Shaft Alignment and Whirling Vibration

30
Consequence of detailed modelling into shaft performance prediction Shaft Alignment and Whirling vibration

description

Presentation delivered by Mohamed Zeid from Berg Propulsion on Nauticus Machinery Course, Rio de Janeiro, September 2012

Transcript of Shaft Alignment and Whirling Vibration

Page 1: Shaft Alignment and Whirling Vibration

Consequence of detailed modelling into shaft performance predictionq g p pShaft Alignment and Whirling vibration

Page 2: Shaft Alignment and Whirling Vibration

Problem?

A proper Shaft Analysis report issued. 

Practical alignment verfication muserments shows a recognaizable variation!

Why ?!

In some of the cases it is subjected to the tools used.

But there is some other reasons!

One of these reasons is the cosequence of the system components stiffness into:One of these reasons is the cosequence of the system components stiffness into: 

1‐Bearing loads and Shaft slope inside propeller bearing

2 Propeller shaft lateral vibration2‐Propeller shaft lateral vibration.

This will explain some of the other reasons meanwhile it helps to investigate the most 

li bl ki d i f j treliable working domain for new projects.

3DNV Software User Conference Busan July 2012

Page 3: Shaft Alignment and Whirling Vibration

Model of the case study

Propeller

FGBFSTBASTB AGB

ASTB=Aft Sterntube BearingFSTB=Fwd Sterntube BearingAGB=Aft Gearbox BearingFGB=Fwd Gearbox BearingGB= Gearbox (OR Main E i fi b i )

DNV Software User Conference Busan July 2012

4

Engine first two bearings).

Page 4: Shaft Alignment and Whirling Vibration

Bearing stiffness

E t l B i

Shaft

External Bearing Calc. Tool

Oil Film Bearing Calculation

Bearing Material

Practical or theoretical Model

Bearing

assumption

Bearing Foundation

DNV Software User Conference Busan July 2012

5

Page 5: Shaft Alignment and Whirling Vibration

Part 1‐ AlignmentCase No 1 Variation of FSTB StiffnessCase No.1‐ Variation of FSTB Stiffness

Working Domain:‐Variation of Forward Sterntube Bearing stiffness from 5.0E7 N/m to 5.0E10 N/m.

Propeller‐GAP & SAG are kept constant at all analysis points.

GBFSTBASTB‐All other bearings assumed stiffness kept constant.

‐GB bearings offsets changed at each analysis point in order to maintain the same GAP‐SAG fifigures.

DNV Software User Conference Busan July 2012

6

Page 6: Shaft Alignment and Whirling Vibration

Case No.1‐ Variation of FSTB Stiffness

Results:A‐ Bearing loads.

FSTB Stiffness variation effect on Bearing Loads

100

120

FSTB Stiffness variation effect on Bearing Loads

ASTB/10 FSTB AGB FGB

60

80

kN)

40

60

Load

 (k

0

20

4.00E+07 4.00E+08 4.00E+09 4.00E+10

DNV Software User Conference Busan July 2012

7

Stiffness (N/m)

Page 7: Shaft Alignment and Whirling Vibration

Case No.1‐ Variation of FSTB Stiffness

Results:B‐ Slope of the shaft inside Aft Sterntube bearing.

FSTB Stiffness variation effect on Shaft Slope at ASTB

0.525

0.53

FSTB Stiffness variation effect on Shaft Slope at ASTB

0.51

0.515

0.52

mm/m

)

Shaft Slope at ASTB

0.495

0.5

0.505

Slop

e (m

p

0.494.00E+07 4.00E+08 4.00E+09 4.00E+10

Stiffness (N/m)

DNV Software User Conference Busan July 2012

8

Page 8: Shaft Alignment and Whirling Vibration

Case No.2‐ Variation of ASTB Stiffness

Working Domain:‐Variation of  Aft Sterntube Bearing stiffness from 3.0E8 N/m to 5.0E10 N/m.

Propeller‐GAP & SAG are kept constant at all analysis points.

GBFSTBASTB‐All other bearings assumed stiffness kept constant.

‐GB bearings offsets changed at each analysis point in order to maintain the same GAP‐SAG fifigures.

DNV Software User Conference Busan July 2012

9

Page 9: Shaft Alignment and Whirling Vibration

Case No.2‐ Variation of ASTB Stiffness

Results:A‐ Bearing loads.

ASTB Stiffness variation effect on Bearing Loads

70

80

90

ASTB Stiffness variation effect on Bearing Loads

ASTB/10 FSTB AGB FGB

50

60

70

(kN)

20

30

40Load

 

0

10

20

2.00E+08 2.00E+09 2.00E+10

DNV Software User Conference Busan July 2012

10

Stiffness (mm/m)

Page 10: Shaft Alignment and Whirling Vibration

Case No.2‐ Variation of ASTB Stiffness

Results:B‐ Slope of the shaft inside Aft Sterntube Bearing.

ASTB Stiffness variation effect on Shaft Slope at ASTB

0.7

0.75

ASTB Stiffness variation effect on Shaft Slope at ASTB

0.6

0.65

(mm/m

) Shaft Slope at ASTB

0 45

0.5

0.55

Slop

e

0.4

0.45

2.00E+08 2.00E+09 2.00E+10

Stiffness (N/m)

DNV Software User Conference Busan July 2012

11

Page 11: Shaft Alignment and Whirling Vibration

Case No.3‐ Variation of GB Bearings Stiffness. (OR Main Engine fo ndation stiffness)(OR Main Engine foundation stiffness)

Working Domain:‐Variation of Gearbox Bearings stiffness from 2.0E7 N/m to 1.0E11 N/m.

Propeller‐GAP & SAG are kept constant at all analysis points.

GBFSTBASTB

‐All other bearings assumed stiffness kept constant.

‐GB bearings offsets changed at each analysis point in order to maintain the same GAP‐SAG fifigures.

DNV Software User Conference Busan July 2012

12

Page 12: Shaft Alignment and Whirling Vibration

Case No.3‐ Variation of GB Bearings Stiffness. (OR Main Engine fo ndation stiffness)(OR Main Engine foundation stiffness)

Results:A‐ Bearing loads.

100GB bearings Stiffness variation effect on Bearing Loads

70

80

90ASTB/10 FSTB AGB FGB

50

60

70

Load

 (kN)

20

30

40

L

0

10

2.00E+07 2.00E+08 2.00E+09 2.00E+10

Stiffness (N/m)

DNV Software User Conference Busan July 2012

13

Stiffness (N/m)

Page 13: Shaft Alignment and Whirling Vibration

Case No.3‐ Variation of GB Bearings Stiffness. (OR Main Engine fo ndation stiffness)

Results:

(OR Main Engine foundation stiffness)

Results:B‐ Slope of the shaft inside Aft Sterntube Bearing.

GB bearings Stiffness variation effect on Shaft Slope at ASTB

0.536

0.538

GB bearings Stiffness variation effect on Shaft Slope at ASTB

0.532

0.534

mm/m

)

Shaft Slope at ASTB

0.528

0.53

Slop

e (m

0.524

0.526

1.00E+07 1.00E+08 1.00E+09 1.00E+10 1.00E+11

Stiffness (N/m)

DNV Software User Conference Busan July 2012

14

( / )

Page 14: Shaft Alignment and Whirling Vibration

Discussion of results 

A Bearing loadsA‐ Bearing loads.

It is of importance to advice a well reliable stiffness range for the bearings (Foundation & Material) in order to ensure a more reliable loads into the bearing.

12090 100

60

80

100

50

60

70

80

50

60

70

80

90

20

40

60

10

20

30

40

10

20

30

40

50

04.00E+07 4.00E+08 4.00E+09 4.00E+10

0

10

2.00E+08 2.00E+09 2.00E+10

02.00E+07 2.00E+08 2.00E+09 2.00E+10

C 1 C 2

DNV Software User Conference Busan July 2012

15

Case 1Variation of FSTB Stiffness

Case 2Variation of ASTB Stiffness

Case 3Variation of GB B. Stiffness

Page 15: Shaft Alignment and Whirling Vibration

Discussion of results 

B Slope of the shaft inside propeller bearingB‐ Slope of the shaft inside propeller bearing.

Is the slope of the shaft inside the propeller bearing  (only) is judgeable ?

0.52

0.525

0.53

0.65

0.7

0.75

0.534

0.536

0.538

Shaft Slope at ASTB

0 5

0.505

0.51

0.515

Shaft Slope at ASTB

0.5

0.55

0.6

f0.528

0.53

0.532

0.49

0.495

0.5

4.00E+07 4.00E+08 4.00E+09 4.00E+100.4

0.45

0.5

2.00E+08 2.00E+09 2.00E+10

Shaft Slope at ASTB

0.524

0.526

1.00E+07 1.00E+08 1.00E+09 1.00E+10 1.00E+11

Case 1Variation of FSTB Stiffness

Case 2Variation of ASTB Stiffness

Case 3Variation of GB B. Stiffness

DNV Software User Conference Busan July 2012

16

Page 16: Shaft Alignment and Whirling Vibration

Discussion of results 

B Slope of the shaft inside propeller bearingB‐ Slope of the shaft inside propeller bearing.

Slope mismatch between the shaft and the bearing is more interesting, So the slope of the bearing it self is important as well. 

BEARING REACTIONS IN VERTICAL - OPERATING CONDITION 1 (GB-COLD-STATIC)---------------------------------------------------------------------------------------

Position Load Pressure Offset Slope [cm] [kN] [bar] [mm] [mm/m]

Bearing 1 244 182 5 -0 221 0 669

Lubricant White metal

Bearing 1 244 182 5 0.221 0.669Bearing 2 284 129 5 -0.060 0.511Bearing 3 803 5 0 0.000 -0.163 Bearing 4 1325 78 5 0.719 0.447 Bearing 5 1436 59 4 1.223 0.474

238 -1.074 7.340E-004 235233 15 -220244 -1.036 7.200E-004 246710 16 -221244 -1.035 7.200E-004 246930 16 -221249 -1.000 7.050E-004 248883 16 -39254 -0.964 6.910E-004 250869 16 -40259 -0.930 6.770E-004 252888 16 -40264 -0 896 6 620E-004 254940 17 -41264 -0.896 6.620E-004 254940 17 -41269 -0.863 6.470E-004 257025 17 -42274 -0.831 6.320E-004 259143 17 -42279 -0.799 6.170E-004 261294 17 -43284 -0.769 6.020E-004 263463 17 -44292 -0.723 5.790E-004 256819 17 84

DNV Software User Conference Busan July 2012

17

Page 17: Shaft Alignment and Whirling Vibration

Discussion of results 

B Slope of the shaft inside propeller bearingB‐ Slope of the shaft inside propeller bearing.

Then a traditional evaluation of the oil fils stiffness can be checked. 

DNV Software User Conference Busan July 2012

18

Page 18: Shaft Alignment and Whirling Vibration

Part 2‐Lateral vibration study.

Introduction BasicsIntroduction‐ Basics

Vib ti I h i tiVibration: Is a harmonic motion.

Stiffness: Is the rigidity of an object

Damping: Is the resistance to the motion.  

System response: Is the amount of the object deflection based on stiffness and damping (Local/Global)damping (Local/Global).  

DNV Software User Conference Busan July 2012

19

Page 19: Shaft Alignment and Whirling Vibration

Part 2‐Lateral vibration study.

Introduction Lateral vibration mode shapes Amplitude Introduction‐ Lateral vibration mode shapes and stiffness components.

λ4

λ1

λ2

λ3

λ1 > λ2 > λ3 > λ4 Ω1 < Ω2 < Ω3 < Ω4

wave lengths vibrating frequencies

DNV Software User Conference Busan July 2012

20

Page 20: Shaft Alignment and Whirling Vibration

Part 2‐Lateral vibration study.

Introduction System response amplification factor with related damping

5

Introduction‐ System response amplification factor with related damping.

4

or

η=0

η=0.1

η=0.2

3

plification

facto η 0.2

η=0.3

η=0.4

η=0.5

η=1

1

2

Amp

η=1.5

η=2

η=7

00 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

DNV Software User Conference Busan July 2012

21

Ω/Ωn

Page 21: Shaft Alignment and Whirling Vibration

Part 2‐Lateral vibration study.

Introduction Lateral vibration and whirlingIntroduction‐ Lateral vibration and whirling.

System stiffness diagram in lateralWhirling case during testReal life whirling case System stiffness diagram in lateralWhirling case during testReal life whirling case

DNV Software User Conference Busan July 2012

22

Page 22: Shaft Alignment and Whirling Vibration

Case study‐ Variation of ASTB Stiffness

Working Domain:‐Variation of Aft Sterntube bearing stiffness from 3.0E8 N/m to 5.0E10 N/m.

Propeller‐GAP & SAG are kept constant at all analysis points.

GBFSTBASTB‐All other bearings assumed stiffness kept constant.

‐GB bearings offsets changed at each analysis point in order to maintain the same GAP‐SAG fifigures.

DNV Software User Conference Busan July 2012

23

Page 23: Shaft Alignment and Whirling Vibration

Case study‐ Variation of ASTB Stiffness

Results:

ASTB Stiffness variation effect on ASTB Stiffness variation effect on

700

750

800

M)

ASTB Stiffness variation effect on Shaft natural frequency (order1)

170

180

190

)

ASTB Stiffness variation effect on Propeller natural frequency (order4)

550

600

650

700

Speed (RPM

Shaft natural frequency (order1)

130

140

150

160

170

Speed (RPM

)

Propeller natural frequency (order4)

5002.00E+08 2.00E+09 2.00E+10

Stiffness (N/m)

120

130

2.00E+08 2.00E+09 2.00E+10Stiffness (mm/m)

p q y ( )

1‐ Lateral vibrationShaft natural frequency.

2‐ Lateral vibrationPropeller blades natural frequency.

DNV Software User Conference Busan July 2012

24

Page 24: Shaft Alignment and Whirling Vibration

1‐ Lateral vibration, Shaft natural frequency.

How it Built?What is the Natural frequency and Excitation frequency ? What is the mode shapes?

Cl d hClear mode shapes. Integrated mode shapes.

DNV Software User Conference Busan July 2012

25

Page 25: Shaft Alignment and Whirling Vibration

1‐ Lateral vibration, Shaft natural frequency

Most determined mode shapes: Cantliver , First bending.

How to handle?

D i H li ht ff t th

Direction of the local/global response.

Damping: Have a slight effect on the cantiver mode and almost no effect on the first bending (Global response direction is linear toward the maximum 2

3

4

5

direction is linear toward the maximum bending without resistance).

0

1

2

0 0.5 1 1.5

General conclusion: Running close to reasonance  have to be avoided.

DNV Software User Conference Busan July 2012

26

Page 26: Shaft Alignment and Whirling Vibration

2‐ Lateral vibration, Propeller blades natural frequencyfrequency

How it built?

DNV Software User Conference Busan July 2012

27

Page 27: Shaft Alignment and Whirling Vibration

2‐ Lateral vibration, Propeller blades natural frequencyfrequency

180

190 Propeller natural frequency (order4)

What is the Natural frequency and Excitation frequency ? What is the mode shapes?

150

160

170

180

120

130

140

2 00E+08 2 00E+09 2 00E+102.00E+08 2.00E+09 2.00E+10

4

5

1

2

3

DNV Software User Conference Busan July 2012

28

00 0.5 1 1.5

Page 28: Shaft Alignment and Whirling Vibration

2‐ Lateral vibration, Propeller blades natural frequencyfrequency

How to handle?Diametrical Damping

Propeller shaft response to vibration

How to handle?2.1) Shaft impact (Direct impact)

Most determined mode shapes: Cantliver First bendingCantliver , First bending.

Direction of the local/global response.Propeller damping (Resistance) effect due to this applied vibration motion have to be considered as it is very effctive (Propeller diametrical  5

damping).

So far the damping is effective, then a view f th it ti f i i t t ll

2

3

4

The system response of this vibration motion should be followed up as it is an excitation force

of the excitation force is important as well.

0

1

0 0.5 1 1.5

DNV Software User Conference Busan July 2012

29

should be followed up as it is an excitation force for another vibration motion‐‐‐‐ >

Page 29: Shaft Alignment and Whirling Vibration

2‐ Lateral vibration, Propeller blades natural frequency

How to handle?

frequency

Aft Sterntube bearing vibration, (Consequence of main propeller

How to handle?2.2) ASTB impact (indirect impact)

(Consequence of main propeller viberation).Bending  variation leads to load variation into the bearingbearing.

Bearing Damping capability.

Is the bearing damping able to dominate the new intreduced harmonic load?

Is the viberation motion charctrestics acceptable ?

DNV Software User Conference Busan July 2012

30

Page 30: Shaft Alignment and Whirling Vibration

Questions and discussion !

BERG PROPULSION PRODUCTION ABBERG PROPULSION PRODUCTION ABMohamed ZeidNaval Architect ‐ Rotordynamics Specialist

Direct: +46 31 30 10 736Mobile: +46 761 175 022E‐mail: [email protected]@ gp p

www.bergpropulsion.com

31DNV Software User Conference 

Busan July 2012