Seminário termodifusão em colódes magnéticos

download Seminário termodifusão em colódes magnéticos

of 31

Transcript of Seminário termodifusão em colódes magnéticos

  • 8/13/2019 Seminrio termodifuso em coldes magnticos

    1/31

    Determination of the Soretcoefficient value as a function ofthe particle size in Ionic

    Ferrofluids

    Master student: Andr Luiz Sehnem

    Professor: Antnio Martins Figueiredo eto

  • 8/13/2019 Seminrio termodifuso em coldes magnticos

    2/31

    Ferrofluids Magnetic nanoparticles disperded in a li!uid carrier"

    #$pical size in %& nm range" Flo' properties are similar 'ith the li!uid (for moderate

    concentrations) *+ternal control of the fluid movement: magnetic field, light

    irradiation"

    P FF surface covering determines its sta-ilit$ conditions. theelectrostatic interaction in the case of ionic FF or the stericinteraction for surfacted FF"

  • 8/13/2019 Seminrio termodifuso em coldes magnticos

    3/31

    Representation of the IFF

    De-$e length

    Surface charges

    /ounterions fromsolution

    Ionic (eletrostatic nature) interactions areresponsi-le for colloidal e!uili-rium

  • 8/13/2019 Seminrio termodifuso em coldes magnticos

    4/31

    Thermodiffusion

    #hermodiffusion is the movement of particles induced -$ atemperature gradient" #'o directions of movement are possi-le,depending on the surface and solvent properties"

    #he drift of particles in the temperature gradient is a su-0ect ofmuch interest in the condensed matter ph$sics of comple+s$stems"

  • 8/13/2019 Seminrio termodifuso em coldes magnticos

    5/31

    Thermodiffusion of IFF

    #emperature gradientinduces the directional

    diffusion of the FFnanoparticles"

    #he FF grains move in thesame direction (positivel$

    charged) or against(negativel$ charged) the

    temperature gradient"

    #hermodiffusion is characterized -$ the Soret coefficient S T.

    It ta1es positive values 'hen particles move against thetemperature gradient and negative values other'ise"

  • 8/13/2019 Seminrio termodifuso em coldes magnticos

    6/31

    #he diffusion of particles induced -$ the temperature gradientmust -e accounted regarding the continuit$ e!uation:

    c t J M =

    0

    'here appears the flu+ of particles due to thermal andconcentration gradients

    DM

    is the ordinar$ diffusion coefficient.

    D# is thermal diffusion coefficient"

    J M = D M c DT T

    J M = D M ( c+ S T T ) S T = D

    T D M

    D M = k b T

    6 R

  • 8/13/2019 Seminrio termodifuso em coldes magnticos

    7/31

    Temperature gradient induced by a Gaussian beam

    w2= w02 (1+() 2)

    z 0 =

    w 02

    =( z

    z 0

    )

  • 8/13/2019 Seminrio termodifuso em coldes magnticos

    8/31

    Light a-sorption -$ the sample material generates a

    inhomogeneous temperature distri-ution" It gives rise to thetemperature gradient in the sample"

    Solving the heat e!uation 'ith the 2aussian -eam as the heatsource:

    T (r , t ) t D T (r , t )=

    qc p

    Temperature gradient induced by a Gaussian beam

    D is the thermal diffusivit$. is the FF densit$. c

    p the specific heat.

    q is the heat generated"

    #he temperature profile of the sample is found:

    T (r , t )= P 4 (

    ln (1+ 2tt th

    ) 2 r 2

    w2( 2t

    2t + t th)) t th=

    w2

    4D

  • 8/13/2019 Seminrio termodifuso em coldes magnticos

    9/31

    T implies a n :

    #he thermal lens is characterized:

    z 0 f (t )= b z 0

    nT

    d 2

    dr 2(T (r , t ))= P b z 0

    w02 nT

    11+ 2

    2t2t + t c

    = C T 1+ 2

    2t2t + t c

    C T = P b z 0

    w 02

    nT =

    P b

    nT

    is the phase amplitude of thethermal lens

    n (r , t )= n0+ T (r , t ) dndT

  • 8/13/2019 Seminrio termodifuso em coldes magnticos

    10/31

    If T(r,t) is 1no'n, the mass diffusion e!uation ma$ -e anal$zedon stationar$ T(r) condition" An e+pression for c(r,t) is found in

    terms of the parameters:

    . c (r , t ) t = D M (

    2c (r , t )+ S T

    2T (r , t )) 2 T (r , t )= q

    c (r , t ) t = D M

    2c (r , t )

    S T D M q

    c (r , t )= P S T

    4 (ln (1 +

    2t

    t D) 2 r

    2

    w2 (

    2t

    2t + t D)) t D=

    w2

    4 D M

  • 8/13/2019 Seminrio termodifuso em coldes magnticos

    11/31

    #he matter lens o'ing to Soret effect is characterized:

    z 0 f S (t )= b z 0

    nc

    d 2

    dr 2 (c(r , t ))= P b z 0 S T

    w02

    n c

    1

    1+ 22t

    2t + t D = C S 1+ 2

    2t2t + t D

    n= n0+ dndc

    C S = P b z 0 S T

    w02

    n c =

    P b S T

    n c

    is the phase amplitudeof the matter lens

  • 8/13/2019 Seminrio termodifuso em coldes magnticos

    12/31

    A generalized thermal lens model 'as developed to ta1e intoaccount the change in focal length due to all effects"

    n (r , t )= n I I (r , t )+nT T (r , t )+

    nc c (r , t )

    'here the lens -ehavior of the nonlinear effect is alsoconsidered:

    Ref: Alves, S.; Bourdon, A.; Neto, A. M. F.; JOSA B, 20, 713 2003!

    z 0

    f N = b z 0 n

    I [ d

    2

    dr 2 I ]=

    8bz 0 P 0

    w4

    n

    I =

    C N

    (1 +2

    )2

    C N =8bz 0 P 0

    w04

    n I

  • 8/13/2019 Seminrio termodifuso em coldes magnticos

    13/31

    #he change in the transmitted po'er is measured in thecenter of the -eam at a distant position of the -eam 'aist:

    P 0 (t ) P ( z , t )=(

    w02 Z

    2

    w d 2 z 0

    2 )(1 2 z 0 f

    +( 1 + 2 )( z 0 f

    )2

    ) I =2P

    w 2

    And the normalized transmittance is defined as the ratio of intensities:

    T N = I ( z , t ) I ' ( z , t )=

    1

    1 2 z 0 f

    +(1+ 2)( z 0 f

    )2

    1

    f =

    1

    f N +

    1

    f T +

    1

    f S

    T N = 1

    1 2 ( C S

    (1 + 2)( 2t

    2t + t D)+

    C T (1 + 2)

    ( 2t2t + t DT

    )+ C N

    (1 + 2)2)+( 1 + 2)(

    C S (1+ 2)

    ( 2t2t + t D

    )+ C T

    (1+ 2)( 2t

    2t + t DT )+

    C N (1+ 2)2

    )2

  • 8/13/2019 Seminrio termodifuso em coldes magnticos

    14/31

    As the characteristic time of the three phenomena are different, 'ecan use the last e!uation to estimate the phases amplitudes:

    #he nonlinear effect has tc of 3 fs;

    #hermal effects has tc of 3 % ms .

    Mass diffusion of FF Ps occurs 'ith tc3 % s.

    Irradiating the samples 'ith pulses of dozens milliseconds andseconds duration, remains onl$ one varia-le in the e!uation: the

    position "" So, moving the sample through the path of a focused2aussian -eam allo's to o-serve the three lens effect"

  • 8/13/2019 Seminrio termodifuso em coldes magnticos

    15/31

    Z scan technique*+perimental apparatus:

    %"tpulse

    4 5& 6 7& ms,

    2. tpulse

    = 1 seg.

    spacers

    Samples:

    Filling

    2lassslides

  • 8/13/2019 Seminrio termodifuso em coldes magnticos

    16/31

    Lens beha ior in !"scan technique

    Divergent lens: 8 &

    #hermal lens.

    Anionic FFs #D.

    egative nonlinear"

    dndr

    /onvergent lens: 9 &

    /ationic FFs #D.

    Positive nonlinear"

    dndr

  • 8/13/2019 Seminrio termodifuso em coldes magnticos

    17/31

    #imulations

    :5& & 5&

    &,;

    %,&&

    %,&5

    %,&7&7

    Duhr S and Craun D. 5&&= Ph$s" Gev" Lett"#$ %=>7&%

    igolo D, Cram-illa 2 and Piazza G. 5&&H Ph$s"Gev" * 7% &

  • 8/13/2019 Seminrio termodifuso em coldes magnticos

    28/31

    A change in particles surface gives another -ehavior:

    *omparision +ith literature

    Duhr S and Craun D. Proc" at" Acad" Sci",

    5&&=,103 %;=H>

    In this 'or1, the Soret coefficientscales 'ith the surface area: S

    # 3d 5

  • 8/13/2019 Seminrio termodifuso em coldes magnticos

    29/31

    #emperature variation lead to reserval of movement:

    *omparision +ith literature

    Crai-anti M, igolo D and Piazza G. 5&&>Ph$s" Gev" Lett" 100 %&>7&7

  • 8/13/2019 Seminrio termodifuso em coldes magnticos

    30/31

    *onclusion and ne%t steps,

    #he -iggest particle (%< nm) has the -igger (smaller in modulus) Soretcoefficient, 'hile the others are close to the same value"

    #he z scan techni!ue allo's to separate the signals from each induced lensin the sample, and a good evaluation of S

    #"

    ariation in concentration might indicate the collective -ehavior"

    More samples 'ill come to fill the gaps in the S# (D

    part)"

    Does Soret coefficient depends on the particle size

    #his 'or1 ma$ contri-ute to a -etter understanding of the thermodiffusionphenomena"

  • 8/13/2019 Seminrio termodifuso em coldes magnticos

    31/31

    #han1s

    #han1 $ou for attention