SETAC meeting 2014

19
Novel Active Sampling Device for Determination of Pollutants in Surface Water and Porewater – the In Situ Sampler for Bioavailability Assessment (IS2B) Samuel D. Supowit 1 , Isaac B. Roll 1 , Viet D. Dang 2 , Kevin J. Kroll 2 , Nancy D. Denslow 2 , Rolf U. Halden 1 1 The Biodesign Institute, Center for Environmental Security, Security and Defense Systems Initiative, Arizona State University, Tempe, AZ 85287 2 Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 Corresponding author : Rolf U. Halden; (P): 480-727-0893; email: [email protected] Presenting author : Sam D Supowit; (P): 520-245-6576; email: [email protected] 1

Transcript of SETAC meeting 2014

Page 1: SETAC meeting 2014

1

Novel Active Sampling Device for Determination of Pollutants in Surface Water and Porewater – the In Situ Sampler for

Bioavailability Assessment (IS2B)

Samuel D. Supowit1, Isaac B. Roll1, Viet D. Dang2, Kevin J. Kroll2, Nancy D. Denslow2, Rolf U. Halden1 1The Biodesign Institute, Center for Environmental Security, Security and Defense Systems Initiative, Arizona State University, Tempe, AZ

852872Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611

 Corresponding author: Rolf U. Halden; (P): 480-727-0893; email: [email protected]

Presenting author: Sam D Supowit; (P): 520-245-6576; email: [email protected]

Page 2: SETAC meeting 2014

2

Rationale for sampler developmentAssumption• What a sampler “sees” is

representative of what organisms will see.

Challenge• Many contaminants are

often at trace concentrations in water and difficult to detect/quantify.

Solution• Preconcentration

Figure 1. Typical deployment of samplers for assessing bioavailability.

Page 3: SETAC meeting 2014

3

RationaleAdvantages Disadvantages

Discrete grab sampling

• Fast• Easy• Temporal trends

• Large volumes of water• Porewater is difficult• Sample handling losses

Passive sampling(SPME, LDPE)

• Time-weighted averages• Easy to deploy • Porewater • Bioavailability

• Method development • Long sampling periods• Short term trends??• Calibration

Page 4: SETAC meeting 2014

4

Objectives• Automatic in situ sampling vs grab

sampling

• Quantify at trace levels

• Short sampling period

• Dual phase sampling

Page 5: SETAC meeting 2014

5

Approach1. Design and build a

sorptive active sampler for dual-phase sampling across the sediment-water interface.

2. Develop an analytical method incorporating active sorptive sampling using SPE as a sample preparation step.

3. Compare discrete grab sample data with the time-averaged data derived using the active SPE sampler.

SPE cartridges

Dis

char

ge in

to b

ulk

wat

er

Pore- Water

Bulk water

Qtotal ≤ 0.5 mL/min

Bench extraction of grab sample

Page 6: SETAC meeting 2014

sulfide

Fipronil

sulfone desulfinyl

amideTargets

Compound Procambarusa Hyalella aztecab Diphetor hagenib 27 OC urban

water conc. (µg/L) 25 LC50 (µg/L)

24 LC50 (µg/L)

24 EC50 (µg/L)

24 LC50 (µg/L)

24 EC50 (µg/L)

Fipronil 14.3-19.5 1.3-2.0 0.65-0.83 0.20-0.57 0.11-0.21 0.05-0.39

-desulfinyl 68.6 - - - - 0.05-0.13

-sulfide 15.5 1.1-1.7 0.007-0.003 - - ND

-sulfone 11.2 0.35-0.92 0.12-0.31 0.19-0.54 0.055-0.13 0.05-0.19 aProcambarus species were clarkii and zonangulus. bValues for H. azteca and D. hageni are the 95% confidence interval. OC – Orange County, California ND – non detect

1

Page 7: SETAC meeting 2014

7

<5 ng/bee

Colony Collapse Disorder?

Page 8: SETAC meeting 2014

8

Deployment LocationEngineered Wetland

Page 9: SETAC meeting 2014

9

Deployment LocationEngineered Wetland

.

Page 10: SETAC meeting 2014

10

Deployment LocationEngineered Wetland

.

Page 11: SETAC meeting 2014

11

Deployment LocationEngineered Wetland

.

Page 12: SETAC meeting 2014

13

Results

ConceptDesignFabrication

Page 13: SETAC meeting 2014

Results• Analytical QAMatrix water:3 L MilliQ water (0.2 L/ch x8)33 ppm K-citrate(~ 8 ppm DOC)300 ppm Kathon ICP-CG10 ng/L spike

Matrix control signal (x2) ~ 1-10% of matrix spike signal

No isotopically-labeled standards available.

Fipronil Fipronil sulfide Fipronil sulfone Fipronil amide Fipronil desulfinyl

0

20

40

60

80

100

120

10 ng/L spike (1 ng/L for fipronil-desulfinyl)

Abso

lute

Rec

over

y (%

)

Page 14: SETAC meeting 2014

15

ResultsTable 1. Calculated fiprole MDLs and LOQs using the IS2B for preconcentration (n = 7).

Chemical MDL (ng/L) LOQ (ng/L) Recovery Stdev Spike (ng/L)

Fipronil 0.74 2.37 92% 24% 1-sulfide 0.69 2.20 93% 22% 1-sulfone 0.41 1.21 86% 9% 1-amide 0.84 2.69 77% 12% 1-desulfinyl 0.041 0.13 95% 13% 0.1

• Analytical QA

Chemical MDL (ng/L) LOQ (ng/L) Recovery Stdev Spike (ng/L)

Fipronil 0.85 2.69 72% 27% 1

-sulfide 0.72 2.30 87% 23% 1

-sulfone 0.98 3.13 87% 31% 1

-amide 0.77 2.45 93% 25% 1

-desulfinyl 0.048 0.15 74% 15% 0.1

Table 2. Calculated fiprole MDLs and LOQs using the Autotrace for preconcentration (n = 7).

Page 15: SETAC meeting 2014

16

Results

A B C0

5

10

15

20

25Bulk water

Tota

l fipr

ole

conc

entr

ation

(ng/

L)

A B C

Porewater

IS2B (time averaged 48 hr composite)

Autotrace (discrete grab sample)

vs

Page 16: SETAC meeting 2014

17

ResultsBulk water concentrations

0

2

4

6

8

10

12

14

16

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0

1

2

3

4

5

0

1

2

3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Conc

entr

ation

(ng/

L)

IS2B (48 h avg) Autotrace (Single grab sample)

A B C A B C A B C A B C

Fipronil -Sulfide -Sulfone -Amide -Desulfinyl A B C

MDL

Page 17: SETAC meeting 2014

18

A B C 0

2

4

6

8

A B C A B C A B C A B C

Results

0.0

0.5

1.0

1.5

0

1

2

3

4

0

1

2

3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Conc

entr

ation

(ng/

L)

Fipronil -Sulfide -Sulfone -Amide -Desulfinyl

Porewater concentrations (IS2B)

Page 18: SETAC meeting 2014

19

Points to Take HomeSampler capabilities and performance• Dual phase sampling• Good recovery• pg/L LODs• Potential bioavailability assessment• No large volume sample transport• Data produced comparable to conventional methods• Time averaged data• Short sampling periods

Wetland demonstration• High contaminant mobility• Little partitioning (~1% TOC in sediment)

Page 19: SETAC meeting 2014

20

Acknowledgments• Principal Investigator Dr. Rolf Halden, PE

• Isaac Roll, EIT, MSE (designs)

• Dr. Benny Pycke

• Tengfei Chen

• Dr. Nancy Denslow

• Dr. Viet Dang

• Kevin Kroll

• National Institutes of Health