Separability - utf.mff.cuni.cz

41
Hidden symmetries and test fields in rotating black hole spacetimes part II Separability Pavel KrtouΛ‡ s Charles University, Prague, Czech Republic [email protected] http://utf.mff.cuni.cz/~krtous/ with Valeri P. Frolov, David KubizΛ‡ nΒ΄ ak Atlantic General Relativity Conference Antigonish, June 6, 2018

Transcript of Separability - utf.mff.cuni.cz

Page 1: Separability - utf.mff.cuni.cz

Hidden symmetries and test fields inrotating black hole spacetimes

part II

Separability

Pavel Krtous

Charles University, Prague, Czech Republic

[email protected]

http://utf.mff.cuni.cz/~krtous/

with

Valeri P. Frolov, David Kubiznak

Atlantic General Relativity Conference

Antigonish, June 6, 2018

Page 2: Separability - utf.mff.cuni.cz

Contents

β€’ Kerr–NUT–(A)dS geometry

β€’ Integrability of the geodesic motion

β€’ Separability

β€’ Separability of the scalar field equation

β€’ Separability of the vector field equation

β€’ Quasi-normal modes

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 1

Page 3: Separability - utf.mff.cuni.cz

Off-shell Kerr–NUT–(A)dS geometry

geometry given by the existence of hidden symmetries encoded in

the principal tensor

(non-degenerate closed conformal Killing–Yano tensor of rank 2)

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Kerr–NUT–(A)dS geometry 2

Page 4: Separability - utf.mff.cuni.cz

Off-shell Kerr–NUT–(A)dS geometryfor simplicity

even dimensionD = 2N

g =

Nβˆ‘Β΅=1

[UΒ΅XΒ΅

dx2Β΅ +

XΒ΅UΒ΅

(Nβˆ’1βˆ‘j=0

A(j)¡ dψj

)2]

explicit polynomials in coordinates xΒ΅

A(k) =

Nβˆ‘Ξ½1,...,Ξ½k=1Ξ½1<Β·Β·Β·<Ξ½k

x2Ξ½1. . . x2

Ξ½kA(j)Β΅ =

Nβˆ‘Ξ½1,...,Ξ½j=1Ξ½1<Β·Β·Β·<Ξ½jΞ½i 6=Β΅

x2Ξ½1. . . x2

Ξ½jUΒ΅ =

N∏ν=1ν 6=¡

(x2Ξ½ βˆ’ x2

Β΅)

unspecified N metric functions of one variable

XΒ΅ = XΒ΅(xΒ΅)

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Kerr–NUT–(A)dS geometry 3

Page 5: Separability - utf.mff.cuni.cz

On-shell Kerr–NUT–(A)dS geometryfor simplicity

even dimensionD = 2N

g =

Nβˆ‘Β΅=1

[UΒ΅XΒ΅dx2

Β΅ +XΒ΅

UΒ΅

( Nβˆ’1βˆ‘j=0

A(j)¡ dψj

)2]

Einstein equations β‡’

XΒ΅ = Ξ»

N∏ν=1

(a2Ξ½ βˆ’ x2

Β΅

)βˆ’ 2bΒ΅ xΒ΅

Parameters:

Ξ» cosmological parameter related to the cosmological constant Ξ› = (2N βˆ’ 1)(N βˆ’ 1)Ξ»

bΒ΅ mass and NUT parameters

aΒ΅ rotational parameters

freedom in scaling of coordinates β‡’ one parameter can be fixed by a gauge condition

exact interpretation of parameters depends on coordinate ranges, signature, and gauge choices

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Kerr–NUT–(A)dS geometry 4

Page 6: Separability - utf.mff.cuni.cz

Kerr–NUT–(A)dS geometry – Lorentzian signature

g =

Nβˆ‘Β΅=1

[UΒ΅XΒ΅dx2

Β΅ +XΒ΅

UΒ΅

( Nβˆ’1βˆ‘j=0

A(j)¡ dψj

)2]

Wick rotation:

time: Ο„ = ψ0 radial coordinate: xN = ir mass: bN = im

Gauge condition:

a2N = βˆ’1

Ξ» (suitable for limit Ξ»β†’ 0)

New Killing coordinates:

t = Ο„ +βˆ‘k

A(k+1)ψkφ¡aΒ΅

= λτ βˆ’βˆ‘k

(A(k)Β΅ βˆ’ Ξ»A(k+1)

Β΅

)ψk

barred quantities refer to ranges of indices given by N β†’ N = N βˆ’ 1

(i.e., Β΅ = 1, . . . , N and j = 0, . . . , N βˆ’ 1, etc.)

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Kerr–NUT–(A)dS geometry 5

Page 7: Separability - utf.mff.cuni.cz

Kerr–NUT–(A)dS geometry – Lorentzian signature

g = βˆ’βˆ†r

Ξ£

(∏ν

1 + Ξ»x2Ξ½

1 + Ξ»a2Ξ½

dtβˆ’βˆ‘Ξ½

J(a2Ξ½)

aΞ½(1 + Ξ»a2Ξ½)UΞ½

dφν

)2

+Ξ£

βˆ†rdr2

+βˆ‘Β΅

(r2+x2Β΅)

βˆ†Β΅/UΒ΅dx2

Β΅ +βˆ‘Β΅

βˆ†Β΅/UΒ΅(r2+x2

Β΅)

(1βˆ’Ξ»r2

1+Ξ»x2Β΅

∏ν

1+Ξ»x2Ξ½

1+Ξ»a2Ξ½

dt +βˆ‘Ξ½

(r2+a2Ξ½)JΒ΅(a2

Ξ½)

aΞ½(1+Ξ»a2Ξ½) UΞ½

dφν

)2

βˆ†r = βˆ’XN =(1βˆ’Ξ»r2

)∏ν

(r2+a2

Ξ½

)βˆ’ 2mr Ξ£ = UN =

∏ν

(r2 + x2Ξ½)

βˆ†Β΅ = βˆ’XΒ΅ =(1+Ξ»x2

Β΅

)J (x2

¡) + 2b¡x¡ U¡ =∏ν

Ξ½ 6=Β΅

(x2Ξ½ βˆ’ x2

Β΅)

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Kerr–NUT–(A)dS geometry 6

Page 8: Separability - utf.mff.cuni.cz

Kerr–NUT–(A)dS geometry – Lorentzian signature

g = βˆ’βˆ†r

Ξ£

(∏ν

1 + Ξ»x2Ξ½

1 + Ξ»a2Ξ½

dtβˆ’βˆ‘Ξ½

J(a2Ξ½)

aΞ½(1 + Ξ»a2Ξ½)UΞ½

dφν

)2

+Ξ£

βˆ†rdr2

+βˆ‘Β΅

(r2+x2Β΅)

βˆ†Β΅/UΒ΅dx2

Β΅ +βˆ‘Β΅

βˆ†Β΅/UΒ΅(r2+x2

Β΅)

(1βˆ’Ξ»r2

1+Ξ»x2Β΅

∏ν

1+Ξ»x2Ξ½

1+Ξ»a2Ξ½

dt +βˆ‘Ξ½

(r2+a2Ξ½)JΒ΅(a2

Ξ½)

aΞ½(1+Ξ»a2Ξ½) UΞ½

dφν

)2

βˆ†r = βˆ’XN =(1βˆ’Ξ»r2

)∏ν

(r2+a2

Ξ½

)βˆ’ 2mr Ξ£ = UN =

∏ν

(r2 + x2Ξ½)

βˆ†Β΅ = βˆ’XΒ΅ =(1+Ξ»x2

Β΅

)J (x2

¡) + 2b¡x¡ U¡ =∏ν

Ξ½ 6=Β΅

(x2Ξ½ βˆ’ x2

Β΅)

Rotating black holes with NUTs and Ξ›Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Kerr–NUT–(A)dS geometry 6

Page 9: Separability - utf.mff.cuni.cz

Off-shell Kerr–NUT–(A)dS geometry

g =

Nβˆ‘Β΅=1

[UΒ΅XΒ΅

dx2Β΅ +

XΒ΅UΒ΅

(Nβˆ’1βˆ‘j=0

A(j)¡ dψj

)2]

explicit function polynomial in coordinates xΒ΅ (symmetric polynomials)

A(k) =Nβˆ‘

Ξ½1,...,Ξ½k=1Ξ½1<Β·Β·Β·<Ξ½k

x2Ξ½1. . . x2Ξ½k A(j)

Β΅ =Nβˆ‘

Ξ½1,...,Ξ½j=1Ξ½1<Β·Β·Β·<Ξ½jΞ½i 6=Β΅

x2Ξ½1. . . x2Ξ½j UΒ΅ =

N∏ν=1ν 6=¡

(x2Ξ½ βˆ’ x2Β΅)

unspecified N metric functions of one variable

XΒ΅ = XΒ΅(xΒ΅)

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Kerr–NUT–(A)dS geometry 7

Page 10: Separability - utf.mff.cuni.cz

Killing tower and hidden symmetries

g =

Nβˆ‘Β΅=1

[UΒ΅XΒ΅dx2

Β΅ +XΒ΅

UΒ΅

( Nβˆ’1βˆ‘j=0

A(j)¡ dψj

)2]

Principal tensor

h =βˆ‘Β΅

x¡ e¡ ∧ e¡

Primary Killing vector

ΞΎ = βˆ‚Οˆ0

Hidden symmetries – Killing tensors

k(j) =βˆ‘Β΅

A(j)Β΅

(eΒ΅eΒ΅ + eΒ΅eΒ΅

) Explicit symmetries – Killing vectors

l(j) = βˆ‚Οˆj

[k(i),k(j)

]NS

= 0[k(i), l(j)

]NS

= 0[l(i), l(j)

]NS

= 0

Darboux frame

forms:

eΒ΅ =(UΒ΅XΒ΅

)12dxΒ΅ eΒ΅ =

(XΒ΅

UΒ΅

)12

Nβˆ’1βˆ‘j=0

A(j)¡ dψj

vectors:

eΒ΅ =(XΒ΅

UΒ΅

)12βˆ‚xΒ΅ eΒ΅ =

(UΒ΅XΒ΅

)12

Nβˆ’1βˆ‘k=0

(βˆ’x2Β΅)Nβˆ’1βˆ’k

UΒ΅βˆ‚Οˆk

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Kerr–NUT–(A)dS geometry 8

Page 11: Separability - utf.mff.cuni.cz

Integrability of the geodesic motion

Killing tower

hidden symmetries – Killing tensors of rank 2

k(j)

explicit symmetries – Killing vectors

l(j)

commutation in sense of Nijenhuis–Schouten brackets[k(i),k(j)

]NS

= 0[k(i), l(j)

]NS

= 0[l(i), l(j)

]NS

= 0

Conserved quantities

observables quadratic in momentum

Kj = p Β· k(j) Β· pobservables linear in momentum

Lj = l(j) Β· p

Hamiltonian

k(0) = g β‡’ H =1

2K0 =

1

2p2

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Integrability 9

Page 12: Separability - utf.mff.cuni.cz

Integrability of the geodesic motion

Killing tower

hidden symmetries – Killing tensors of rank 2

k(j)

explicit symmetries – Killing vectors

l(j)

commutation in sense of Nijenhuis–Schouten brackets[k(i),k(j)

]NS

= 0[k(i), l(j)

]NS

= 0[l(i), l(j)

]NS

= 0

Conserved quantities

observables quadratic in momentum

Kj = p Β· k(j) Β· pobservables linear in momentum

Lj = l(j) Β· p

Hamiltonian

k(0) = g β‡’ H =1

2K0 =

1

2p2

Integrability

D observables Kj and Lj which are in involution and commute with the Hamiltonian{Ki, Kj

}= 0

{Ki, Lj

}= 0

{Li, Lj

}= 0

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Integrability 9

Page 13: Separability - utf.mff.cuni.cz

Integrability of the geodesic motion

Killing tower

hidden symmetries – Killing tensors of rank 2

k(j)

explicit symmetries – Killing vectors

l(j)

commutation in sense of Nijenhuis–Schouten brackets[k(i),k(j)

]NS

= 0[k(i), l(j)

]NS

= 0[l(i), l(j)

]NS

= 0

Conserved quantities

observables quadratic in momentum

Kj = p Β· k(j) Β· pobservables linear in momentum

Lj = l(j) Β· p

Hamiltonian

k(0) = g β‡’ H =1

2K0 =

1

2p2

Integrability

D observables Kj and Lj which are in involution and commute with the Hamiltonian{Ki, Kj

}= 0

{Ki, Lj

}= 0

{Li, Lj

}= 0

Separability of Hamilton–Jacobi equation

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Integrability 9

Page 14: Separability - utf.mff.cuni.cz

Separability of field equations

The field equations on the off-shell Kerr–NUT–(A)dS background can be separated for:

β€’ Scalar field [2007] VF, PK, DK, A. Seregyeyev

β€’Dirac field [2011] T. Oota, Y. Yasui, M. Cariglia, PK, DK

β€’Vector field [2017] O. Lunin, VF, PK, DK

(including the electromagnetic case)

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability 10

Page 15: Separability - utf.mff.cuni.cz

Standard method of separation of variables

Equation for a sum of terms depending on different variables

Nβˆ‘Β΅=1

fΒ΅(xΒ΅) = S

implies

fΒ΅(xΒ΅) = SΒ΅

where SΒ΅ are constants satisfyingNβˆ‘Β΅=1

SΒ΅ = S

Solution is given by N βˆ’ 1 independent separation constants

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability 11

Page 16: Separability - utf.mff.cuni.cz

Standard method of separation of variables

Equation for a sum of terms depending on different variables

Nβˆ‘Β΅=1

fΒ΅(xΒ΅) = S

implies

fΒ΅(xΒ΅) = SΒ΅

where SΒ΅ are constants satisfyingNβˆ‘Β΅=1

SΒ΅ = S

Solution is given by N βˆ’ 1 independent separation constants

U-separation of variables

Equation for a composition of terms depending on different variables

Nβˆ‘Β΅=1

1

UΒ΅fΒ΅(xΒ΅) = C0

implies

fΒ΅(xΒ΅) = CΒ΅

where CΒ΅ =Nβˆ’1βˆ‘j=0

Cj(βˆ’x2Β΅)Nβˆ’1βˆ’j are polynomials of degree N βˆ’ 1 with the same coefficients Cj

Solution is given by N βˆ’ 1 independent separation constants Cj

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability 11

Page 17: Separability - utf.mff.cuni.cz

U-separation of variables

Equation for a composition of terms depending on different variables

Nβˆ‘Β΅=1

1

UΒ΅fΒ΅(xΒ΅) = C0 UΒ΅ =

N∏ν=1ν 6=¡

(x2Ξ½ βˆ’ x2

Β΅)

implies

fΒ΅(xΒ΅) = CΒ΅ CΒ΅ =

Nβˆ’1βˆ‘j=0

Cj(βˆ’x2Β΅)Nβˆ’1βˆ’j

CΒ΅ are polynomials in variable x2Β΅ of degree Nβˆ’1 with the same coefficients Cj

Solution is given by N βˆ’ 1 independent separation constants Cj, j = 1, . . . , Nβˆ’1

Related to the fact that A(j)Β΅ and

(βˆ’x2Β΅)Nβˆ’1βˆ’j

UΒ΅are inverse matrices

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability 12

Page 18: Separability - utf.mff.cuni.cz

Separability of the scalar field equation

Massive scalar field equation

οΏ½Ο†βˆ’m2Ο† = 0 οΏ½ = βˆ‡ Β· g Β·βˆ‡

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Scalar field 13

Page 19: Separability - utf.mff.cuni.cz

Separability of the scalar field equation

Scalar field equation as the eigenfunction equation

K0 Ο† = K0 Ο† K0 = βˆ’βˆ‡ Β· g Β·βˆ‡ K0 = βˆ’m2

Multiplicative separation ansatz

Ο† =

N∏¡=1

RΒ΅

Nβˆ’1∏k=0

exp(iLkψk

)RΒ΅ = RΒ΅(xΒ΅)

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Scalar field 13

Page 20: Separability - utf.mff.cuni.cz

Separability of the scalar field equation

Scalar field equation as the eigenfunction equation

K0 Ο† = K0 Ο† K0 = βˆ’βˆ‡ Β· g Β·βˆ‡

Multiplicative separation ansatz

Ο† =

N∏¡=1

RΒ΅

Nβˆ’1∏k=0

exp(iLkψk

)RΒ΅ = RΒ΅(xΒ΅)

Eigenfunction equation in coordinates

K0 Ο† = K0 Ο† β‡”βˆ‘Ξ½

1

UΞ½

1

RΞ½

((XΞ½R

β€²Ξ½

)β€²βˆ’ L2

Ξ½

XΞ½RΞ½

)= K0

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Scalar field 13

Page 21: Separability - utf.mff.cuni.cz

Separability of the scalar field equation

Scalar field equation as the eigenfunction equation

K0 Ο† = K0 Ο† K0 = βˆ’βˆ‡ Β· g Β·βˆ‡

Multiplicative separation ansatz

Ο† =

N∏¡=1

RΒ΅

Nβˆ’1∏k=0

exp(iLkψk

)RΒ΅ = RΒ΅(xΒ΅)

Eigenfunction equation in coordinates

K0 Ο† = K0 Ο† β‡”βˆ‘Ξ½

1

UΞ½

1

RΞ½

((XΞ½R

β€²Ξ½

)β€²βˆ’ L2

Ξ½

XΞ½RΞ½

)οΈΈ οΈ·οΈ· οΈΈ

= KΒ΅

= K0

Separated ODEs (XΞ½R

β€²Ξ½

)β€²βˆ’ L2

Ξ½

XΞ½RΞ½ βˆ’ KΞ½RΞ½ = 0

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Scalar field 13

Page 22: Separability - utf.mff.cuni.cz

Separation constants as eigenvalues

Multiplicative separation ansatz

Ο† =

N∏¡=1

RΒ΅

Nβˆ’1∏k=0

exp(iLkψk

)RΒ΅ = RΒ΅(xΒ΅ ; Kj , Lj )

Separated ODEs (XΞ½R

β€²Ξ½

)β€²βˆ’ L2

Ξ½

XΞ½RΞ½ βˆ’ KΞ½RΞ½ = 0

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Scalar field 14

Page 23: Separability - utf.mff.cuni.cz

Separation constants as eigenvalues

Multiplicative separation ansatz

Ο† =

N∏¡=1

RΒ΅

Nβˆ’1∏k=0

exp(iLkψk

)RΒ΅ = RΒ΅(xΒ΅ ; Kj , Lj )

Separated ODEs (XΞ½R

β€²Ξ½

)β€²βˆ’ L2

Ξ½

XΞ½RΞ½ βˆ’ KΞ½RΞ½ = 0

Symmetry operators corresponding to the Killing tower

Kj = βˆ’βˆ‡a kab(j) βˆ‡b Lj = βˆ’i la(j)βˆ‡a

Commutativity of the symmetry operators[Kk,Kl

]= 0

[Kk,Ll

]= 0

[Lk,Ll

]= 0

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Scalar field 14

Page 24: Separability - utf.mff.cuni.cz

Separation constants as eigenvalues

Multiplicative separation ansatz

Ο† =

N∏¡=1

RΒ΅

Nβˆ’1∏k=0

exp(iLkψk

)RΒ΅ = RΒ΅(xΒ΅ ; Kj , Lj )

Separated ODEs (XΞ½R

β€²Ξ½

)β€²βˆ’ L2

Ξ½

XΞ½RΞ½ βˆ’ KΞ½RΞ½ = 0

Symmetry operators corresponding to the Killing tower

Kj = βˆ’βˆ‡a kab(j) βˆ‡b Lj = βˆ’i la(j)βˆ‡a

Commutativity of the symmetry operators[Kk,Kl

]= 0

[Kk,Ll

]= 0

[Lk,Ll

]= 0

Common eigenvalue problem with the eigenvalues given by the separation constants

Kjφ = Kjφ Ljφ = Ljφ

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Scalar field 14

Page 25: Separability - utf.mff.cuni.cz

Separability of the vector field equation

Proca field equation

βˆ‡ Β· F = m2 A F = dA

Vacuum Maxwell equations: m2 = 0

βˆ‡ Β· F = 0 F = dA

Lorenz condition

βˆ‡ Β· A = 0 ⇐ Proca equation

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Vector field 15

Page 26: Separability - utf.mff.cuni.cz

Lunin’s ansatz

Covariant form of the ansatz

A = B Β·βˆ‡Z

Polarization tensor B

B = (g βˆ’ Ξ²h)βˆ’1 B ≑ B(Ξ²) depends on an auxiliary parameter Ξ²

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Vector field 16

Page 27: Separability - utf.mff.cuni.cz

Lunin’s ansatz

Covariant form of the ansatz

A = B Β·βˆ‡Z

Polarization tensor B

B = (g βˆ’ Ξ²h)βˆ’1 B ≑ B(Ξ²) depends on an auxiliary parameter Ξ²

Multiplicative separation ansatz

Z =

N∏¡=1

RΒ΅

Nβˆ’1∏k=0

exp(iLkψk

)RΒ΅ = RΒ΅(xΒ΅)

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Vector field 16

Page 28: Separability - utf.mff.cuni.cz

Vector field equations

Proca equation follows from the Lorenz condition and:

[οΏ½ + 2Ξ² ΞΎ Β·B Β·βˆ‡

]Z = m2Z

m

βˆ‘Ξ½

1

UΞ½

1

RΞ½

((1+Ξ²2x2

Ξ½)( XΞ½

1+Ξ²2x2Ξ½

Rβ€²Ξ½

)β€²βˆ’ L2

Ξ½

XΞ½RΞ½ + iΞ²

1βˆ’Ξ²2x2Ξ½

1+Ξ²2x2Ξ½

Ξ²2(1βˆ’N)LRΞ½

)= C0 ≑ m2

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Vector field 17

Page 29: Separability - utf.mff.cuni.cz

Vector field equations

Proca equation follows from the Lorenz condition and:

[οΏ½ + 2Ξ² ΞΎ Β·B Β·βˆ‡

]Z = m2Z

m

βˆ‘Ξ½

1

UΞ½

1

RΞ½

((1+Ξ²2x2

Ξ½)( XΞ½

1+Ξ²2x2Ξ½

Rβ€²Ξ½

)β€²βˆ’ L2

Ξ½

XΞ½RΞ½ + iΞ²

1βˆ’Ξ²2x2Ξ½

1+Ξ²2x2Ξ½

Ξ²2(1βˆ’N)LRΞ½

)οΈΈ οΈ·οΈ· οΈΈ

= CΞ½

= C0 ≑ m2

Separated ODEs:

(1+Ξ²2x2Ξ½)( XΞ½

1+Ξ²2x2Ξ½

Rβ€²Ξ½

)β€²βˆ’ L2

Ξ½

XΞ½RΞ½ + iΞ²

1βˆ’Ξ²2x2Ξ½

1+Ξ²2x2Ξ½

Ξ²2(1βˆ’N)LRΞ½ βˆ’ CΞ½RΞ½ = 0

CΞ½ =

Nβˆ’1βˆ‘j=0

Cj(βˆ’x2Ξ½)Nβˆ’1βˆ’j separation constants Cj, j = 0, . . . , N βˆ’ 1

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Vector field 17

Page 30: Separability - utf.mff.cuni.cz

Vector field equations

Lorenz condition:

βˆ‡ Β·B Β·βˆ‡Z = 0

m

βˆ‘Ξ½

1

UΞ½

1

1+Ξ²2x2Ξ½

1

RΞ½

((1+Ξ²2x2

Ξ½)( XΞ½

1+Ξ²2x2Ξ½

Rβ€²Ξ½

)β€²βˆ’ L2

Ξ½

XΞ½RΞ½ + iΞ²

1βˆ’Ξ²2x2Ξ½

1+Ξ²2x2Ξ½

Ξ²2(1βˆ’N)LRΞ½

)= 0

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Vector field 18

Page 31: Separability - utf.mff.cuni.cz

Vector field equations

Lorenz condition:

βˆ‡ Β·B Β·βˆ‡Z = 0

m

βˆ‘Ξ½

1

UΞ½

1

1+Ξ²2x2Ξ½

1

RΞ½

((1+Ξ²2x2

Ξ½)( XΞ½

1+Ξ²2x2Ξ½

Rβ€²Ξ½

)β€²βˆ’ L2

Ξ½

XΞ½RΞ½ + iΞ²

1βˆ’Ξ²2x2Ξ½

1+Ξ²2x2Ξ½

Ξ²2(1βˆ’N)LRΞ½

)οΈΈ οΈ·οΈ· οΈΈ

= CΞ½

= 0

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Vector field 18

Page 32: Separability - utf.mff.cuni.cz

Vector field equations

Lorenz condition:

βˆ‡ Β·B Β·βˆ‡Z = 0

m

βˆ‘Ξ½

1

UΞ½

1

1+Ξ²2x2Ξ½

1

RΞ½

((1+Ξ²2x2

Ξ½)( XΞ½

1+Ξ²2x2Ξ½

Rβ€²Ξ½

)β€²βˆ’ L2

Ξ½

XΞ½RΞ½ + iΞ²

1βˆ’Ξ²2x2Ξ½

1+Ξ²2x2Ξ½

Ξ²2(1βˆ’N)LRΞ½

)οΈΈ οΈ·οΈ· οΈΈ

= Cν︸ ︷︷ ︸∝ C(β2)

= 0

Condition on Ξ²:

C(Ξ²2) ≑Nβˆ’1βˆ‘j=0

CjΞ²2j = 0

Ξ²2 must be a root of the polynomial with coefficients given by the separation constants

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Vector field 18

Page 33: Separability - utf.mff.cuni.cz

Polarizations (just guessing)

Condition on Ξ²:

C(Ξ²2) ≑Nβˆ’1βˆ‘j=0

CjΞ²2j = 0

Ξ²2 must be a root of the polynomial with coefficients given by the separation constants

Polarization modes

choice of the root ⇔ choice of the polarization

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Vector field 19

Page 34: Separability - utf.mff.cuni.cz

Polarizations (just guessing)

Condition on Ξ²:

C(Ξ²2) ≑Nβˆ’1βˆ‘j=0

CjΞ²2j = 0

Ξ²2 must be a root of the polynomial with coefficients given by the separation constants

Polarization modes

choice of the root ⇔ choice of the polarization

β€’ N βˆ’ 1 roots

β€’ N βˆ’ 1 complex polarizations

β€’ 2N βˆ’ 2 = D βˆ’ 2 real polarizations

β€’ 1 polarization missing!

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Vector field 19

Page 35: Separability - utf.mff.cuni.cz

Quasi-normal modes of Proca field in 4 dimensions

[ with J. E. Santos ]

β€’ Kerr solution in 4 dimensions

β€’ massive vector field

β€’ numerical search for quasi-normal modes

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Quasi-normal modes 20

Page 36: Separability - utf.mff.cuni.cz

Quasi-normal modes of Proca field in 4 dimensions

[ with J. E. Santos ]

β€’ Kerr solution in 4 dimensions

β€’ massive vector field

β€’ numerical search for quasi-normal modes

β€’ separability allows much more effective calculations

β€’ agreement with previous results based on numeric solution of PDEs and analytic aproximations

β€’ possibility to extend a β€œcomputable” range of parameters

β€’ recovering 2 polarizations (out of 3)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– 

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½ οΏ½οΏ½οΏ½οΏ½ οΏ½οΏ½οΏ½οΏ½ οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½-οΏ½

οΏ½οΏ½-οΏ½

οΏ½οΏ½-οΏ½

οΏ½οΏ½-οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½

●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●■■■■

β– β– β– β– β– β– β– β– 

β– β– β– β– β– β– β– β– β– β– 

β– β– β– β– β– β– β– β– β– β– β– β– β– 

β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– 

β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– 

β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– 

β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– β– 

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½

οΏ½οΏ½οΏ½οΏ½ οΏ½οΏ½οΏ½οΏ½ οΏ½οΏ½οΏ½οΏ½ οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½-οΏ½οΏ½

οΏ½οΏ½-οΏ½οΏ½

οΏ½οΏ½-οΏ½οΏ½

οΏ½οΏ½-οΏ½οΏ½

οΏ½οΏ½-οΏ½

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Quasi-normal modes 20

Page 37: Separability - utf.mff.cuni.cz

Quasi-normal modes of Proca field in 4 dimensions

Sam R. Dolan: Instability of the Proca field on Kerr spacetime, arXiv 1806.01604 (yesterday)

All three polarizations recovered!

οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½ οΏ½οΏ½οΏ½οΏ½ οΏ½οΏ½οΏ½οΏ½ οΏ½οΏ½οΏ½οΏ½ οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½

FIG. 1. Growth rate of the fundamental (n = 0) corotating dipole (m = 1) modes of the Proca field,

for the three polarizations S = βˆ’1 [solid], S = 0 [dashed] and S = +1 [dotted], and for BH spins of

a/M ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.995}. The vertical axis shows the growth rate Ο„βˆ’1 = (GM/c3)Im(Ο‰) on

a logarithmic scale, and the horizontal axis shows MΒ΅.

S n Ο‰R Ο‰I Ξ½R Ξ½I

βˆ’1 0 0.35920565 2.36943Γ— 10βˆ’4 βˆ’0.60028373 βˆ’3.336873Γ— 10βˆ’4

0 0 0.38959049 2.15992Γ— 10βˆ’6 1.84437950 βˆ’9.497225Γ— 10βˆ’7

+1 0 0.39606600 2.565202Γ— 10βˆ’10 0.21767208 βˆ’3.367574Γ— 10βˆ’11

βˆ’1 1 0.38814529 5.996892Γ— 10βˆ’5 βˆ’0.64326832 βˆ’9.391193Γ— 10βˆ’5

βˆ’1 2 0.39509028 1.781747Γ— 10βˆ’5 βˆ’0.65428679 βˆ’2.863793Γ— 10βˆ’5

TABLE I. Parameters for the bound state modes shown in Fig. 3, with m = 1, a/M = 0.99 and MΒ΅ = 0.4.

overtones of the dominant S = βˆ’1 mode will grow more substantially more rapidly than the funda-

mental mode. In essence, this is because in Eq. (2) the coefficient depends on the overtone n and

polarization S, whereas the index depends only on S.

Figure 5 shows the growth rate of the higher modes of the S = βˆ’1 polarization with azimuthal

numbers m = 2, 3 and 4. The superradiant instability persists for higher modes at larger values of

M¡, but the rate becomes insignificant for M¡� 1, due to the exponential fall off of MωmaxI with

MΒ΅ seen in Fig. 5.

Figure 6 highlights the maximum growth rate for the dominant S = βˆ’1, m = 1 mode. For

a = 0.999M , we find a maximum growth rate of MΟ‰I β‰ˆ 4.27 Γ— 10βˆ’4 which occurs at MΒ΅ β‰ˆ 0.542.

This corresponds to a minimum e-folding time of Ο„min β‰ˆ 2.34 Γ— 103(GM/c3). For comparison, a

11

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Quasi-normal modes 21

Page 38: Separability - utf.mff.cuni.cz

Quasi-normal modes of Proca field in 4 dimensions

So, how is it with those polarizations?

-N

ew

York

er

Cart

oon

Post

er

Pri

nt

by

Sam

Gro

ssat

the

Conde

Nast

Collecti

on

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Quasi-normal modes 22

Page 39: Separability - utf.mff.cuni.cz

Summary

Hidden symmetries encoded in the principal tensor determine geometry

β€’ Off-shell Kerr–NUT–(A)dS spacetimes

– includes generally rotating BH in higher dimensions

– includes charged BH in 4 dimensions

– includes conformally rescaled Plebanski–Demianski metric

These spacetimes have nice properties:

β€’ Integrability of the geodesic motion

β€’ Separability of standard field equations

– scalar field

– Dirac field

– vector field (including EM)

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Summary 23

Page 40: Separability - utf.mff.cuni.cz

Summary

Hidden symmetries encoded in the principal tensor determine geometry

β€’ Off-shell Kerr–NUT–(A)dS spacetimes

– includes generally rotating BH in higher dimensions

– includes charged BH in 4 dimensions

– includes conformally rescaled Plebanski–Demianski metric

These spacetimes have nice properties:

β€’ Integrability of the geodesic motion

β€’ Separability of standard field equations

– scalar field

– Dirac field

– vector field (including EM)

suitable for calculation of quasi-normal modes and

study of an instability of the Proca field

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Summary 23

Page 41: Separability - utf.mff.cuni.cz

References

Kerr–NUT–(A)dS and Hidden symmetries

β€’ Frolov V. P., Krtous P., Kubiznak D.: Black holes, hidden symmetries, and complete integrability,Living Rev. Relat. 20 (2017) 6, arXiv:1705.05482

Scalar field

β€’ Frolov V. P., Krtous P., Kubiznak D.: Separability of Hamilton-Jacobi and Klein-Gordon Equations in General Kerr-NUT-AdS Spacetimes,JHEP02(2007)005, arXiv:hep-th/0611245

β€’ Sergyeyev A., Krtous P.: Complete Set of Commuting Symmetry Operators for Klein–Gordon Equation in . . . Spacetimes,Phys. Rev. D 77 (2008) 044033, arXiv:0711.4623

Dirac field

β€’ Oota T., Yasui Y.: Separability of Dirac equation in higher dimensional KerrNUTde Sitter spacetime,Phys. Lett. B 659 (2008) 688, arXiv:0711.0078

β€’ Cariglia M., Krtous P., Kubiznak D.: Dirac Equation in Kerr-NUT-(A)dS Spacetimes: Intrinsic Characterization of Separability . . . ,Phys. Rev. D 84 (2011) 024008, arXiv:1104.4123

β€’ Cariglia M., Krtous P., Kubiznak D.: Commuting symmetry operators of the Dirac equation, Killing-Yano and Schouten-Nijenhuis brackets,Phys. Rev. D 84 (2011) 024004, arXiv:1102.4501

Vector field

β€’ Lunin O.: Maxwell’s equations in the Myers-Perry geometry,JHEP12(2017)138, arXiv:1708.06766

β€’ Krtous P., Frolov V. P., Kubiznak D.: Separation of Maxwell equations in Kerr-NUT-(A)dS spacetimes,preprint (2018), arXiv:1803.02485

β€’ Frolov V. P., Krtous P., Kubiznak D.: Separation of variables in Maxwell equations in Plebanski-Demianski spacetime,Phys. Rev. D 97 (2018) 101701(R), arXiv:1802.09491

β€’ Frolov V. P., Krtous P., Kubiznak D., Santos J. E.: Massive vector fields in rotating black-hole spacetimes: Separability and quasinormal modes,Phys. Rev. Lett. 120 (2018) 231103, arXiv:1804.00030

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 References 24