Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

download Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

of 230

Transcript of Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    1/230

    Separation,Recovery,

    and

    Purification

    inBiotechnology

    Downloadedb

    yUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    P

    ublicationDate:July11,

    1986|d

    oi:10.1

    021/bk-1986-0314.fw001

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    2/230

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    P

    ublicationDate:July11,

    1986|d

    oi:10.1

    021/bk-1986-0314.fw001

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    3/230

    CS SYMPOSIUM SERIES 314

    Separation,

    Recovery,

    and

    Purification

    inBiotechnology

    RecentAdvancesand

    Mathematical

    Modeling

    JuanA

    Asenjo,

    EDITOR

    olumbia

    University

    Juan Hong,

    EDITOR

    Illinois

    nstituteof

    Technology

    Developedfroma symposiumsponsoredby

    theDivisionof

    Microbial

    andBiochemical

    Technology

    at the

    190th

    Meeting

    of theAmerican ChemicalSociety,

    Chicago,

    Illinois,

    September

    8-13, 1985

    Amer i can Chemica l Soc ie ty Wash ington D 1986

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    P

    ublicationDate:July11,

    1986|d

    oi:10.1

    021/bk-1986-0314.fw001

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    4/230

    Library

    of Congress Cataloging-in-Publication Data

    Separation, recovery, and purification in

    biotechnology.

    (ACS symposiumseries,ISSN0097-6156;314)

    Includes bibliographies and index.

    1 BiotechnologyTechniqueCongresses.

    2. BiomoleculesPurificationCongresses.

    3. Biological chemistryTechniqueCongresses.

    I. Asenjo,

    Juan

    ., 1949- . II.Hong, Juan.

    III.

    American

    Chemical Society. Meeting

    (190th:

    1985:

    Chicago,

    Ill.) IV. Series.

    TP248.24.S47 1986 660 .6 028 86-10833

    ISBN0 8412 0978 2

    Copyright

    1986

    American

    Chemical Society

    Rights Reserved. The appearance of the code at the bottom of the first page of each

    chapter in this volume indicates the copyright owner s

    consent

    that reprographic

    copies

    of the

    chapter may be made for personal or internal use or for the personal or internal use of specific

    clients.

    This

    consent is given on the condition, however, that the copier pay the statedper

    copy fee through the Copyright Clearance Center, Inc., 27 Congress Street, Salem,

    MA01970,

    for

    copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law.

    This

    consentdoesnot extend to copying or transmission by any meansgraphic or electronicfor

    any other purpose, such as for general distribution, for advertising or promotional purposes,

    for creating a new collective work, for resale, or for informationstorageand retrievalsystems.

    The

    copying fee for each chapter is indicated in the code at the bottom of the firstpageof the

    chapter.

    The citation of trade names and/or names of manufacturers in this publication is not to be

    construed as an endorsement or as approval by ACS of the commercial products orservices

    referenced herein; nor should the mere reference herein to any drawing, specification, chemical

    process, or other data be regarded as alicenseor as a conveyance of any right or permission,

    to the holder, reader, or any other person or corporation, to manufacture, reproduce, use, or

    sell any patented invention or copyrighted work that may in any way be related thereto.

    Registered names, trademarks, etc., used in this publication,evenwithout specific indication

    thereof, are not to be considered unprotected by law.

    PRINTED

    IN

    THE UNITED STATES OF AMERICA

    American

    Chemical

    Society

    Library

    1155 16th St . N W

    Washington D C 20036

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    P

    ublicationDate:July11,

    1986|d

    oi:10.1

    021/bk-1986-0314.fw001

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    5/230

    ACSSymposiumSeries

    M Joan Comstock,SeriesEditor

    dvisory

    Board

    Harvey

    W Bl an ch

    University

    of

    CaliforniaBerkeley

    A l a n

    Elzerman

    Clemson University

    John W Fin l ey

    Nabisco Brands,

    Inc.

    M a r ye Ann e Fox

    The University

    of

    TexasAustin

    M a r t i n L Gorb at y

    Exxon Research and Engineering Co.

    Rol an d F Hir sc h

    U.S. Department

    of

    Energy

    Rudol ph J Ma rc us

    Consultant, Computers

    Chemistry Research

    Vincent D M cGi nn i ss

    BattelleColumbus Laboratories

    Donal d E M ore l and

    USDA,Agricultural Research Service

    W H No r t on

    J

    T. Baker Chemical Company

    James C Ran da l l

    Exxon Chemical Company

    W D Shul t s

    Oak

    Ridge National Laboratory

    Geoff rey K Smi t h

    Rohm

    Haas Co.

    Charles S Tuesday

    General Motors Research Laboratory

    Dougl as B Walt ers

    NationalInstitute of

    Environmental Health

    C Gra nt Wi l l son

    IBM Research Department

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    P

    ublicationDate:July11,

    1986|d

    oi:10.1

    021/bk-1986-0314.fw001

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    6/230

    F O R E W O R D

    The ACS

    S Y M P O S I U M S E RI ES

    was

    foun e

    in 1974 to

    provide

    a

    medium for publishing symposia quickly in book

    form.

    The

    formatof the Series parallels that of the continuing

    A D V A N C E S

    IN C H E M I S T RY S E RIE S

    exceptthat, in order to

    save

    time, the

    papers are not

    typeset

    but are reproduced as they are submitted

    by the authors in camera-readyform. Papers are reviewed under

    the supervision of the Editors with the assistanceof the Series

    Advisory

    Boardand areselectedto maintain the integrity of the

    symposia; however, verbatim reproductions of previously pub

    lished papers are not accepted. Both reviews and reports of

    research are acceptable, because symposia may embrace both

    typesof presentation.

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    P

    ublicationDate:July11,

    1986|d

    oi:10.1

    021/bk-1986-0314.fw001

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    7/230

    P R E F C E

    ONE

    O F T H E M O S T D I FFI CU L T

    and challenging problems facing large-scale

    biotechnology today is to

    find

    and develop appropriate recovery, separation,

    an d

    purification processes. The area of large-scale bioseparations is one to

    which biologists, physical biochemists, and particularly biochemical engi

    neers have important contributions to make. Some of the most recent

    advances and developments that have already started to

    find

    practical

    applications are

    membrane separations, including the use of membrane bioreactors

    and

    liquidemulsion membranes;

    continuous or semicontinuous chromatographic separations,

    includ

    ing

    the use of

    a

    number of affinity methods and monoclonal antibodies;

    two-phase extraction

    processes

    such as aqueous

    systems

    and the use

    of

    reverse micelles;

    precipitation techniques;

    electrically driven separation processes;

    methods of product secretion, cell permeation, disruption, and

    selective

    enzymatic lysis of

    microbialcells

    for

    intracellular

    product release;

    product solubilization and renaturation of proteins or polysaccharides

    present in inclusion bodies or granules.

    This book covers several of the emerging areas of separations in

    biotechnology and is not intended to be a comprehensive handbook. It

    includes recent advances and

    latest

    developments in techniques and

    operations used for bioproduct recovery in biotechnology and applied to

    fermentation

    systems

    as well as mathematical analysis and modeling of such

    operations. The topics have been arranged in three

    sections

    beginning with

    product

    release

    from

    the cell and recovery

    from

    the bioreactor.Thissection

    is followed by one on broader separation and concentration processes, and

    the

    final

    section is on purification operations. The operations covered in

    these last two

    sections

    can be used at a number of differentst gesin the

    downstream process.

    crucial

    question remaining is how to design aflowsheet or product

    recovery operation sequence. Three main points to keep in

    mind

    are

    1) integrating recovery with the fermentation system, 2) integrating the

    different separation and purification

    st ges

    to design the optimum sequence,

    an d

    3)

    assessing

    the possibility of a continuous operation.

    Revised versions of papers presented in the symposium upon which this

    book

    is based as well as papers presented in other

    sessions

    that were relevant

    IX

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    PublicationDate:July11,

    1986|d

    oi:10.1

    021/bk-1986-0314.pr001

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    8/230

    to the topic have been included in this volume. In addition we have included

    a few keynote chapters on areas we felthad not been well covered at the

    meeting.

    We

    gratefully acknowledge the

    assistance

    of many reviewers who helped

    us with

    critical

    and constructive comments on the original manuscripts. We

    wouldalso

    like to acknowledge the support and well-organized help of the

    staff at the C S Books Department.

    J U N A. S E N J O

    ColumbiaUniversity

    NewYork NY10027

    J U N H O N G

    Illinois

    Institute

    of Technology

    Chicago

    IL

    2 742

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    PublicationDate:July11,

    1986|d

    oi:10.1

    021/bk-1986-0314.pr001

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    9/230

    1

    ProteinReleasefromChemicallyPermeabilized

    Escherichiacoli

    David

    J

    Hettwer

    and

    Henry

    Y Wang

    Department

    of

    ChemicalEngineering,The University

    of

    Michigan,A nn Arbor,

    M I48109-2136

    n important factor complicating the recovery of

    recombinant proteins from Escherichia

    coli

    is their

    intracellular location. An alternative to the commonly

    used method of releasing theseproteins by mechanical

    disruption is to chemically permeabilize the cells. The

    objective of this research was to characterize the pro

    tein release

    kinetics and mechanism of a permeabiliza-

    tion

    process

    using guanidine-HCl and Triton-X100. The

    protein release

    kinetics were determined as a function

    o

    the guanidine

    Triton

    and

    cell

    concentrations.

    Some

    o

    theadvantages over mechanical disruption include

    avoidance of

    extensive

    fragmentation of the cells and

    retention of the nucleic

    acids

    inside the

    cell

    structure.

    T he r e c e n t d e v e l o p m e n t of r e c o mb i n a n t DNA t e c h n o l og y has made i t

    f e a s i b l e

    to

    p r o d u c e

    i n t e r f e r o n ,human g r o w t h hormone,

    i n s u l i n ,

    and

    o th e r p r o t e i n s in the b a c t e r i u m E s c h e r i c h i a c o l i . An i m p o r t a n t

    f a c t o r c o m pl i c a t i n g the r e c o v e r y p r oc e s s is the r e t e n t i o n of the

    p r o t e i n

    p r o d u c t i n s i d ethem i c r o b i a l c e l l . T h i shasn e c e s s i t a t e dthe

    d e v e l o p m e n t of p r o c e s s e s c a p ab l e of r e l e a s i n g p r o t e i n f r o m E. c o l i .

    P r o t e i n r e le a s e on an i n d u s t r i a l s c a le iscommonly a c h i e v e d by

    m e c h a n i c a l l y b r e a k i n g the c e l l in a h i g h p r e s s u r e h o m o g e n i z e r or a

    b a l l m i l l .

    D i s r u p t i o n

    in a

    h i g h p r e s s u r e

    h o m o g e n i z e r

    is

    c a u s e d

    by

    p r e s s u r e g r ad ie n t s e s t a b l i s h e dwhen a pr e s s u r i z e d c e l l s u s p e n s i o nis

    f o r c e d t h r o u g hanarrow

    o r i f i c e

    whereas

    w i t ha b a l l

    m i l l

    d i s r u p t i o n

    i s c a u s e d by

    s h e a r

    f o r c e s

    g e n e r a t e d

    by g r i n d i n g the c e l l s w i t h

    a b r a s i ve p a r t i c l e s (1.).

    T h e s e

    m e c h a n i c a l ly

    b a s e d

    p r o t e i n r e l e a s e

    methods have

    s e v e r a l

    u n d e s i r a b le p r o p e r t i e s . One

    p r o b l e m

    ist h a t e x t e n s i v e

    f r a g m e n t a t i o n

    of the c e l l s

    makes

    the

    s u b s e q u e n t

    c e n t r i f u g a t i o n

    d i f f i c u l t

    ( 2 , 3 ) .

    A d d i n g

    to the

    p r o b l e m

    of

    c e l l f r a g m e n t r e m o va l

    is theh i gh v i s c o s i t y

    i m p a r t e d

    to the s o l u t i o n by the r e l e a s e d n u c l e i c a c i d s (4). A

    n u c l e i c

    a c i d

    r e m o v a l

    s t e p is

    n e c e s s a r y

    to

    d e c r e a s e

    the s o l u t i o n

    v i s c o s i t y and

    a v o id p o t e n t i a l i n t e r f e r e n c e

    w i t h f r a c t i o n a l

    p r e c i p i t a t i o n and c h r o m a t o g r a p h y

    (5.).

    A n o t h e r

    u n d e s i r a b l e p r o p e r t y

    i s

    t h a t

    theh a r s h

    a c t i o n

    ofme c h a n i c a l

    d i s r u p t i o n

    c a u s e sthe

    r e l e a s e

    0097-6156/

    86/

    0314-0002 06.00/

    0

    1986American ChemicalSociety

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    Pu

    blica

    tion

    Da

    te:

    Ju

    ly11

    ,1986|d

    oi:10

    .1021/bk-1

    986-0

    314

    .ch001

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    10/230

    1. H E T T W E R A N D

    W A N G

    ProteinReleasefrom hemically Permeabilized E

    coli

    3

    o f n e a r l y a l lthes o l u b l e c e l l u l a r p r o t e i n . E x t e n s i v e p u r i f i c a t i o n

    schemes are r e q u i r e d to i s o l a t e the

    p r o d u c t f r om t h e s e e x t r a n e o u s

    c e l l u l a r p r o t e i n s .

    On e

    a lt e r n a t i v e

    tom e c h a n i c a l d i s r u p t i o n is to

    t r e a t

    the

    c e l l s

    w i t h

    membrane

    a c t i v e compounds

    t h a t

    can p e r m e a b i l i ze the c e l l to

    p r o t e i n

    wi t h o u t c a u s i n g e x t e n s i v e b r e a k ag e of the c e l l . The

    o b j e c t i v eoft h i s

    r e s e a r c h

    was to

    s t u dy

    thep r o t e i n r e l e a s e k i n e t i c s

    an d mechanismof a p e r m e a b i l i z a t i o n p r o c e s s u s i n g g u a n i di n e - H C land

    T r i t o n - X l O O . G u a n i d i n e - H C l , a c h a o t r o p i c a g e n t , has been

    d e m o n s t r a t e d to be c a p a b l e of

    s o l u b i li z i n g

    p r o t e i n f r o m E. c o l i

    membrane

    f r a g me n t s (6). P r e s u m a b l y ,

    t h i s

    o c c u r s v ia g u a n i d in e s

    i n t e r a c t i o n

    w i t h

    w a t e r wh i c h

    a l l o w s h y d r o p h o b i c g r o u ps tobecome

    t h e r m o d y n a m i c a l l y more

    s t a b l e

    in anaqueousphase ( 7 ) . T r i t o n - X l O O ,

    a n o n i o n i c de t e r g e n t

    t h a thas a

    h i g h b i n d i n g

    a f f i n i t y

    f o r h y d r o p h o b ic

    s p e c i e s ,

    i s v e r y e f f e c t i v e i n b i n d i n g to and s o l u b i l i z i n g

    p h o s p h o l i p i d s

    f r o m E. c o l i i n n e rmembraneand o u t e r w a l l f r a g m e n t s

    ( 8 ) .

    Methods

    C e l l

    p r e p a r a t i o n .

    E s c h e r i c h i a

    c o l iK12,

    s t r a i nW3110,

    was

    grown

    i n a

    14 l i t e r f e r m e n t e r at

    3 7 C ,

    pH 7.0 u s i n g d e f i n e d

    media. A d d i t i o n a l

    n i t r o g e nwas

    s u p p l i e d

    by NH OH

    w h i c h

    was a u t o m a t i c a l l y f e dtoc o n t r o l

    t h epH. Thef e r m e n t a t i o n b r o t hwash a r v e s t e din thel a t e e x p o n e n t i a l

    phase

    andc o o l e dto4C . The

    c e l l s

    were i m m e d i a t e l y

    c e n t r i f u g e d

    at

    4 C andwashed w i t h

    b u f f e r

    (.1M

    T r i s

    pH 7 . 0 ) . F o l l o w i n ga s e c o n d

    c e n t r i f u g a t i o n , the

    c e l l s

    were r e s u s p e n d e d in

    b u f f e r

    tog i v ea d e n s e

    c e l l

    s u s p e n s i on

    (^50 g

    p r o t e i n / 1 ) .

    C e l l p e r m e a b i l iz a t i o n .

    The

    p e r m e a b i l i za t i o n

    p r o c e s swas s t a r t e dby

    a d d i n g 30 ml of the c e l l s u s p e n s i onto 70 ml of a b u f f e r e d

    s o l u t i o n

    c o n t a i n i n g

    g u a n i d i n e - H C l a n d / o r

    T r i t o n

    X100. The r e p o r t e d

    c o n c e n t r a t i o n s

    of

    T r i t o n ,

    g u a n i d i n e , and

    c e l l s

    a lw ay s c o r r e s p o n dto

    t h e c o n c e n t r a t i o n s a f t e r m i x i n g t h e s e s o l u t i o n s . The m i x t u r e was

    s h a k e n

    at 200 rpm in a 4C i n c u b a t o r . Samples were w i t h d r a w nat

    v a r i o u s

    t i m e sandwere i m m e d i a t e l y

    c e n t r i f u g e d .

    The s u p e r n a t a n twas

    a s s a y e d to de t e r m i n e d the

    r e l e a s e

    of thev a r i o u s c e l l components.

    A n a l y s i sof thep e l l e twasdonetop e r f o r mamass b a l a n c e .

    A n a l y s i s of c e l l components. P r o t e i n was d e t e r m i n e d w i t h the

    B r a d f o r d dye b i n d i n g as s a y u s i n g b ov i n e serum a l b u m i n as s t a n d a r d

    ( 9 ) . I n t e r f e r e n c eby T r i t o nX100 was a c c o u n t e d f o rby e n s u r i n g

    t h a t

    e v e r y

    sample

    had .2

    T r i t o n .

    In o r d e r to d e t e r m i n e theamountof

    u n r e l e a s e d p r o t e i n

    f r o m

    thesample p e l l e t s ,

    a l l

    s a m p l e swere t r e a t e d

    f o r 5m i n ut e s w i t hIN NaOH at1 0 0 C .

    DNA was d e t e r m i n e d by thed i ph e n y l a mi n e

    r e a c t i o n

    ( 1 0 ) . Two 45

    m i n u t e

    e x t r a c t i o n s

    at7 C w i t h ,5NHCIO were u s e d to

    r e l e a s e

    DNA

    f r o m the

    sample p e l l e t s .

    I n t e r f e r e n c e f r om g u an i d in ewas a c c o u n t e d

    f o r bymaking

    e a c h

    sample.4M

    g u a n i d i n e .

    RNA was de t e r m i n e d by theo r c i n o l pr o c e d u r e ( 1 1 ) . Two 15

    m i n u t e

    e x t r a c t i o n s at7 C in ,5N

    HC10

    4

    were

    u s e d

    tor e l e a s eRNA

    f r o m

    the

    sample p e l le t s . I n t e r f e r e n c e f rom T r i t o nX100 was a c c o u n t e d f o rby

    making e a c h sample1

    T r i t o n .

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    Pu

    blica

    tion

    Da

    te:

    Ju

    ly11

    ,1986|d

    oi:10

    .1021/bk-1

    986-0

    314

    .ch001

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    11/230

    4

    SEPARATION

    R EC O V ER Y A N D PURIFICATION IN B I O T E C H N O L O G Y

    R e s u l t s and D i s c u s s i o n

    F i g u r e 1

    shows

    t h e p r o t e i n , DNA, a nd RNA r e l e a s e

    p r o f i l e s

    o b t a i n e d

    when

    E .

    c o l i

    c e l l s a r e m e c h a n i c a l l y d i s r u p t e d

    w i t h

    .1 mm g l a s s

    b e a d s .

    The

    c e l l

    c o n c e n t r a t i o n

    p r o f i l e

    n o r m a l i z e d

    t o t h e

    i n i t i a l

    c e l l

    c o n c e n t r a t i o n , was o b t a i n e d w i t h a b a c t e r i a l c o u n t i n g

    chamber.

    The

    d e c r e a s e

    i n t h e c e l l c o n c e n t r a t i o n i n d i c a t e s t h a t e x t e n s i v e

    f r a g m e n t a t i o n o f t h e

    c e l l s

    i s o c c u r r i n g . A n e a r l y m i r r o r

    image

    r e l e a s e o f DNA, RNA, a nd p r o t e i n r e s u l t s a s c e l l u l a r

    components s p i l l

    o u t i n t o t he e x t r a c e l l u l a r f l u i d . T h e maximum p r o t e i n r e l e a s e ,

    7 0 , i s p r o b a b l y i n d i c a t i v e o f a s i g n i f i c a n t

    amount

    o f c e l l u l a r

    p r o t e i n b e i n g a s s o c i a t e d w i t h t h e membrane a nd w a l l f r a g m e n t s .

    A s i m i l a r c h a r a c t e r i z a t i o n f o r c e l l s t r e a t e d

    w i t h

    2M

    g u a n i d i n e

    an d 2 T r i t o n i s shown i n F i g u r e 2. T he p r o t e i n r e l e a s e ,

    b a s e d

    o n

    t o t a l c e l l u l a r p r o t e i n , l e v e l s o f f a t 3 5 . RNA i s r e l e a s e d t o a

    l e s s e r e x t e n t (^15 ) a nd v e r y l i t t l e D NA (^5 ) i s r e l e a s e d f r o m t h e

    c e l l s .

    T he c o n s t a n t

    c e l l

    c o n c e n t r a t i o n i n d i c a t e s t h a t t he r e l e a s e i s

    n o t t he r e s u l t o f

    c e l l f r a g m e n t a t i o n .

    From t h e s e

    r e s u l t s , t h r e e

    m a j o r

    d i f f e r e n c e s

    between c h e m i c a l

    p e r m e a b i l i z a t i o n a nd

    m e c h a n i c a l

    d i s r u p t i o n c a n be

    i d e n t i f i e d .

    F i r s t

    t he r e l e a s e o c c u r s b y

    f u n d a m e n t a l l y

    d i f f e r e n t

    mechanisms.

    W i t h

    m e c h a n i c a l d i s r u p t i o n t he c e l l s a re e s s e n t i a l l y t o r n a p a r t ,

    whereas

    w i t h c h e m i c a l t r e a t m e n t

    t h e

    c e l l

    s t r u c t u r e i s

    s t i l l

    p r e s e n t b u t h a s

    been a l t e r e d t o a l l o w r e l e a s e o f

    i n t r a c e l l u l a r

    components. Se c o n d ,

    t h e r e i s a n e a r l y

    c o m p l e t e

    p r e f e r e n t i a l r e l e a s e o f p r o t e i n

    o v e r

    DNA.

    T h i r d ,

    t h e r e i s a p a r t i a l s e l e c t i v e r e l e a s e o f p r o t e i n

    o v e r

    RNA.

    T h i s

    s e l e c t i v i t y

    may r e s u l t

    f r o m

    a

    m o l e c u l a r

    s i e v i n g

    mechanism.

    The

    a v e r a g e

    p r o t e i n

    m o l e c u l a r

    w e i g h t

    i s

    40,000

    whereas

    t h e

    c e l l u l a r

    DNA

    h a s a

    m o l e c u l a r w e i g h t

    o f 2 .5 1 0 ( 1 2 ) . T h e

    m o l e c u l a r w e i g h t

    d i s t r i b u t i o n

    o f RNA; 18 i s

    25,000,

    2 7 i s

    500,000,

    a n d 5 5 i s

    1,000,000 i s s u c h t h a t

    most

    o f t h e RNA i s a l s o

    s i g n i f i c a n t l y

    l a r g e r

    t h a n

    p r o t e i n s ( 1 2 ) .

    T h e s e

    d i f f e r e n c e s

    s u g g e s t

    s e v e r a l a d v a n t a g e s o f t h e

    c h e m i c a l

    p e r m e a b i l i z a t i o n method.

    F i r s t

    a v o i d i n g c e l l b r e a k a g e s h o u l d

    s i m p l i f y t h e

    c e l l r e m o v a l

    s t e p . S e c o n d , r e t e n t i o n o f t he n u c l e i c

    a c i d s i n s i d e t h e

    c e l l

    s h o u l d e l i m i n a t e t h e

    n e e d

    f o r a n u c l e i c a c i d

    p r e c i p i t a t i o n s t e p . A n o t h e r a d v a n t a g e i s t h a t t he p e r m e a b i l i z a t i o n

    p r o c e s s a l s o

    k i l l s

    t h e c e l l s t h e r e b y e l i m i n a t i n g th e n e e d f o r t h e

    f e d e r a l l y mandated c e l l k i l l i n g

    s t e p .

    F i g u r e 2 showed t h a t 3 5 o f t h e t o t a l c e l l u l a r p r o t e i n i s

    r e l e a s e d

    upon

    t r e a t i n g th e c e l l s w i t h 2M

    g u a n i d i n e

    a nd 2 T r i t o n . A

    more

    c o m p l e t e

    d e s c r i p t i o n o f ;the e f f e c t o f v a r y i n g t h e

    g u a n i d i n e

    and

    T r i t o n

    c o n c e n t r a t i o n s o n t h e

    f i n a l amount

    o f p r o t e i n r e l e a s e d i s

    shown i n F i g u r e 3. Two s e t s o f e x t r a c t i o n s were c o n d u c t e d : one

    c o n s i s t e d o f u s i n g 2 T r i t o n

    w i t h

    a r a n g e o f

    g u a n i d i n e

    c o n c e n t r a t i o n s , t h e o t h e r c o n s i s t e d o f u s i n g 2M

    g u a n i d i n e w i t h

    a

    r a n g e

    o f T r i t o n c o n c e n t r a t i o n s . T h e s e r e s u l t s i n d i c a t e t h a t t h e

    g u a n i d i n e - H C l

    c o n c e n t r a t i o n i s t he more s e n s i t i v e p a r a m e t e r .

    M a n i p u l a t i o n o f t h e

    g u a n i d i n e

    c o n c e n t r a t i o n i n t h e p r e s e n c e o f 2

    T r i t o n

    l e a d t o r e l e a s e y i e l d s t h a t

    r a n g e d f r o m

    6 t o 6 0

    whereas

    v a r y i n g t he T r i t o n c o n c e n t r a t i o n

    f r o m

    0 t o 8 i n t h e

    p r e s e n c e

    of 2M

    g u a n i d i n e

    o n l y c h a n g e d t h e y i e l d f r o m 2 5 t o 4 0 .

    T h e t i m e p r o f i l e s o f t h e 2M/2 , 2M, and 2 t r e a t m e n t s , shown i n

    F i g u r e 4, i n d i c a t e a s y n e r g i s t i c e f f e c t

    between g u a n i d i n e

    and T r i t o n .

    Th e p r o t e i n r e l e a s e

    p r o f i l e

    o f the 2M/2

    t r e a t m e n t

    i s n o t s i m p l y t h e

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    Pu

    blica

    tion

    Da

    te:

    Ju

    ly11

    ,1986|d

    oi:10

    .1021/bk-1

    986-0

    314

    .ch001

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    12/230

    H E T T W E R A N D

    W A N G

    Protein Release from hemically Permeabilized E . coli

    EXTENTOF RELEASE OF CELL COMPONENTS (* ),

    CONCENTRATON OF UNDSRUPTED CELLS (

    DNA

    RNA

    IJ

    1 2 3 4 5 6 7 8 9 10 11 12

    DSRUPTONTME (min.)

    F i g u r e 1.

    E x t e n t

    of

    c e l l b r e a k a g e

    and

    r e l e a s e

    of c e l l u l a r

    p r o t e i n , DNA, and RNA d u r i n g m e c h a n i c a l d i s r u p t i o n w i t h .1 mm

    g l a s s b e a d s .

    EXTENTOF RELEASE OF CELL COMPONENTS (* ),

    CONCENTRATON OF UNOSRUPTFn fTLLS (*)

    TME (hours)

    F i g u r e 2. R e l e a s e of

    c e l l u l a r

    p r o t e i n , DNA, and RNA d u r i n g

    t r e a t m e n t w i t h

    2M

    g u a n i d i n e

    HC1and2 T r i t o nX100.

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    Pu

    blica

    tion

    Da

    te:

    Ju

    ly11

    ,1986|d

    oi:10

    .1021/bk-1

    986-0

    314

    .ch001

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    13/230

    S E PA R A T I O N R E C O V E R Y A N D P U R IF IC A T I O N IN B I O T E C H N O L O G Y

    FINAL PROTEN

    RELEASE

    (*)

    ( a l l 2 Tri tonX100)

    ^^^^Xall 2M GuanidineHC1)

    1 2 3 4 5 6 7 8 9 10

    TRITON X100 (* v/ v), GUANIDINE HC1 (M)

    F i g u r e3. E f f e c tofT r i t o n X 1 0 0andg u a n i d i n eHC1ont h e p r o t e i n

    r e l e a s e

    y i e l d .

    PROTEN

    RELEASE (*)

    0

    2 / 2

    -

    -

    2t1

    GUANIDINEHC1

    _

    2* TRITON X100

    1

    Q

    1 1 1 1

    1 2 3 4 5 6

    TME hours)

    F i g u r e

    4

    S y n e r g i s t i c e f f e c t

    on the

    p r o t e i n r e l e a s e

    p r o f i l e

    b e t w e e n

    g u a n i d i n e

    HC1an d T r i t o n X 1 0 0 .

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    Pu

    blica

    tion

    Da

    te:

    Ju

    ly11

    ,1986|d

    oi:10

    .1021/bk-1

    986-0

    314

    .ch001

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    14/230

    1. H E T T W E R

    A N D

    W A N G

    Protein Release from hemically Permeabilized E

    coli 7

    a d d i t i o nof thep r o f i l e s o b t a i n e d when2M

    g u a n i d i n e

    and 2 T r i t o nare

    u s e d i n d i v i d u a l l y . Thea c c e l e r a t i o nof ther a t e of p r o t e i n r e l e a s e

    by T r i t o nmay be r e l a t e dto thea b i l i t yofT r i t o ntos o l u b i l i ze

    l i p i d

    membranes.

    Onew o u l d

    a n t i c i p a t e t h a t

    thec o m b i n a t i o nof 2M g u a n i d i n e

    an d

    2

    T r i t o n a l t e r s

    the E.

    c o l i

    i n n e rmembrane

    and

    o u t e r w a l l

    to a

    g r e a t e r e x t e n t

    t h a n

    e i t h e r i n d i v i d u a l

    t r e a t m e n t , t h e r e b y pr o d u c i n ga

    more p e r m e a b le

    c e l l .

    T he e f f e c t of v a r y i n g the

    c e l l

    c o n c e n t r a t i o n on the p r o t e i n

    r e l e a s e

    p r o f i l e

    of 2M/2

    t r e a t m e n t s

    isshowninF i g u r e 5. The

    c e l l

    c o n c e n t r a t i o n s are

    e x p r e s s e d

    int e r m sof thep r o t e i n c o n c e n t r a t i onof

    t h e e x t r a c t i o n s o l u t i o n . A l t h o u g hno s i g n i f i c a n t e f f e c twas

    o b s e r v e d

    on

    the

    r e l e a s e p r o f i l e

    the

    r e l e a s e y i e l d

    d e c r e a s e d by a

    f a c t o r

    of

    two

    upon

    i n c r e a s i n g

    thec e l l

    c o n c e n t r a t i o n f r o m

    3.6 g/1 to 43.3 g/1.

    T h e e x a c t

    n a t u r e of ther e a s o n

    f o r

    thed e c r e a s e d

    y i e l d

    at

    h i g h

    c e l l

    c o n c e n t r a t i o n s

    is notknown. However,

    d e p l e t i o n

    of the g u a n i d i n e

    a n d / o r T r i t o n d ur i n g

    thep r oc e s s is not

    o c c u r r i n g ,

    as e v i de n c e dby

    t h e

    f a c t

    t h at t r e a t i n g c e l l s

    a s e c o n d t i m e w i t h

    f r e s h

    g u a n i d i n eand

    T r i t o n does

    not i n d u c e

    a d d i t i o n a l r e l e a s e ( d at a

    notshown). If

    d e p l e t i o n

    of theg u a n i d i n e

    a n d / o r T r i t o n

    c a u s e d the

    p r o t e i n r e l e a s e

    t o

    c e a s e , one w o u l d e x p e c t

    t h a t

    a s e c o n d t r e a t me n t w o u l d c a u s e

    f u r t h e r

    r e l e a s e

    of

    p r o t e i n

    f r o m the

    p a r t i a l l y a f f e c t e d

    or as yet

    u n a f f e c t e d

    c e l l s .

    hole Broth

    r o t i n

    Cone

    PROTEIN

    RELEASE * ) 3.6 g/ 1

    12 5 g/ 1

    27.4 g/ 1

    43.3 g/ 1

    TME hours)

    F i g u r e

    5.

    E f f e c t

    of c e l l

    c o n c e n t r a t i o n

    on the

    p r o t e i n r e l e a s e

    p r o f i l e .

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    Pu

    blica

    tion

    Da

    te:

    Ju

    ly11

    ,1986|d

    oi:10

    .1021/bk-1

    986-0

    314

    .ch001

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    15/230

    8

    SEPARATION

    R EC O V ER Y

    A N D PURIFICATION IN

    B I O T E C H N O L O G Y

    C o n c l u s i o n s

    E x p o s u r e of E. c o l i to

    g u a n i d i n e - H Cl

    and

    T r i t o n - X l O O i n d u c e s

    the

    r e l e a s e of c e l l u l a r p r o t e i n s . The r e l e a s e r a t eand y i e l d were f o u n d

    t o be d e p e n d e n t on the g u a n i d i n e , T r i t o n , and c e l l c o n c e n t r a t i o n s .

    H i g h e r c o n c e n t r a t i o n s of g u a n i d i n e and T r i t o n and l o w e r c e l l

    c o n c e n t r a t i o n s gave g r e a t e r r e l e a s e r a t e sandy i e l d s . G u a n i d i n e a l o n e

    i s c a p a b l e of r e l e a s i n g a s i g n i f i c a n t

    amount

    of p r o t e i n . T r i t o n

    r e l e a s e s a v e r y low

    l e v e l

    ofp r o t e i nbut s u b s t a n t i a l l y i n c r e a s e sthe

    r a t e ofr e l e a s ewhen u s e d i nc o n j u n c t i o n w i t h g u a n i d i n e .

    T h e

    mechanism

    of the

    r e l e a s e ,

    a

    p e r m e a b i l i z a t i o n

    of the c e l l i s

    f u n d a m e n t a l l y

    d i f f e r e n t f r o m m e c h a n i c a l

    d i s r u p t i o n

    w h i c h

    i n v o l v e s

    e x t e n s i v e f r a g m e n t a t i o n of the c e l l s . The a v o i d a n c e of e x t e n s i v e

    c e l l b r e a k a g e s h o u l d s i m p l i f y the c e l l

    r e m o v a l

    s t e p and r e t e n t i o nof

    t he n u c l e i c a c i d s i n s i d e the c e l l s h o u l d e l i m i n a t e the n e e d fo r a

    n u c l e i c a c i d

    p r e c i p i t a t i o n

    s t e p . F u r t h e r m o r e , s i n c e the t r e a t m e n t

    k i l l s the c e l l s a s e p a r a t e c e l l k i l l i n g s t e pmay be u n n e c e s s a r y .

    Acknowledgment

    We

    w o u l d

    l i k e to

    acknowledge p a r t i a l

    s u p p o r t

    f r o m

    the N a t i o n a l

    S c i e n c e F o u n d a t i o n .

    Literature Cited

    1. Edebo, L. In Fermentation Advances ; Perlman, D., Ed.;

    AcademicPress: NewYork, 1969; p. 249.

    2.

    Schutte,

    H; Kroner, K. H.; Hustedt, H.; Kula, M. R. Enzyme

    Microb. Technol. 1983, 5, 143.

    3. Bucke, C. In Principles of Biotechnology ; Wiseman, ., Ed.;

    Surrey University

    Press:

    New

    York,

    1983; p. 151.

    4. Higgins, J. J.; Lewis, D. J.; Daly, W H.; Mosqueira, F. G.;

    Dunnill, P.;

    Lilly,

    M. D. Biotech. Bioeng. 1978, 20, 159.

    5. Wang, D. I. C.; Cooney, C. L.; Demain, .; Dunnill, P.;

    Humphrey,

    .;

    Lilly,

    M. In Fermentation and Enzyme

    Technology ;

    JohnWiley

    Sons:

    New

    York,

    1979; Chap. 12.

    6. Moldow, C. J. MembraneBiol. 1972, 10, 137.

    7. Hatefi, Y.; Hanstein, W In Methods in Enzymology ; Fleischer,

    S.; Packer, L.; Eds.; Academic

    Press:

    New

    York,

    1974; p. 770.

    8. Schnaitman, C. J.

    Bact.

    1971,

    108(1),

    545.

    9. Bradford, M.

    Anal.

    Bioohem. 1976, 72, 248.

    10. Burton, K. Biochem. J. 1956, 62, 315.

    11. Herbert, D.; Phipps, P. J.; Strange, R. E. In Methods in

    Microbiology ;

    Norris, J. R.; Ribbons, D. W.; Eds.; Academic

    Press: London, 1971; p. 210.

    12. Brock, T. In Biology of Microorganisms ; Prentice-Hall:

    Englewood Clifts, NewJersey, 1979; p. 131.

    RECEIVEDMarch 26

    1986

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    Pu

    blica

    tion

    Da

    te:

    Ju

    ly11

    ,1986|d

    oi:10

    .1021/bk-1

    986-0

    314

    .ch001

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    16/230

    2

    Structured

    and SimpleModelsofEnzymatic Lysis and

    DisruptionofYeast

    Cells

    J .

    B.Hunterand J. A.

    Asenjo

    Biochemical

    EngineeringLaboratory,Department

    ofChemical

    Engineering

    andApplied

    Chemistry,Columbia

    University,NewYork, NY

    10027

    Microbial

    cell-wall-lytic enzymes

    are

    widely

    used

    in the

    laboratory

    for

    cell breakage, proto

    -plasting

    of

    yeasts and bacteria, and

    forstudies

    of

    the

    structure and composition

    of

    microbial

    cell

    walls

    1).

    Recentlylytic

    systems

    have come

    underconsideration

    as a

    specific and chemically

    mildway

    to

    rupture microbial cells on an in

    dustrial scale (2,3). There appear

    to be

    attrac

    tive commercial applications

    of

    lytic

    systems

    for

    the

    recovery

    of

    enzymes, antigens and

    other

    recombinant products accumulatedwithin

    cells,

    for

    upgrading

    of

    microbial biomass

    for

    food

    and feed

    uses 4,5)

    and

    for

    the manufacture

    of

    functional

    biopolymers from

    cell

    wall carbo

    hydrates

    6).

    This

    paper

    presents

    two models

    of

    enzymatic

    lysis

    of

    yeast

    cells;

    a

    simplified two-step model,

    accountingfor

    protein

    releaseat

    cell lysis

    followed

    by proteolysis, and

    a

    more complex mecha

    nisticmodelwhichdescribes

    the

    removal

    of the

    two layers

    of

    theyeast

    wall

    and

    the

    extrusion

    and rupture

    of

    the protoplast and organelles.

    The

    use of

    these

    models

    in

    predicting

    the

    release

    and breakdown

    of

    microbial proteins, and

    the ap-

    plication

    of the

    structured model

    to

    enzyme

    re-

    coverywill also

    be

    discussed.

    On e p r o b l e m i n p r o d u c t i o nof r e c o mb i n a n t p r o t e i n s i s r e c o v e r yof

    t h e f i n i s h e d p r o d u c t f r o m t h e c e l l s w h i c h a c c u mu l a t e i t . T h i s

    p r o b l e m i s

    p a r t i c u l a r l y

    a c u t e i n t h e c a s e

    of

    y e a s t s

    andf u n g i ,

    w h i c h

    h a v e t o u g h , t h i c k

    c e l l

    w a l l s w h i c h a r e d i f f i c u l t t or u p t u r e me c h a n i

    c a l l y

    or by

    s o n i c a t i o n . P r o d u c t s e c r e t i o n i s n o t a l w a y s f e a s i b l e ,

    e v e n f o r l o w - mo l e c u l a r - w e i g h t p r o d u c t s , a l t h o u g ha n e wl y d e v e l o p e d

    s e c r e t i o n p r o c e s s f o r y e a s t (7) a p p e a r s p r o mi s i n g .

    0097-6156/

    86/

    0314-0009 06.50/

    0

    1986

    American Chemical

    Society

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    Pu

    blica

    tion

    Da

    te:

    Ju

    ly11

    ,1986|d

    oi:10

    .1021/bk-1

    986-0

    314

    .ch002

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    17/230

    10

    SEPARATION, R E C O V E R Y , A N D

    PURIFICATION

    IN

    B I O T E C H N O L O G Y

    T h e r e a r e n u me r o u s

    e x a mp l e s

    o f o v e r p r o d u c e d r e c o mb i n a n t p r o t e i n s

    w h i c h

    p r e c i p i t a t e

    i n t r a c e l l u l a r l y

    i n E_. c o l i , f o r mi n g d e n s e i n c l u s i o n

    b o d i e s ( 8 ) ; t h e s e p r o d u c t s i n c l u d e

    i n s u l i n

    a n d s o ma t o s t a t i n , b o t h

    v e r y s ma l l p r o t e i n s . I n y e a s t ,

    r e c o mb i n a n t

    v i r a l s u r f a c e a n t i g e n

    p r o t e i n s a r e n o t s e c r e t e d , b u t

    a s s e mb l e

    i n t o p a r t i c l e s ( 9 ) .

    S u b

    c e l l u l a r

    s t r u c t u r e s s u c h a s mi t o c h o n d r i a , l y s o s o me s o r t h e v a c u o l e

    mu s t

    a l s o b e r e c o v e r e d b y c e l l

    b r e a k a g e ,

    f o r u s e e i t h e r a s b i o -

    c a t a l y s t s ( 1 0 ) o r a s a n i n i t i a l s t e p i n t h e p u r i f i c a t i o n o f e n z y me s

    a s s o c i a t e d w i t h s u c h s t r u c t u r e s .

    U n t i l

    n o w, t h e s e p r o d u c t s h a v e

    g e n

    e r a l l y b e e n h a r v e s t e d b y me c h a n i c a l l y r u p t u r i n g t h e c e l l s i n a

    h o mo g e n i z e r ,

    b e a d

    m i l l

    o r F r e n c h p r e s s . T h e h i g h s h e a r

    f i e l d s ,

    e l e

    v a t e d t e mp e r a t u r e s a nd g a s - l i q u i d

    i n t e r f a c e s

    g e n e r a t e d i n t h e s e

    d e v i c e s c a n d e n a t u r e p r o t e i n s , e s p e c i a l l y mu l t i - e n z y me c o mp l e x e s

    a n d me mb r a n e - l i n k e d p r o t e i n s ( 1 1 ) . Mo r e o v e r , t h e s e p a r a t i o n

    o f c e l l d e b r i s

    f r o m

    t h e p r o d u c t s i s e s p e c i a l l y c o mp l i c a t e d i f t h e

    p r o d u c t i s p a r t i c u l a t e ,

    f r a g i l e

    o r me mb r a n e - a s s o c i a t e d .

    L y t i c e n z y me s y s t e ms p r o v i d e a c h e mi c a l l y m i l d , l o w- s h e a r

    a n d c a t a l y t i c a l l y s p e c i f i c a l t e r n a t i v e t o me c h a n i c a l c e l l d i s

    r u p t i o n . De p e n d i n g

    o n t h e p a r t i c u l a r

    l y t i c s y s t e m e mp l o y e d

    a n d

    i t s

    p u r i t y , t h e

    e n z y me s

    ma y b e e n g i n e e r e d t o a t t a c k c e l l

    w a l l

    c o m

    p o n e n t s a l o n e , w i t h o u t p r o d u c t d a ma g e . T h e e n z y me l y s o z y me ,

    a c t i v e

    a g a i n s t

    some b a c t e r i a l c e l l w a l l s , h a s b e e n u s e d t o h a r v e s t b o v i n e

    g r o w t h h o r mo n e g r a n u l e s f r o m _ E.

    c o l i

    ( 8 ) , a n d a me mb r a n e - a s s o c i a t e d

    h y d r o x y l a s e c o mp l e x

    f r o m

    P . p u t i d a ( 1 1 ) ; u s e o f o t h e r b a c t e r i o

    l y t i c e n z y me s

    f r o m

    a v a r i e t y o f mi c r o b i a l s o u r c e s h a v e a l s o b e e n

    r e p o r t e d

    ( 3 ) .

    I n v e s t i g a t i o n s i n t o

    t h e s u b c e l l u l a r l o c a t i o n o f

    e n z y me a c t i v i

    t i e s

    i n mi c r o b i a l

    c e l l s

    s u g g e s t t h a t o n e o r mo r e e n z y me p r o d u c t s

    c o u l d

    b e

    s p e c i f i c a l l y f r a c t i o n a t e d f r o m

    a s i n g l e b a t c h o f c e l l s

    b y p r o p e r l y c o n t r o l l i n g c e l l d i s r u p t i o n . I n v e r t a s e i n y e a s t i s

    p o s s i b l y

    t h e b e s t e x a mp l e o f t h i s p r i n c i p l e . T h e s t u d i e s l e a d i n g

    t o d i s c o v e r y o f i t s l o c a t i o n ( i n t h e p e r i p l a s mi c

    s p a c e ) h a v e

    b e e n s u mma r i z e d b y P h a f f ( 1 2 ; p . 1 7 1 - 1 7 3 ) , a n d a s a mp l e p r o c e s s f o r

    i t s r e c o v e r y h a s b e e n

    p r o p o s e d

    ( 4 ) . T h e r e c o v e r y o f s e v e r a l

    d i f

    f e r e n t e n z y me s i n h i g h y i e l d a n d h i g h r e l a t i v e p u r i t y s h o u l d b e

    p o s s i b l e

    u s i n g a c o mb i n a t i o n o f

    l y t i c

    e n z y me s , s u r f a c t a n t s a n d o s

    mo t i c s u p p o r t b u f f e r s t o

    s e l e c t i v e l y

    a n d s e q u e n t i a l l y r e l e a s e p r o

    t e i n s

    f r o m p a r t i c u l a r

    s t r u c t u r e s .

    C e l l

    f r a c t i o n a t i o n

    b y me c h a n i c a l r u p t u r e h a s a l r e a d y

    come

    u n d e r

    i n v e s t i g a t i o n . Two s e p a r a t e s t u d i e s o f me c h a n i c a l r u p t u r e o f y e a s t

    s h o w e d

    d i f f e r e n t r a t e s o f r e l e a s e f o r

    e n z y me s

    i n d i f f e r e n t c e l l

    l o c a t i o n s ( 1 3 , 1 4 ) . W a l l - l i n k e d a n d p e r i p l a s mi c e n z y me s

    w e r e

    r e

    l e a s e d r e l a t i v e l y

    f a s t e r t h a n t o t a l p r o t e i n , s o l u b l e c y t o p l a s mi c

    e n z y me s a t a b o u t t h e s a me r a t e , a n d t h e mi t o c h o n d r i a l e n z y me f u ma r a s e

    l a t e r

    t h a n t o t a l p r o t e i n ( 1 3 ) . P r o t e o l y s i s b y t h e y e a s t

    1

    s own

    e n z y me s wa s n o t f o u n d t o b e a p r o b l e m.

    A c t i v i t i e s

    o f t h e r e l e a s e d

    e n z y me s d e c l i n e d s l o w l y o r n o t a t a l l w h e n d i s r u p t i o n wa s c o n

    t i n u e d a f t e r t h e e n d o f p r o t e i n r e l e a s e , a n d t h e e f f e c t o f s h e a r wa s

    n o t s e p a r a t e d f r o m t h e

    e f f e c t

    o f p r o t e o l y s i s . S h e t t y a nd K i n s e l l a

    ( 1 5 ) a l s o f o u n d a l o w r a t e o f

    p r o t e o l y s i s a f t e r

    me c h a n i c a l

    d i s r u p t i o n ,

    t h o u g h

    t h i o l

    r e a g e n t s a d d e d t o we a k e n t h e c e l l w a l l s b e f o r e

    d i s r u

    p t i o n

    c a u s e d

    a n i mp o r t a n t i n c r e a s e i n t h e e x t e n t o f p r o t e i n b r e a k

    d o w n .

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    Pu

    blica

    tion

    Da

    te:

    Ju

    ly11

    ,1986|d

    oi:10

    .1021/bk-1

    986-0

    314

    .ch002

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    18/230

    2. H U N T E R A N D ASENJO Enzymatic Lysis and Disruption of east ells

    11

    M o d e l B a c k g r o u n d

    Y e a s t

    c e l l

    s t r u c t u r e . The e x t e n s i v e b o d y of l i t e r a t u r e on

    c e l l

    w a l l c o mp o s i t i o n

    and

    s t r u c t u r e h a s r e c e n t l y b e e n r e v i e we d

    by

    B a l l o u

    ( 1 6 ) and

    e a r l i e r

    by P h a f f ( 1 2 ) .

    A s an e n g i n e e r i n g a p p r o x i ma t i o n , t h e

    c e l l

    w a l l of y e a s t may be

    c o n s i d e r e d

    as a t w o - l a y e r s t r u c t u r e . ( F i g u r e 1) The i n n e r w a l l i s

    c o mp o s e d of a

    mi x t u r e

    of

    b r a n c h e d 3 ( 1 - 3 )

    and

    3 ( 1 - 6 ) l i n k e d g l u c a n s ,

    g l u c o s e p o l y me r s s i m i l a r t oc e l l u l o s e ( 1 2 ) . Theo u t s i d e o f t he

    g l u c a n l a y e r i s c o v e r e d w i t h a ma n n a n - p r o t e i n

    c o mp l e x

    c o n s i s t i n g

    o f

    a

    c r o s s - l i n k e d

    n e t w o r k of

    p r o t e i n

    mo l e c u l e s , t ow h i c h a r e a t

    t a c h e d

    t wo

    t y p e s

    ofma n n a n : ana c i d i c

    o l i g o s a c c h a r i d e ,

    and a

    h i g h e r

    mo l e c u l a r we i g h t p h o s p h o ma n n a n h a v i n g a d . p . ofa b o u t 100 ( 1 7 ) .

    F r o m

    t h e p e r s p e c t i v e of

    c e l l l y s i s ,

    t h i s ma n n o p r o t e i n l a y e r s e r v e s

    t o

    p r o t e c t t h e g l u c a n s f r o m h y d r o l y t i c e n z y me s ( 1 8 , 1 9 , 2 0 ) . W i t h i n

    t h e t wow a l l

    l a y e r s

    i s t h e p r o t o p l a s t , c o mp r i s e d of a p l a s ma mem

    b r a n e e n c l o s i n g t h e c y t o s o l

    and

    t h e s u b c e l l u l a r s t r u c t u r e s .

    E n z y me s of t h e

    l y t i c

    s y s t e m. M i c r o b i a l y e a s t - l y t i c

    e n z y me

    s y s t e ms a r e w i d e l y d i s t r i b u t e d i n n a t u r e ,

    and

    h a v e b e e n

    i s o l a t e d

    f r o m

    R h i z o c t o n i a s p . , ( 4 ) , B a c i l u s c i r c u l a n s ( 2 1 ) , C o p r i n u s ma c r o r h i z u s

    ( 2 2 ) ,

    andC y t o p h a g a s p . ( 2 3 ) , a m o n g o t h e r s o u r c e s .

    C r u d e

    y e a s t

    l y t i c

    e n z y me s y s t e ms c o mp r i s e s e v e r a l h y d r o l y t i c

    a c t i v i t i e s , o f t e n i n c l u d i n g c h i t i n a s e , ma n n a n a s e , and av a r i e t yof

    p r o t e a s e s andg l u c a n a s e s ( 1 ) . O n l y t wo of t h e s e a c t i v i t i e s , a

    l y t i c

    p r o t e a s e

    and a

    l y t i c g l u c a n a s e , a r e e s s e n t i a l f o r

    l y s i s

    ( 1 9 , 2 4 , 2 0 ) .

    L y t i c g l u c a n a s e s

    u s u a l l y

    b i n d p r e f e r e n t i a l l y t o l o n g c h a i n s of 3 ( 1 - 3 )

    g l y c o s i d i c

    l i n k a g e s , s u c h

    as

    t h o s e f o u n d i n

    m i c r o f i b r i l l a r

    y e a s t

    w a l l

    g l u c a n .

    I ng e n e r a l , t h e

    l y t i c

    g l u c a n a s e s h a v e an e n d o -

    a c t i o n

    p a t t e r n b u t some a t t a c k e x o - w i s e ,

    r e l e a s i n g

    o l i g o s a c c h a r i d e s

    of

    5 g l u c o s e

    u n i t s

    f r o m t h e s t r u c t u r a l y e a s t g l u c a n . O t h e r g l u c a n a s e s ,

    w i t h

    d i f f e r e n t

    s u b s t r a t e s p e c i f i c i t y and

    a c t i o n

    p a t t e r n s , a r e

    u s u a l l y

    p r e s e n t i n t h e

    l y t i c

    s y s t e m a n d a c t s y n e r g i s t i c a l l y t o d e g r a d e

    i n s o l u b l e y e a s t g l u c a n t og l u c o s e andd i s a c c h a r i d e s ( 2 5 ) . L y t i c

    p r o t e a s e s h a v e

    ac h a r a c t e r i s t i c

    h i g h

    a f f i n i t y

    f o r t h e y e a s t w a l l s u r

    f a c e , ando f t e n h a v e a n o ma l o u s l y l o w a c t i v i t i e s a g a i n s t c o n v e n t i o n a l

    p r o t e i n

    s u b s t r a t e s . T h e i r

    r o l e

    i n l y s i s of v i a b l e y e a s t c e l l s

    c a n n o t be

    s u b s t i t u t e d

    by o r d i n a r y p r o t e a s e s . ( 2 0 , 2 6 ) .

    W

    u s e d

    a

    l y t i c

    s y s t e m f r o m O e r s k o v i a

    x a n t h i n e o l y t i c a

    L L - G1 0 9

    f r o m t h e c o l l e c t i o n of M L e c h e v a l i e r ,atR u t g e r s U n i v e r s i t y .

    F i l t e r e d c u l t u r e b r o t h

    was

    u s e d

    as

    t h e e n z y me s o u r c e . D e t a i l s

    of

    t h e e n z y me p r o d u c t i o n a r e g i v e n e l s e wh e r e ( 2 7 , 2 8 ) . The l y t i c a c

    t i v i t y

    of t h e O e r s k o v i a s y s t e m i s due t o a

    l y t i c

    p r o t e a s e and an

    e n d o 3 ( 1 , 3 ) g l u c a n a s e ( 2 0 ) ,

    p o s s i b l y

    s u p p l e me n t e d w i t h an e x o 3 ( 1 - 3 )

    g l u c a n a s e

    r e mo v i n g

    a 5 - s u g a r u n i t f r o m t h e c h a i n ( 2 9 ) .

    S e q u e n c e of c e l l l y s i s . E n z y ma t i c c e l l

    l y s i s

    b e g i n s w i t h b i n d

    i n g

    of t h e

    l y t i c

    p r o t e a s e t o t h e o u t e r ma n n o p r o t e i n l a y e r of t he

    w a l l . Thep r o t e a s e o p e n s up t h e

    p r o t e i n

    s t r u c t u r e , r e l e a s i n g w a l l

    p r o t e i n s

    a n d

    ma n n a n s , and

    e x p o s i n g t h e g l u c a n s u r f a c e

    b e l o w

    ( F i g u r e

    2 ) . N e x t , t h e g l u c a n a s e a t t a c k s t h e i n n e r w a l l ands o l u b i l i z e s t h e

    g l u c a n ( 1 9 ) . Whent h e

    c o mb i n e d a c t i o n

    ofp r o t e a s e and g l u c a n a s e

    h a s o p e n e d as u f f i c i e n t l y l a r g e h o l e i n t h e

    c e l l

    w a l l , t h e p l a s ma

    me mb r a n e

    andi t s c o n t e n t s a r e e x t r u d e d as a p r o t o p l a s t ( 1 ) . I n

    o s m o t i c a l l y s u p p o r t e d b u f f e r s c o n t a i n i n g

    . 55 t o 1. 2M

    s u c r o s e

    or

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    Pu

    blica

    tion

    Da

    te:

    Ju

    ly11

    ,1986|d

    oi:10

    .1021/bk-1

    986-0

    314

    .ch002

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    19/230

    12

    S E PA R A T I O N , R E C O V ER Y , A N D P UR I FI C A T I O N IN B I O T E C H N O L O G Y

    Mannoprotein Units

    ell

    Membrane Structural Glucan Units

    F i g u r e 1 D o u b l e - l a y e r e d

    s t r u c t u r e

    of

    t h e

    y e a s t w a l l , e n c l o s i n g

    t h e c e l l me mb r a n e

    F i g u r e 2 S c h e ma t i c

    of l y s i n g y e a s t c e l l

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    Pu

    blica

    tion

    Da

    te:

    Ju

    ly11

    ,1986|d

    oi:10

    .1021/bk-1

    986-0

    314

    .ch002

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    20/230

    2.

    H U N T E R N D ASENJO Enzymatic Lysis and Disruption of east ells

    13

    m a n n i t o l , t h e p r o t o p l a s t r e ma i n s i n t a c t b u t i n d i l u t e b u f f e r s i t l y -

    s e s

    i mme d i a t e l y ,

    r e l e a s i n g c y t o p l a s m i c p r o t e i n s

    and

    t h e o r g a n e l l e s

    w h i c h may t h e ms e l v e s

    l y s e .

    Me a n wh i l e ,

    p r o t e i n s r e l e a s e d

    f r o m

    t h e w a l l

    and

    t h e

    c y t o p l a s m

    a r e

    s u b j e c t

    t o

    a t t a c k

    by

    p r o d u c t - d e g r a d i n g p r o t e a s e

    c o n t a mi n a n t s

    i n t h e

    l y t i c s y s t e m

    ( 2 8 , 3 0 ) .

    Mo d e l s

    Ma t h e ma t i c a l mo d e l s w i t h d i f f e r e n t l e v e l s

    of

    s t r u c t u r e a r e

    u s e

    f u l

    f o r t h e

    d e s i g n of

    r e a c t o r s ,

    t o

    c a r r y o u t s i m u l a t i o n s t u d i e s , f o r

    p r o c e s s

    o p t i m i z a t i o n

    and

    f o r i n c r e a s i n g o u r

    u n d e r s t a n d i n g o f t he

    m e c h a n i s t i c , b i o l o g i c a l

    b e h a v i o r of

    b i o c h e m i c a l

    s y s t e ms .

    H i s t o r i c a l l y

    t h e r e h a s b e e n

    l i t t l e

    p u b l i s h e d

    w o r k on

    mo d e l s

    of

    m i c r o b i a l c e l l l y s i s . Themo d e l s

    p r o p o s e d

    f o r o v e r a l l c e l l

    l y s i s

    h a v e b e e n e l e me n t a r y and

    t h e i r a p p l i c a t i o n h a s

    b e e n

    l i m i t e d .

    F i r s t -

    o r d e r

    a n d

    Mi c h a e l i s - M e n t e n mo d e l s h a v e b e e n

    u s e d

    t oe s t i ma t e

    t h e

    p e r f o r ma n c e

    of a

    s a mp l e

    l y s i s p r o c e s s

    ( 2

    S

    3 ) , L y s i s

    of

    f r e e z e - d r i e d

    Mi c r o c o c c u s

    l y s o d e i k t i c u s c e l l s

    by

    l y s o z y me

    was

    mo d e l e d w i t h

    a

    s e c o n d - o r d e r

    r a t e e x p r e s s i o n ( 3 1 ) .

    At

    t h e

    o t h e r e nd of

    t h e

    s p e c t r u m

    o f

    ma t h e ma t i c a l c o mp l e x i t y

    i s

    a mo d e l of l y s o z y me - c a t a l y z e d d e g r a d a

    t i o n of

    s o l u b l e b a c t e r i a l

    c e l l - w a l l

    o l i g o s a c c h a r i d e s , f o c u s i n g

    on

    t h e

    d e g r e e

    of

    p o l y m e r i z a t i o n

    of

    t h e s u b s t r a t e

    and

    t h e b i n d i n g m o d e s

    of

    e n z y me t os u b s t r a t e s ( 3 2 ) .

    A c c o u n t i n g

    f o r onee n z y me and c a r b o h y

    d r a t e

    o l i g o me r s up t o

    d . p .

    9,

    i t h a s

    n i n e d i f f e r e n t i a l e q u a t i o n sand

    t e n

    p a r a me t e r s ,

    a n d

    was

    t e s t e d

    on

    p u r i f i e d r a d i o l a b e l e d o l i g o s a c c h a

    r i d e s .

    A l t h o u g h

    u s e f u l f o r e l u c i d a t i n g e n z y me a c t i o n p a t t e r n s ,

    s u c h

    mo d e l s

    a r e t o o d e t a i l e d

    t o be

    r e a d i l y a p p l i e d

    t o a

    mu l t i - e n z y me ,

    m u l t i - s u b s t r a t e

    s y s t e m.

    T h e

    t womo d e l s ofy e a s t

    l y s i s

    p r e s e n t e d h e r e h a v e b e e n

    d e v e l o p

    e d

    t os e r v e t wo

    d i f f e r e n t

    p u r p o s e s . The s i mp l e mo d e l

    i s

    a l u mp e d ,

    t w o - s t e p mo d e l w h i c h

    f o l l o w s t h e

    ma j o r

    f e a t u r e s

    of

    t h e

    d a t a

    a n d

    may

    p r o v e

    u s e f u l f o r d e s i g n

    of l y s i s

    r e a c t o r s .

    The

    s t r u c t u r e d mo d e l ,

    w h i c h

    c a n a c c o u n t f o r t h e

    s o u r c e

    of p r o t e i n w i t h i n t h e c e l l , was

    d e v e l o p e d t o

    g a i n

    a me c h a n i s t i c

    b a s i s f o r p r e d i c t i n g t h e e f f e c t s

    of

    u n t e s t e d p r o c e s s

    c o n d i t i o n s ,

    and t o

    a i d i n s i g h t i n t o t h e p h y s i c a l

    p r o c e s s e s a two r k

    d u r i n g

    l y s i s .

    S i mp l e

    mo d e l .

    The

    s i mp l e

    mo d e l

    was

    b u i l t

    f o r

    c o mp a c t

    d e s c r i p t

    i o n

    of

    t h e

    d a t a

    i n

    a

    p r e - d e t e r mi n e d r a n g e

    ofy e a s t and

    e n z y me c o n c e n

    t r a t i o n s .

    I t t r e a t s c e l l

    l y s i s and

    p r o t e o l y s i s

    as

    s i n g l e - s t e p

    r e a c t i o n s i n s e q u e n c e . B o t h r e a c t i o n s a r e mo d e l e d w i t h M i c h a e l i s -

    Me n t e n

    k i n e t i c s , e v e n

    t h o u g h

    y e a s t , t h e s u b s t r a t e

    of

    t h e

    f i r s t

    r e a c t i o n ,

    i s p a r t i c u l a t e

    and

    t h e p r o t e i n s a r e s o l u b l e .

    The

    d i f f e r e n t

    e n z y me s

    of

    t h e l y t i c s y s t e m a r e g r o u p e d t o g e t h e r i n t o

    ana l l - i n c l u

    s i v e s i n g l e e n z y me ,

    E,

    b e a r i n g b o t h t h e p r o t e o l y t i c a n d y e a s t - l y t i c

    a c t i v i t i e s .

    A l l

    of

    t h e

    c e l l

    s t r u c t u r e s a r e a l s o c o n s i d e r e d

    t o g e t h e r

    a s

    a

    u n i f i e d

    y e a s t c e l l ma s s , Y.

    When ac e l l

    i s a t t a c k e d

    by e n z y me s

    i t i s

    p r e s u me d t o

    d i s s o l v e

    i n s t a n t a n e o u s l y , r e l e a s i n g i t s e n t i r e

    ma s s

    as

    s o l u b l e p r o t e i n s ,

    p e p

    t i d e s

    andc a r b o h y d r a t e s . Thea s s u mp t i o n of i n s t a n t a n e o u s

    s o l u t i o n

    o f t h e c e l l ma s s c o n s t r a i n s t h e mo d e l f o r u s e

    w h e r e

    t h e

    l y s i s

    me d i u m

    i s h y p o - o s mo t i c and

    p r o t o p l a s t s c a n n o t s u r v i v e i n t a c t .

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    Pu

    blica

    tion

    Da

    te:

    Ju

    ly11

    ,1986|d

    oi:10

    .1021/bk-1

    986-0

    314

    .ch002

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    21/230

    14

    SEPARATI ON, RECOVERY, A ND P UR I F I C AT I ON I N

    BI OTECHNOLOGY

    On l y

    t wo

    i n d e p e n d e n t

    v a r i a b l e s a r e u s e d : y e a s t ( Y ) a n d e n z y me

    E ) ;

    t h e me a s u r e d v a r i a b l e s a r e y e a s t , T C A - i n s o l u b l e p r o t e i n ( ) ,

    T C A - s o l u b l e p r o t e i n ( p e p t i d e s , S ) ,

    a n d

    c a r b o h y d r a t e s

    ( C ) ;

    a l l

    a r e

    e x p r e s s e d

    a s g / 1 d r y

    b a s i s . Enz yme c o n c e n t r a t i o n

    wa s

    e x p r e s s e d

    a s

    t h e

    v o l u me p e r

    c e n t

    o f c r u d e l y t i c

    e n z y me

    p r e p a r a t i o n

    a d d e d t o t h e

    r e a c t i o n mi x t u r e .

    P r o t e o l y t i c

    a n d o t h e r c a u s e s f o r l y t i c e n z y me

    d e a c t i v a t i o n

    ( e . g . ,

    t h e r ma l ) h a v e b e e n a s s u me d t o b e

    n e g l i g i b l e

    ( 2 8 ) ,

    d Y

    d t

    =

    - k

    a

    ( Y - Y

    d P _ d Y

    >

    d t

    f

    p y

    d t ,

    d S _

    - f

    d Y /

    d t

    s y

    d t ,

    d C _

    d t

    ~ f c y

    d Y '

    . d t ,

    k

    r

    E

    ( Y

    Y c o )

    ( Y -

    Y c o )

    +

    k E - P

    + s +

    m

    P 1+

    k

    _ J 2

    Y *

    + S + K

    mp

    1 +

    -

    1 )

    ( 2 )

    3 )

    4 )

    V a r i a b l e names a n d p a r a me t e r v a l u e s a r e g i v e n i n T a b l e I .

    On t h e

    r i g h t - h a n d s i d e

    o f

    e q u a t i o n

    1 , t h e

    i n i t i a l

    t e r m

    r e p r e

    s e n t s a u t o l y s i s

    a n d t h e

    s e c o n d

    t e r m, e n z y ma t i c l y s i s .

    E q u a t i o n

    2

    d e s c r i b e s p r o t e i n b r e a k d o wn b y p r o d u c t - d e g r a d i n g p r o t e a s e s . T h e

    f i r s t

    t e r m

    o n t h e

    r i g h t

    s i d e s t a n d s

    f o r t h e

    p r o t e i n r e l e a s e d

    f r o m

    l y s i n g c e l l s , a n d t h e s e c o n d t e r m, b r e a k d o wn o f t h e

    p r o t e i n a l r e a d y

    i n s o l u t i o n . E q u a t i o n

    3 s h o ws

    t h a t p e p t i d e s

    a r e

    r e l e a s e d

    f r o m

    l y s i n g

    y e a s t ,

    b u t

    a l s o a r i s e

    f r o m b r e a k d o wn o f

    l o n g e r p r o t e i n s ,

    P .

    S i n c e t h e p r o t e a s e a c t i v i t y a g a i n s t s o l u b l e p r o t e i n s i s

    c o n

    s i d e r e d

    n o n - s p e c i f i c , b o t h l o n g -

    a n d

    s h o r t - c h a i n p r o t e i n s

    w i l l b e

    a t t a c k e d

    b y t h e e n z y me

    w i t h

    e s s e n t i a l l y t h e

    same

    a f f i n i t y p e r g r a m

    o f s u b s t r a t e .

    He n c e , S w i l l a c t a s a

    c o mp e t i t i v e i n h i b i t o r

    o f t h e

    e n z y me a c t i v i t y a g a i n s t P , wh e r e t h e i n h i b i t i o n c o n s t a n t i s e q u a l

    t o

    t h e M i c h a e l i s c o n s t a n t K ^ . C a r b o h y d r a t e r e l e a s e i s s h o wn i n

    e q u a t i o n

    4 .

    P a r a me t e r s

    f o r

    t h e

    s i mp l e

    mo d e l we r e

    d e t e r mi n e d

    g r a p h i c a l l y

    b y

    E a d i e - H o f s t e e p l o t t i n g o f

    i n i t i a l

    r e a c t i o n r a t e s a n d s u b s t r a t e

    c o n

    c e n t r a t i o n s .

    D e t a i l s

    a r e

    g i v e n

    e l s e w h e r e 3 0 ) . A s h a s b e e n o b

    s e r v e d

    i n

    h y d r o l y s i s

    o f

    o t h e r s o l i d s u b s t r a t e s ,

    a

    r e s i d u e

    o f n o n -

    l y s e d

    s u b s t r a t e

    wa s f o u n d a t e x t e n d e d

    r e a c t i o n t i me s , when

    d Y / d t

    t e n d e d t o wa r d

    z e r o . T h e e x t e n t o f r e a c t i o n wa s s t r o n g l y d e p e n d e n t

    o n

    i n i t i a l

    s u b s t r a t e a n d e n z y me c o n c e n t r a t i o n s 33 , 34 ). A n

    e m p i r i c a l

    f u n c i t o n

    f o r Y ^ wa s f i t t e d t o t h e

    u l t i ma t e t u r b i d i t y d a t a

    f o r

    l y s i s r u n s a t a

    v a r i e t y

    o f

    i n i t i a l y e a s t

    a n d e n z y me

    c o n c e n

    t r a t i o n s u s i n g

    a

    l e a s t

    s q u a r e s me t h o d . T h e

    c a l c u l a t e d v a l u e s

    f o r

    Yoo we r e u s e d i n t h e s i mu l a t i o n s 3 0 ) . F i g u r e 3 s h o ws

    r e s u l t s

    o f

    t h e s i mp l e

    mo d e l .

    S t r u c t u r e d mo d e l .

    T h i s

    mo d e l

    c o n s i d e r s

    l y s i s o f t h e c e l l f r o m

    t h e v i e wp o i n t

    o f

    p r o g r e s s i v e

    b r e a k d o wn o f t h e c e l l

    s t r u c t u r e s ,

    s t a r t i n g

    f r o m

    t h e o u t e r w a l l l a y e r a n d p r o g r e s s i n g t o t h e s u b c e l l u l a r

    s t r u c t u r e s i n s i d e t h e p r o t o p l a s t 3 5 ) . H e r e t h e c e l l i s d i v i d e d

    i n t o

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    Pu

    blica

    tion

    Da

    te:

    Ju

    ly11

    ,1986|d

    oi:10

    .1021/bk-1

    986-0

    314

    .ch002

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    22/230

    2. H U N T E R A N D ASENJO Enzymatic Lysis and Disruption of

    Yeast

    Cells

    15

    T a b l e

    L.

    L u mp e d mo d e l

    v a r i a b l e s

    a nd p a r a me t e r s

    V a r i a b l e s -

    S i mp l e Mo d e l

    Y

    Y e a s t , mg/ 1

    Y

    0

    O r i g i n a l

    y e a s t c o n c e n t r a t i o n

    Yoo

    U l t i ma t e y e a s t c o n c e n t r a t i o n ,

    mg/ 1 ;

    p r o p o r t i o n a l

    t o r e s i d u a l t u r b i d i t y .

    ^= a 4 bE +c Y

    0

    +I

    P r o t e i n

    ( T C A - i n s o l u b l e ) ,

    mg/ 1

    S

    P e p t i d e s ( T C A - s o l u b l e ) ,

    mg/ 1

    C Ca r b o h y d r a t e s , mg/ 1

    E n z y me , %( v / v ) o f r e a c t i o n

    mi x t u r e

    P a r a me t e r s - S i mp l e Mo d e l

    Yoo c o n s t a n t s : a : 3 . 6 34 2 10

    1

    b :

    - 2 . 6 5 8 4

    10 ~

    c :

    6 . 0 44 2

    6

    d :

    - 9 . 9 6 0 3

    10

    1

    k

    a

    R a t e

    c o n s t a n t

    f o r a u t o l y s i s 3 . 9 8 7 1 0 - ^mi n

    1

    k

    r

    R a t e

    c o n s t a n t

    f o r l y s i s

    s i mp l e

    mo d e l 1 5 . 5 1 mg / L - m n - %e z

    K

    m

    M i c h a e l i s c o n s t a n t

    f o r l y s i s 1 9 0 2mg/ L

    k p

    R a t e

    c o n s t a n t f o r

    p r o t e o l y s i s ,

    4 . 4 41 mg / L - m n - %e z

    M i c h a e l i s c o n s t a n t ,

    p r o t e o l y s i s , 4 5 9 8mg/ L

    I n h i b i t i o n

    c o n s t a n t ,

    p r o t e o l y s i s , 2 6 0 7 7 mg

    y e a s t / L

    f

    F r a c t i o n of

    p r o t e i n

    i n y e a s t 0 . 4 0 48

    f

    g

    y

    F r a c t i o n

    of

    p e p t i d e s

    i n

    y e a s t

    0 . 0 7 77

    f F r a c t i o n of

    c a r b o h y d r a t e s

    i n

    y e a s t

    0 . 3 6 87

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    Pu

    blica

    tion

    Da

    te:

    Ju

    ly11

    ,1986|d

    oi:10

    .1021/bk-1

    986-0

    314

    .ch002

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    23/230

    6

    SEPARATION, R E C O V E R Y , A N D PURIFICATION IN B I O T E C H N O L O G Y

    f o u r r e g i o n s ; t h e o u t e r w a l l o r w a l l p r o t e i n ( WP ) ; i n n e r w a l l o r w a l l

    g l u c a n ( WG ) ; t h e c y t o s o l ( C S ) a n d t h e o r g a n e l l e s ,

    h e r e g r o u p e d

    t o g e t h e r

    a s

    mi t o c h o n d r i a

    ( M I ) . T h e

    l y t i c

    s y s t e m i s a p p r o x i ma t e d a s t h r e e

    e n z y me s , a

    l y t i c

    g l u c a n a s e , E g , wh i c h h y d r o l y z e s t h e i n n e r

    c e l l

    w a l l

    g l u c a n , a

    l y t i c

    p r o t e a s e ,

    E p ,

    wh i c h

    a t t a c k s o n l y t h e

    o u t e r

    w a l l l a y e r

    a n d a d e s t r u c t i v e p r o t e a s e , E ^ , a c t i v e a g a i n s t s o l u b l e p r o t e i n s .

    P r o d u c t i n h i b i t i o n i s i n c l u d e d i n a l l e n z y me r e a c t i o n s . A d s o r p t i o n

    a n d d e s o r p t i o n o f t h e

    e n z y me s

    t o t h e y e a s t w a l l i s n e g l e c t e d , s i n c e

    a d s o r p t i o n k i n e t i c s a p p e a r e d

    i n s t a n t a n e o u s

    o n t h e

    t i me

    s c a l e o f o u r

    me a s u r e me n t s ( 3 5 ) . A s c h e ma t i c o f t h e r e a c t i o n

    p a t h wa y s

    i s s h o wn i n

    F i g u r e 4 .

    S p e c i a l v a r i a b l e s .

    E G A = ( WG - r - WP )

    T h e g l u c a n h y d r o l y s i s r a t e i s n o t r e l a t e d

    d i r e c t l y

    t o

    t o t a l

    g l u c a n

    c o n c e n t r a t i o n WG, b u t r a t h e r t o t h e a mo u n t o f

    g l u c a n

    made

    a c c e s s i b l e t o a t t a c k t h r o u g h r e mo v a l o f w a l l p r o t e i n f r o m t h e o u t s i d e

    o f t h e

    c e l l .

    E G A ,

    e x p o s e d

    g l u c a n , a c c e s s i b l e r e p r e s e n t s t h e a mo u n t

    o f g l u c a n

    u n c o v e r e d

    b y

    r e mo v a l

    o f t h e o u t e r w a l l . T h e p r o p o r t i o n a l i t y

    c o n s t a n t r i s t h e

    we i g h t r a t i o

    o f w a l l g l u c a n t o w a l l p r o t e i n .

    T h e o v e r a l l r a t e o f s o l u b l e p r o t e i n h y d r o l y s i s , P B R , p r o t e i n

    b r e a k d o wn r a t e ,

    a c c o u n t s

    f o r d e s t r u c t i o n o f s o l u b l e p r o t e i n b y t h e

    d e s t r u c t i v e p r o t e a s e .

    T h e r e l e a s e o f c y t o s o l i n t o t h e

    me d i u m d e p e n d s

    o n t h e o s mo t i c

    b r e a k a g e o f t h e p r o t o p l a s t s , wh i c h o c c u r s a t a r a t e a p p r o x i ma t e l y

    p r o p o r t i o n a l t o t h e o s mo t i c g r a d i e n t a c r o s s t h e p l a s ma

    me mb r a n e

    ( 3 6 ) .

    T h e i n t e r n a l o s m o l a l i t y o f t h e c e l l s w a s e s t i ma t e d t o b e 0 . 6 1 7 O s / L

    ( 3 5 ) , wh e r e 1 O s / L i s e q u i v a l e n t t o 1

    Mo l / L

    o f a n i d e a l s o l u t e . T h e

    e x t e r n a l o s m o l a l i t y i s t h e s u m o f t h e c o n t r i b u t i o n f r o m t h e b u f f e r

    s y s t e m i n t h e me d i u m ( a b o u t 0. 02M i n o u r e x p e r i me n t s ) a n d t h e

    s u b s t a n c e s

    r e l e a s e d b y l y s i n g p r o t o p l a s t s . T h e

    s t a b i l i z a t i o n

    o f t h e

    r e ma i n i n g

    c e l l s

    b y t h e s e s u b s t a n c e s i s f a r s t r o n g e r t h a n c o u l d b e

    e x p e c t e d s o l e l y o n t h e b a s i s o f o s mo t i c e f f e c t s , a n d c o u l d r e s u l t

    f r o m t h e r e l e a s e o f c a t i o n s wh i c h i n t e r a c t w i t h s p e c i f i c r e c e p t o r s

    o n t h e p l a s ma

    me mb r a n e

    ( 3 7 ) . T h e r e l e a s e o f s o l u b l e p r o d u c t s o f

    g l u c a n a n d p r o t e i n h y d r o l y s i s a r e a l s o e x p e c t e d t o a d d t o t h e

    s t a b i l i

    z i n g e f f e c t o f t h e l y s a t e .

    T h e e f f e c t i v e o s m o l a l i t y o f

    c e l l

    l y s a t e w a s f i t t o a L a n g mu i r

    e x p r e s s i o n , wh e r e

    SM

    L

    i s t h e maxi mum

    s t a b i l i z i n g

    e f f e c t a n d i s

    t h e e q u i l i b r i u m c o n s t a n t f o r i n t e r a c t i o n o f t h e

    s t a b i l i z e r s

    w i t n t h e

    p r o t o p l a s t s . T h e r e s u l t i n g e q u a t i o n ,

    e x p r e s s e s

    t o t a l

    e f f e c t i v e o s m o l a l i t y i n t h e

    l y s i s

    me d i u m.

    B

    Q

    i s t h e

    o r i g i n a l

    o s m o l a l i t y o f t h e

    l y s i s

    b u f f e r a n d C S * i s t h e s u m o f p r o t e i n ,

    p e p t i d e s a n d c a r b o h y d r a t e s p r e s e n t a t t h e s t a r t o f r e a c t i o n .

    P B R

    SM

    x

    = B

    0

    +

    Q S

    V

    K

    o s J

    C S

    * +

    C S

    o ~

    C S

    >

    + ( C S * + C S - C S )

    o s m

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    Pu

    blica

    tion

    Da

    te:

    Ju

    ly11

    ,1986|d

    oi:10

    .1021/bk-1

    986-0

    314

    .ch002

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    24/230

    H U N T E R

    AND A S EN JO Enzymatic LysisandDisruptionof Yeast Cells

    TME

    MINUTES

    F i g u r e 3 S i mp l e mo d e l s i m u l a t i o n of y e a s t l y s i s

    Y e a s t

    c e l l

    ma s s , mg 1

    mg/ 1

    P e p t i d e s ,

    mg 1

    h y d r a t e s , mg 1

    0. 78 g/ 1

    y e a s t c o n c e n t r a t i o n ;

    10%en z y me

    e n

    s

    5

    P r o t e i n ,

    -

    C a r b o -

    Oligopeptides

    Amino

    Acids

    Wall

    Protein

    Wall

    Enzymes

    WallMannan

    Soluble Proteins

    Cytoplasmic Enzymes

    1Proteaseattack

    2. Glucanase attack

    3 Release

    of

    cell

    contents

    4. Lysis of

    organelles

    5.Glucanhydrolysis

    6

    7. >Productproteolysis

    ;

    / - \

    Proteins

    O r g a n e l l e s - < > -

    Organellar Enzymes

    Carbohydrates

    fl l-3)

    Oligosaccharides

    Glucose

    F i g u r e 4 R e a c t i o n p a t h wa y s f o r s t r u c t u r e d mo d e l

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    Pu

    blica

    tion

    Da

    te:

    Ju

    ly11

    ,1986|d

    oi:10

    .1021/bk-1

    986-0

    314

    .ch002

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    25/230

    18

    S E P A R A T I O N , R E C O V E R Y , A N D P U R I F IC A T I O N IN B I O T E C H N O L O G Y

    B a s e d o n t h e p r o d u c t OS M [ / K

    c

    t h e s t a b i l i z i n g e f f e c t o f c e l l l y

    s a t e a t l o w c o n c e n t r a t i o n s i s e q u i v a l e n t t o 4. 4 1 0

    H

    Os/ mg c y t o s o l

    r e l e a s e d ( 3 5 ) .

    W a l l h y d r o l y s i s e q u a t i o n s .

    d ( WP )

    d t

    wp ( Km

    WP

    w j y _

    ( 1 )

    1 +

    WP

    Km

    wp

    WP - WP

    K i

    wp

    d( WG)

    d t

    k

    wg g ( Km

    EGA

    wg

    ( 2 )

    l + # ^ +

    Km

    WG - WG

    wg

    Km

    s g

    R e l e a s e

    o f c y t o s o l a n d m i t o c h o n d r i a . T h e

    o s mo t i c

    g r a d i e n t b e

    t we e n p r o t o p l a s t s a n d b u f f e r o r m i t o c h o n d r i a a n d b u f f e r d r i v e s t h e

    r e l e a s e o f p r o t e i n i n t o t h e me d i u m. I f t h e o s m o l a l i t y o f t h e e x t e r n a l

    me d i u m

    e x c e e d s t h e

    i n t e r n a l

    o s m o l a l i t y o f t h e p r o t o p l a s t o r o r g a n e l l e ,

    n o r u p t u r e o c c u r s . T h e o s m o l a l i t y

    d e c r e a s e s

    i n t e r n a l l y , a n d i n c r e a s e s

    e x t e r n a l l y , a s m a t e r i a l i s r e l e a s e d f r o m t h e p r o t o p l a s t . I n a d d i t i o n ,

    t h e r e l e a s e

    o f

    c y t o s o l

    i s

    p r o p o r t i o n a l

    t o t h e

    s i z e

    o f t h e

    o p e n i n g

    i n

    t h e w a l l g l u c a n ,

    u p t o a ma x i mu m

    h o l e s i z e

    o f 1/ 3 o f t h e

    c e l l ^ s u r

    f a c e a r e a .

    d ( C S )

    d t

    -

    ( C S ) . k

    f l

    ( C S ) k ^ ma x ^ O S M ^

    CS

    CS

    - 0 S M

    x

    ) ]

    ma x ( . 3 3 ,

    1

    WG

    WG

    ) ( 3 )

    d ( M I )

    d t C S ,

    d ( C S )

    ' d t

    k

    r m

    [ ma x ( 0 ,

    0 . 3 - OS K . )

    ]

    ( 4 )

    S o l u b l e p r o d u c t s .

    V a l u e s

    f o r T C A - i n s o l u b l e p r o t e i n , p e p t i d e s a n d

    c a r b o h y d r a t e s r e l e a s e d we r e e s t i m a t e d b y s u mmi n g t h e c o n t r i b u t i o n t o

    e a c h p o o l

    f r o m

    t h e b r e a k d o wn o f e a c h c e l l u l a r s t r u c t u r e .

    ^ - - f

    d t

    d ( WP )

    p wp [ d t

    - f

    ' d ( C S ) '

    p e s

    I

    d t

    f

    k

    [ ma x ( 0 ,

    0 . 3 - OS M

    ) ]

    - P B R

    pm r m

    ( 5 )

    DownloadedbyUNIVOFMISSOURICOLUM

    BIAonOctober3,

    2010|http://p

    ubs.acs.org

    Pu

    blica

    tion

    Da

    te:

    Ju

    ly11

    ,1986|d

    oi:10

    .1021/bk-1

    986-0

    314

    .ch002

    In Separation, Recovery, and Purification in Biotechnology; Asenjo, J., et al.;ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

  • 8/10/2019 Separation Recovery and Purification in Biotechnology 1986 Recent Advances and Mathematical Modeling

    26/230

    2. HUNTER

    A N D ASENJO

    Enzymatic

    ysis

    and Disruption ofYeast Cells

    19

    - - f -

    d t s wp

    ' d ( WP ) '

    - f

    [ d t s e s

    d C S l

    d t

    f - k [ ma x ( 0 , 0. 3 - OSM) ] - M I + PBR ( 6)

    s m

    r m

    d

    m

    _ d ( WG) _ f - d ( C S )

    ( 7 )

    d t

    d t ' d t

    T o t a l

    y e a s t c e l l

    mas s

    was e s t i ma t e as t h e s um o f WG WP, CS,a n d MI

    ( s t r u c t u r e s r e ma i n i n g w i t h t h e c e l l ) , w i t h an a d d e d f a c t o r a c c o u n t i n g

    f o r n o n - p r o t e i n , n o n - c a r b o h y d r a t e s u b s t a n c e s i n t h e c e l l . T h e s e sums

    g e n e r a t e v a l u e s f o r y e a s t ,

    p r o t e i n ,

    p e p t i d e s