SET C Greek Geometry

download SET C Greek Geometry

of 29

Transcript of SET C Greek Geometry

  • 7/31/2019 SET C Greek Geometry

    1/29

    SET C

    Greek Geometry

  • 7/31/2019 SET C Greek Geometry

    2/29

  • 7/31/2019 SET C Greek Geometry

    3/29

    Euclid in Alexandria

  • 7/31/2019 SET C Greek Geometry

    4/29

    Video of Euclid in Alexandria

  • 7/31/2019 SET C Greek Geometry

    5/29

  • 7/31/2019 SET C Greek Geometry

    6/29

  • 7/31/2019 SET C Greek Geometry

    7/29

    Deductive method1. The ancient Greeks considered geometry as just one of

    several sciences, and held the theorems of geometry on par withscientific facts. As such, they developed and used the logical-

    deductive method as a means of avoiding error, and for structuringand communicating knowledge.

    2. An "axiom", in classical terminology, referred to a self-evidentassumption common to many branches of science. A good examplewould be the assertion that When an equal amount is taken fromequals, an equal amount results.

    3. At the foundation of the various sciences lay certain additionalhypotheses which were accepted without proof. Such a hypothesiswas termed apostulate. While the axioms were common to manysciences, the postulates of each particular science were different.Their validity had to be established by means of real-worldexperience. Indeed, Aristotle warns that the content of a sciencecannot be successfully communicated, if the learner is in doubtabout the truth of the postulates.

    4. The classical approach is well illustrated by Euclid's Elements, wherea list of postulates is given (common-sensical geometric facts drawnfrom our experience), followed by a list of "common notions" (verybasic, self-evident assertions).

    http://en.wikipedia.org/wiki/Sciencehttp://en.wikipedia.org/wiki/Geometryhttp://en.wikipedia.org/wiki/Sciencehttp://en.wikipedia.org/wiki/Euclid's_Elementshttp://en.wikipedia.org/wiki/Euclid's_Elementshttp://en.wikipedia.org/wiki/Sciencehttp://en.wikipedia.org/wiki/Geometry
  • 7/31/2019 SET C Greek Geometry

    8/29

    Deductive method1. The deductive method whereby conclusions follow from

    premises through the application of sound arguments

    (syllogisms, rules of inference), was developed by theancient Greeks, and has become the core principle ofmodern mathematics.

    2. Tautologies excluded, nothing can be deduced if nothing isassumed. Axioms and postulates are the basic assumptionsunderlying a given body of deductive knowledge. They areaccepted without demonstration. All other assertions(theorems) must be proven with the aid of these basicassumptions.

    3. However, the interpretation of mathematical knowledge haschanged from ancient times to the modern, and

    consequently the terms axiom andpostulate hold a slightlydifferent meaning for the present day mathematician, thanthey did for Aristotle and Euclid.

    http://en.wikipedia.org/wiki/Syllogismshttp://en.wikipedia.org/wiki/Syllogismshttp://en.wikipedia.org/wiki/Tautology_(logic)http://en.wikipedia.org/wiki/Theoremhttp://en.wikipedia.org/wiki/Theoremhttp://en.wikipedia.org/wiki/Aristotlehttp://en.wikipedia.org/wiki/Euclidhttp://en.wikipedia.org/wiki/Aristotlehttp://en.wikipedia.org/wiki/Euclidhttp://en.wikipedia.org/wiki/Euclidhttp://en.wikipedia.org/wiki/Aristotlehttp://en.wikipedia.org/wiki/Theoremhttp://en.wikipedia.org/wiki/Tautology_(logic)http://en.wikipedia.org/wiki/Syllogisms
  • 7/31/2019 SET C Greek Geometry

    9/29

    Geometric Problems of Antiquity

    The Greek problems of antiquity were aset of geometric problems whose

    solution was sought using

    only compass and straightedge:1. circle squaring.

    2. cube duplication.

    3. angle trisection.

    http://mathworld.wolfram.com/Compass.htmlhttp://mathworld.wolfram.com/Straightedge.htmlhttp://mathworld.wolfram.com/CircleSquaring.htmlhttp://mathworld.wolfram.com/CubeDuplication.htmlhttp://mathworld.wolfram.com/AngleTrisection.htmlhttp://mathworld.wolfram.com/AngleTrisection.htmlhttp://mathworld.wolfram.com/CubeDuplication.htmlhttp://mathworld.wolfram.com/CircleSquaring.htmlhttp://mathworld.wolfram.com/Straightedge.htmlhttp://mathworld.wolfram.com/Compass.html
  • 7/31/2019 SET C Greek Geometry

    10/29

    Circle Squaring

    1. Construct a square equal in area to a circle using

    only a straightedge and compass. This was one of

    the three geometric problems of antiquity, and

    was perhaps first attempted by Anaxagoras. It

    was finally proved to be an impossible problemwhen pi was proven to be transcendental by

    Lindemann in 1882.

    2. While the circle cannot be squared in Euclideanspace, it can in Gauss-Bolyai-Lobachevsky

    Space (Gray 1989).

    http://mathworld.wolfram.com/Square.htmlhttp://mathworld.wolfram.com/Area.htmlhttp://mathworld.wolfram.com/Circle.htmlhttp://mathworld.wolfram.com/Straightedge.htmlhttp://mathworld.wolfram.com/Compass.htmlhttp://mathworld.wolfram.com/GeometricProblemsofAntiquity.htmlhttp://mathworld.wolfram.com/Pi.htmlhttp://mathworld.wolfram.com/TranscendentalNumber.htmlhttp://mathworld.wolfram.com/EuclideanSpace.htmlhttp://mathworld.wolfram.com/EuclideanSpace.htmlhttp://mathworld.wolfram.com/Gauss-Bolyai-LobachevskySpace.htmlhttp://mathworld.wolfram.com/Gauss-Bolyai-LobachevskySpace.htmlhttp://mathworld.wolfram.com/Gauss-Bolyai-LobachevskySpace.htmlhttp://mathworld.wolfram.com/Gauss-Bolyai-LobachevskySpace.htmlhttp://mathworld.wolfram.com/Gauss-Bolyai-LobachevskySpace.htmlhttp://mathworld.wolfram.com/Gauss-Bolyai-LobachevskySpace.htmlhttp://mathworld.wolfram.com/Gauss-Bolyai-LobachevskySpace.htmlhttp://mathworld.wolfram.com/Gauss-Bolyai-LobachevskySpace.htmlhttp://mathworld.wolfram.com/Gauss-Bolyai-LobachevskySpace.htmlhttp://mathworld.wolfram.com/EuclideanSpace.htmlhttp://mathworld.wolfram.com/EuclideanSpace.htmlhttp://mathworld.wolfram.com/TranscendentalNumber.htmlhttp://mathworld.wolfram.com/Pi.htmlhttp://mathworld.wolfram.com/GeometricProblemsofAntiquity.htmlhttp://mathworld.wolfram.com/Compass.htmlhttp://mathworld.wolfram.com/Straightedge.htmlhttp://mathworld.wolfram.com/Circle.htmlhttp://mathworld.wolfram.com/Area.htmlhttp://mathworld.wolfram.com/Square.html
  • 7/31/2019 SET C Greek Geometry

    11/29

    Circle Squaring

  • 7/31/2019 SET C Greek Geometry

    12/29

    Video of Circle Squaring

  • 7/31/2019 SET C Greek Geometry

    13/29

  • 7/31/2019 SET C Greek Geometry

    14/29

    Cube DuplicationThere is a simple neusis construction using a marked ruler for a length

    which is the cube root of 2 times another length.[7]Mark a ruler with the given length, this will eventually be GH.

    1. Construct an equilateral triangle with the given length as side.

    2. Extend AB an equal amount again to D.

    3. Extend the line BC forming the line CE.

    4. Extend the line DC forming the line CF

    5. Place the marked ruler so it goes through A and one end G of themarked length falls on CF and the other end of the marked length

    falls on ray CE. Thus GH is the given length.

    6. The AG is the given length times the cube root of 2.

    http://en.wikipedia.org/wiki/Neusis_constructionhttp://en.wikipedia.org/wiki/Doubling_the_cubehttp://en.wikipedia.org/wiki/Doubling_the_cubehttp://en.wikipedia.org/wiki/Neusis_constructionhttp://en.wikipedia.org/wiki/Neusis_constructionhttp://en.wikipedia.org/wiki/Neusis_construction
  • 7/31/2019 SET C Greek Geometry

    15/29

    Angle Trisection1. Angle trisection is the division of an arbitraryangle into three

    equal angles. It was one of the three geometric problems of

    antiquity for which solutions usingonly compass and straightedge were sought. The problem wasalgebraically proved impossible by Wantzel (1836).

    2. Although trisection is not possible for a general angle using aGreek construction, there are some specific angles, suchas and radians ( and , respectively), which can be trisected.

    Furthermore, some angles are geometrically trisectable, butcannot be constructed in the first place, such as (Honsberger1991). In addition, trisection of an arbitrary angle canbeaccomplished using a markedruler (a Neusis construction) asillustrated above (Courant and Robbins 1996).

    3. An angle can also be divided into three (or any whole number) ofequal parts using the quadratrix of Hippias or trisectrix.

    http://mathworld.wolfram.com/Angle.htmlhttp://mathworld.wolfram.com/GeometricProblemsofAntiquity.htmlhttp://mathworld.wolfram.com/GeometricProblemsofAntiquity.htmlhttp://mathworld.wolfram.com/GeometricProblemsofAntiquity.htmlhttp://mathworld.wolfram.com/GeometricProblemsofAntiquity.htmlhttp://mathworld.wolfram.com/GeometricProblemsofAntiquity.htmlhttp://mathworld.wolfram.com/GeometricProblemsofAntiquity.htmlhttp://mathworld.wolfram.com/Angle.htmlhttp://mathworld.wolfram.com/GeometricProblemsofAntiquity.htmlhttp://mathworld.wolfram.com/GeometricProblemsofAntiquity.htmlhttp://mathworld.wolfram.com/Compass.htmlhttp://mathworld.wolfram.com/Compass.htmlhttp://mathworld.wolfram.com/Straightedge.htmlhttp://mathworld.wolfram.com/Compass.htmlhttp://mathworld.wolfram.com/Straightedge.htmlhttp://mathworld.wolfram.com/Angle.htmlhttp://mathworld.wolfram.com/Angle.htmlhttp://mathworld.wolfram.com/Angle.htmlhttp://mathworld.wolfram.com/Ruler.htmlhttp://mathworld.wolfram.com/NeusisConstruction.htmlhttp://mathworld.wolfram.com/Angle.htmlhttp://mathworld.wolfram.com/QuadratrixofHippias.htmlhttp://mathworld.wolfram.com/Trisectrix.htmlhttp://mathworld.wolfram.com/Trisectrix.htmlhttp://mathworld.wolfram.com/WholeNumber.htmlhttp://mathworld.wolfram.com/QuadratrixofHippias.htmlhttp://mathworld.wolfram.com/Trisectrix.htmlhttp://mathworld.wolfram.com/Trisectrix.htmlhttp://mathworld.wolfram.com/QuadratrixofHippias.htmlhttp://mathworld.wolfram.com/QuadratrixofHippias.htmlhttp://mathworld.wolfram.com/QuadratrixofHippias.htmlhttp://mathworld.wolfram.com/WholeNumber.htmlhttp://mathworld.wolfram.com/Angle.htmlhttp://mathworld.wolfram.com/NeusisConstruction.htmlhttp://mathworld.wolfram.com/NeusisConstruction.htmlhttp://mathworld.wolfram.com/NeusisConstruction.htmlhttp://mathworld.wolfram.com/Ruler.htmlhttp://mathworld.wolfram.com/Angle.htmlhttp://mathworld.wolfram.com/Angle.htmlhttp://mathworld.wolfram.com/Straightedge.htmlhttp://mathworld.wolfram.com/Compass.htmlhttp://mathworld.wolfram.com/GeometricProblemsofAntiquity.htmlhttp://mathworld.wolfram.com/GeometricProblemsofAntiquity.htmlhttp://mathworld.wolfram.com/Angle.htmlhttp://mathworld.wolfram.com/Angle.html
  • 7/31/2019 SET C Greek Geometry

    16/29

    Angle Trisection

  • 7/31/2019 SET C Greek Geometry

    17/29

    Video of Angle Trisection

  • 7/31/2019 SET C Greek Geometry

    18/29

    Regular Polyhedron

    1. A polyhedron is said to be regular if its face and vertexfigures are regular (not necessarily convex) polygons(Coxeter 1973, p. 16). Using this definition, there are atotal of nine regular polyhedra,

    2. five being the convexPlatonic solids and four beingthe concave (stellated) Kepler-Poinsot solids.

    3. However, the term "regular polyhedra" is sometimesused to refer exclusively to the convexPlatonic solids.

    4. It can be proven that only nine regular solids (in theCoxeter sense) exist by noting that a possible regularpolyhedron must satisfy

    http://mathworld.wolfram.com/Polyhedron.htmlhttp://mathworld.wolfram.com/RegularPolygon.htmlhttp://mathworld.wolfram.com/Convex.htmlhttp://mathworld.wolfram.com/Convex.htmlhttp://mathworld.wolfram.com/PlatonicSolid.htmlhttp://mathworld.wolfram.com/Concave.htmlhttp://mathworld.wolfram.com/Kepler-PoinsotSolid.htmlhttp://mathworld.wolfram.com/Convex.htmlhttp://mathworld.wolfram.com/PlatonicSolid.htmlhttp://mathworld.wolfram.com/PlatonicSolid.htmlhttp://mathworld.wolfram.com/Convex.htmlhttp://mathworld.wolfram.com/Kepler-PoinsotSolid.htmlhttp://mathworld.wolfram.com/Kepler-PoinsotSolid.htmlhttp://mathworld.wolfram.com/Kepler-PoinsotSolid.htmlhttp://mathworld.wolfram.com/Kepler-PoinsotSolid.htmlhttp://mathworld.wolfram.com/Kepler-PoinsotSolid.htmlhttp://mathworld.wolfram.com/Concave.htmlhttp://mathworld.wolfram.com/PlatonicSolid.htmlhttp://mathworld.wolfram.com/Convex.htmlhttp://mathworld.wolfram.com/Convex.htmlhttp://mathworld.wolfram.com/RegularPolygon.htmlhttp://mathworld.wolfram.com/Polyhedron.html
  • 7/31/2019 SET C Greek Geometry

    19/29

    ConvexPlatonic Solids

    http://mathworld.wolfram.com/PlatonicSolid.htmlhttp://mathworld.wolfram.com/Convex.htmlhttp://mathworld.wolfram.com/PlatonicSolid.htmlhttp://mathworld.wolfram.com/PlatonicSolid.htmlhttp://mathworld.wolfram.com/Convex.htmlhttp://mathworld.wolfram.com/PlatonicSolid.html
  • 7/31/2019 SET C Greek Geometry

    20/29

  • 7/31/2019 SET C Greek Geometry

    21/29

    ConvexPlatonic Solids

    http://mathworld.wolfram.com/PlatonicSolid.htmlhttp://mathworld.wolfram.com/Convex.htmlhttp://mathworld.wolfram.com/PlatonicSolid.htmlhttp://mathworld.wolfram.com/PlatonicSolid.htmlhttp://mathworld.wolfram.com/Convex.htmlhttp://mathworld.wolfram.com/PlatonicSolid.html
  • 7/31/2019 SET C Greek Geometry

    22/29

  • 7/31/2019 SET C Greek Geometry

    23/29

  • 7/31/2019 SET C Greek Geometry

    24/29

  • 7/31/2019 SET C Greek Geometry

    25/29

  • 7/31/2019 SET C Greek Geometry

    26/29

    Characteristics

    Symmetry

    The regular polyhedra are the most symmetrical ofall the polyhedra. They lie in just three symmetry

    groups, which are named after them:1. Tetrahedral

    2. Octahedral (or cubic)

    3. Icosahedral (or dodecahedral)

    Any shapes with icosahedral or octahedralsymmetry will also contain tetrahedral symmetry.

    http://en.wikipedia.org/wiki/Symmetry_grouphttp://en.wikipedia.org/wiki/Symmetry_grouphttp://en.wikipedia.org/wiki/Symmetry_grouphttp://en.wikipedia.org/wiki/Symmetry_group
  • 7/31/2019 SET C Greek Geometry

    27/29

    Characteristics

    Euler characteristic

    The five Platonic solids have an Euler

    characteristic of 2. Some of the regular stars

    have a different value.

    http://en.wikipedia.org/wiki/Euler_characteristichttp://en.wikipedia.org/wiki/Euler_characteristichttp://en.wikipedia.org/wiki/Kepler-Poinsot_polyhedrahttp://en.wikipedia.org/wiki/Kepler-Poinsot_polyhedrahttp://en.wikipedia.org/wiki/Euler_characteristichttp://en.wikipedia.org/wiki/Euler_characteristic
  • 7/31/2019 SET C Greek Geometry

    28/29

  • 7/31/2019 SET C Greek Geometry

    29/29

    Thank you

    The End