass of

Aspergillus flavus

Deepa et al., 2006

Cr(VI) Brown Coals Gode and Pehlivan, 2006

Cr(VI) Chitosan Coated Montmorillonite Fan et al., 2006

Cr(VI) ZnCl2 Activated Coir Pith Carbon Namasivayam and Sangeetha, 2006

Cr(VI) Activated Hazelnut Shell Ash and

Activated Bentonite

Bayrak et al., 2006

Page 39: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

38

Cr(III) Agave lechuguilla Biomass Romero-Gonzalez et al., 2006

Cr(VI) Fungi Biomass Louhab et al., 2006

Cr(VI) Li/Al Layered Double Hydroxide Wang et al., 2006

Cr(VI) Cassava (manihot Sculenta Cranz.) Horsfall Jr. Et al., 2006

Cr(VI) Tea Factory Waste Malkoc and Nuhoglu, 2006

Cr(VI) Pomace Malkoc et al., 2006

Cr(VI) Waste Acorn of Quercus

ithaburensis

Malkoc et al., 2006

Cr(VI) Manganese Nodule Leached

Residue Obtained from NH3-SO2

Leaching

Mallick et al., 2006

Cr(III) Spirulina platensis Li et al., 2006

Cr(VI) Grape Stalk Wastes Encapsulated in

Calcium Alginate Beads

Fiol et al., 2006

Cr(VI) Activated Carbon Yavuz et al., 2006

Cr(VI) Tamarind hull-based adsorbent Verma et al., 2006

Cr(VI) Sorel’s Cement Adsorpion capacity was 21.4 mg/g Hassan et al., 2006

Cr(III) Activated Carbon from Agricultrual

Waste Material and Fabric Cloth

Mohan et al., 2006

Cr(VI) Activated Carbo-aluminosilicate

Material from Oil Shale

Shawabkeh, 2006

Page 40: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

39

Cr(III) Activated Carbon from Sugar

Industrial Waste

Fahim et al., 2006

Cr(VI) Acacia Nilotica Bark Rani et al., 2006

Cr(III) Tamarindus indica Seeds Agarwal et al., 2006

Cr(VI) Turkish Brown Coals The adsorption reached equilibrium in 80 min Arslan and Pehlivan, 2007

Cr(VI) Tea factory waste Malkoc and Nuhoglu, 2007

Cr(VI) δ-FeOOH-coated maghemite (δ-

Fe2O3) nanoparticles

Hu, Lo and Chen, 2007

Cr(VI) River bed sand Sharma and Wang, 2007

Cr(VI) Rhizopus arrhizus Preetha and Viruthagiri, 2007

Cr(VI) Activated carbon (Date palm seed) Ahmed El Nemr et al., 2008

Cr(VI) modified red pine sawdust Gode et al., 2008

Cr(III) Spirulina platensis biomass Lodi et al., 2008

Cr(VI) Raw and chemically modified

Sargassum sp.

Lei Yang and Paul Chen, 2008

Cr(VI) Activated neem leaves Babu and Gupta, 2008

Cr(VI)

Helianthus annuus (sunflower)

stem waste

Maximum Cr(VI) removal was at pH 2.0

Jain et al., 2009

Cr(VI)

Tropical peats

95 % adsorption at pH 4.0

Batista et al., 2009

Page 41: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

40

Cr(VI) Pomegranate husk carbon Maximum adsorption occurs at pH 1. Ahmed El Nemr, 2009

Cr(VI) Lichen (Cladonia rangiformis (L.)) Bingol et al., 2009

Cr(VI)

and

Cr(III)

a newly synthesized chelating resin Tokalioglu et al., 2009

Cr(VI) Impregnated palm shell activated

carbon with polyethyleneimine

Owlad et al., 2010

Cr(III) Agro-waste materials Garcia-Reyes and Rangel-Mendez ,

2010

Cr(III) Orange (Citrus cinensis) waste Pérez Marín et al., 2010

Cr(VI) Methylated biomass of Spirulina

platensis

Finocchio et al., 2010

Cr(VI) Pistachio hull waste biomass Moussavi and Barikbin, 2010

Cr(VI) Corn stalks Maximum adsorption capacity was 200.0 mg/g at

303 K

Chen et al., 2011

Cr(VI) Onto alkyl-substituted

polyaniline/chitosan composites

Yavuz et al., 2011

Cr(VI) Modified tannery waste Kumar and Mandal, 2011

Cr(VI) Ethylenediamine-modified cross-

linked magnetic chitosan resin

Hu et al., 2011

Cr(VI) Macro and micro-vesicular volcanic Alemayehu et al., 2011

Page 42: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

41

rocks

Cr(VI) Lyngbya putealis Kaushik et al., 2012

Cr(VI) Zeolyte Anthrobacter Rosalaes et al., 2012

Cr(VI) crystalline cellulose–ionic liquid

blend polymeric material

Kalidhasan et al., 2012

Cr(VI) aquatic macrophyte Potamogeton

pusillus

Monferan et al., 2012

Cr(VI) Baker's yeast Vasanth et al., 2012

Ni(II) selective adsorbents (2000 to 2012)

Metal Removed

Adsorbent Remarks Reference

Ni(II) Fly ash 96 % removal Ricou Hoeffer et al., 2000

Ni(II) Citrus reticulate (Fruit peel of

orange)

Ajmal et al., 2000

Ni(II) chlorella species, C. vulgaris and C.

Miniata

Wong et al., 2000

Ni(II) pretreated biomass of marine

macroalga Durvillaea potatorum,

Sep.

Yu and Kaewsarn, 2000

Ni(II) Steel Converter Slag Ortiz et al., 2001

Ni(II) Activated carbon prepared from Kadirvelu et al., 2001

Page 43: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

42

coirpith

Ni(II) Flexible ion-exchange resin Spoor et al., 2001

Ni(II) C. Vulgaris

Ni(II) Stream Periphyton Gray et al., 2001

Ni(II) Sludge Ash Weng, 2002

Ni(II) Chlorella vulgaris Aksu, 2002

Ni(II) Adsorption onto hazelnut shell

activated carbon

Demirbas et al., 2002

Ni(II) Free and immobilized cells of

Pseudomonas fluorescens 4F39

Lopez et al., 2002

Ni(II) Sheep manure wastes Abu Al-Rub et al., 2002

Ni(II) Bentonite Tahir and Rauf, 2003

Ni(II) Penicillium chysogenum mycelium Su and Wang, 2003

Ni(II) Baker’s yeast Patmavathy et al., 2003

Ni(II) Activated carbon prepared from

almond husk.

Hasar, 2003

Ni(II) Cation-exchange resin Elshazly and A.H. Konsowa, 2003

Ni(II) Alumina particles Hong et al., 2004

Ni(II) Loofa sponge-immobilized biomass

of Chlorella sorokiniana

Akhtar et al., 2004

Ni(II) Clay-based beds Marquez et al., 2004

Page 44: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

43

Ni(II) Crab shell particles Vijayaraghavan et al., 2004

Ni(II) NaOH-treated bacterial dead

Streptomyces rimosus biomass

Selatinia et al., 2004

Ni(II) Crab Shells Pradhan et al., 2005

Ni(II) Activated Carbon Prepared from

Waste Apricot by Chemical

Activation

Erdogan et al., 2005

Ni(II) Chitosan Flakes Adsorption being pH dependent Zamin et al., 2005

Ni(II) Modified Pine Tree Materials Argun et al., 2005

Ni(II) Sawdust Shukla et al., 2005

Ni(II) Clays Gupta and Bhattacharyya, 2006

Ni(II) Coir Based Adsorbent Nityanandi et al., 2006

Ni(II) Cone biomass of Thuja orientalis Malkoc et al., 2006

Ni(II) Bagasse fly ash

Srivastava et al., 2006

Ni(II) Dalbergia sissoo Habib-ur-Rehman et al., 2006

Ni(II) Cassia fistula (Golden Shower)

biomass

Haneef et al., 2007

Ni(II) Multi-walled carbon nanotubes. Kandah and Meunier, 2007

Ni(II) Na-mordenite Wang et al., 2007

Ni(II) An immobilized hybrid biosorbent Iqbal and Saeed,2007

Page 45: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

44

Ni(II) Protonated rice bran Zafar et al., 2007

Ni(II) Enteromorpha prolifera Ozer et al., 2008

Ni(II) Black carrot (Daucus carota L.)

residues.

Guzel et al., 2008

Ni(II) Coir pith and modified coir pith Ewecharoenet al., 2008

Ni(II) Rice husk Krishnani et al., 2008

Ni(II) Activated carbon prepared from

Parthenium hysterophorus L.

Lata et al., 2008

Ni(II) Lignin Betancur et al., 2009

Ni(II) Waste pomace of olive oil factory Nuhoglu and Malkoc, 2009

Ni(II) Silica-gel-immobilized waste

biomass

Akar et al., 2009

Ni(II) Resin Gomathi Priya et al., 2009

Ni(II) Waste pomace of olive oil factory Yasar Nuhoglu and Emine Malkoc,

2009

Ni(II) Grape stalk waste Valderrama et al., 2010

Ni(II) Volcanic rocks Alemayehu and Lennartz, 2010

Ni(II) Treated alga (Oedogonium hatei) Gupta et al., 2010

Ni(II) Grape stalk wastes Valderrama 2010

Ni(II) Indigenous microorganisms Fosso-Kankeu et al., 2011

Ni(II) Cashew nut shell Kumar et al., 2011

Page 46: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

45

Ni(II) Dead fungal biomass of Mucor

hiemalis

Shroff et al., 2011

Ni(II) Moringa oleifera bark Reddy et al., 2011

Ni(II) Cassava peel waste Kurniawan et al., 2011

Ni(II) AquaporinZ incorporation via

binary lipid

Sun et al., 2012

Ni(II) Oil cake Khan et al., 2012

Ni(II) RHA and carbon embedded silica Totlani et al., 2012

Ni(II) Activated carbon based on a native

lignocellulosic precursor

Nabarlatz et al., 2012

Pb(II) selective adsorbents (2000 to 2012)

Metal Removed

Adsorbent Remarks Reference

Pb(II) Recycled iron material Smith and Amini, 2000

Pb(II) Coirpith carbon Kadirvelu and Namasivayam 2000

Pb(II) Dried animal bones Banat et al., 2000

Pb(II) Aspergillus niger biomass Jianlong et al., 2001

Pb(II) Bentonite Naseem and tahir, 2001

Pb(II) Peat Ho et al., 2001

Pb(II) Nonliving biomass of marine algae Jalali et al., 2002

Pb(II) Natural Materials Abdel-Halim et al., 2003

Page 47: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

46

Pb(II) Natural Condensed Tannin Zhan and Zhao., 2003

Pb(II) Sea Nodule Bhattacharjee et al., 2003

Pb(II) Chitosan Ng et al., 2003

Pb (II) Freshwater alga Chlorella kesslerii Slaveykova and Wilkinson, 2003

Pb(II) Recycled-wool-based Non woven

Material

Radetic et al., 2003

Pb(II) Tree fern Ho et al., 2004

Pb(II) Azadirachta indica (Neem) leaf

powder,

Bhattacharyya and Sharma, 2004

Pb(II) SO2-treated activated carbon Mac´ıas-Garc´ıa and Valenzuela-

Calahorro, 2004

Pb(II) Multicomponent ionic systems Pardo-Botello et al., 2004

Pb(II) Sea nodule residue Agrawal et al., 2004

Pb(II) Cellulose/Chitin Beads Zhou et al., 2005

Pb(II) Zeolite and Sepiolite Turan et al., 2005

Pb(II) Clays Gupta et al., 2005

Pb(II) Activated Carbon Zhang et al., 2005

Pb(II) Treated Granular Activated Carbon Goel et al., 2005

Pb(II) Palm Kernel Fibre Ho and Ofomaja, 2005

Pb(II) Coir and Dye Loaded Coir Fibres Shukla and Pai., 2005

Pb(II) Active Carbon Qadeer et al., 2005

Page 48: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

47

Pb(II) Polymerized Banana Stem Noeline et al., 2005

Pb(II) Immobilized Pinus sylvestris

Sawdust

Taty-Costodes et al., 2005

Pb(II) Treated Granular Activated Carbon Goel et al., 2005

Pb(II) Decaying Tamrix leaves Zaggout, F. R., 2005

Pb(II) Crosslinked Amphoteric Starch

Containing the Carboxymethyl

Group

Xu et al., 2005

Pb(II) Polyacrylamide-bentonite and

Zeolite Composites

Ulusoy and Simsek, 2005

Pb(II) Palm Kernel Fibre Ho and Ofomaja, 2005

Pb(II) Tree Fern Ho, Yuh-Shan, 2005

Pb(II) Siderite Erdem and Ozverdi, 2005

Pb(II) Sea Nodule Residues Agrawal et al., 2005

Pb(II) Acidic Polysaccharide Gels Dhakal et al., 2005

Pb(II) Oryza sativa L. Husk and Chitosan Zulkali et al., 2006

Pb(II) Immobilized Pseudomonas

Aeruginosa PU21 Beads

Lin and Lai, 2006

Pb(II) Graphene Layer of Carbonaceous

Materials

Machida et al., 2006

Pb(II) Agricultural Waste Maize Bran Singh et al., 2006

Page 49: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

48

Pb(II) Palm Shell Activated Carbon Issabayeva et al., 2006

Pb(II) Chemically-modified Biomass of

Marine Brown Algae Laminaria

japonica

Luo et al., 2006

Pb(II) Restricted Phyllomorphous Clay Giannakopoulos et al., 2006

Pb(II) Oryza sativa L. Husk Zulkali et al., 2006

Pb(II) Cross-linked Starch Phosphate

Carbamate

Guo et al., 2006

Pb(II) Peach and Apricot Stones Rashed, M. N., 2006

Pb(II) Kaolinite and Montmorillonite Bhattacharyya and Gupta, 2006

Pb(II) Wine-Processing Waste Sludge Yuan-Shen et al., 2006

Pb(II) Palm Kernel Fiber Ho and Ofomaja, 2006

Pb(II) Poly(ethylene terephthalate)-g-

Acrylamide Fibers

Coskun and Soykan, 2006

Pb(II) ZnO Loading to Activated Carbon Kikuchi et al., 2006

Pb(II) Syzygium cumini L. King et al., 2007

Pb(II) Pinus nigra Cabuk et al., 2007

Pb(II) Aspergillus parasiticus Akar et al., 2007

Pb(II) Powered waste sludge (PWS) Kargi and Cikla, 2007

Pb(II) Syzygium cumini L. King et al., 2007

Pb(II) Modified clay Adsorption capacity at pH 5.0 Guerra et al., 2008

Page 50: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

49

Pb(II) Chitosan functionalized with

xanthate

Maximum adsorption was observed both at pH 4

and 5

Chauhan and Sankararamakrishnan,

2008

Pb(II) Biological activated dates stems Yazid and Maachi, 2008

Pb(II) Clay/poly(methoxyethyl)acrylamide

(PMEA)

Solener et al., 2008

Pb(II) Algal biomass Oedogonium sp. and

Nostoc sp.

Gupta and Rastogi, 2008

Pb(II) Candida albicans biomass Baysal et al., 2009

Pb(II) Gossypium hirsutum(cotton) waste

biomass

Riaz et al., 2009

Pb(II) 8-hydroxy quinoline-immobilized

bentonite

Ozcan et al., 2009

Pb(II) Candida albicans biomass Baysel et al., 2009

Pb(II) Pine bark (Pinus brutia Ten.) Gundogdu et al., 2009

Pb(II)

Pine cone powder

Ofomaja and Naidoo et al., 2010

Pb(II) Native and chemically modified

corncob

Tan et al., 2010

Pb(II) Fallen Cinnamomum Camphora

leaves

Chen et al., 2010

Pb(II) Bael leaves (Aegle marmelos) Chakravarty et al., 2010

Page 51: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

50

Pb(II) Raw and activated charcoals of

Melocanna baccifera Roxburgh

(bamboo)

Lalhruaitluanga et al., 2010

Pb(II) Soya bean Hulls Maximum adsorption capacity was 217 mg/g, pH 7 Jia et al., 2011

Pb(II) Amine-terminated Fe3O4

nanoparticles

Zhang et al., 2011

Pb(II) Black carbon derived from wheat

residue

Wang et al., 2011

Pb(II) Posidonia oceanica biomass Allouche et al., 2011

Pb(II) Activated carbon developed from

Apricot stone

Mouni et al., 2011

Pb(II) Low-cost bamboo charcoal Huang et al., 2012

Pb(II) Polyaniline and multiwalled carbon

nanotube magnetic composites

Shao et al., 2012

Pb(II) Chitosan/poly(vinyl alcohol) Fajardo et al., 2012

Pb(II) Cucumis melo Akar et al., 2012

Pb(II) Integrate Electrodialysis Shaddy et al., 2012

Zn(II) selective adsorbents (2000 to 2012)

Metal Removed

Adsorbent Remarks Reference

Zn(II) Dried animal bones Banat et al., 2000

Page 52: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

51

Zn(II) Alumina powder Trainor et al., 2000

Zn(II) Peanut husks carbon Ricordel et al., 2001

Zn(II) Bentonite Naseem and Tahir, 2001

Zn(II) Calcium silicate hydrate Ziegler et al., 2001

Zn(II) Disposal sheep manure waste

(SMW)

Kandah,

2001

Zn(II) Disposal Sheep Manure Waste Kandah, 2001

Zn(II) Activated carbon Ramos and Bernal, 2002

Zn(II) Activated carbons prepared from

solvent extracted olive pulp

Polymnia Galiatsatou et al., 2002

Zn(II) Scenedesmus Obliquus and

Scenedesmus quadricauda

Omar, 2002

Zn(II) Sargassum sp. (Phaeophyceae) De Franca et al., 2002

Zn(II) Aquatic bryophytes (Fontinalis

antipyretica L.ex. Hedw.)

Martins and Baoventura, 2002

Zn(II) Activated Carbon from Almond

Husks

92 % Zn(II) removal Hasar et al., 2003

Zn(II) Synthetic Zeolites Badillo-Almaraz et al., 2003

Zn(II) Montmorillonite-Al hydroxide Janssen et al., 2003

Zn(II) Low-Rank Coal (Ieonardite) Effective removal of Zn(II) was demonstrated at pH

values of 5-6

Sole and Casas, 2003

Page 53: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

52

Zn(II) Chitosan Zhiguang et al., 2003

Zn(II) Biosolids Norton et al., 2004

Zn(II) Labeo rohita (Hamilton) Adhikari, 2004

Zn(II) Colloidal silica Phan et al., 2004

Zn(II) Bed sediment of River Hindon Jain, 2004

Zn(II) Multicomponent ionic systems Pardo-Botello et al., 2004

Zn(II) Bacterial Biofilm Toner et al., 2005

Zn(II) Bentonite Kaya and Oren, 2005

Zn(II) Solvent-Impregnated Resins

Containing Cyanex 272

Shiau et al., 2005

Zn(II) Rhizopus arrhizus Preetha and Viruthagiri, 2005

Zn(II) Surface Soils of Nuclear Power

Plant Sites in India

Dahiya et al., 2005

Zn(II) Zeolites Oren and Kaya, 2006

Zn(II) Granular Activated Carbon and

Natural Zeolite

Meshko et al., 2006

Zn(II) Purified Carbon Nanotubes Lu and Chiu, 2006

Zn(II) Palm tree leaves AlRub, 2006

Zn(II) Rice bran Wang et al., 2006

Zn(II) Chemically treated Newspaper Pulp Zn(II) loading on TNP was dependent on initial

zinc concentration

Chakravarty et al., 2007

Page 54: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

53

Zn(II) Marine green algae—Ulva fasciata

sp.

Kumar et al., 2007

Zn(II) Crab carapace biosorbent Shuguang et al., 2007

Zn(II) Chemically treated newspaper pulp Chakravarty et al., 2007

Zn(II) Sodium dodecyl sulphate Jin-hui Huang et al., 2007

Zn(II) Azadirachta indica bark King et al., 2008

Zn(II) Ca-alginate beads Lai et al., 2008

Zn(II) Graft copolymer of cross-linked

starch/acrylonitrile (CLSAGCP)

Zheng et al., 2008

Zn(II) Clinoptilolites Coruh et al., 2008

Zn(II) Azadirachta indica bark King et al., 2008

Zn(II) Coal fly ash Removal of Zn increased with increase in dose Hong et al., 2009

Zn(II) Calcinated Chinese loess Tang et al., 2009

Zn(II) Coal fly ash and synthetic coal fly

ash

Hong et al., 2009

Zn(II) Ion exchange resin Shek et al., 2009

Zn(II) Vermicompost Jordao et al., 2009

Zn(II) Hybrid precursor of silicon and

carbon

Gupta et al., 2010

Zn(II) Zeolitic rock Lee et al., 2010

Zn(II) Functionalized SBA-15 Barczak et al., 2010

Page 55: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

54

organosilicas

Zn(II) NaA and NaX zeolites Nibou et al., 2010

Zn(II) Dried activated sludge Chunping Yang 2010

Zn(II) Ca-Bentonite Zhang et al., 2011

Zn(II) Red mud Sahu et al., 2011

Zn(II) Chicken Feathers Maximum adsorption was 4.31 mg/g at 300C, pH 5 Aguayo-Villarreal et al., 2011

Zn(II) Natural Bentonite Tushar Kanti Sen and Dustin Gomez,

2011

Zn(II) Chicken feathers as sorbents Villarreal et al., 2011

Zn(II) Perlite Silber et al., 2012

Adsorbents selective toward multi-metal ions (2000 to 2012)

Metal Removed Adsorbent Remarks Reference

Cd(II), Zn(II) Natural bentonite Xia and He., 2000

Cd(II), Cu(II) Granular activated carbon Adsorption increases with increase in pH Gabaldon et al., 2000

Zn(II) and Cd(II) Peat Peat columns are able to retain the main

interferent on adsorption of Zn and Cd

ions in solution

Petroni et al., 2000

Hg(II), Pb(II), Cd(II),

Ni(II), Cu(II)

Activated carbon (agricultural waste) Adsorption increases with increase in pH

2-6

Kadirvetu et al., 2000

Cd(II), Cu(II), Fe(III), Serpentine 99 % removal Guo and Yuan, 2000

Page 56: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

55

Pb(II) and Ni(II)

Cd(II), Cu(II), Ni(II) and

Zn(II)

Anaerobically digested sludge Affinity of the sludge was

Cu(II)>Cd(II)>Zn(II)>Ni(II)

Artola et al., 2000

Cu(II), Ni(II), Co, Pb(II)

and Fe

Acidic Manganese chloride Diniz et al., 2000

Ni(II) and Cr(III) Tea leaves Maximum adsorptions were 7.97 and

5.91 mg/g

Nishioka et al., 2000

Pb(II), Cu(II), Zn(II) and

Ni(II)

Effloresced coal Removal rate was 97 % at pH 4 and

200C

Mei, 2000

Ni(II) and Cu(II) Lignite-based Carbon Samra, 2000

Cr and Cu(II) Barks of eucalyptus and Cassia fistula Eucalyptus bark is more efficient in

removal of Cr and Cu then Cassia fistula

Tiwari et al., 2000

Heavy metal ions Polyhydroxyethylmethacrylate Maximum adsorption ratio was as high

as 99%

Arpa et al., 2001

Pb and Cr Red mud Gupta et al., 2001

Cd(II), Cu(II) and Zn(II)

ions

Bone char Sorption of Cd(II) and Zn(II) ions on to

bone char are primarily film-pore

diffusion controlled

Cheung et al., 2001

Pb(II) and Cr(VI) Solar thermal and Chemo thermal

Activated Carbon

Nagar and Singh, 2002

Pb(II) and Cd(II) Kaolinite Coles and Yong, 2002

Page 57: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

56

Heavy metals Sawdust Shukla et al., 2002

Heavy metal ions Methacrylamidocysteine

Containing porous poly

(hydroxyethylmethaacrylate)

Chelating Beads

Maximum adsorption capacity 1058.2

mg/g was observed for Cd(II)

Denizli et al., 2002

Metal ions MgO (100) Campbell and Starr., 2002

Heavy metal ions Poly (N−vinyl formamide/Acrylonitrile)

Chelating Fibers

Lin et al., 2002

Heavy Metals Chicken Feathers Al-Asheh et al., 2003

Heavy Metals Na-montmorillonite Abollino et al., 2003

Cd, Cu, Pb and Zn Pseudomonas Putida 80 % removal for all metals Pardo et al., 2003

Cr(VI), Cu(II) and Cd(II)

Ions

Rhizopus arrhizus Sa et al., 2003

Cu(II) and Zn(II) Sepiolite Vico, L. I. 2003

Heavy Metal Ions Functionalized Silica Bois et al., 2003

Heavy Metal Ions Low-cost Adsorbents Wang et al., 2003

Cu(II) and Cd(II) Sheep Manure Kandah et al., 2003

Cu, Ni and Zn 2-aminothiazole-modified silica gel Roldan et al., 2003

Heavy Metals Mineral Matrix of Tropical Soils Fontes and Gomes, 2003

Cu(II), Ni(II) and Cd(II) Goethite Buerge-Weirich and Behra.,

2003

Page 58: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

57

Cu(II), Fe(III) and Cr(III) Clinoptilolite Inglezakis et al., 2003

Metal Ions Humic Acids Extracted from Brown

Coals

Martyniuk and Wickowska,

2003

Metal Ions Chitosan Navarro et al., 2003

Heavy Metals Zeolites synthesized from Fly ash Adsorption capacity of zeolites

synthesized is higher than that of fly ash

Yanxin et al., 2003

Heavy Metals Zeolites synthesized from Fly ash Adsorption capacity of zeolites

synthesized is higher than that of fly ash

Yanxin et al., 2003

Heavy Metal Ions Fungus Penicillium canescens Say et al., 2003

Metal Ions Peat Ko et al., 2003

Cd(II) and Ni(II) Bagasse Fly Ash Gupta et al., 2003

Heavy Metal Aquatic Plant (Myriophyllum spicatum) Keskinkan et al., 2003

Cu(II), Zn(II), Ni(II) and

Cd(II)

Modified Activated Carbons Saha et al., 2003

Heavy Metal Thai Kaolin and Ballclay Adsorption by kaolin was: Cr > Zn > Cu

≈ Cd ≈ Ni > Pb by ballclay was: Cr > Zn

> Cu > Cd ≈ Pb > Ni

Chantawong and Harvey.,

2003

Cu(II) and Zn(II) Ions Chemically-treated Chicken Feathers Al-Asheh and Banat, 2003

Cu(II) and Pb(II) Grafted Silica Chiron et al., 2003

Heavy Metal Gellan Gum Gel Beads Lazaro et al., 2003

Hg(II) and Cd(II) Goethite Backstrom et al., 2003

Page 59: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

58

Heavy Metals Alumina or Chitosan Cervera et al., 2003

Cu(II) and Ni(II) Turbid River Water Herzl et al., 2003

Cu(II) and Pb(II) Regenerated Sludge from a Water

Treatment Plant

Wu et al., 2003

Pb(II), Cd(II) and Cr(VI) Activated Carbon Rivera-Utrilla et al., 2003

Heavy Metals Sand Awan et al., 2003

Cu(II) and Zn(II) Bone Charcoal Wilson and Pulford, 2003

Cu(II) and Cd(II) Low Cost and Waste Material Ulmanu et al., 2003

Lead, Barium Clinoptilolite Mineral Cakicioglu-Ozkan and

Ulku, 2003

Metal ions Bone char Choy et al., 2004

Heavy metal ions Wood Saw dust Sciban and Klasnja, 2004

Zn(II), Cu(II) and Pb(II) Natural Zeolite Peri et al., 2004

Heavy Metal Cations Geothite Kosmulski and Mczka, 2004

Heavy Metal Ceratophyllum demersum Keskinkan et al., 2004

Heavy Metal Ecklonia maxima Feng and Aldrich, 2004

Pb(II) and Cr Bagasse Fly Ash Gupta and Ali, 2004

Cu(II) and Zn(II) Savanna Alfisol Agbenin and Olojo, 2004

Cr(VI) and Se(II) Zn(IV) substituted ZnAl/MgAl-layered

Double Hydroxide

Das et al., 2004

Co, Ni, Cu and Zn Mangenese Dioxide Complex Kanungo et al., 2004

Page 60: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

59

Metal ions Bone char Ko et al., 2004

Cadmium and Phosphate Geothite Wang and Xing, 2004

Cd(II) and Zn(II) Fontinalis antipyretica Martin et al., 2004

Metal ions Moroccan Stevensite Benhammon et al., 2005

Cu, Zn, Ni, Pb and Cd ions Amberlite IR-120 Synthetic resin Demirbas et al., 2005

Pb(II) and Cd(II) Kaolinite Hepinstall et al., 2005

Pb, Cd, Cu, Ni and Zn Black gram husk (BGH) Saeed et al., 2005

Cd(II) and Zn(II) Bentonite Lacin et al., 2005

Pb(II) and Zn(II) Natural Goethite Abdus-Salam and Adekola,

2005

Heavy Metals Mulch Jang et al., 2005

Fe(II), Pb(II) Peat and Solvent-extracted Peat Minihan et al., 2005

Cu(II), Cd(II) and Ni(II) Chitosan Functionalized with 2[-bis-

(pyridylmethyl) amino methyl]-4-

methyl-6-formylphenol

Justi et al., 2005

Iron and Manganese Granular Activated Carbon Jusoh et al., 2005

Molybdate and Nickel Alumina Al-Dalama et al., 2005

Pb(II) and Cu(II) Pretreated Biomass of Neurospora

crassa

Kiran et al., 2005

Cu(II) and Cd(II) Corncob Particles Shen and Duvnjak, 2005

As(V), Pb(II)and Hg(II) Coconut fiber and sawdust waste Maximum adsorption occurred at pH 2 Igwe et al., 2005

Page 61: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

60

biomass containing chelating agents and 12 whereas minimum adsorption

occurred at pH 6-8

Zn(II), Cd(II), Pb(II) Ions Maize Cob and Husk Igwe et al., 2005

Cd(II) and Pb(II) Low-rank Coal (Leonardite) Lao et al., 2005

Cu(II), Zn(II) and Co(II) Natural Kaolin Ceylan et al., 2005

Cu(II), Ni(II) and Zn(II) Modified Jute Fibres Shukla and Pai, 2005

Cu(II) and Cd(II) Mn Oxide-Coated Granular Activated

Carbon

Fan and Anderson, 2005

Pb(II) and Cu(II) Nipa Palm Biomass Wankasi et al., 2005

Pb(II) and Cd(II) Amine-Modified Zeolite Wingenfelder et al., 2005

Cd(II), Cu(II) and Zn(II) Bone Char Choy and McKay, 2005

Cu(II), Pb(II) and Ni(II) PEI-Modified Biomass Deng and Ting, 2005

Pb(II) and Cd(II) Shales belonging to the Proterozoic

Vindhyan basin, central India and a

black cotton soil, Mumbai, India

Paikaray et al., 2005

Cu, Cd, Zn Bone Char Cheung et al., 2005

Cd(II) and Pb(II) Vermiculite Abate and Masini, 2005

Cd(II) and Zn(II) Activated Carbon Leyva-Ramos et al., 2005

Co(II) and Ni(II) Peanut Hulls through Esterification

Using Citric Acid

The optimum pH for the adsorption of

cobalt(II) ions onto the peanut hulls

citrate was 7.0

Hashem et al., 2005

Page 62: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

61

Cd(II), Pb(II) and Zn(II) Maize Cob Abia and Igwe, 2005

Cu(II) and Pb(II) Activated Carbon Machida et al., 2005

Pb(II), Ni(II) Natural Bentonite Donat et al., 2005

Copper, Silver and Zinc Polarized Activated Carbons Goldin et al., 2005

Cu(II), Ni(II) and Zn(II) Dye Loaded Groundnut Shells and

Sawdust

Shukla and Pai, 2005

Pb(II) and Cd(II) Caladium Bicolor (wild Cocoyam) Horsfall Jr. and Spiff, 2005

Ni(II) and Cu(II) Immature Coal (leonardite) Zeledon-Toruno et al., 2005

Cr(III), Cu(II), Zn(II) Carrot Residues Nasernejad et al., 2005

Lead, Mercury and Nickel Carbon Aerogel Goel et al., 2005

Cd(II) and Pb(II) Various Cereals from Korea Park et al., 2005

Pb, Cu and Cd Particulate Organic Matter in Soil Guo et al., 2006

Pb(II) and Ni(II) Chemically Modified and Unmodified

Agricultural Adsorbents

Abia and Asuquo, 2006

Cu(II) and Pb(II) Dried Activated Sludge Wang et al., 2006

Cu(II), Zn(II) and Pb(II) Calcite Elzinga et al., 2006

Cu(II) and Cd(II) Kraft Lignin Mohan et al., 2006

Cu(II) and Pb(II) Manganese Oxide Coated Zeolite Zou et al., 2006

Cr(VI) and Cr(III) Natural Clino-pyrrhotite Lu et al., 2006

Cd(II) and Pb(II) Seaweed biomass Kumar and Kaladharan,

2006

Page 63: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

62

Cr(III), Ni(II), Zn(II),

Co(II)

Phenolated Wood Resin Kara et al., 2006

Cu(II) and Zn(II) Acid Soils Arias et al., 2006

Cd(II), Zn(II), Mg(II) and

Cr(VI)

Clay Mineral Fonseca et al., 2006

Cu(II) and Pb(II) Manganese Oxide Coated Sand Han et al., 2006

Cu(II), Cd(II) and Pb(II) Pyrite and synthetic iron sulphide Ozverdi and Erdem, 2006

Pb(II, Cd(II) Kaolinite Clay Adebowale et al., 2006

Co(II), Cr(II) and Ni(II) Coir Pith Parab et al., 2006

Cu(II), Cd(II) Ceiba Pentandra Hulls Rao et al., 2006

Pb(II) and Cd(II) Polymer-grafted Banana (Musa

paradisiacal) Stalk

Shibi and Anirudhan, 2006

Cd(II) and Ni(II) Bagasse Fly Ash Srivastava et al., 2006

Cu(II), Ni(II) and Co(II) Methacrylic Acid/acrylamide Monomer

Mixture Grafted Poly (ethylene

Terephthalate) Fiber

Coskun et al., 2006

Cd(II) and Pb(II) Mesoporous Silicate MCM-41 Oshima et al., 2006

Co(II), Fe(II) and Cu(II) Modified and Unmodified Maize Husk Igwe et al., 2006

Zn, Cd, Pb Arbuscular Mycorrhizal Maize (Zea

mays L.)

Shen et al., 2006

Pb, Fe Vegetable Biomass Bun-ei et al., 2006

Page 64: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

63

Cd(II) and Zn(II) Bagasse Fly Ash Srivastava et al., 2006

Cu(II) and Pb(II) Kaolinite-based Clay Minerals

Individually and in the Presence of

Humic Acid

Hizal and Apak, 2006

Cd(II), Cu(II), Zn(II) Cassava (Manihot sculenta Cranz)

Tuber Bark Waste

Horsfall et al., 2006

Pb(II), Cd(II), Cu(II) and

Ni(II)

Anaerobic Granular Biomass Hawari and Mulligan, 2006

Cu(II), Zn(II), Cd(II),

Pb(II)

Waste Tea and Coffee adsorbents Utomo et al., 2006

Cu(II), Cd(II), Zn(II),

Mn(II) and Fe(III)

Tannic Acid Immobilised Activated

Carbon

Ucer et al., 2006

Ni(II), Zn(II) and Fe(II) Modified Coir Fibres Shukla et al., 2006

Zn(II) and Cu(II) Sugar Beet Pulp and Fly Ash Pehlivan et al., 2006

Cu(II) and Ni(II) Solid Humic Acid from the Azraq Area,

Jordan

El-Eswed and Khalili, 2006

Cd(II) and Pb(II) Diatom Surface Gelabert et al., 2006

Cu(II) and Pb(II) Pretreated Aspergillus Niger Dursun et al., 2006

Pb(II), Cu(II), Cd(II),

Zn(II) and Hg(II)

Multi-amine-grafted Mesoporous

Silicas

The fresh dry samples were found to

show much higher adsorption capacity

than the aged ones

Zhang et al., 2007

Page 65: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

64

Cd(II) Sugarcane Bagasse Ibrahim et al., 2007

Cu(II), Zn(II), Pb(II),

Fe(III) and Cd(II)

Degreased Coffee Beans (DCB) DCB behaves as a cation exchanger Kaikake et al., 2007

Cr(VI) Turkish Brown Coals The adsorption reached equilibrium in

80 min

Arslan and Pehlivan, 2007

Cd(II), Pb(II) and Zn(II) Unmodified and EDTA-modified Maize

Husk

Sorption process was found to be

physiosorption process

Igwe and Abia, 2007

Cu(II), Cd(II), Cr(VI),

Zn(II)

Coffee husks

Oliveira et al., 2008

Pb(II), Cd(II) Kaolinite clay and polyvinyl alcohal-

modified kaolinite clay

91 % Pb and 94 % Cd were desorbed for

kaonilite clay while 99 % Pb and 97 %

PVA modified kaonilite clay

Unuabonah et al., 2008

Cd(II), Pb(II) Sugarbeet pulp Maximum uptake was observed at pH

5.3

Pehlivan et al., 2008

Zn(II), Ni(II), Cd(II),

Cu(II), Pb(II)

Tobacco dust Qi and Aldrich, 2008

Cd(II), Zn(II), Pb(II) Orange wastes Maximum adsorption was 0.25 mmol/g

fir three binary systems

Perez-Marin et al., 2008

Cd(II), Zn(II) Rice husk ash Maximum adsorption at pH 6 Srivastva et al., 2008

Zn(II), Cd(II), Pb(II) Natural Clinoptilolitic zeolites and Minceva et al., 2009

Page 66: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

65

commercial granular activated carbon

Cu(II), Mn(II), Pb(II) Pecan nutshell Maximum adsorption capacities were

1.35, 1.78, 0.946 mmol/g for Cu(II),

Mn(II), Pb(II)

Vaghetti et al., 2009

Cr(VI), As(V)

HDTMA- modified zeolite

Highest maximum efficiency was

observed at pH 3 and 8

Yusof and Malek, 2009

Cr(III), Cr(VI) Modified sorbent Memon et al., 2009

Cu(II), Ni(II) Food samples Tuzen et al., 2009

Cd(II), Pb(II), Ni(II),

Zn(II), Cu(II)

Chemically modified sugarcane bagasse Homagai et al., 2010

Cu(II), Cd(II), Pb(II)

Pb(II),Cu(II), Cd(II), Ni(II)

Acacia leucocephala bark powder

Natural Kaolinite clay

Optimum adsorption takes place at pH

6.0, 5.0 and 4.0

Adsorption is rapid; Maximum

adsorption within 30 min

Munagapati et al., 2010

Jiang et al., 2010

Cr(III), Cd(III) Illitic clay Ghorbel-Abid et al., 2010

Cu(II), Zn(II), Ni(II),

Cd(II), Pb(II), Hg(II),

Cr(VI)

Chitosan

Wu et al., 2010

Pb(II), Cd(II), Cu(II),

Zn(II)

Apricot stones Tsibranska and Hristova et

al., 2010

Cd(II), Cu(II), Ni(II), Montmorillonite Gu et al., 2010

Page 67: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

66

Pb(II), Zn(II)

Cu(II), Pb(II), Cd(II),

Zn(II), Ni(II)

Green Coconut shells Sousa et al., 2010

Cu(II), Cr(III) Vermiculite6 Badawy et al., 2010

Cd(II), Cu(II), Pb(II),

Zn(II)

Soils and Vegetables Luo et al., 2011

Cu, Pb, Cr Na- Montmorillonite Zhu et al., 2011

Pb(II), Cd(II) Carpobrotus edulis plant Chiban et al., 2011

Zn(II), Cd(II), Pb(II) Calcite mollusk shell Du et al., 2011

Cr(VI), Cr(III) Tea industry waste activated carbon Percentage adsorption was 95-100 % Duran et al., 2011

Pb(II), Cr(III), Cu(II),

Zn(II), Cd(II), Ni(II),

Hg(II), Ba(II), Ag

Montmorillonite,Ca-Montmorillonite De Pablo et al., 2011

Pb(II), Zn(II)

Sulfured Orange peel Maximum removal capacity was 164

mg/g for Pb (II) and 80 mg/g for Zn(II)

Liang et al., 2011

Pb(II), Cd(II), Cu(II) and

Zn(II)

Natural Limestone It shows high removal efficiency. Ali. Sdiri et.al, 2012

Cu(II), Pb(II), Zn(II) and

Cd(II)

Morin functionalized Merrifield's resin It retained all the studied metals with

high efficiency (90–95%).

Georgina Pina-Luis et. al,

2012

Al, Cr, Fe, Mn, Sb and V. Carbon fly ash The addition of lime had different effects

on the column leach test (CLT)

Bora Cetin et. al, 2012

Page 68: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

67

Heavy metals and dyes Natural bamboo sawdust Pznpc, Pzc and Iep of sawdust were

characterized.

Xue-Tao Zhao et. al, 2012

Cu(II), Ni(II) and Co(II). Chemically modified cellulosic

adsorbent

Adsorbent removes metal ions with

removal efficiency of 250 mg per 1 g.

Abdel Halim, 2012

Page 69: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

68

References

Abdelhalim, E.S., Deyaba, S.S. A., Carbohydrates Polymers, 84 (1) (2011) 454-458.

Abdel-Halim, S. H., Shehata, A. M. A., El-Shahat, M. F., Water Research, 37 (7) (2003)

1678-1683.

Abdus-Salam, N., Adekola, F. A., African Journal of Science & Technology, 6 (2) (2005) 55-

66.

Abollino, O., Aceto, M., Malandrino, M., Sarzanini, C., Mentasti, E., Water Research, 37 (7)

(2003) 1619-1627.

Acosta, P. M., Valdman, E., Leite, S. G. F., Battaglini, F., Ruzal, S. M., World Journal of

Microbiology and Biotechnology, 21 (6-7) (2005) 1157-1163.

Adhikari, S., Ecotoxicology and Environmental Safety, 59 (2) (2004) 228-231.

Agarwal, G. S., Bhuptawat, H. K., Chaudhari, S., Bioresource Technology, 97 (7) (2006)

949-956.

Agbenin, J. O., Olojo L. A., Geoderma, 119 (1-2) (2004) 85-95.

Agrawal, A., Sahu, K. K.; Pandey, B. D., Journal of Colloid and Interface Science, 281 (2)

(2005) 291-298.

Agrawal, A., Sahu, K.K., Pandey, B.D., Colloids and Surfaces A: Physicochemical and

Engineering Aspects, 237 (1-3) (2004) 133–140.

Aguayo-Villarreal, I.A., Bonilla-Petriciolet, A., Hernandez-Montoya, V., Montes-Moran,

M.A., Reynel-Avila, H.E., Chemical Engineering Journal, 167 (1) (2011) 67-76.

Ahmad, A., Rafatullah, M., Sulaiman, O., Ibrahim, M.H., Chii, Y.Y., Siddique, B.M.,

Desalination, 247 (1-3) (2009) 636–646.

Ahmed, R, Yamin, T, Ansari, M. S., Hasany, S. M., Radiochimica Acta, 94 (8) (2006) 441-

446.

Air Quality Science IAQ Resource Center (Aerias), Carbon Dioxide: A Common Indoor Air

Pollutant. www.Aerias.com. (2005)

Ajmal, M., Rao, R.A.K., Ahmad, R., Ahmad, J., Journal of Hazardous Materials, B79 (1-2)

(2000) 117-131.

Page 70: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

69

Ajmal, M., Rao, R.A.K., Ahmad, R., Ahmad, J., Rao, L.A.K., Journal of Hazardous

Materials, B87 (1-3) (2001) 127-137.

Ajmal, M., Rao, R.A.K., Anwar, J.A., Ahmad, R., Bioresource Technology, 86 (2) (2003)

147–149.

Akar, S.T., Arslan, S., Alp, T., Arslan, D., Akar, T., Chemical Engineering Journal, Vol. 185-

186 (2012) 82-90.

Akar, T., Kaynak, Z., Ulusoy, S., Yuvaci, D., Ozsari, G., Akar, S.T., Journal of Hazardous

Materials, 163 (2-3) (2009) 1134–1141.

Akar, T., Tunali, S., Cabuk, A., Applied Biochemistry and Biotechnology, 136 (3) (2007)

389–405.

Akhtar, N., Iqbal, J., Iqbal, M., Journal of Hazardous Materials, B108 (1-2) (2004) 85–94.

Aklil, A., Mouflih, M., Sebti, S., Journal of Hazardous Materials, A112 (3) (2004) 183–190.

Aksu, Z., Isoglu, I.A., Process Biochemistry, 40 (9) (2005) 3031–3044.

Aksu, Z., Process Biochemistry, 38 (1) (2002) 89–99.

Aksu, Z., Separation Purification and Technology, 21 (3) (2001) 285–294.

Al-Asheh, S., Banat, F., Abu-Aitah, L., Separation and Purification Technology, 33 (1)

(2003) 1-10.

Al-Asheh, S., Banat, F., Energy and Environment, 14 (4) (2003) 461-472.

Al-Asheh, S., Banat, F., Masad, A., Environmental Geology, (44) (3-6) (2003) 333-342.

Al-Asheh, S., Banat, F., Saeidi, R., Abu Zaid, S., Adsorption Science and Technology, 21 (2)

(2003) 189-198.

Albadarin, A.B., Mangwandi, C., Muhtaseb, A.H.A., Walker, G.M., Allen, S.J., Ahmad,

M.N.M. Chemical Engineering Journal, 179 (2012) 193-202. Totlani, K., Mehta, R.,

Mandavgane, S.A., Chemical Engineering Journal, 181–182 (2012) 376-386

Alemayehu, E., Lennartz, B., Applied Geochemistry, 25 (10) (2010) 1596–1602.

Alemayehua, E., Bruhn, S.T., Lennartz, B., Separation and Purification Technology, 78 (1)

(2011) 55–61.

Allouche, F.N., Mameri, N., Guibal, E., Chemical Engineering Journal, 168 (3) (2011) 1174–

1184.

Page 71: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

70

Al-Qunaibit, M. H., Mekhemer, W. K., Zaghloul, A. A., Journal of Colloid and Interface

Science, 283 (2) (2005) 316-321.

Al-Rub, F.A., Kandah, M., Aldabaibeh, N., Engineering in Life Sciences, 2 (4) (2002) 111–

116.

AlRub, F.A.A., Separation Science and Technology, 41(15) (2006) 3499–3515.

Alvarez, G.S., Flores, A.N.B., Miguel, E.R.D.S., Muhammed, M., Gyves, J., Journal of

Membrane Science, 250 (1-2) (2005) 247–257.

Alvarez-Puebla, R. A., Valenzuela-Calahorro, C., Garrido, J. J., Journal of Colloid and

Interface Science, 270 (1) (2004) 47-55.

Anandkumar, J., Mandal, B., Journal of Hazardous Materials, 186 (2-3) (2011) 1088–1096.

Anber, Z.A.A., Matouq, M.A.D., Journal of Hazardous Material, 151 (1) (2008) 194–201.

Aoyama, M., Tsuda, M., Cho, N. S., Doi, S., Wood Science Techology, 34 (1) (2000) 55-63.

Aoyama, M., Tsuda, M., Seki, K., Doi, S., Kurimoto, Y., Tamura, Y., Holzforschung, 54 (4)

(2000) 340-342.

Argun, M. E., Dursun, S., Gur, K., Ozdemir, C., Karatas, M., Dogan, S., Environmental

Technology, 26 (5) (2005) 479-488.

Arias, F., Sen, T.K., Colloids and Surfaces A: Physicochemical and Engineering Aspects, 348

(1-3) (2009) 100–108.

Arica, M.Y., Kacar, Y., Genc, O., Bioresource and Technology, 80 (2) (2001) 121–129.

Arslan, G, Pehlivan, E., Bioresource Technology, 98 (15) (2007) 2836-2845.

Artola, A., Martin, M., Balaguer, M. D., Rigola, M., Journal of Colloid and Interface Science,

232 (1) (2000) 64-70.

Awan, M. A., Qazi, I. A., Khalid, I., Journal of Environmental Science, 15 (3) (2003) 413-

416.

Babu, B.V., Gupta, S., Adsorption, 14 (1) (2008) 85–92.

Backstrom, M., Dario, M., Karlsson, S., Allard, B., Science of the Total Environment, 304

(1-3) (2003) 257-268.

Badawy, N.A., El-Bayaa, A.A., AlKhalik, E.A., Ionics, 16 (8) (2010) 733-739.

Page 72: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

71

Badillo-Almaraz, V., Trocellier, P., Davila-Rangel, I., Nuclear Instruments and Methods in

Physics Research Section B: Beam Interactions with Materials and Atoms, 2109 (2003) 424-

428.

Banat, F., Al-Asheh, S., Mohai, F., Separation and Purification Technology, 21 (1) (2000)

155–164.

Banat, F., Al-Asheh, S., Mohai, F., Seperation Purification Technology, 21 (1-2) (2000) 155-

164.

Bandegharaei, A.H., Hosseini, M.S., Ghadi, M.S., Zowghi, S., Hosseini, E., Bandegharaei,

H.H., Chemical Engineering Journal, 160 (1) (2010) 190–198.

Bansal, R.C., Donnet, J. B., Stoeckli, H. F., Active Carbon, Marcel Dekker, New York, 1988.

Bao-Xiu, Z., Peng, W., Tong, Z., Chun-yun, C., Jing, S., Journal of Applied Polymer Science,

99 (6) (2006) 2951-2956.

Barczak, M., Skwarek, E., Janusz, W., Da˛browski, A., Pikus, S., Applied Surface Science,

256 (17) (2010) 5370-5375.

Batista, A.P.S., Romao, L.P.C., Arguelho, M.L.P.M., Garcia, C.A.B., Alves, J.P.H., Passos,

E.A., Rosa, A.H., Journal of Hazardous Materials, 163 (2-3) (2009) 517-523.

Baysal, Z., Cinar, E., Bulut, Y., Alkan, H., Dogru, M., Journal of Hazardous Materials, 161

(1) (2009) 62−67.

Baysal, Z., Cinar, E., Bulut, Y., Alkan, H., Dogru, M., Journal of Hazardous Materials,

161(1) (2009) 62–67.

Bendezu, S., Oyague, J., Romero, A., Garcia, R., Munoz, Y., Escalon, N., Journal of the

Chilean Chemical Society, 50 (4) (2005).

Benguella, B., Benaissa, H., Water Research, 36 (10) (2002) 2463–2474.

Benhammou, A., Yaacoubi, A., Nibou, L., Tanouti, B., Journal of Colloid and Interface

Science, 282 (2-2) (2005)320-326.

Betancur, M., Bonelli, P.R., Velásquez, J.A., Cukierman, A.L., Bioresource Technology, 100

(3) (2009) 1130–1137.

Bhattacharjee, S., Chakrabarty, S., Maity, S., Kar, S., Thakur, P., Bhattacharyya, G., Water

Research, 37 (16) (2003) 3954-3966.

Page 73: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

72

Bhattacharya, A.K., Mandal, S.N., Das, S.K., Chemical Engineering Journal, 123 (1-2)

(2006) 43–51.

Bhattacharyya, K.G., Gupta, S.S, Colloids and Surfaces A: Physicochemical and Engineering

Aspects, 277 (1-3) (2006) 191-200.

Bhattacharyya, K.G., Gupta, S.S., Desalination, 272 (1-3) (2011) 66-75.

Bhattacharyya, K.G., Gupta, S.S., Separation and Purification Technology, 50 (3-7) (2006)

388-397.

Bhattacharyya, K.G., Sharma, A., Journal of Hazardous Materials, B 113 (1-3) (2004) 97–

109.

Bingol, A., Aslan, A., Cakici, A., Journal of Hazardous Materials, 161 (2-3) (2009) 747–752.

Bishnoi, N. R., Bajaj, M., Sharma, N., Gupta, A., Bioresource Technology, 91 (3-2) (2004)

305-307.

Bohdziewicz, J., Desalination, 129 (3) (2000) 227-235.

Bois, L., Bonhomme, A., Ribes, A., Pais, B., Raffin, G., Tessier, F., Colloids and Surfaces A:

Physicochemical and Engineering Aspects, 221 (1-3) (2003) 221-230.

Borbelya, G., Nagy, E., Desalination, 240 (1-3) (2009) 218-226.

Botello, R.P., Gonzalez, C.F., Gil, E.P., Correa, E.M.C., Serrano, V.G., Jornal of Colloid and

Interface Science, 277 (2) (2004) 292–298.

Botello, R.P., González, C.F., Gil, E.P., Correa, E.M.C., Serrano, V.G., Journal of Colloid

and Interface Science, 277 (2)(2004) 292-298.

Breembroek G.R.M., Van Straalen A., Witkamp G.J., Van Rosmalen G.M., Journal of

Membrane Science, 146 (2) (1998 ) 185-195.

Brinza, L., Nygård, C.A., Dring, M.J., Gavrilescu, M., L.G., Bioresource Technology, 100 (5)

(2009) 1727–1733.

Buerge-Weirich, D., Behra, P., Aquatic Geochemistry, 9 (2-6) (2003) 65-85.

Buhani, Narsito, Nuryono, Kunarti, E.S., Desalination, 251 (1-3) (2010) 83-89.

Bui, T.H., Lindsten, J., Nordberg, G.F., Environmental Research 9 (2) (1975) 187–195.

Bun-ei, R., Kawasaki, N., Ogata, F., Nakamura, T., Aochi, K., Tanada, S., Journal of Oleo

Science, 55 (8) (2006) 423-427.

Page 74: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

73

Burns, C.A., Boily, J.-F., Crawford, R.J., Harding, I.H., Fuel, 84 (12-13) (2005) 1653-1660.

C.P. Jordao, R.B.A. Fernandes, K.L. Ribeiro, B.S. Nascimento, P.M. Barros, Journal of

Hazardous Materials, 162 (2-3) (2009) 804–811.

Cabuk, A., Akar, T., Tunali, S., Gedikli, S., Chemical Engineering Journal, 131 (1-3) (2007)

293–300.

Cadmium Kirk-Othmer Encyclopedia of chemical technology, 5 (4th ed.) New York: John

Wiley and Sons. 1994.

Cakiciglu-Ozkan, F., Ulku, S., Adsorption Science and Technology, 21 (4-5) (2003) 309-317.

Campbell, C.T., Starr, D.E., Journal of the American Chemical Society, 124, (31-8) (2002)

9212-9218.

Canadian Center for Occupational and Health and Safety (CCOHS), Health Effects of Carbon

Dioxide Gas. www.ccohs.ca/oshanswers/. Summary of Occupational risks, effects, and

standards for CO2 (2005).

Celaya, R.J., Noriega, J.A., Yeomans, J.H., Ortega, L.J., Manriquez, A.R., Bioprocess and

Biosystems Engineering, 22 (6) (2000), 539-542.

Central Pollution Control Board, Ministry of Environment and Forests, Govt. Of India, Delhi,

Available from: <http://www.cpcb.nic.in>.

Cervera, M.L., Arnal, M.C., de la Guardia, M., Analytical and Bioanalytical Chemistry, 375

(6) (2003) 820-825.

Cestari, A.R., Vieira, E.F.S., Matos, J.D.S., dos Anjos, D.S.C., Journal of Colloid and

Interface Science, 285 (1) (2005) 288-295.

Cestari, A.R., Vieira, E.F.S., Mattos, C. R. S., Journal of Chemical Thermodynamics, 38 (9)

(2006) 1092-1099.

Ceylan, H., Sahan, T., Gurkan, R., Kubilay, S., Adsorption Science and Technology, 23 (7)

(2005) 519-534.

Chakravarty, S., Bhattacharjee, S., Gupta, K.K., Singh, M., Chaturvedi, H.T., Maity, S.,

Bioresource Technology, 98 (16) (2007) 3136-3141A. Silber, B.B. Yosef, S. Suryano, I.

Levkovitch, Geoderma, 170 (2012) 159-167.

Page 75: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

74

Chakravarty, S., Bhattacharjee, S., Gupta, K.K., Singh, M., Chaturvedi, H. T., Maity, S.,

Bioresource Technology, 98 (16) (2007) 3136-3141.

Chakravarty, S., Mohanty, A., Sudha, T.N., Upadhyay, A.K., Konar, J., Sircar, J.K.,

Madhukar, A., Gupta, K.K., Journal of Hazardous Materials, 173 (1-3) (2010) 502-509.

Chantawong, V., Harvey, N. W., Water, Air and Soil Pollution, 148 (1-9) (2003) 111-125.

Charentanyarak, L., Water Science and Technology, 39 (10-11) (1999) 135-138.

Chauhan, D., Sankararamakrishnan, N., Bioresource Technology, 99 (18) (2008) 9021-9024.

Chen, H., Zhao, J., Dai, G., Wu, J., Yan, H., Desalination, 262 (1-3) (2010) 174-182.

Chen, Q., Yin, D., Zhu, S., Hua, X., Journal of Colloid and Interface Science, 367 (1) (2012)

241–248

Chen, S., Yue, Q., Gao, B., Li, Q., Xu, X., Chemical Engineering Journal, 168 (2) (2011)

909-917.

Cheung, C.W., Chan, C.K., Porter, J.F., McKay, G., Environment Science Technolgy, 35 (7)

(2001) 1511-1522.

Cheung, C.W., Porter, J.F., McKay, G., Journal of Chemical Technology and Biotechnology,

75 (11) (2000) 963–970.

Chiban, M., Soudani, A., Sinan, F., Persin, M., Colloids and Surfaces B: Biointerfaces, 82 (2)

(2011) 267-276.

Chiron, N., Guilet, R., Deydier, E., Water Research, 37 (13) (2003) 3079-3086.

Chiying, W., Bork, R.R., Tucker, M.E., Journal of Hazardous Materials, 18 (1) (1988) 69-89.

Chlopecka, A., Science The Science of The Total Environment 188 (2) (1996) 253–262.

Choy, K. K. H., McKay, G., Chemosphere, 60 (8) (2005) 1141-1150.

Choy, K.K.H., Ko, D.C.K., Cheung, C.W., Porter, J.F., McKay, G, Journal of Colloid and

Interface Science, 271 (2) (2004) 284-295.

Chu, K.H., Hashim, M.A., Environmental Engineering Science, (21) (2) (2004) 139-147.

Chu, K.H., Journal of Hazardous Materials, B90 (1) (2002) 77–95.

Chuang, C.L., Fan, M., Xu, M., Brown, R.C., Sung, S., Saha, B., Huang, C.P., Chemosphere,

61 (4) (2005) 478-483.

Page 76: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

75

Chun, L., Hongzhang, C., Zuohu, L., Process Biochemistry, 39 (5) (2004) 541-545.

Cimino, G., Passerine, A., Toscano, G., Water Research, 34 (11) (2000) 2955-2962.

Coles, C. A., Yong, R. N., Applied Clay Science, 22 (1-2) (2002) 39-45.

Connell, D. W., Birkinshaw C., O’Dwyer, T. F., Journal of Applied Polymer Science, 99 (6)

(2006) 2888-2897.

Coskun, R, Soykan, C, Sacak, M., Separation and Purification Technology, 49 (2-4) (2006)

107-114.

Coskun, R., Soykan, C., Journal of Polymer Research, 13 (1) (2006) 1-8.

Costa, M., Potential hazards of hexavalent chromate in our drinking water, Toxicology and

Applied Pharmacology, 188 (1) (2003) 1–5.

Cushnie, G.C., Source Reduction and Metal Recovery Techniques for Metal Finishers: Fact

sheet # 24:http://www.epa.state.oh.us/opp/fact 24 pdf Ohio. Environmental Protection

Agency, Office of Pollution Prevention. (1994).

D. Mohan, K.P. Singh, Water Research, 36 (9) (2002) 2304–2318.

Dahiya, S., Shanwal, A.V., Hegde, A.G., Chemosphere, 60 (9) (2005) 1253-1261.

Dakiky, M., Khamis, M., Manassra, A., Mer’eb, M., Advances in Environmental Research, 6

(4) (2002) 533–540.

Daneshvar, N., Salari, D., Aber, S., Journal of Hazardous Materials, 94 (1) (2002) 49−61.

Das, D.D., Mahaptra, R., Pradhan, J., Das, S.N., Thakur, R.S., Journal of Colloid Interface

Science, 232 (2) (2000) 235-240.

Das, N.N., Konar, J., Mohanta, M.K., Srivastava, S.C., Journal of Colloid and Interface

Science, 270 (1) (2004) 1-8.

Dastgheib, S.A., Rockstraw, D.A., Carbon, 39 (12) (2001) 1849–1855.

De Franca, F.P., Tavares, A.P.M., daCosta, A.C.A., Bioresource Technology, 83(2) (2002)

159−163.

De Pablo, L., Chavez, M.L., Abatal, M., Chemical Engineering Journal, 171 (3) (2011) 1276-

1286.

Deepa, K.K., Sathishkumar, M., Binupriya, A.R., Murugesan G.S., Swaminathan K., Yun

S.E., Chemosphere, 62 (5) (2006) 833-840.

Page 77: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

76

Demirbas, A., Pehlivan, E., Gode, F., Altun, T., Arslan, G., Journal of Colloid and Interface

Science, 282 (1-2) (2005) 20-25.

Demirbas, E., Kobya, M., Oncel, S., Sencan, S., Bioresource Technology, 84 (3) (2002) 291–

293.

Deng, S., Ting, Y.P., Water Research, 39 (10) (2005) 2167-2177.

Denizli, A., Garipcan, B., Emir, S., Patir, S., Say, R., Adsorption Science and Technology, 20

(7-9) (2002) 607-617.

Dhakal, R.P., Ghimire, K.N., Inoue, K., Yano, M., Makino, K., Separation and Purification

Technology, 42 (3) (2005) 219-225.

Dimirkou, A., Ioannou, A., Papadopoulos, P., Paschalidou, C., Soil Science and Plant

Analysis, 33 (15-18) (2002) 2917-2934.

Ding, Z., Frost, R.L., Journal of Colloid and Interface Science, 269 (2) (2004) 296-302.

Diniz, C.V., Doyle, F.M., Martins, A.H., Miner Metall. Process, 17 (4) (2000) 217-222.

Donat, R., Akdogan, A., Erdem, E., Cetisli, H., Journal of Colloid and Interface Science, 286

(1-6) (2005) 43-52.

Donia, A.M., Atia, A.A., El-Boraey, H., Mabrouk, D.H., Separation and Purification

Technology, 49 (1) (2006) 64-70.

Donmez, G., Aksu, Z., Process Biochemistry, 38 (5) (2002) 751–762.

Du, Y., Lian, F., Zhu, L., Environmental Pollution, 159 (7) (2011) 1763-1768.

Duran, C., Ozdes, D., Gundogdu, A., Imamoglu, M., Senturk, H.B., Analytica Chimica Acta,

688 (1) (2011) 75-83.

Dursun, A.Y., Biochemical Engineering Journal, 28 (2) (2006) 187-195.

Dzyazko, Y.S., Mahmud, A., Lapicque, F., Belyakov, V.N., Journal of Applied

Electrochemistry, 37 (2) (2007) 209-217.

El-Eswed, B., Khalili, F., Journal of Colloid and Interface Science, 299 (2) (2006) 497-503.

Elshazly, A.H., Konsowa, A.H., Desalination, 158 (1) (2003) 189–193.

Elzinga, E.J., Rouff, A.A., Reeder, R.J., Geochimica Et Cosmochimica Acta, 70 (11-6)

(2006) 2715-2725.

Page 78: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

77

EPA., U.S., EPA’s Terms of Environment. U.S. Environmental Protection Agenc

Washington, DC (2000).

Erdem, M., Ozverdi, A., Separation and Purification Technology, 42 (3-4) (2005) 259-264.

Erdogan, S., Onal, Y., Akmil-Basar, C., Bilmez-Erdemoglu, S., Sarici-Ozdemir, C.,

Kazansky, V.B., Pidko, E.A., Catalysis Today, 110 (3-4) (2005) 281-293.

Eren, E., Afsin, B., Journal of Hazardous Materials, 151 (2-3) (2008) 682-691.

Evans, J.R., Davids, W.G., MacRae, J.D., Water Research, 36 (13) (2002) 3219–3226.

Ewecharoen, A., Thiravetyan, P., Nakbanpote, W., Chemical Engineering Journal, 137 (2)

(2008) 181–188.

Ewecharoen, A., Thiravetyan, P., Nakbanpote, W., Chemical Engineering Journal, 137 (2)

(2008) 181–188.

Fahim, N.F., Barsoum, B.N., Eid, A.E., Khalil, M.S., Journal of Hazardous Materials, 136 (2-

8) (2006) 303-309.

Fajardo, A.R., Lopes, L.C., Rubira, A.F., Muniz, E.C., Chemical Engineering Journal, 183

(2012) 253-260

Fan, D., Zhu, X., Xu, M., Yan, J., Journal of Biological Sciences, 6, (5) (2006) 941-945.

Fan, H.J., Anderson, P.R, Separation and Purification Technology, 45 (1-9) (2005) 61-67.

Farooq, U., Khan, M.A., Athar, M., Kozinski, J.A., Chemical Engineering Journal, 171 (2)

(2011) 400-410.

Feng, D., Aldrich, C., Hydrometallurgy, 73 (1-2) (2004) 1-10.

Finocchio, E., Lodi, A., Solisio, C., Converti, A., Chemical Engineering Journal, 156 (2)

(2010) 264–269.

Fiol, N., Escudero, C., Poch, J., Villaescusa, I., Reactive and Fundctional Polymers, 66 (8-8)

(2006) 795-807.

Florido, A., Valderrama, C., Arevalo, J.A., Casas, I., Martinez, M., Miralles, N., Chemical

Engineering journal, 156 (2) (2010) 298−304.

Fonseca, M.G., de Oliveira, M.M., Arakaki, L.N.H., Journal of Hazardous Materials, 137 (1)

(2006) 288-292.

Fontes, M. P. F., Gomes, P. C., Applied Geochemistry, 18 (6-6) (2003) 795-804.

Page 79: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

78

Friberg, L., Piscator, M., Nordberg, M.B., Cadmium in the Environment, CRC Press, OH,

1971.

Fu, F.L., Xuan, Q.R., Chen, R.M., Xiong, Y., Environmental Chemistry Letters, 4 (1-4)

(2006) 41-44.

Gabaldon, C., Marzal, P., Alvarez-Homos, F.J., Journal of Chemical Technology &

Biotechnology, 81 (7-7) (2006) 1107-1112.

Gabaldon, C.M.P., Seco, A., Gonalez, J.A., Seperation Science and Technology, 35 (7)

(2000) 1039-1053.

Galiatsatou, P., Metaxas, M., Rigopoulou, V.K., Journal of Hazardous Materials, 91 (1-3)

(2002) 187-20.

Garc´ıa, A.M., Calahorro, C.V., Mansilla, A.E., Garcia, A.B., Serrano, V.G., Carbon, 42

(8-9) (2004) 1755–1764.

Gardea-Torresdey, J.L., Tiemann, K.J., Armendariz, V., Ben-Oberto, L., Chianelli, R.R.,

Rios, J., Parsons, J.G., Gamez, G., Journal of Hazardous Materials, 80 (1-3) (2000) 175-188.

Garg, V.K., Gupta, R., Kumar, R., Gupta, R.K., Bioresource Technology, 92 (1-3) (2004) 79-

81.

Gedik, K., Imamoglu, I., Separation Science and Technology, 43 (5) (2008) 1191−1207.

Gelabert A., Pokrovsky, O.S., Reguant, C., Schott, J., Boudou, A., Journal of Geochemical

Exploration, 88 (1-3) (2006) 110-113.

Ghorbel-Abid, I., Galai, K., Trabelsi-Ayadi, M., Desalination, 256 (1-3) (2010) 190-195.

Giannakopoulos, E., Stathi, P., Dimos, K., Gournis, D., Sanakis, Y., Deligiannakis, Y.,

Langmuir, 22 (16-8) (2006) 6863-6873.

Givianrad, M.H., Rabani, M., Tehrani, M.S., Azar, P.A., Sabzevari, M.H., Journal of Saudi

Chemical Society, 20 (2011) Zhang, L., Zhao, Y.H., Bai, R., Journal of Membrane Science,

379 (1−2) (2011) 69-79. Sun, G., Zhou, H., Li, Y., Colloids and Surfaces B: Biointerfaces 89

(2012) 283– 288.

Gode, F., Pehlivan, E., Energy Sources: Recovery, Utilization and Environmental Effects, 28

(5-4) (2006) 447-457.

Page 80: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

79

Godea, F., Atalay, E.D., Pehlivan, E., Journal of Hazardous Materials, 152 (3) (2008) 1201–

1207.

Godjevargova, T., Mihova, S., World Journal of Microbiology and Biotechnology, 20 (3-1)

(2004) 273-279.

Goel, J., Kadirvelu, K., Garg, V.K., Meena, A., Chopra, R., Chauhan, D., Rawat, A., Kumar,

S., Mishra, G. K., Rajagopal, C., Environmental Technology, 26 (5-5) (2005) 489-500.

Goel, J., Kadirvelu, K., Rajagopal, C., Garg, V.K., Journal of Chemical Technology &

Biotechnology, 80 (4-4) (2005) 469-476.

Goel, J., Kadirvelu, K., Rajagopal, C., Garg, V.K., Journal of Hazardous Materials, 125 (1-3)

(2005) 211-220.

Goffman, A., Peterson, S., Brookins, D., Journal of Wáter and Environmental Technology, 4

(1992) 54-59.

Goldin, M.M., Volkov, A.G., Namychkin, D.N, Journal of the Electrochemical Society, 152

(5-5) (2005) E167-E171.

Goldin, M.M., Volkov, A.G., Namychkin, D.N., Filatova, E.A., Revina, A.A., Journal of the

Electrochemical Society, 152 (5-5) (2005) E172-E175.

Gonzalez, M.E.R., Williams, C.J., Gardiner, P.H., Environmental Sciences and Technology,

15 (2001) 3025–3030.

Gould J. P., Wiedeman H. F., Khudenko B. M., 1986, Project USGS-G-1011.

Gray, B.R., Hill, W.R., Stewart, A.J., Environmental Pllution, 112(1) (2001) 61−71.

Gu, X., Evans, L.J., Barabash, S.J., Geochimica et Cosmochimica Acta, 74 (20) (2010) 5718-

5728.

Guerra, D.L., Lemos, V.P., Angelica, R.S., Airoldi, C., Journal of Colloid and Surfaces, 322

(1) (2008) 79-86.

Gulay, B., Arica, M.Y., Chemical Engineering Journal, 139 (1) (2008) 20–28.

Gundoan, R., Acemiolu, B., Alma, M.H., Journal of Colloid and Interface Science, 269 (2-1)

(2004) 303-309.

Gundogdu, A., Ozdes, D., Duran, C., Bulut, V.N., Soylak, M., Senturk, H.B., Chemical

Engineering Journal, 153 (1-3) (2009) 62-69.

Page 81: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

80

Guo, L., Zhang, S.F., Ju, B.Z., Yang, J.Z., Quan, X., Journal of Polymer Research, 13 (3)

(2006) 213-217.

Guo, X., Zhang, S., Shan, X.Q., Luo, L., Pei, Z., Zhu, Y.G., Liu, T., Xie, Y.N., Gault, A.,

Environmental Toxicology and Chemistry, 25 (9-9) (2006) 2366-2373.

Gupta, N., Amritphale, S.S., Chandra, N., Bioresource Technology, 101 (10) (2010) 3355-

3362.

Gupta, N., Amritphale, S.S., Chandra, N., Bioresource Technology, 101 (10) (2010) 3355-

3362.

Gupta, S.S., Bhattacharyya, K.G., Applied Clay Science, 30 (3-4) (2005) 199-208.

Gupta, S.S., Bhattacharyya, K.G., Journal of Colloid and Interface Science, 295 (1-3) (2006)

21-32.

Gupta, V. K., Saini, V. K.; Jain, N., Journal of Colloid and Interface Science, 288, No. (1-8)

(2005) 55-60.

Gupta, V.K., Ali, I., Journal of Colloid and Interface Science, 271 (2-3) (2004) 321-328.

Gupta, V.K., Ali, I., Water Research, 35 (1) (2001) 33-40.

Gupta, V.K., Gupta, M., Sharma, S., Water Research, 35 (5) (2001) 1125-1134.

Gupta, V.K., Jain, C.K., Ali, I., Sharma, M., Saini, V.K., Water Research, 37 (16-9) (2003)

4038-4044.

Gupta, V.K., Nayak, A., Chemical Engineering Journal, 180 (2012) 81-90.

Gupta, V.K., Rastogi, A., Colloids and Surfaces B: Biointerfaces, 64 (2) (2008) 170–178.

Gupta, V.K., Rastogi, A., Nayak, A., Journal of Colloid and Interface Science, 342 (2) (2010)

533–539.

Gupta, V.K., Rastogi, A., Nayak, A., Journal of Colloid and Interface Science, 342 (2) (2010)

533-539.

Gupta, V.K., Rastogi, A., Nayak, A., Journal of Colloid and Interface Science, 342 (2) (2010)

533–539.

Gupta, V.K., Rastogi, A., Saini, V.K., Jain, N., Journal of Colloid and Interface Science, 296

(1-4) (2006) 59-63.

Page 82: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

81

Gupta, V.K., Saini, V.K., Jain, N, Journal of Colloid and Interface Science, 288 (1-8) (2005)

55-60.

Gupta, V.K., Shrivastava, A.K., Jain, N., Water Research, 35 (17) (2001) 4079–4085.

Guzel, F., Yakut, H., Topal, G., Journal of Hazardous Materials, 153 (3) (2008) 1275–1287.

Ozer, A., Gurbuz, G., Calimli, A., Korbahti, B.K., Journal of Hazardous Materials, 152 (2)

(2008) 778–788.

Hale, W.G., and Margham, J.P., (Eds.). Collins Dictionary of Biology, Collins Glasgow

(1988).

Halim, E.S.A., Deyab, S.S.A., Carbohydrate Polymers, 84 (1) (2011) 454-458.

Hamadi, N.K., Chen, X.D., Farid, M.F., Lu, M.G.Q., Chemical Engineering Journal, 84 (2)

(2001) 95-105.

Hamidpour, M., Kalbasi, M., Afyuni, M., Shariatmadari, H., Holm, P.E., Journal of

Hazardous Materials, (181) (1-3) 686–691.

Han, R., Zhang, J., Zou, W., Xiao, H., Shi, J., Liu, H., Journal of Hazardous Materials, 133

(1-3) (2006) 262-268.

Hanif, M.A., Nadeema, R., Zafar, M.N., Akhtar, K., Bhatti, H.N., Journal of Hazardous

Materials, 145 (3) (2007) 501–505.

Haroun, M., Idris, A., Omar, S.R.S., Waste Management, 27 (11) (2007) 1541-1550.

Harris, R.G., Johnson, B.B., Wells, J.D., Clays and Clay Minerals, 54 (4-8) (2006) 449-455.

Hasan, S., Krishnaiah, A., Ghosh, T.K., Viswanath, D.S., Boddu, V.M., Smith, E.D.,

Industrial & Engineering Chemistry Research, 45 (14-7) (2006) 5066-5077.

Hasar, H., Cuci, Y., Obek, E., Dilekoglu, M.F., Adsorption Science and Technology, 21 (9-

11) (2003) 799-808.

Hasar, H., Journal of Hazardous Materials, B97 (1-3) (2003) 49–57.

Hashem, A., Abdel-Halim, E.S., El-Tahlawy, K.F., Hebeish, A., Adsorption Science and

Technology, 23 (5-6) (2005) 367-380.

Hashem, A., Elhmmali, M.M., Polymer-Plastics Technology and Engineering, 45 (6) (2006)

707-712.

Hashim, M.A., Chu, K.H., Chemical Engineering Journal, 97 (2-3) (2004) 249-255.

Page 83: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

82

Hassan, S.S.M., Awwad, N.S., Aboterika, A.H.A., Journal of Radioanalytical and Nuclear

Chemistry, 269 (1-7) (2006) 135-140.

Hawari, A.H., Mulligan, C.,N., Bioresource Technology, 97 (4-3) (2006) 692-700.

Herzl, V.M.C., Millward, G.E., Wollast, R., Achterberg, E.P., Estuarine, Coastal and Shelf

Science, 56 (1-1) (2003) 43-52.

Hizal, J., Apak, R., Applied Clay Science, 32 (3-4) (2006) 232-244.

Hizal, J., Apak, R., Journal of Colloid and Interface Science, (1-3) (2006) 1-13.

Ho, Y.S., Bioresource Technology, 96 (11-7) (2005) 1292-1296.

Ho, Y.S., Chiu, W.T., Hsu, C.S., Huang, C.T., Hydrometallurgy, 73 (1-2) (2004) 55–61.

Ho, Y.S., International Journal of Biological Macromolecules, 38 (2-3) (2006) 148-149.

Ho, Y.S., Journal of Colloid and Interface Science, 283 (1-3) (2005) 274-277.

Ho, Y.S., Ng, J.C.Y., McKay, G., Separation Purification Technology, 36 (2) (2001) 241–

261.

Ho, Y.S., Ofomaja A.E., Journal of Hazardous Materials, 120 (1-3) (2005) 157-162.

Ho, Y.S., Ofomaja, A.E., Biochemical Engineering Journal, 30 (2-6) (2006) 117-123.

Ho, Y.S., Ofomaja, A.E., Journal of Hazardous Materials, 129 (1-3) (2006) 137-142.

Ho, Y.S., Ofomaja, A.E., Process Biochemistry, 40 (11-11) (2005) 3455-3461.

Ho, Y.S., Wang, C.C., Process Biochemistry, 39 (6) (2004) 759–763.

Ho, Y.S., Wang, C.C., Process Biochemistry, 39 (6-2) (2004) 761-765.

Holm, P.E., Christensen, T.H., Tjell, J.C., McGrath, S.P., Journal of Environmental Quality

24 (1-4) (1995) 183–190.

Homagai, P.L., Ghimire, K.N., Inoue, K., Bioresource Technology, 101 (6) (2010) 2067-

2069.

Hong, J.K., Jo, H.Y., Yun, S.T., Journal of Hazardous Materials, 164 (1) (2009) 235–246.

Hong, J.K., Jo, H.Y., Yun, S.T., Journal of Hazardous Materials, 164 (1) (2009) 235-246.

Horsfall Jr, M., Spiff, A.I., African Journal of Biotechnology, 4 (2-2) (2005) 191-196.

Page 84: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

83

Horsfall Jr. M., Ogban, F., Akporhonor, E.E., Chemistry & Biodiversity, 3 (2-2) (2006) 161-

174.

Horsfall M., Abia A.A., Spif, A.I., Bioresource Technology, 97 (2-1) (2006) 283-291.

Hossain, M.A., Kumita, M., Michigami, Y., Mori, S., Adsorption, 11 (5-6) (2005) 561-568.

Hsieh, C.H., Lo, S.L., Kuan, W.H., Chen, C.L., Journal of Hazardous Materials, 136 (2-8)

(2006) 338-344.

Hsieh, C.-Y., Tsai, M.-H., Ryan, D.K., Pancorbo, O.C., Science of the Total Environment,

320 (1) (2004) 37–50.

Hsin, W.C., Journal of Colloid and Interface Science, 311 (2) (2007) 338–346.

Hu, J., Chen, G., Lo, I.M.C., Water Research, 39 (18-11) (2005) 4528-4536.

Hu, J., Lo, M.C.I., Chen, G.H., Separation Purification and Technology, 58 (1) (2007) 76–82.

Hu, X.J., Wang, J.S., Liu, Y.G., Li, X., Zeng, G.M., Bao, Z.L., Zeng, X.X., Chen, A.W.,

Long, F., Journal of Hazardous Materials, 185 (1) (2011) 306–314.

Hu, Z., Lei, L., Li, Y., Ni, Y., Separation and Purification Technology, 31 (1-4) (2003) 13-18.

Huang, Z.H., Zhang, F., Wang, M.X., Lv, R., Kang, F., Chemical Engineering Journal, 184

(2012) 193-197.

IARC, beryllium, cadmium, mercury and exposures in the glass manufacturing industry

monographs on the evaluation of carcinogenic. Risks to Humans 58 (1994) 444–447.

Ibrahim, K.M., Akashah, T., Environmental Geology, 46 (6-7) (2004) 865-870.

Ibrahim, K.M., Akashah, T., Environmental Geology, 46 (6-7) (2004) 865-870.

Ibrahim, S.C., Hanafiah, M.A.K.M., Yahya, M.Z.A., American-Eurasian Journal of

Agricultural & Environmental Sciences, 1 (3-12) (2007).

Igwe, J.C., Abia, A.A., Electronic Journal of Biotechnology, 10 (4-10) (2007).

Igwe, J.C., Nwokennaya, E.C.; Abia, A.A., African Journal of Biotechnology, 4 (10-10)

(2005) 1109-1112.

Igwe, J.C., Ogunewe, D.N., Abia, A.A, African Journal of Biotechnology, 4 (10-10) (2005)

1113-1116.

Page 85: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

84

Igwe, J.C., Okpareke, O.C., Abia, A.A., European Journal of Scientific Research, 13 (2-2)

(2006) 206-212.

Inglezakis, V.J., Zorpas, A.A., Loizidou, M.D., Grigoropoulou, H.P., Microporous and

Mesoporous Materials, 61 (1-3) (2003) 167-171.

Institute of Medicine, Food and Nutrition Board, Dietary Reference Intakes for Vitamin A,

Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum,

Nickel, Silicon, Vanadium, and Zinc, National Academy Press, Washington, D.C., 2001.

Iqbal, M., Biotechnology Letters, 26 (2-1) (2004) 165-169.

Iqbal, M., Saeed, A., Process Biochemistry, 42 (2) (2007) 148–157.

Islamoglua S., Yilmaza L., Ozbelgea H.O., Separation Science and Technolgy, 41 (15)

(2006) 3367-3385.

Issabayeva, G., A roua, M.K., Sulaiman, N.M.N., Bioresource Technology, 97 (18-12) (2006)

2350-2355.

J.H. Huang, G.M. Zeng, Y.H. Qu, Z. Zhang, 17 (2007) 1112-1117.

Jain, C.K., Singhal, D.C., Sharma, M.K., Journal of Hazardous Materials, 114 (1-3) (2004)

231-239.

Jain, M., Garg, V.K., Kadirvelu, K., Journal of Hazardous Materials, 162 (1) (2009) 365-372.

Jalali, R., Ghafourian, H., Asef, Y., Davarpanah, S.J., Sepehr, S., Journal of Hazardous

Materials, 92 (3) (2002) 253–262.

Jang, A., Seo, Y., Bishop, P. L., Environmental Pollution, 133 (1-1) (2005) 117-127.

Janssen, R.P.T., Bruggenwert, M.G.M., Van, W.H., European Journal of Soil Science, 54 (2-

6) (2003) 347-355.

Jeon, C., Journal of Industrial and Engineeering Chemistry, 17 (3) (2011) 517-520.

Jia, L., Enzan, C., Haijia, S.U., Tianwei, T., Chinese Journal of Chemical Engineering, 19 (2)

(2011) 334-339.

Jiang, M.Q., Jin, X.Y., Lu, X.Q., Chen, Z.L., Desalination, 252 (1-3) (2010) 33-39.

Jianlong, W., Xinmin, Z., Decai, D., Ding, Z., Journal of Biotechnolgy, 87, (3) (2001) 273-

277.

Jonsson, J., Sjoberg, S., Lovgren, L., Water Research, 40 (5-3) (2006) 696-974.

Page 86: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

85

Joo, J.H., Hassan, S.H.A., Oh, S.E., International Biodeterioration & Biodegradation, 64 (8)

(2010) 734-741.

Junior, L.M.B., Macedo, G.R., Duarte, M.M.L., Silva, E.P. A.K.C.L. Lobato, Journal of

Chemical Engineering, 20 (3) (2003) 229–239.

Jusoh, B.A., Cheng, W.H., Low, W.M., Noraini, A., Megat, M.J., Noor, M., Desalination,

182 (1-3) (2005) 347-353.

Justi, K.C., Favere, V.T., Laranjeira, M.C.M., Neves, A., Peralta, R.A., Journal of Colloid

and Interface Science, 291 (2-11) (2005) 369-374.

Kabay, N., Arda, M., Saha, B., Streat, M., Reactive and Functional Polymers, 54 (1-3) (2003)

103-115.

Kadirvelu, K., Namasivayam, C., Environmental Technology, 21 (10) (2000) 1091–1097.

Kadirvelu, K., Namasivayam, C., Advance Environmental Research, 7 (2) (2003) 471–478.

Kadirvelu, K., Thamaraiselvi, K., Namasivayam, C., Separation and Purificccation

Technology, 24 (3) (2001) 497–505.

Kadivelu, K., Thamaraiselvi, K., Namasivayam, C., Bioresource Technology, 76 (1) (2000)

63-65.

Kadivelu, K., Thamariselvi, K., Namasivayam, C., Separation Purification Technology, 24

(3) (2001) 497–505.

Kalavathy, M.H., Karthikeyan, T., Rajgopal, S., Miranda, L.R., Journal of Colloid and

Interface Science, 292 (2-12) (2005) 354-362.

Kalidhasan, S., Kumar, A.S.K., Rajesh, V., Rajesh, N., Journal of Colloid and Interface

Science, 367 (1) (2012) 398–408.

Kalpakli, Y.K., Koyuncu, I.K, Annali di Chimica, 97 (11-12) (2007) 1291-1302.

Kandah, I.M., Al-Rub, F.A.A., Al-Dabaybeh, N., Adsorption Science and Technology, 21 (6-

7) (2003) 501-509.

Kandah, M., Chemical Engineering Jouirnal, 84 (3) (2001) 543−549.

Kandah, M., Chemical Engineering Journal, 84 (3) (2001) 543-549.

Kandah, M.I., Meunier, J.L., Journal of Hazardous Materials, 146 (1-2) (2007) 283–288.

Page 87: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

86

Kankeu, E.F., Bafubiandi, A.F.M., Mamba, B.B., Barnard, T.G., Journal of Environmental

Management, 92 (10) (2011) 2786-2793.

Kannan, N., Rengasamy, G., Water, Air and Soil Pollution, 163 (1-4) (2005) 185-201.

Kantola, M., Purkunen, R., KroKger, P., Tooming, A., Juravskaja, J., Pasanen, M.,

Saarikoski, S., Vartiainen, T., Environmenta Research, 83 (1) (2000) 54–66.

Kanungo, S.B., Tripathy, S.S., Rajeev, Journal of Colloid and Interface Science, 269 (1-1)

(2004) 1-10.

Kargi, F., Cikla, S., Journal of Environmental Management, 85 (4) (2007) 883–890.

Karthikeyan, S., Balasubramanian, R., Iyer, C.S.P., Bioresource Technology, 98 (2) (2007)

452–455.

Karthikeyan, T., Rajgopal, S., Miranda, L.R., Journal of Hazardous Materials, 124 (1−3)

(2005) 192−199.

Kaya, A., Oren, A.H., Journal of Hazardous Materials, 125 (1-3) (2005) 183-189.

Kazansky, V.B., Pidko, E.A., Catalysis Today, 110 (3-4) (2005) 281-293.

Keith, L.H., Telliard, W.A., Environmental Science and Technology, 13 (4) (1979) 416–423.

Kelleher, B.P., Callaghan, M.N.O., Leahy, M.J., Dwyer, T.F.O., Leahy, J.J., Journal of

Chemical Technology & Biotechnology, 77 (11-11) (2002) 1212-1218.

Keskinkan, O., Goksu, M.Z.L., Basibuyuk, M., Forster, C.F., Bioresource Technology, 92 (2-

4) (2004) 197-200.

Keskinkan, O., Goksu, M.Z.L., Yuceer, A., Basibuyuk, M., Forster, C.F., Process

Biochemistry, 39 (2-10) (2003) 179-183.

Khan, M.A., Ngabura, M., Choong, T.S.Y., Masood, H., Chuah, L.A., Bioresource

Technology, 103 (2012) 35-42. Monferrán, M.V., Pignata, M.L., Wunderlin, D.A.,

Environmental Pollution, 161 (2012) 15-22

Khormaei, M., Nasernejad, B., Edrisi, M., Eslamzadeh, T., Journal of Hazardous Materials,

149 (2) (2007) 269–274.

Kiekens, L., Heavy Metals in Soils, in: B.J. Alloway (Ed.), 1st Ed, Blackie and Son Limited,

Glassgow G64 2NG, 1990, p. 261.

Kikuchi, Y., Qian, Q., Machida, M., Tatsumoto, H., Carbon, 44 (2-2) (2006) 195-202.

Page 88: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

87

Kilic, M., Yazici, H, Solak, H., Bioresource Technology, 100 (7) (2009) 2130-2137.

Kim, S.D., Park, K.S., Gu, M.B., Journal of Hazardous Materials, 93(2) (2002) 155–164.

King, P., Anuradha, K., Lahari, S.B., Kumar, Y.P., Prasad, V.S.R.K., Journal of Hazardous

Materials, 152 (1) (2008) 324-329.

King, P., Anuradha, K., Lahari, S.B., Kumar, Y.P., Prasad, V.S.R.K., Journal of Hazardous

Materials, 152 (1) (2008) 324–329.

King, P., Rakesh, N., Beenalahari, S., Kumar, Y.P., Prasad, V.S.R.K., Journal of Hazardous

Materials, 142 (1-2) (2007) 340–347.

King, P., Srinivas, P., Kumar, Y.P., Prasad, V.S.R.K., Journal of Hazardous Materials, 136

(3-8) (2006) 560-566.

Kiran, B., Kaushik, A., Ecological Engineering, 38 (2012) 93– 96.

Kiran, I., Akar, T., Tunali, S., Process Biochemistry, 40 (11-11) (2005) 3550-3558.

Ko, D.C.K., Cheung, C.W., Choy, K.K.H., Porter, J.F., McKay, G., Chemosphere, 54 (3-1)

(2004) 273-281.

Ko, D.C.K., Porter, J.F., McKay, G., Process Safety and Environmental Protection, 8 (2-3)

(2003) 73-86.

Kobaya, M., Adsorption Science and Technology, (2001) 51–64.

Kobya, M., Bioresource Technology, 91 (3-2) (2004) 317-321.

Kocaoba, S., Journal of Hazardous Materials, 147 (1-2) 2007, 488-496.

Kongsricharoern, N., Polprasert, Water Science and Technology, 31 (9) (1995) 109-117.

Kosmulski, M., Mczka, E., Langmuir, 20 (6-3) (2004) 2320-2323.

Kovacevic, Z.F., Sipos, L., Briski, F., Food Technology and Biotechnology, 38 (3) (2000)

211-216.

Koyanaka, H., Koyanaka, S., Liang, R., Uchida, A., Kanakyo Gakkaisni, 23 (2) (2000) 116-

121.

Krishna, P.G., Gladis, J.M., Rambabu, U., Rao, T.P., Naidu, G.R.K., Talanta 63 (3) (2004)

541–546.

Page 89: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

88

Krishnamurti, C.R., Viswanathan, P., Toxic Metal in the Indian Environment, Tata McGraw-

Hill Publishing Company Limited, New Delhi, 1991.

Krishnan, K. A., Anirudhan, T.S., Water SA, 29 (2-4) (2003).

Krishnani, K.K., Mengb, X., Christodoulatos, C., Boddu, V.M., Journal of Hazardous

Materials, 153 (3) (2008) 1222–1234.

Ku Y., Wu M.H., Shen Y.S., Seperation Science and Technolgy, 37 (3) (2002) 571-590.

Kula, I., Ugurlu, M., Karaoglu, H., Celik, A., Bioresource Technology, 99 (3) (2008)

492−501.

Kumar, P.S., Ramalingam, S., Kirupha, S.D., Murugesan, A., Vidhyadevi, T., Sivanesan, S.,

Chemical Engineering Journal, 167 (1) (2011) 122–131.

Kumar, U., Bandyopadhyay, M., Journal of Hazardous Materials, 129 (1-3) (2006) 253-259.

Kumar, Y.P., Ring, P., Prasad, V.S.R.K., Chemical Engineering Journal, 129 (1-3) (2007)

161–166. Shuguang, L.B., Stuart, W.G., Emma, C., Journal of Hazardous Material, 149 (1)

(2007) 208–217.

Kurniawan, A., Kosasih, A.N., Febrianto, J., Ju, Y.H., Sunarso, J., Indraswati, N., Ismadji, S.,

Chemical Engineering Journal, 172 (1) (2011) 158– 166.

Lacin, O., Bayrak, B., Korkut, O., Sayan, E., Journal of Colloid and Interface Science, 292

(2-12) (2005) 330-335.

Lackovic, K., Angove, M.J., Wells, J.D., Johnson, B.B., Journal of Colloid and Interface

Science, 257 (1-1) (2003) 31-40.

Lai, C.H., Chen, C.Y., Wei, B.L., Yeh, S.H., Water Research, 36 (20-12) (2002) 4943-4950.

Lalhruaitluanga, H., Jayaram, K., Prasad, M.N.V., Kumar, K.K., Journal of Hazardous

Materials, 175 (1-3) (2010) 311-318.

Lao, C., Zeledon, Z., Gamisans, X., Sole, M., Separation and Purification Technology, 45 (2-

10) (2005) 79-85.

Larous, S., Meniai, A.H., Lehocine, M.B., Desalination, 185 (1-3) (2005) 483-490.

Lata, H., Garg, V.K., Gupta, R.K., Journal of Hazardous Materials, 157 (2-3) (2008) 503-509.

Lazaridis, N.K., Asouhidou, D.D., Water Research, 37 (12-7) (2003) 2875-2882.

Page 90: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

89

Lazaro, N., Sevilla, A.L., Morales, S., Marques, A.M., Water Research, 37 (9-5)

(2003) 2118-2126.

Lee, S.H., Jo, H.Y., Yun, S.T., Lee, Y.J., Journal of Hazardous Materials, 175 (1-3) (2010)

224–234.

Leiher, S.K., Water Science and Technology, 32 (8) (1995) 179-183.

Levent, G., Levent, A., Hanife, B., Environmental Engineering Science, 22 (4) (2005) 411-

420.

Lewis, R.J., Sr. (Ed.). Hawley’s Condensed Chemical Dictionary, 12th Edition, Van Nostrand

Reinhold, New York (1993).

Leyva-Ramos, R., Bernal-Jacome, L.A., Acosta-Rodriguez, I., Separation and Purification

Technology, 45 (1-9) (2005) 41-49.

Leyva-Ramos, R., Rangel-Mendez, J.R., Bernal-Jacome, L.A., Berber Mendoza, M.S,

Journal of Chemical Technology & Biotechnology, 80 (8-8) (2005) 924-933.

Li, A., Dai, J., Water Research, 40 (10-6) (2006) 1951-1956.

Li, N., Bai, R., Separation and Purification Technology, 42 (3-4) (2005) 237-247.

Li, X., Tang, Y., Xuan, Y., Liu, Z.Y., Luo, F., Separation Purification and Technology, 55 (1)

(2007) 69–75.

Li, X., Tang, Y., Xuan, Y., Liu, Z.Y., Luo, F., Separation Purification and Technology, 55 (1)

(2007) 69–75.

Li, Zhi-Yong, Guo, Si-Yuan; Li, L, Journal of Food Engineering, 75 (1-7) (2006) 129-136.

Lin X., Burns R.C., Lawrance G.A., Water, Air, & Soil Pollution, 165 (1-4) (2005)131-152.

Lin, C.C., Lai, Y.T., Journal of Hazardous Materials, 137 (1-9) (2006) 99-105.

Lin, H.K.M., Hanabusa, K., Shirai, H., Ueno, N., Mori, Y., Journal of Applied Polymer

Science, 85 (7-8) (2002) 1378-1386.

Lin, S.H., Kiang, C.D., Chemical Engineering Journal, 92 (1-3) 2003 193-199.

Lodeiro, P., Rey-Castro, C., Barriada, J.L., de Vicente, M.E.S., Herrero, R., Journal of

Colloid and Interface Science, 289 (2-9) (2005) 352-358.

Lodi, A., Soletto, D., Solisio, C., Converti, A., Chemical Engineering Journal, 136 (2-3)

(2008) 151–155.

Page 91: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

90

Lopez, A., Lazaro, N., Morales, S., Marques, A.M., Water Air Soil Pollution, 135 (1-4)

(2002) 157–172.

Louhab, K., Sahmoune, N., Addad, J., Barr, S., Journal of Appleid Sciences, 6 (9)

(2006) 2077-2082.

Lozet, J., and Mathieu, C., Dictionary of Soil Science, 2nd Edition, Balkema, A.A.,

Rotterdam (1991).

Lu, A., Zhong, S., Chen, J., Shi, J., Tang, J., Lu, X., Environmental Science & Technology,

40 (9-5) (2006) 3064-3069.

Lu, C., Chiu, H., Chemical Engineering Science, 61 (4-2) (2006) 1138-1145.

Luo, F., Liu, Y., Li, X., Xuan, Z., Ma, J., Chemosphere, 64 (7-8) (2006) 1122-1127.

Lyman, W.J., “Transport and transformation processes”, in Fundamentals of Aquatic

Toxicology, Rand, G.M., (Ed.), Taylor & Francis, Washington DC (1995).

Lyubchik, S.B., Perepichka, I.I., Galushko, O.L., Lyubchik, A.I., Lygina, E.S., Fonseca, I.M.,

Adsorption, 11 (5-6) (2005) 581-593.

Machida, M., Aikawa, M., Tatsumoto, H., Journal of Hazardous Materials, 120 (1-

3) 4 (2005) 271-275.

Machida, M., Mochimaru, T., Tatsumoto, H., Carbon, 44 (13-11) (2006) 2681-2688.

Malkoc, E., Journal Hazardal Materials, 137 (2) (2006) 899–908.

Malkoc, E., Journal of Hazardous Materials, 137 (2) (2006) 899–908.

Malkoc, E., Nuhoglu, Y., Abali, Y., Chemical Engineering Journal, 119 (1-6) (2006) 61-68.

Malkoc, E., Nuhoglu, Y., Chemical Engineering Science, 61 (13-7) (2006) 4363-4372.

Malkoc, E., Nuhoglu, Y., Dundar, M., Journal of Hazardous Materials, 138 (1) (2006) 142-

151.

Malkoc, E., Nuhoglu, Y., Journal of Hazardous Materials, 135 (1-3) (7) (2006) 328-336.

Malkoc, E., Nuhoglu, Y., Separation and Purification Technology, 54 (3) (2007) 291-298.

Mallick, S., Dash, S., Parida, K.M., Journal of Colloid and Interface Science, 297 (2-

5) (2006) 419-425.

Page 92: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

91

Manugapati, V.S., Yarramuthi, V., Nadavala, S.K., Alla, S.R., Abburi, K., Chemical

Engineering Journal, 157 (2-3) (2010) 357-365.

Maret, W., Sandstead, H.H., Journal of Trace Elements in medicine and Bioligy, 20 (1)

(2006) 3–18.

Marín, A.B.P., Aguilar, M.I., Meseguer, V.F., Ortuno, J.F., Sáez, J., Lloréns, M., Chemical

Engineering Journal, 155 (1-2) (2009) 199–206

Marquez, G.E.., Ribeiro, M.J.P., Ventura, J.M., Labrincha, Ceramic International, 30 (1)

(2004) 111–119.

Martins, R.J.E., Boaventura, R.A.R., Water Research, 36 (20) (2002)5005−5012.

Martins, R.J.E., Pardo, R., Boaventura, R.A.R., Water Research, 38 (3-2) (2004) 693-699.

Martyniuk, H., Wickowska, J., Fuel Processing Technology, 84 (1-3) (2003) 23-36.

Mathialagan, T., Viraraghava, T., Journal of Hazardous Materials, 94 (3) (2002) 291–303.

McCullagh, C., Saunders, G.C., Water Research, 39 (13-8) (2005) 2799-2806.

McGrellis, S., Serafini, J.N., Jeanjean, J., Pastol, J.L., Fedoroff, M., Separation Purification

Technology, 24 (1-2) (2001) 129–138.

Mei, J., Cailiao Baohu, 33 (6) (2000) 15-16.Cailiao Baohu Zazhishe.

Memon, J.R., Memon, S.Q., Bhanger, M.I., Khuhawar, M.Y., Journal of Hazardous Material,

163 (2-3) (2009) 511-516.

Memon, S.Q., Memon, N., Shah, S.W., Khuhawar, M.Y., Bhanger, M.I., Journal of

Hazardous Materials, 139 (1) (2007) 116–121.

Meshko, V., Markovska, L., Marinkovski, M., International Journal of Environment and

Pollution, 27 (4) (2006) 285-299.

Min, S.H., Han, J.S., Shin, E.W., Park, J.K., Water Research, 38 (5) (2004) 1289–1295.

Minceva, M., Fajgar, R., Markovska, L., Meshko, V., Seperation Science and Technology, 43

(8) (2009) 2117-2143.

Minihan, M.M., McCann, E., Leahy, J.J, Adsorption Science and Technology, 22 (10-

12) (2005) 783-794.

Miretzky, P., Munoz, C., Chavez, A.C., Bioresource Technology, 101 (8) (2010) 2637-2642.

Page 93: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

92

Mohan, D., Pittman, C.U., Steele, P.H., Journal of Colloid and Interface Science, 297 (2)

(2006) 489–504.

Mohan, D., Pittman, C.U., Steele, P.H., Journal of Colloid and Interface Science, 297 (2-

5) (2006) 489-504.

Mohan, D., Singh, K. P., Singh, V. K., Journal of Hazardosu Mateirals, 135 (1-3) (2006) 280-

295.

Mohanty, K., Jha, M., Meikap, B.C., Biswas, M.N., Chemical Engineering Science, 60 (11)

(2005) 3049–3059.

Moore, J., Moorthy, S. R., Springer, New York, BioScience, 35 (1) (1985) 54.

Morris, C., (Ed.). Academic Press Dictionary of Science and Technology, Academic Press,

San Diego (1992).

Mortaheb R.H., Kosuge H., Mokhtarani B., Amini M.H., Banihashemi H.R., Journal of

Hazardous Material, 165 (1-3) (2009) 630-636.

Mouni, L., Merabet, D., Bouzaza, A., Belkhiri, L., Desalination, 276 (1-3) (2011) 148–153.

Moussavi, G., Barikbin, B., Chemical Engineering Journal, 162 (3) (2010) 893–900.

Mustafa, S., Waseem, M., Naeem, A., Shah, K.H., Ahmad, T., Hussain, S.Y., Chemical

Engineering Journal, 157 (1) (2010) 18–24

Muthukrishnan, M., Guha, B.K., Desalination, 219 (1-3) (2008) 171-178.

Nabarlatz, D., Celis, J.D., Bonelli, P., Cukierman, A.L., Journal of Environmental

Management, 97 (2012) 109-115. Chen, J.H., Ni, J.C., Liu, Q.L., Li, S.X., Desalination, 285

(2012) 54-61.

Nadeem, M., Shabbir, M., Abdullah, M.A., Shah, S.S., McKay, G., Chemical Engineering

Journal, 148 (2-3) (2009) 365–370.

Nagarnaik, P.B., Bhole, A.G., Natarajan, G.S., International Journal of Environment and

Pollution, 19 (2) (2003) 177-187.

Naiya, T.K., Bhattacharya, A.K., Das, S.K., Journal of Colloid and Interface Science, 325 (1)

(2008) 48−56.

Nakajima, A., Baba, Y., Water Research, 38 (12) (2004) 2859−2864.

Namasivayam, C., Holl, W.H., Holzals Roh-und Werkstoff, 62 (1-3) (2004) 74-80.

Page 94: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

93

Namasivayam, C.; Sangeetha, D., Bioresource Technology, 97 (10-7) (2006) 1194-1200.

Naseem, R., Tahir, S.S., Pergamon, 35 (16) (2001) 3982-3986.

Naseem, R., Tahir, S.S., Water Research, 35 (16) (2001) 3982–3986.

Nasernejad, B., Zadeh, T.E., Pour, B.B., Bygi, M.E., Zamani, A., Process Biochemistry, 40,

(3-4) (2005) 1319-1322.

National Institute for Occupational Safety and Health (NIOSH), Criteria for a Recommended

Standard, Occupational Exposure to Carbon Dioxide. August (1976).

National Library of medicine, Hazardous Substances Data Bank (HSDB). (1996).

National Research Council. Copper. In: Recommended Dietary Allowances. Washington,

D.C.: Food Nutrition Board, NRC/NAS, 1980: 151-154.

Navarro, R., Guzman, J., da Saucedo, I., Revilla, J., Guibal, E., Macromolecular Bioscience,

3 (10-10) (2003) 552-561.

Nelson, L., Carbon Dioxide Poisoning, Emergency Medicine 32(5) (2000) 36-38.

Nemr, A.E., Journal of Hazardous Materials, 161 (1) (2009) 132−141.

Nemr, A.E., Khaled, A., Abdelwahab, O., Sikaily, A.E., Journal of Hazardous Materials, 152

(1) (2008) 263-275.

Ng, J.C.Y., Cheung, W.H., McKay, G., Chemosphere, 52 (6-8) (2003) 1021-1030.

Nibou, D., Mekatel, H., Amokrane, S., Barkat, M., Trari, M., Journal of Hazardous Materials,

173 (1-3) (2010) 637–646

Nishioka, H., Nagahiro, T., Kumagai, T., Kato, Y., Kankyo Gijustsu, 29 (10) (2000) 788-793.

(Japan), Kankyo Gijustsu Kenkyu Kyokai.

Nityanandi, D., Subbhuraam, C.V., Kadirvelu, K., Environmental Technology, 27 (1-

1) (2006) 15-24.

Noeline, B.F., Manohar, D.M., Anirudhan, T.S., Separation and Purification Technology, 45

(2-10) (2005) 131-140.

Nogawa, K., Kobayashi, E., Y. Okubo, Suwazono, Y., Biometals 17 (5) (2008) 581–587.

Nogueira, C.A. and Delmas, F., Hydrometallurgy, 52 (3) (1999) 267–287.

Page 95: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

94

Norton, L., Baskaran, K., McKenzie, S.T., Advanced Environmental Resource, 8 (3-4)(2004)

629–635.

Norton, L., Baskaran, K., McKenzie, T., Advances in Environmental Research, 8 (3-4)

(2004) 629-635.

Norton, L., Baskaran, K., McKenzie, T., Advances in Environmental Research, 8 (3-4)

(2004) 629–635.

Nuhoglu, Y., Malkoc, E., Bioresource Technology, 100 (8) (2009) 2375–2380.

Ofmaja, A.E., Journal of Environmental management, 91 (7) (2010) 1491−1499.

Ofomaja, A.E., Ho, Y.S., Journal of Hazardous Materials, B139 (2) (2007) 356-362.

Ofomaja, A.E., Ho, Y.S., Journal of, Hazardous Materials, 139 (2) (2007) 356–362.

Ofomaja, A.E., Naidoo, E.B., Carbohydrate Polymers, 82 (4) (2010) 1031-1042.

Oliviera, W.E., Franca, A.S., Oliviera, L.S., Rocha, S.D., Journal of Hazardous Materials,

152 (3) (2008) 1073-1081.

Omar, H.H., International Biodeterioration and Biodegradation, 50 (2) (2002) 95−100.

Oren, A.H., Kaya, A., Journal of Hazardous Materials, 131, (1-3) (2006) 59-65.

Ortiz, N., Pires, M.A.F., Bressiani, J.C., Waste Management, 21 (7) (2001) 631−635.

Oshima, S., Perera, J.M., Northcott, K.A., Kokusen, H., Stevens, G.W., Komatsu, Y.,

Separation Science and Technology, 41 (8) (2006) 1635-1643.

Owlad, M., Aroua, M.K., Daud, W.M.A.W., Bioresource Technology, 101 (14) (2010) 5098–

5103.

Ozcan, A.S., Gok, O., Ozcan, A., Journal of Hazardous Materials, 161 (1) (2009) 499-509.

Ozverdi, A., Erdem, M., Journal of Hazardous Materials, 137 (1-9) (2006) 626-632.

P. King, N. Rakesh, S. Beenalahari, Y. Prasanna Kumar, V.S.R.K. Prasad, Journal of

Hazardous Materials, B 142 (1-2) (2007) 340–347.

Paikaray, S., Banerjee, S., Mukherji, S., Environmental Geology, 47 (8-5) (2005) 1162-1170.

Palagyi, S., Salzer, P., Mitro, A., Journal of Radioanalytical and Nuclear Chemistry, 269 (1-

7) (2006) 103-113.

Page 96: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

95

Panda, G.C., Das, S.K., Chatterjee, S., Maity, P.B., Bandopadhyay, T.S., Guha, A.K.,

Colloids and Surfaces B: Biointerfaces, 50 (1-6) (2006) 49-54.

Pandey, A.K., Pandey, S.D., Misra, V., Srimal, A.K., Chemosphere, 51 (4-4) (2003) 329-333.

Papadopoulos, A., Fatta, D., Parperis, K., Mentzis, A., Haralambous, K.J., Loizidou, M.,

Separation and Purification Technology, 39 (3) (2004) 181-188.

Parab, H., Joshi, S., Shenoy, N., Lali, A., Sarma, U.S., Sudersanan, M., Process

Biochemistry, 41 (3-3) (2006) 609-615.

Pardo, R., Herguedas, M., Barrado, E., Vega, M., Analytical and Bioanalytical Chemistry,

376 (1-5) (2003) 26-32.

Park, D., Yun, Y.S., Park, J.M., Chemosphere, 60 (10) (2005) 1356–1364.

Park, H.J., Kim, M., Shim, S.M., Kim, G.H., Bulletin of Environmental Contamination and

Toxicology, 74 (3-3) (2005) 470-476.

Parker, S.P., (Ed.) McGraw-Hill Dictionary of Scientific and Technical Terms, 4th Edition,

McGraw-Hill, New York (1989).

Parthasarathy, G., Choudary, B.M., Sreedhar, B., Kunwar, A.C., Srinivasan, R., American

Mineralogist, 88 (11-12) (2003) 1983-1988.

Patmavathy, V., Vasudevan, P., Dhingra, S.C., Process Biochemistry, 38 (10) (2003) 1389–

1395.

Peacock, C.L., Sherman, D.M., Geochimica et Cosmochimica Acta, 69 (15-8) (2005) 3733-

3745.

Pehlivan, E., Altun, T., Journal of Hazardous Materials, 134 (1-3) (2006) 149-156.

Pehlivan, E., Altun, T., Journal of Hazardous Materials, 134 (2006) 149-156.

Pehlivan, E., Yanik, B.H., Ahmetli, G., Pehlivan, M., Bioresource Technology, 99 (9) (2008)

3520-3527.

Pellera, F.M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J.Y.,

Gidarakos, E., Journal of Environmental Management, 96 (1) (2012) 35-42.

Perez-Marin, A.B., Ballester, A., Gonzalez, F., Blazquez, M.L., Munoz, J.A., Saez, J.,

Zapata, V.M., Bioresource Technology, 99 (17) (2008) 8101-8106.

Peri, J., Trgo, M., Medvidovi, N.V., Water Research, (38) (7-4) (2004) 1893-1899.

Page 97: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

96

Periyasamy, K., Namasivayam, C., Waste Management, 15 (1) (1995) 63–68.

Petroni, S.L.G., Pires, M.A.F., Journal of Radioanalytical and Nuclear Chemistry, 259 (2-

1) (2004) 239-243.

Petroni, S.L.G., Pires, M.A.F., Quim. Nova, (Port), Sociedade Brasileria de Quimica, 23 (4)

(2000) 477-481.

Phan, T.N.T., Louvard, N., Bachiri, S.A., Persello, J., Foissy, A., Colloids and Surfaces A:

Physicochemical and Engineering Aspects, 244 (1-3) (2004) 131-140

Pino, G.H., Luciana, M.S.D.M., Mauricio, L.T., Gustavo, A.S.P., Minerals Engineering, 19

(5-4) (2006) 380-387.

Pradhan, S., Shukla, S.S., Dorris, K.L., Journal of Hazardous Materials, 125 (1-3)

(2005) 201-204.

Preetha, B., Viruthagiri, T., African Journal of Biotechnology, 4 (6-6) (2005) 506-508.

Preetha, B., Viruthagiri, T., Separation Purification Technology, 57 (1) (2007) 126–133.

Priestly, M. A., Medicine: Respiratory Acidosis. January, 21 (2003).

Priya, P.G., Basha, C.A., Ramamurthi, V., Begum, S.N., Journal of Hazardous Materials, 163

(2-3) (2009) 899–909.

Prockop, L.D., Chichkova, R.I., Journal of the Neurological Sciences, 262 (2007) 122-130.

Qadeer, R., Akhtar, S, Turkish Journal of Chemistry, 29 (1-2) (2005) 95-100.

Qi, B.C., Aldrich, C., Bioresource Technology, 99 (13) (2008) 5595-5601.

Qin, F., Shan, Q., Bulletin of Environmental Contamination and Toxicology, 76 (1-1)

(2006) 179-186.

Qu, R., Sun, C., Ma, F., Cui, Z., Zhang, Y., Sun, X., Ji, C., Fuel, 92 (1) (2012) 204-210.

Quek, A., Balasubramanian, R., Journal of colloid and interface science, 356 (1) (2011)

203−210.

Radetic, M., Jocic, D., Jovani, P., Rajakovi, L., Thomas, H., Petrovi, Z.L., Journal of Applied

Polymer Science, 90 (2-10) (2003) 379-386.

Rai, A. K., Upadhyay, S. N., Kumar, S., Upadhya, Y. D., Journal IAEM, 25 (1998) 22-51

Page 98: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

97

Ramos, R.L., Bernal, J.L.A., Mendoza, B.J., Fuentes, R.L., Guerrero, C.R.M., Journal of

Hazardous Materials, B90 (1) (2002) 27–38.

Ramos, R.L., Rodriguez, L.E.L., Ramos, S.L., Castillo, N.A.M., Chemical Engineering

Journal, 180, (2012) 113-120,

Rana, P., Mohan, N., Rajagopal, C., Water Research, 38 (1-2) (2004) 2811-2820.

Rana, S.V.S., Environmental pollution health and toxicology, Narosa Publication House,

(2007) 1-269.

Rangsayatorn, N., Pokethitiyook, P., Upatham, E.S., Lanza, G.R., Environment

Enternational, 30 (1) (2004) 57–63.

Rani, N., Gupta, A., Yadav, A.K., Environmental Technology, 27 (6-6) (2006) 597-602.

Rao, K.S., Anand, S., Venkatesvarlu, P., Journal of Industrial and Engineering Chemistry, 17

(2) (2011) 174-181.

Rao, M.M., Ramesh, A., Rao, G.P.C., Seshaiah, K., Journal of Hazardous Materials, 129 (1-

3) (2006) 123-129.

Rao, R.A.K., Khan, M.A., Rehman, F., Chemical Engineering Journal, 156 (1) (2010) 106-

113.

Rashed, M.N., Environmental Monitoring and Assessment, 119 (1-3) (2006) 31-41.

Reddy B.R., Priya D.N., Park K.H., Seperation Purification and Technology, 50 (2) (2006)

161-166.

Reddy, D.H.K., Ramana, D.K.V., Seshaiah, K., Reddy, A.V.R., Desalination, 268 (1-3)

(2011) 150–157.

Rehman, H.U., Shakirullah, M., Ahmad, I., Shah, S., Hameedullah, Journal of the Chinese

Chemical Society, 53 (5) (2006) 1045–1052.

Reyes, R.B.G., Bioresource Technology, 101(21) (2010) 8099–8108.

Riaz, M., Nadeem, R., Haneef, M.A., Journal of Hazardous Materials, 161 (1) (2009) 88−94.

Ricordel, S., Taha, S., Cisse, I., Dorange, G., Journal of Separation and Purification

Technology, 24(3) (2001) 389–401.

Ricou, H.P., Hequet, V., Lecuyer, I., Le Cloirec, P., Water Science Technolgy, 42 (5-6)

(2000) 79-84.

Page 99: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

98

Rivera, U.J., Bautista, T.I., Ferro, G.M.A., Moreno, C.C., Carbon, 41 (2-2) (2003) 323-330.

Rodrignez-Reinoso, F., and Linares-Solano, A., Chemistry and Physics of Carbon, 21 (1988)

1-146, Marcel Dekker, New York.

Roldan, P.S., Alcantara, I.L., Castro, G.R., Rocha, J.C., Padilha, C.C.F., Padilha, P. M.,

Analytical and Bioanalytical Chemistry, 375 (4-2) (2003) 574-577.

Romero, G.J., Peralta, V.J.R., Rodriguez, E., Ramirez, S.L., Gardea, T.J.L., Journal of

Chemical Thermodynamics, 37 (4-4) (2005) 343-347.

Rosales, E., Pazos, M., Sanromán, M.A., Tavares, T., Desalination, 284 (2012) 150–156.

Rubin, E., Rodriguez, P., Herrero, R., de Vicente, M.E.S., Journal of Chemical Technology &

Biotechnology, 81 (7-7) (2006) 1093-1099.

S. Çoruh, Desalination, 225 (1-3) (2008) 41–57.

Sa, Y., Akcael, B., Kutsal, T., Chemical Engineering Communications, 190 (5-8) (2003) 797-

812.

Saari, R.B., Stansbury, J.S., Laquer, F.C., Journal of Environmental Engineering, 124 (10)

(1998) 939-944.

Sabio, E., Zamora, F., Ganan, J., Gonzalez, G.C. M., Gonzalez, J.F., Water Research, 40

(16) (2006) 3053-3060.

Saeed, A., Iqbal, M., Akhtar, M.W., Journal of Hazardous Materials, B117 (1) (2005) 65-73.

Saha, B., Tai, M.H., Streat, M., Chemical Engineering Research and Design, 81 (10-11)

(2003) 1343-1353.

Sahan, T., Ceylan, H., Sahinner, N., Aktas, N., Bioresource Technology, 101 (12) (2010)

4520−4526.

Sahu, R.C., Patel, R., Ray, B.C., Desalination 266 (1-3) (2011) 93-97.

Sahu, R.C., Patel, R., Ray, B.C., Desalination, 266 (1-3) (2011) 93-97.

Samanta, A.K., Basu, J.K., Kundu, G., Indian Journal of Environment Protection, 20

(10) (2000) 754-760.

Samra, S.E., Adsorption Science and Technolgy, 18 (9) (2000) 761-775.

Sapari, N., Idris, A., Hisham, N., Desalination, 106, (1-3) (1996) 419-422.

Page 100: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

99

Sarin, V., Pant, K.K., Bioresource Technology, 97 (1-1) (2006) 15-20.

Sarioglu, M., Atay, U.A., Cebeci, Y., Desalination, 181 (1-3) (2005) 303-311.

Sarvanan, D., Mallika, S., Balasubramaniann N., Indian Journal of Environment Protection,

20 (2) (2000) 96-101.

Sawalha, M.F., Videa, J.R.P., Gardea, M.D., Torresdey, J.L.G., The Journal of Chemical

Thermodynamic, 39 (3) (2007) 488-492.

Say, R., Yilmaz, N., Denizli, A., Adsorption Science and Technology, 21 (7-9) (2003) 643-

650.

Sayan E., Chemical Engineering Journal, 115 (3-1) (2006) 213-218.

Schroede, H.A., Journal of Chronic Diseases, 18 (1965) 647–656.

Sciban, M., Klasnja, M., Holzals Roh-und Werkstoff, 62 (1-3) (2004) 69-73.

Selatinia, A., Madni, A., Bakhti, M.Z., Kertous, L., Mansouri, Y., Yous, R., Minerals

Engineering, 17 (7-8) (2004) 903–911.

Selvaraj, K., Manonmanie, S., Pattabhi, S., Bioresource Technology, 89 (2) (2003) 207−211.

Sen, T.K., Gomez, D., Desalination 267 (2-3) (2011) 286-294.

Sen, T.K., Gomez, D., Desalination, 267 (2-3) (2011) 286–294.

SenthilKumar, P., Ramalingam, S., Sathyaselvabala, V., Kirupha, S.D., Sivanesan, S.,

Desalination, 266 (1-3) (2011) 63-71.

Sgarlata, C., Arena, G., Longo, E., Zhang, D., Yang, Y., Bartsch, R.A., Journal of Membrane

Science, 323 (2) (2008) 444–451.

Shady, A.A., Peng, C., Bi, J., Xu, H., Almeria, J., Desalination, 286 (2012) 304−315.

Shao, D., Chen, C., Wang, X., Chemical Engineering Journal, 185-186 (2012) 144-150.

Shao, W.J., Chen, L.H., Lü, L.L., Luo, F., Desalination 265 (1-3) (2011) 177–183.

Sharma, Y.C., Colloids and Surfaces A : Physicochemical and Engineering Aspects, 215 (1-

3) (2003) 155-162.

Sharma, Y.C., Wang, C.H., Journal of Hazardous Materials, 142 (1-2) (2007) 449–454.

Shawabkeh, R.A., Journal of Collidal and Interface Science, 300 (2-8) (2006) 447-452.

Page 101: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

100

Shen, H., Christie, P., Li, X., Environmental Geochemistry and Health, (328) (1-2)

(2006) 111-119.

Shen, J., Duvnjak, Z., Process Biochemistry, 40 (11-11) (2005) 3446-3454.

Shiau, C., Lin, C.L., Chang, H.S., Industrial & Engineering Chemistry Research, 44 (13-

6) (2005) 4771-4777.

Shibi, I.G., Anirudhan T.S., Journal of Chemical Technology & Biotechnology, 81 (3-

3) (2006) 433-444.

Shrivastava, V.C., Mall, I.D., Mishra, I.M, Separartion Science and Technology, 41,

(12) (2006) 2685-2710.

Shrivastava, V.C., Swamy, M.M., Mall, I.D., Prasad, B., Mishra, I.M., Colloids and Surfaces

A : Physicochemical and Engineering Aspects, 272 (1-2) (2006) 89-104.

Shroff, K.A., Vaidya, V.K., Chemical Engineering Journal, 171 (3) (2011) 1234– 1245

Shukla S.R., Pai, R.S., Shendarkar A.D, Separation and Purification Technology, 47 (3-1)

(2006) 141-147.

Shukla, A., Zhang, Y.H., Dubey, P., Margrave, J.L., Shukla, S.S., Journal of Hazardous

Materials, 95 (1-2) (2002) 137-152.

Shukla, S. R., Pai, R.S., Separation and Purification Technology, 43 (1-4) (2005) 1-8.

Shukla, S.R., Pai, R.S., Bioresource Technology, 96 (13-9) (2005) 1430-1438.

Shukla, S.R., Pai, R.S., Journal of Hazardous Materials, 125 (1-3) (2005) 147-153.

Shukla, S.S., Yu, L.J., Dorris, K.L., Shukla, A., Journal of Hazardous Materials, 121 (1-3)

(2005) 243-246.

Singh, K.K., Rastogi, R., Hasan, S.H., Journal of Colloid and Interface Science, 290 (1-

10) (2005) 61-68.

Singh, K.K., Rastogi, R., Hasan, S.H., Journal of Hazardous Materials, 121, No. (1-3)

(2005) 51-58].

Singh, K.K., Singh, A.K., Hasan, S.H., Bioresource Technology, 97 (8-5) (2006) 994-1001.

Singh, K.K., Talat, M., Hasan, S.H., Bioresource Technology, 97 (16-11) (2006) 2124-2130.

Slaveykova, V.I., Wilkinson, K.J., Environmental Chemistry Letters, 1 (3-11) (2003) 185-

189.

Page 102: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

101

Smith, E.H., Amini, A., Journal of Environment Enggineering, 126 (1) (2000) 58-65.

Sodhi, G.S., Third Edition Fundamental Concepts of Environmental Chemistry, Narosa

Publishing House (2009) 1-581.

Sole, M., Casas, J.M., Water, Air and Soil Pollution, 144 (1-4) (2003) 57-65.

Sölener, M., Tunali, S., Özcan, A.S., Özcan, A., Gedikbey, T., Desalination, 223 (1-3) (2008)

308–322

Solisio, C., Lodi, A., Soletto, D., Converti, A., Bioresource Technology, 99 (13) (2008)

5933−5937.

Sousa, F.W., Oliveira, A.G., Ribeiro, J.P., Rosa, M.F., Keukeleire, D., Nascimento, R.F.,

Journal of Environmental Management, 91 (8) (2010) 1634-1640.

Spoor, P.B., Veen, W.R.T., Janssen, L.J.J., Journal of Applied Electrochemistry, 31 (10)

(2001) 1071–1077.

Srasra, N.F., Srasra, E., Desalination, 250 (1) (2010) 26–34.

Srivastava, V.C., Mall, I.D., Mishra, I.M., Chemical Engineering Journal, 117 (1) (2006) 79–

91.

Srivastava, V.C., Mall, I.D., Mishra, I.M., Chemical Engineering Journal, 117 (1-

3) (2006) 79-91.

Srivastva, V.C., Mall, I.D., Mishra, I.M., Colloids and Surfaces A: Physicochemical and

Engineering Aspects, 312 (2-3) (2008) 172-184.

Streit, B., Lexikon der Okotoxikologie, VCH, Weinheim (1994).

Su, H., Wang, Z., Biotechnology Letters, 25 (12-6) (2003) 949-953.

Swain B., Sarangi K., Das R.P., Journal of Membrane Science, 277 (1-2) (2006) 240-248.

Tahir, S.S., Rauf, N., Journal of Chemical Thermodynamics, 35 (12-12) (2003) 2003-2009.

Tan, G., Yuan, H., Liu, Y., Xiao, D., Journal of Hazardous Materials, 174 (1-3 ) (2010) 740-

745.

Tang, L., Fu, M., Zhang, P., Shen, D., Huaxue Shiljie, 42 (2) (2001) 59-62, 92(Ch),

Shanghaishi Huaxue Huagong Xuehui.

Tang, X., Li, Z., Chen, Y., Journal of Hazardous Materials, 161 (2-3) (2009) 824–834.

Page 103: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

102

Tapiero, H., Tew, K.D., Biomedicine and Pharmacotherepy, 57 (9) (2003) 399–411.

Taty-Costodes, V.C., Fauduet, H., Porte, C., Ho, Y.S., Journal of Hazardous Materials, 123

(1-3) (2005) 135-144.

Testa, J.J., Grela, M.A., Litter, M.I., Environmental Science and Technology, 38 (5) (2004)

1589–1594.

The Council of the European Communities, Directive 76/464/EEC—on pollution caused by

certain dangerous substances discharged into the aquatic environment of the community, O.

J. Eur. Comm. (1976) No. L 129/23.

Thompson, E.D., Mayer, G.D., Balesaria, S., Glover, C.N., Walsh, P.J., Hogstrand, C.,

Biochemistry and Physiology Part A, 134 (4) (2003) 819–828.

Thornton, I., Metals in the Global Environment—Facts and Misconceptions, ICME, Ottawa

(1995).

Tiemann, K.J., Gamez, G., Dokken, K., Parsons, J.G., Torresdey, J.L.G., Microchemical

Journal, 71 (2-3) (2002) 287–293.

Tiwari, V., Ghorpare, B., Vankar, P.S., India Colorage, 47 (11) (2000) 18-20 (Eng), Color

Publications Pvt. Ltd.

Tokalioglua, S., Arsava, S., Deliba, A., Soykan, C., Analytica Chimica Acta, 645 (1-2)

(2009) 36–41

Toles, C.A., Marshall, W.E., Separation Science and Technology, 37 (10) (2002) 2369–2383.

Toner, B., Manceau, A., Marcus, M.A., Millet, D.B., Sposito, G., Environmental Science &

Technology, 39 (21-11) (2005) 8288-8294.

Trainor, T.P., Brown, G.E., Parks, G.A., Journal of Colloid and Interface Science, 231(2)

(2000) 359–372.

Tripathy, S.S., Bersillon, J.L., Gopal, K, Desalination, 194 (1-3) (2006) 11-21.

Tsibranska, I., Hristova, E., Chemical Engineering and Processing : Process Intensification,

49 (10) (2010) 1122-1127.

Turan, M., Mart, U., Yuksel, B., Celik, M.S., Chemosphere, 60 (10-9) (2005) 1487-1492.

Tuzen, M., Soylak, M., Citak, D., Ferreira, H.S., Korn, M.G.A., Bezerra, M.A., Journal of

Hazardous Materials, 162 (2-3) (2009) 1041-1045.

Page 104: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

103

Ucer, A., Uyanik, A., Aygun, S.F., Separation and Purification Technology, 47 (3-1) (2006)

113-118.

Ulmanu, M., Maranon, E., Fernandez, Y., Castrillon, L.,. Anger, I., Water, Air, and Soil

Pollution, 142, (1-1) (2003) 357-373.

Ulusoy, U., Simsek, S., Journal of Hazardous Materials, 127 (1-3) (2005) 163-171.

Uncun, H., Bayhan, Y.K., Kaya, Y., Cakici, A., Algur, O.F., Bioresource Technology, 85 (2)

(2002) 155-158.

Unuabonah, E.I., Adebowale, K.O., Olu-Owolabi, Yang, L.Z., Adsorption, 14 (6) (2008)

791-803.

Urtiaga A.M., Alonso A., Ortiz I., Daoud J.A., El-Reefy S.A., Perez de Ortiz S., Gallego T.,

Journal of Membrane Science, 164 (1-2) (2000) 229-240.

US Department of Health and Human Services, Toxicological Profile for Chromium, Public

Health Services Agency for Toxic substances and Diseases Registry, Washington, DC, 1991.

USEPA, National Primary Drinking Water Standards, EPA 816-F-09-0004, May 2009,

http://water.epa.gov/drink/contaminants/upload/mcl-2.pdf.

Utomo, H.D., Hunter, K.A., Environmental Technology, 27 (1-1) (2006) 25-32.

Vaghetti, J.C.P., Lima, E.C., Royer, B., Da Cunha B.M., Cardoso, N.F., Brasil, J.L., Dias,

S.L.P., Journal of Hazardous Materials, 162 (1) (2009) 270-280.

Valderrama, C., Arévalo, J.A., Casas, I., Martínez, M., Florido, N.M.A., Journal of

Hazardous Materials, 174 (1-3) (2010) 144–150

Valderrama, C., Arevalo, J.A., Casas, I., Martinez, M., Miralles, N., Florido, A., Journal of

Hazardous Materials, 174 (1-3) (2010) 144-150.

Van der Heen, P., The Regional Chemical Society Meeting (1977).

Vasanth, D., Pugazhenthi, G., Uppaluri, R., Desalination, 285 (2012) 239-244.

Vasylechko, V.O., Gryshchouk, G.V., Kuzma, B.Y., Lebedynets, L.O., Oliyarnyk, O.Y.,

(2000) Adsorption Science and Technology, 18 (7-9) 621-630.

Veli, S., Alyuz, B., Journal of Hazardous Materials, 149 (1) (2007) 226–233.

Verma, A., Chakraborty, S., Basu, J.K., Separation and Purification Technology, 50 (3-7)

(2006) 336-341.

Page 105: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

104

Vico, L. I., Chemical Geology, 198 (3-4) (2003) 213-222.

Vijayaraghavan, K., Jegan, J., Palanivelu, K., Velan, M., Journal of Hazardous Materials, 113

(1-3) (2004) 223–230.

Villarreal, I.A.A., Petriciolet, A.B., Montoya, V.H., Morán, M.A.M., Avila, H.E.R.,

Chemical Engineering Journal, 167 (1) (2011) 67–76.

Vinodh, R., Padmavathi, R., Sangeetha, D., Desalination, 267 (2011) 267-276.

Volesky, B., 1990. Biosorption of Heavy Metals, fourth edition CRC Press, Boca Raton.

Volesky, B., Advances in biosorption of metal: selection of biomass types, FEMS

Microbiology Reviews 14 (4) (1994) 291–302.

Volesky, B., in: B.Volesky (Ed.), Sorption and Biosorption, BVSorbex Inc., Montreal, St.

Lambert, Que., Canada, 2003.

Vu, D., Li, Z., Zhang, H., Wang, W., Wang, Z., Xu, X., Dong, B., Wang, C., Journal of

Colloid and Interface Science, 367 (1) (2012) 429−435.

Wan, M.W., Petrisor, I.G., Lai, H.T., Kim, D., Yen, T. F., Carbohydrate Polymers, 55 (3)

(2004) 249-254.

Wang, H.L., Chen, J.L., Li, A.M., Zhai, Z.C., Fei, Z.H., Zhang, Q.X., Adsorption Science and

Technology, 21 (10-12) (2003) 921-933.

Wang, J.P., Fei, Z.H., Chinese Journal of Polymer Science, 24 (5-9) (2006) 545-551.

Wang, K., Xing, B., Environmental Pollution, 127 (1-1) (2004) 13-20.

Wang, L., Chua, H., Zhou, Q., Wong, P.K., Sin, S.N., Lo, W.L., Yu, P.H., Water Research,

37 (3-2) (2003) 561-568.

Wang, L., Deng, C., Yin, J., Lui, C., Huanjing Huaxue, 20 (1) (2001) (54-58) (Ch), Kexue

Chubanshe.

Wang, S.L., Hseu, R.J., Chang, R.R., Chiang, P.N., Chen, J.H., Tzou, Y.M., Colloids and

Surfaces A: Physicochemical and Engineering Aspects, 277 (1-3) (2006) 8-14.

Wang, X., Sato, T., Xing, B., Environmental Science & Technology, 40 (10-5) (2006) 3267-

3272.

Wang, X.S., Huang, J., Hu, H.Q., Wang, J., Qin, Y., Journal of Hazardous Materials, 142 (1-

2) (2007) 468-476.

Page 106: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

105

Wang, X.S., Lu, Z.P., Miao, H.H., He, W., Shen, H.L., Chemical Engineering Journal, 166

(3) (2011) 986–993.

Wang, Y.H., Lin, S.H., Juang, R.S., Journal of Hazardous Materials, 102 (2-3) (2003) 291-

302.

Wankasi, D., Horsfall Jr, M., Spiff, A.I., African Journal of Biotechnology, 4 (9-9) (2005)

923-927.

WanNgah, W.S., Reactive and Functional Polymers, 50 (2) (2002) 181–190.

Weng, C.-H., Huang, C.P., Colloids and Surfaces A: Physicochemical and Engineering

Aspects, 247 (1-3) (2004) 137–143.

Weng, C.-H., Tsai, C.Z., Chua, S.H., Sharma, Y.C., Separation Purification and Technology,

54 (2) (2007) 187–197.

WHO (World Health Organization), Guidelines for Drinking Water Quality (vol.II): Health

Criteria and Supporting Information, World Health Organization, Geneva, Switzerland, 1984.

Wilson, J.A., Pulford, I.D., Environmental Geochemistry and Health, 25 (1-1) (2003) 51-56.

Wingenfelder, U., Nowack, B., Furrer, G., Schulin, R., Water Research, 39 (14) (2005) 3287-

3297.

Wong, J.P.K., Wong, Y.S., Tam, N.F.Y., Bioresource Technology, 73 (2) (2000) 133–137.

World Health Organization, Guidelines for drinking-water quality: Recommendations

Addendum, vol. 1, 3rd ed., 2008.

Wu, J., Zhang, H., Shao, L.M., He, P.J., Environmental Pollution, 162 (2012) 63-71

Wu, Z., Gu, Z., Wang, X., Evans, L., Guo, H., Environmental Pollution, 121 (3-3) (2003)

469-475.

Xia, C., He, X., Kuangchan Zonghe Liyong, 4 (2000) 38-41.

Xiong, C. H., Yao, C. P., Journal of Hazardous Materials, 166 (2-3) (2009) 815-820.

Xu, H., Liu, Y., Tay, J.H., Bioresource Technology, 97 (3) (2006) 359–363.

Xu, S.M., Feng, S., Peng, G., Wang, J.D., Yushan, A., Carbohydrate Polymers, 60 (3-5)

(2005) 301-305.

Page 107: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

106

Y. L. Lai, G. Annadurai, F.C. Huang, J.F. Lee , Bioresource Technology 99 (14) (2008)

6480–6487. T.H. Shek, A. Ma, V.K.C. Lee, Chemical Engineering Journal, 146 (1) (2009)

63–70.

Y.J. Zhang, J.R. Chen, X.Y. Yan, Colloids and Surfaces A: Physicochemical Engineering

Aspects 316 (1-3) (2008) 190–193.

Yan, G., Viraraghavan, T., Water SA, 26 (2) (2000) 119-123.

Yang, C., Wang, J., Lei, M., Xie, G., Zeng, G., Luo, S., Journal of Environmental Sciences,

22 (5) (2010) 675–680.

Yang, L., Chen, J.P., Bioresource Technology, 99 (2) (2008) 297–307.

Yanxin, W., Yonglong, G., Zhihua, Y., Hasheng, C., Querol, X., Science in China Series D:

Earth Sciences, 46 (9-9) (2003) 967-976.

Yavuz, A.G., Atalay, E.D., Uygun, A., Gode, F., Aslan, E., Desalination, 279 (1-3) (2011)

325–331.

Yavuz, R., Orbak, I., Karatepe, N., Journal of Environmental Science and Health, Part A:

Toxic/Hazardous Substances & Environmental Engineering, 41 (9-9) (2006) 1967-1980.

Yazid H., and Maachi, R., Journal of Environmental science and Technology, 1 (4) (2008)

201-213.

Younesi S.R., Alimadadi H., Alamdari E.K., Marashi S.P.H., Hydrometallurgy, 84 (3-4)

(2006) 155-164.

Yu, L.J., Shukla, S.S., Dorris, K.L., Shukla, A., Margrave, J.L., Journal of Hazrdous

Materials, 100 (1-3) (2003) 53-63.

Yu, Q., Kaewsarn, P., Separation and Science Technology, 35 (5) (2000) 689–701.

Yuan-shen, L., Cheng-chung, L., Chyow-san, C., Water Environment Research, 78 (3-3)

(2006) 263-268.

Yusof, A.M., Malek, N.A.N.N., Journal of Hazardous Materials, 162 (2-3) (2009) 1019-1024.

Zafar, M.N., Nadeem, R., Hanif, M.A., Joural of Hazardous Materials, 143 (1-2) (2007) 478–

485.

Zaggout, F. R., Journal of Environmental Engineering and Science, 4 (4-7) (2005) 1-7.

Page 108: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

107

Zaman, M.I., Mustafa, S., Khan, S., Xing, B., Journal of Colloid and Interface Science, 330

(1) (2009) 9-19.

Zamin, M., Shaheen, T., Ahmed, M., Adsorption Science and Technology, 22 (10-12) (2005)

849-868.

Zeledon-Toruno, Z., lao-Luque, C., Sole-Sardans, M., Journal of Chemical Technology &

Biotechnology, (6-6) (2005) 649-656.

Zhan, X.M., Zhao, X., Water Research, 37 (16-9) (2003) 3905-3912.

Zhang, F., Zhu, Z., Dong, Z., Cui, Z., Wang, H., Hu, W., Zhao, P., Wang, P., Wei, S., Li, R.,

Ma, J., Microchemical Journal, 98 (2) (2011) 328-333.

Zhang, K., Cheung, W. H., Valix, M., Chemosphere, 60 (8-8) (2005) 1129-1140.

Zhang, L., Yu, C., Zhao, W., Hua, Z., Chen, H., Li, L., Shi, J., Journal of Non Crystalline

Solids, 353, (44-46) (2007) 4055-4061.

Zhang, L., Zhao, Y.H., Bai, R., Journal of Membrane Science, 379 (10) (2011) 69-79.

Zhang, Q.R., Pan, B.C., Zhang, M.W., Tao, X.C., Journal of Hazardous Materials, 170 (2-3)

(2009) 824-828.

Zhao, D., Chen, S., Yang, S., Yang, X., Yang, S., Chemical Engineering Journal, 166 (3)

(2011) 1010-1016.

Zhao, N., Wei, N., Li, J., Qiao, Z., Cui, J., He, F., Chemical Engineering Journal, 115 (1-2)

(2005) 133-138.

Zheng, L., Dang, Z., Yi, X., Zhang, H., Journal of Hazardous Materials, 176 (1-3) (2010)

650-656.

Zhnag, H., Tong, Z., Wei, T., Tang, Y., Desalination, 276 (1-3) (2011) 103-108.

Zhou, D., Zhang, L., Guo, S., Water Research, 39 (16-10) (2005) 3755-3762.

Zhu, C.S., Wang, L.P., Chen, W.B., Journal of Hazardous Materials, 168 (2-3) (2009) 739–

746.

Ziegler, F., Scheidegger, A.M., Johnson, C.A., Dahn, R., Wieland, E., Environmental Science

and Technology, 35 (7) (2001) 1550–1555.

Zou, W., Han, R., Chen, Z., Jinghua, Z., Shi, J., Colloids and Surfaces A : Physicochemical

and Engineering Aspects, 279 (1-3) (2006) 238-246.

Page 109: Shaista Ikram Thesis{faruq} - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/11291/10/10_chapter 1.pdf · Bhopal gas tragedy (1984) affected 3.5 lacks peoples of Bhopal (India).

108

Zulkali, M.M.D., Ahmad, A.L., Norulakmal, N.H., Bioresource Technology, 97 (1-1) (2006)

21-25.

Zulkali, M.M.D., Ahmad, A.L., Norulakmal, N.H., Sharifah, N.S., Journal of Chemical

Technology & Biotechnology, 81 (7-7) (2006) 1324-1327.