Seminar Midas 12 Juli 2011

156
Selasa, 12 Juli 2011 Advanced Finite Element Solutions for Civil Engineers PELAKSANAAN SEMINAR MIDAS PELAKSANAAN SEMINAR & WORKSHOP Institut Teknologi Bandung, July 12 th , 2011 - July 15 th , 2011 Organized by INSTITUT TEKNOLOGI BANDUNG in Association with HAKI and HATTI Sponsored by MIDAS Seminar Booklet Seminar Booklet

description

a

Transcript of Seminar Midas 12 Juli 2011

Page 1: Seminar Midas 12 Juli 2011

Selasa, 12 Juli 2011

Advanced Finite Element Solutions for Civil EngineersPELAKSANAAN SEMINAR MIDAS

PELAKSANAAN SEMINAR & WORKSHOPInstitut Teknologi Bandung, July 12th, 2011 - July 15th, 2011

Organized by INSTITUT TEKNOLOGI BANDUNGin Association with HAKI and HATTI

Sponsored by MIDAS

SeminarBookletSeminarBooklet

Page 2: Seminar Midas 12 Juli 2011
Page 3: Seminar Midas 12 Juli 2011

AGENDA SEMINAR MIDAS

PELAKSANAAN SEMINAR & WORKSHOP

Pembangunan bidang jasa konstruksi infrastruktur di Indonesia saat ini semakin pesat perkembangannya, baik dari segi perencanaan maupun teknologi konstruksinya.

Untuk mendukung perkembangan tersebut, alat bantu perangkat lunak atau software berperan besar dalam mengembangkan bidang jasa konstruksi dan mewujudkan

infrastruktur yang aman dan nyaman. Dengan demikian para pelaku di bidang jasa konstruksi dituntut untuk senantiasa mengembangkan wawasan dan kemampuannya

dalam menggunakan software yang ada. Dalam rangka mewujudkan hal tersebut, maka Fakultas Teknik Sipil Institut Teknologi Bandung (ITB) bekerjasama dengan

HATTI (Himpunan Ahli Teknik Tanah Indonesia), HAKI (Himpunan Ahli Konstruksi Indonesia) dan MIDAS, menyelenggarakan Seminar dan Workshop mengenai Aplikasi

Software dalam Desain dan Konstruksi Infrastruktur.

Time

08.30 ~ 09.15

Agenda Presenter

Registration

ITB / HAKI / HATTI

Mr. Sang Shim (Senior Vice President / MIDAS)

09.15 ~ 09.30 Opening Speech

09.30 ~ 10.00 MIDAS IT and Major Civil Engineering Projects

Building Engineering

10.10 ~ 10.30 Coffee Break

12.00 ~ 13.00 Break ISHOMA

10.00 ~ 10.10 Donation Ceremony from MIDAS to Faculty of Civil andEnvironmental Engineering, ITB

11.00 ~ 12.00 [midas Gen] Seismic Analysis and Design using FiniteElement Analysis Solutions

13.00 ~ 13.30 MIDAS Assisted Bridge Projects: Guideway Structure forJakarta Monorail and Jakarta Non-Toll Elevated Road

13.30 ~ 14.30 [midas Civil] Staged Construction Analysis and Design ofPrestressed Box Girder Bridges

14.30 ~ 15.00 midas Civil Applications in Bridge Design and Construction Engineering

15.30 ~ 16.00 Applications of Finite Element Software for Geotechnical Problems

17.00 ~ 17.30 midas GTS Application in Geotechnical Engineering

16.00 ~ 17.00 [midas GTS] Implementing Advanced 3D Finite Element Solutionsfor Geotechnical Engineers

17.30 ~ 18.00 Seminar Closing Ceremony(Certificate / Survey / Celebrating Prize Winner)

15.00 ~ 15.30 Coffee Break

10.30 ~ 11.00 Problems of Modal Pushover Analysis or Nonlinear Time HistoryAnalysis Incorporating Shear Wall Plasticity for Tall Buildings

Session 1

Bridge EngineeringSession 2

Geotechnical EngineeringSession 3

Prof. Bambang Budiono (ITB)

Prof. Iswandi Imran (ITB)

Prof. I Wayan Sengara (ITB)

Mr. Sudioto Susilo (PT TARUMANEGARA bumiyasa)

Ms. Hyeyeon Lee (MIDAS)

Mr. Nithil Malguri (MIDAS)

Mr. Roger Andrew Pak (MIDAS)

Dr. FX. Supartono (PT Partono Fondas)

Advanced Finite Element Solutions for Civil Engineers

(Bandung, July 12th, 2011 - July 15th, 2011)

Waktu dan tempat Penyelenggaraan

Hari/tanggal : Selasa, 12 Juli 2011 Tempat : Aula Barat, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung

Page 4: Seminar Midas 12 Juli 2011
Page 5: Seminar Midas 12 Juli 2011

Session 1

Building Engineering

PELAKSANAAN SEMINAR & WORKSHOPInstitut Teknologi Bandung, July 12th, 2011 - July 15th, 2011

Page 6: Seminar Midas 12 Juli 2011
Page 7: Seminar Midas 12 Juli 2011

One Stop Solution for Building and General Structures

Midas Gen & SetMidas Gen & Set

Being a central distributor of leading technologies in the world, MIDAS IT has garnered global recognition through its continuous passion and devotion towards the philosophy of human welfare.

MIDAS IT (MIDAS Information Technology Co., Ltd.) provides engineeringsoftware development and distribution, structural engineering consultingservices and web business integrated solutions. The company was officiallyincorporated in September 1, 2000, and consists of structural softwaredevelopers and professional engineers with significant practical experience.Currently, over 300 developers and structural engineers with extensiveexperience support the company. MIDAS IT also has corporate offices in theU.S.A, China, Japan and India, and has grown to a world class companyexporting engineering software over to more than 60 countries worldwide.

MIDAS IT’s vision is in becoming the world best engineering solution developerand distributor. MIDAS IT’s faith is in promoting the happier lives both foremployees and customers. MIDAS IT will relentlessly pursue to become theworld best company which propagates the excellence of Korean engineeringtechnologies.

About MIDAS IT

Page 8: Seminar Midas 12 Juli 2011

� Nastran FX

� NFX-Midas

� midas Gen

� midas Building

� midas Modeler

� midas DShop

� midas Civil

� midas FEA

� midas Abutment

� midas Pier

� midas Deck

� midas GTS 3D

� midas GTS 2D

� midas GeoXD� midas FX+

� FEPartner(PMC in Japan)

� Soil+ (CTC in Japan)

Building Eng. Civil Eng. Geotechnical Eng.Mechanical Eng.

MIDAS Family Program

� midas SET

Introduction to MIDAS Family Programsms

Page 9: Seminar Midas 12 Juli 2011

MIDAS Information Technology Co., Ltd. 5

Integrated Design System for buildings and General StructuresWhy midas Gen

Specialize for Practical

Engineering Projects

Practical

Page 10: Seminar Midas 12 Juli 2011

MIDAS Information Technology Co., Ltd. 7

Integrated Design System for buildings and General StructuresWhy midas Gen

� CAD Interface

Direct Data Transfer with

Takla Structure & Revit

Structure

� mdias Modeler

Automatic Generation of 3D

Structural Analysis Model

� midas Gen

Integrated design system for

building and general

structures

� midas Dshop

Auto-drafting module for

midas Gen

Practical

One-Stop Solution(modeling > analysis & design > drawing)

Onnee(modedrawi

1 One-Stop Solution

Usability Productivity SpecializationPractical Service Reliability

MIDAS Information Technology Co., Ltd. 8

Integrated Design System for buildings and General StructuresWhy midas Gen

� Direct Data Transfer with

Tekla Structures, Revit

Structure

� Import STAAD, MSC.Nastran,

and SAP2000

� Import/Export AutoCAD DXF

Practical

Data ExchangeDat2 Tekla Interface

Analysis & Designmidas Gen

Tekla Structure

Revit Structure Analysis & Design midas Gen

Revit Interface

Usability Productivity Specialization Service ReliabilityPractical

Page 11: Seminar Midas 12 Juli 2011

MIDAS Information Technology Co., Ltd. 9

Integrated Design System for buildings and General StructuresWhy midas Gen

� Stadiums

� Power Plants

� Hangar

� Airport

� Transmission Towers

� Cranes

� Pressure Vessels

� Machine Structures

� Underground

Structures …

Practical

DiversityDiv3 Specialty Structures Applications

Usability Productivity Specialization Service Reliability

Beijing National Stadium Beijing National Aquatic Center Beijing Olympic Basketball Gymnasium

Seoul World Cup Stadium JeonJu World Cup Stadium DeaJeon World Cup Stadium

USA Pavilion China Pavilion German Pavilion

Practical

User-friendlyInterface

and Usage

Usability

Page 12: Seminar Midas 12 Juli 2011

MIDAS Information Technology Co., Ltd. 11

Integrated Design System for buildings and General StructuresWhy midas Gen

� Works Tree (Input summary

with powerful modeling

capabilities)

� Task Pane which enables the

user to freely set optimal

menu system

� Excel compatible tables and

multi-windows

Usability

Works Tree & Task PaneWoWoTas1 Works Tree and Task Pane Excel Compatible Tables

Usability Productivity SpecializationPractical Service Reliability

MIDAS Information Technology Co., Ltd. 12

Integrated Design System for buildings and General StructuresWhy midas Gen

� Story Related Results

• Story Drift for static and

dynamic seismic loads

• Story Shear for Response

Spectrum and Time History

Loads

• Mass center and Stiffness

center by story

• Story Shear Force Ratio for the

columns and shear walls

• Torsional Irregularity Check

• Stiffness Irregularity Check

• Weight Irregularity Check

• Capacity Irregularity Check

• Define Modules for multi-tower

Info

Usability

Useful Features

� St R

Use2 Building Related Features

Building Generation / Structure Wizard Story Data and Floor Diaphragm

Story Related Results

Torsional Irregularity Story Drift

Story Mass

Story Shear Force

Define Module

Usability Productivity Specialization Service ReliabilityPractical

Page 13: Seminar Midas 12 Juli 2011

MIDAS Information Technology Co., Ltd. 13

Integrated Design System for buildings and General StructuresWhy midas Gen

� Shear wall element

� Tension only element

� Beam End Release for

modeling shear connection of

steel members

� Beam End Offset and Panel

Zone Effect for considering

rigid zone in the connections

of beams and columns

� Node Local Axis for modeling

inclined support

Usability

Various Elements & Boundary ConditionsVariVariBou3 Available Element Type

• Compression only• Tension only• Gap • Hook • Viscoelastic Damper• Hysteretic System• Lead Rubber Bearing Isolator• Friction Pendulum System Isolator• Cable • General Beam• Tapered Beam• Plane Stress• Plane Strain• Wall (In-plane, Out-of-plane Bending)• Plate (Thick/Thin, In-plane/Out-of-plane Thickness, Orthotropic)• Axisymmetric• Solid Element (Hexagon, Wedge, Tetrahedron)

• Supports • Elastic Link • Linear Constraints

• Point Spring Supports • Nodal Coordinate System • Rigid Link

• General Spring Supports • Beam End Release(Semi-rigid connection) • Diaphragm Disconnection

• Surface Spring Supports • Beam End Offset • Panel Zone Effects

• Pile Spring Supports • Plate End Release

Applicable Boundary Conditions

Soil Stiffness

Usability Productivity Specialization Service ReliabilityPractical

Fast Modeling, Analysis, and Design Process

Productivity

Page 14: Seminar Midas 12 Juli 2011

MIDAS Information Technology Co., Ltd. 15

Integrated Design System for buildings and General StructuresWhy midas Gen

� All-in-one analysis and design

solution for beam, column,

slab, wall, and footing

� Automatic load combination

and design results

� Optimal steep design and

displacement optimal design

� BOM (Bill Of Materials)

Productivity

All-in-one DesignFeaturesAAllAAll-Fea1 Beam / Column Design Footing Design

Slab / Wall Design Steel Optimal Design

Usability Productivity Specialization Service ReliabilityPractical

MIDAS Information Technology Co., Ltd. 16

Integrated Design System for buildings and General StructuresWhy midas Gen

� Automatic design/checking of

Concrete frame, shear wall,

Steel frame and isolated

footing

� Doubly-reinforced beam

design

� Steel Optimal Design based

on the strength check

� Optimal design based on the

lateral displacement

� Shear wall design considering

boundary element

Productivity

InternationalBuilding CodeInteInteBui2 Available Design Code

Design Results

RC Design Steel Design SRC DesignACI318 AISC-LRFD SSRC79

Eurocode 2, Eurocode 8 AISC-ASD JGJ138BS8110 AISI-CFSD CECS28

IS:456 & IS:13920 Eurocode 3 AIJ-SRCCSA-A23.3 BS5950 TWN-SRCGB50010 IS:800 AIK-SRCAIJ-WSD CSA-S16-01 KSSC-CFT

TWN-USD GBJ17, GB50017 Footing DesignAIK-USD, WSD AIJ-ASD ACI318

KSCE-USD TWN-ASD, LSD BS8110KCI-USD AIK-ASD, LSD, CFSD

Slab Design KSCE-ASDEurocode 2 KSSC-ASD

Usability Productivity Specialization Service ReliabilityPractical

Page 15: Seminar Midas 12 Juli 2011

MIDAS Information Technology Co., Ltd. 17

Integrated Design System for buildings and General StructuresWhy midas Gen

� Multi-Frontal Solver and latest

analysis algorithms for

accurate and practical

analysis results

� Intuitive user interface,

contemporary computer

graphics and substantially

fast solver speed

Productivity

Analysis SpeedAna3 Construction Stage Analysis Boundary Nonlinear Analysis

Pre-tension Girder Analysis Pushover Analysis

Usability Productivity Specialization Service ReliabilityPractical

MIDAS Information Technology Co., Ltd. 18

Integrated Design System for buildings and General StructuresWhy midas Gen

� Blending Effect to adjust the

extent of transparency by

material types, element types

or other attributes

� Work through effect to check

the model with various view

point

� Dynamic views of the model

in real time

� Render View in conjunction

with the dynamic views walk-

through effects

Productivity

Powerful GraphicsPow4 Pre-Processing

Transparency Walk Through

Select Identity, Active Identity Node Information by Query Nodes

Usability Productivity Specialization Service ReliabilityPractical

Page 16: Seminar Midas 12 Juli 2011

MIDAS Information Technology Co., Ltd. 19

Integrated Design System for buildings and General StructuresWhy midas Gen

� Various forms of Graphic

Output for examining

reactions, displacements,

member forces and stresses

� Member Forces for weak and

strong axes simultaneously in

beam diagram

� Iso Surface identifies the

surfaces of equal stresses in

solid elements

� Top and bottom stresses of

plate elements

Productivity

Powerful GraphicsPow4 Beam Displacement Contour Von-mises Stress

Solid Displacement Contour Stress Results

Post-Processing

Usability Productivity Specialization Service ReliabilityPractical

MIDAS Information Technology Co., Ltd. 20

Integrated Design System for buildings and General StructuresWhy midas Gen

� Various forms of Graphic

Output for examining

reactions, displacements,

member forces and stresses

� Member Forces for weak and

strong axes simultaneously in

beam diagram

� Iso Surface identifies the

surfaces of equal stresses in

solid elements

� Top and bottom stresses of

plate elements

Productivity

Post-Processing

Usability Productivity Specialization Service Reliability

Powerful GraphicsPos

Pow4Practical

Page 17: Seminar Midas 12 Juli 2011

MIDAS Information Technology Co., Ltd. 21

Integrated Design System for buildings and General StructuresWhy midas Gen

� Various forms of Graphic

Output for examining

reactions, displacements,

member forces and stresses

� Member Forces for weak and

strong axes simultaneously in

beam diagram

� Iso Surface identifies the

surfaces of equal stresses in

solid elements

� Top and bottom stresses of

plate elements

Productivity

Post-Processing

Usability Productivity Specialization Service Reliability

Powerful GraphicsPos

Pow4Practical

MIDAS Information Technology Co., Ltd. 22

Integrated Design System for buildings and General StructuresWhy midas Gen

� Generation of a report by

Drag & Drop from Report Tree

using analysis and design

results from midas program

� Automatic re-generation of

the report with updates in the

model

� Save a report in MS Word

format

Productivity

Dynamic ReportGenerationDynDynGen5

Drag & Drop

Usability Productivity Specialization Service ReliabilityPractical

Page 18: Seminar Midas 12 Juli 2011

High-end Analysis Features

Specialization

MIDAS Information Technology Co., Ltd. 24

Integrated Design System for buildings and General StructuresWhy midas Gen

� Pushover Analysis• FEMA 273, Eurocode 8, Multi-

linear, Masonry & User-defined hinge type

� Base Isolators and Dampers• Lead Rubber Bearing Isolator• Friction Pendulum System

Isolator• Viscoelastic Damper• Hysteretic System Damper

� Fiber Analysis� Various type of Mass� Seismic Design

• Strong Column Weak Beam Design as per ACI318

• Capacity Design as per EN1992-1-1:04

Info

Specialization

Seismic Analysisand DesignSeiSeiand1 Pushover Analysis Boundary Nonlinear Analysis

Fiber Analysis Capacity Design

Usability Productivity Specialization Service ReliabilityPractical

Page 19: Seminar Midas 12 Juli 2011

MIDAS Information Technology Co., Ltd. 25

Integrated Design System for buildings and General StructuresWhy midas Gen

� Construction Stage Analysis

accounting for change in

geometry, supports and

loading

� Time dependent material

properties of concrete such

as modulus of elasticity,

creep and shrinkage

� 3D Column Shortening Graph

Construction Stage AnalysisConConAna2

CS:1 CS:10

CS:20 CS:30

CS:70 CS:120 CS:166

Time Dependent Material Properties

• CEB-FIP(1990)• CEB-FIP(1978)• ACI209(1982)• PCA(1986)• AASHTO(2006)• INDIA(IRC:18-2000)• EN1992-2:2004• User Defined

Column Shortening Graph

Specialization Usability Productivity Specialization Service ReliabilityPractical

MIDAS Information Technology Co., Ltd. 26

Integrated Design System for buildings and General StructuresWhy midas Gen

� Material Nonlinear Analysis /

Plastic Analysis

� Von-Mises, Tresca, Mohr-

Coulomb & Drucker – Prager

� Structural Masonry Analysis

� Analysis for finding Unknown

Forces by Optimization

� Heat of Hydration Analysis

Nonlinear AnalysisNon3 Plastic Analysis

Large Displacement AnalysisMasonry Nonlinear Analysis

Heat of Hydration

Large Displacement Analysis

Specialization Usability Productivity Specialization Service ReliabilityPractical

Page 20: Seminar Midas 12 Juli 2011

Midas On Demand Service

Service

MIDAS Information Technology Co., Ltd. 28

Integrated Design System for buildings and General StructuresWhy midas Gen

� Official upgrade every year

� Customization for each

market

• New implementation of

design code, section &

material DB, and analysis

improvements upon requests

� Release Note

Service

ProgramPro1 Release Note and Notice

New Implementation in the Latest Version

• Pushover analysis improvement as per N2 method• General Section Check• Footing design, Combined Wall design as per EN1992-1-1:2004 ….

Usability Productivity Specialization Service ReliabilityPractical

Page 21: Seminar Midas 12 Juli 2011

MIDAS Information Technology Co., Ltd. 29

Integrated Design System for buildings and General StructuresWhy midas Gen

� Free Online Training (Twice a

month) for basic introduction

and advanced features

� In-house courses with

specialized training programs

Service

Online/Offline TrainingOnlOnlTra2

Online Training

•Offline Training�Regular training�Company visit & training�Customized training

•Online training�Basic Introduction�Advanced Applications�Customized Sessions

Usability Productivity Specialization Service ReliabilityPractical

Offline Training

MIDAS Information Technology Co., Ltd. 30

Integrated Design System for buildings and General StructuresWhy midas Gen

� Seminar and Workshop

� Web base Q & A system

� Technical papers and Trouble

Shooting Guide

Service

Technical Supportand PapersTecTecand3 Web based Q&A System

Technical Papers

Seminar

Italy SAIE conference, Oct. 2009 UK Cable br. Seminar, 2008

Singapore, Introduction seminar, 2009

Usability Productivity Specialization Service ReliabilityPractical

Page 22: Seminar Midas 12 Juli 2011

VariousProject Applications

Worldwide

Reliability

MIDAS Information Technology Co., Ltd. 32

Integrated Design System for buildings and General StructuresWhy midas Gen

Reliability

Various Project ApplicationsVarVarApp1 Buildings

Plant Structures

� 50 countries, 6500 copies

� Partial List of Client� URS Corp.� Parsons Brinckerhoff � TY LIN � Ove Arup Gr. � Jacobs Engineering � RMJM� Imbsen & Associates� Michael Baker Jr. � R.W. Armstrong and Associates � Hewson Consulting Engineers Ltd� Samsung Eng’g. & Construction � POSCO Steel & Construction� CALTRANS (California Dept. of

Transportation)� Oregon Dept. of Transportation� Pennsylvania Dept. of Transportation� US Army …

Usability Productivity Specialization Service ReliabilityPractical

Page 23: Seminar Midas 12 Juli 2011

MIDAS Information Technology Co., Ltd. 33

Integrated Design System for buildings and General StructuresWhy midas Gen

Reliability

Various Project ApplicationsVarVarApp1 Spatial Structures

Specialty Structures

Usability Productivity Specialization Service ReliabilityPractical

� 50 countries, 6500 copies

� Partial List of Client� URS Corp.� Parsons Brinckerhoff � TY LIN � Ove Arup Gr. � Jacobs Engineering � RMJM� Imbsen & Associates� Michael Baker Jr. � R.W. Armstrong and Associates � Hewson Consulting Engineers Ltd� Samsung Eng’g. & Construction � POSCO Steel & Construction� CALTRANS (California Dept. of

Transportation)� Oregon Dept. of Transportation� Pennsylvania Dept. of Transportation� US Army …

MIDAS Information Technology Co., Ltd. 34

Integrated Design System for buildings and General StructuresWhy midas Gen

� MQC System

(midas Quality Control System)

� Bug Reporting System

Reliability

QA & QC SystemQA 2 Bug Reporting SystemMQC System

Usability Productivity Specialization Service ReliabilityPractical

Verification ExamplesVerVerExa3

� More than 100 Verification

Examples

� Design Verification Examples

Page 24: Seminar Midas 12 Juli 2011

[email protected]://en.midasuser.com/

Integrated Design System for Buildings and General Structures

Page 25: Seminar Midas 12 Juli 2011

1

Seismic Specific Functionality

Seismic Design for New Buildings

Seismic Design for Existing Buildings

Base Isolators and Dampers

Mass

Damping

Modal Analysis

Fiber Analysis

based on Eurocode8

2

Seismic Design for New Buildings

Seismic Design for New Buildings

Seismic Design for Existing Buildings

Base Isolators and Dampers

Mass

Damping

Modal Analysis

Fiber Analysis

Page 26: Seminar Midas 12 Juli 2011

One Stop Solution for Building and General Structures

3

Seismic Design Flowchart (New Buildings)

Seismic Design Process as per Eurocode8 (New buildings)

Seismic Design

Performance Requirement

Ground Condition

Seismic Action

Combination of Seismic Action

Criteria for Structural Regularity

Seismic Analysis

Safety Verification

Capacity Design & Detailing

•Seismic Zone•Representation of seismic action

[Method of Analysis]•Lateral Force method of Analysis•Modal Response Spectrum Analysis•Pushover Analysis•Inelastic Time History Analysis

One Stop Solution for Building and General Structures

4

Performance Requirement and Compliance Criteria

Performance Requirement

No-collapseTNCR=475 yearW/O limitation of collapse

Damage LimitationTDLR=95 yearW/O limitation of use

Compliance Criteria

Ultimate limit statesResistance and Energy Dissipation Capacity need to be checked.

Global level verificationOverturningSliding

Member LevelDuctile component: Plastic RotationBrittle component: Resistance

Damage limitation statesGlobal Level: Inter-story driftMember Level: Resistance (ULS)

Seismic Design Flowchart (New Buildings)Seismic Design

Page 27: Seminar Midas 12 Juli 2011

One Stop Solution for Building and General Structures

5

Ground Conditions

Seismic Design Flowchart (New Buildings)Seismic Design

One Stop Solution for Building and General Structures

6

Seismic action

I II III IV

T=475 year 0.8 1.0 1.2 1.4

Ground Acceleration

Representation of Seismic Action

a. Response Spectrum- Horizontal elastic response spectrum- Vertical elastic response spectrum- Horizontal design response spectrum (Behavior factor, q, is considered.)- Vertical design response spectrum (Behavior factor, q, is considered.)

b. Time history

[Horizontal Elastic Spectrum]

Seismic Design Flowchart (New Buildings)Seismic Design

Page 28: Seminar Midas 12 Juli 2011

One Stop Solution for Building and General Structures

7

Combination of Seismic Action

•Load Combination of permanent loads and variable loads

•100:30 Rule(1.0Ex + 0.3Ey), (0.3Ex + 1.0Ey)(1.0Ex + 0.3Ey + 0.3Ez ), (0.3Ex + 1.0Ey + 0.3Ez), (0.3Ex + 0.3Ey + 1.0Ez)

Seismic Design Flowchart (New Buildings)Seismic Design

One Stop Solution for Building and General Structures

8

Criteria for Structural Regularity

Structural Regularity

Analysis Method

�Lateral Force method of Analysis

�Modal Response Spectrum Analysis

�Pushover Analysis

� Inelastic Time History Analysis

Seismic Design Flowchart (New Buildings)Seismic Design

Page 29: Seminar Midas 12 Juli 2011

One Stop Solution for Building and General Structures

9

Safety Verification

Ultimate Limit States

Resistance condition: MRd >= MEd, VRd >= VEd

Global and local ductility condition: MRc >= 1.3 MRb

Equilibrium condition : overturning or sliding Resistance of horizontal diaphragmResistance of foundationsSeismic joint condition

Damage limitation

Limitation of story drift

Seismic Design Flowchart (New Buildings)Seismic Design

One Stop Solution for Building and General Structures

10

Seismic Design

Ductility Class

DCL (Low ductility)

DCM (Medium ductility)

DCH (High ductility)

Structure Type & Behavior Factor

Seismic Design Flowchart (New Buildings)Seismic Design

Page 30: Seminar Midas 12 Juli 2011

One Stop Solution for Building and General Structures

11

Where,MRb: Beam moment resistanceMce : Column member force

due to seismic load case

Capacity design values of shear forces on beams

Capacity design shear forcein columns

Design Forces of Capacity Design (Beam/Column)

Seismic Design Flowchart (New Buildings)Seismic Design

One Stop Solution for Building and General Structures

12

Design Forces of Capacity Design (Wall)

Fig. 5.3: Design envelope for bending moments in slender walls Fig. 5.4: Design envelope of the shear forces in the walls of a dual system

Wall systems Dual systems

Seismic Design Flowchart (New Buildings)Seismic Design

Page 31: Seminar Midas 12 Juli 2011

13

Seismic Design for Existing Buildings

Seismic Design for New Buildings

Seismic Design for Existing Buildings

Base Isolators and Dampers

Mass

Damping

Modal Analysis

Fiber Analysis

One Stop Solution for Building and General Structures

14

Seismic Assessment of Buildings as per Eurocode8 (Existing buildings)

Performance Requirement

Knowledge Level

Seismic Action

Combination of Seismic Action

Seismic Analysis

Safety Verification

Decision for Structural Intervention

•Seismic Zone•Representation of seismic action

[Method of Analysis]•Lateral Force method of Analysis•Modal Response Spectrum Analysis•Pushover Analysis•Inelastic Time History Analysis

Seismic Design Flowchart (Existing Buildings)Seismic Design

Page 32: Seminar Midas 12 Juli 2011

One Stop Solution for Building and General Structures

15

Performance Requirement and Compliance Criteria

Performance Requirement

Near Collapse (NC) TNCR=2475years

Significant Damage (SD) TNCR=475years

Damage Limitation (DL) TNCR=225years

Compliance Criteria

Near Collapse (NC) Ductile: ultimate deformation (plastic rotation)Brittle: ultimate strength

Significant Damage (SD) Ductile: damage-related deformationBrittle: conservatively estimated strength

Damage Limitation (DL) Ductile: yield strengthBrittle: yield strengthInfills: story drift

Seismic Design Flowchart (Existing Buildings)Seismic Design

Operational DamageLimitation

SignificantDamage

NearCollapse

One Stop Solution for Building and General Structures

16

Knowledge Levels

Seismic Design Flowchart (Existing Buildings)Seismic Design

Page 33: Seminar Midas 12 Juli 2011

One Stop Solution for Building and General Structures

17

Pushover Analysis

Why Pushover Analysis?

a) To verify or revise the over strength ratio values (alpha_u/alpha_1)

b) To estimate the expected plastic mechanisms and the distribution of damage

c) To assess the structural performance of existing or retrofitted buildings

d) As an alternative to the design based on linear-elastic analysis which uses the

behavior factor, q

alpha_u

alpha_1

Hinge status for alpha_uHinge status for alpha_1

Pushover Global Control

Define Lateral Loads

Define Hinge Properties

Assign HingesPerform Analysis

Check Pushover Curve and

Target Disp.

Check Hinge Status

Safety Verification

Process in midas Gen

Seismic Design Flowchart (Existing Buildings)Seismic Design

One Stop Solution for Building and General Structures

18

Safety Verification

Seismic Design Flowchart (Existing Buildings)Seismic Design

Page 34: Seminar Midas 12 Juli 2011

19

Base Isolators and Dampers

Seismic Design for New Buildings

Seismic Design for Existing Buildings

Base Isolators and Dampers

Mass

Damping

Modal Analysis

Fiber Analysis

One Stop Solution for Building and General Structures

20

Base Isolators and Dampers

Base Isolators and Dampers

Dynamics

Objectives of Seismic Isolation Systems

Enhance performance of structures at all hazard levels by:

� Minimizing interruption of use of facility

� Reducing damaging deformations in structural and nonstructural components

� Reducing acceleration response to minimize contents related damage

Characteristics of Well-Designed Seismic Isolation Systems

� Flexibility to increase period of vibration and thus reduce force response

� Energy dissipation to control the isolation system displacement

� Rigidity under low load levels such as wind and minor earthquakes

Page 35: Seminar Midas 12 Juli 2011

One Stop Solution for Building and General Structures

21

Base Isolators and DampersDynamics

Base Isolators:

Lead Rubber Bearing Isolator

Friction Pendulum System Isolator

Applicable Base Isolators in midas Gen

One Stop Solution for Building and General Structures

22

[Viscoelastic Damper] [Hysteretic System Damper]

Applicable Dampers in midas Gen

Base Isolators and DampersDynamics

Page 36: Seminar Midas 12 Juli 2011

One Stop Solution for Building and General Structures

23

Analysis Results (Graph & Text output)

Base Isolators and DampersDynamics

[Hysteretic Graph of Friction pendulum system isolator]

[Hysteretic Graph of Lead rubber bearing isolator]

[Time History Graph at 1st story and 3rd story]

One Stop Solution for Building and General Structures

24

[Without Isolators]

[With Isolators]

Shear force at 1st story column Displacement - Frequency

Displacement - FrequencyShear force at 1st story column

Base Isolators and DampersDynamics

Analysis Results (Time History Graph)

Page 37: Seminar Midas 12 Juli 2011

25

Mass & Damping Ratio

Seismic Design for New Buildings

Seismic Design for Existing Buildings

Base Isolators and Dampers

Mass

Damping

Modal Analysis

Fiber Analysis

One Stop Solution for Building and General Structures

26

Mass

• Nodal Masses• Floor Diaphragm Masses• Loads to Masses• Consistent Mass• Self-weight to Mass

[Lumped Mass and Consistent Mass]

Lumped Mass

Consistent Mass

MassDynamics

210 0 0 0 0 0 10 210 0 0 0 0 10 0 210 0 0 0 10 0 0 210 0 0 24200 0 0 0 210 0 20 0 0 0 0 210 2

L

u

ALIu

���

��

� � � � � � � � � �� �� � � � � � � � � �� � � �

2 2

2 2

140 0 0 70 0 0 10 156 22 0 54 13 10 22 4 0 13 3 1

70 0 0 140 0 0 24200 54 13 0 156 22 2

20 13 3 0 22 4

c

uL L

L L L LALIu

L L

L L L L

���

��

� � � � � �� � � � �� � � � � � � � � � �� � � � �� � �� �

�1 �2

u1 u2

�1 �2

1 2

Page 38: Seminar Midas 12 Juli 2011

One Stop Solution for Building and General Structures

27

Damping

ModalUser defines the damping ratio for each mode, and the modalresponse will be calculated based on the user defined dampingratios.

Mass & Stiffness ProportionalDamping coefficients are computed for mass proportionaldamping and stiffness proportional damping.

Strain Energy ProportionalDamping ratios for each mode are automatically calculated usingthe damping ratios specified for element groups and boundarygroups in Group Damping, which are used to formulate thedamping matrix.

DampingDynamics

28

Modal Analysis

Seismic Design for New Buildings

Seismic Design for Existing Buildings

Base Isolators and Dampers

Mass

Damping

Modal Analysis

Fiber Analysis

Page 39: Seminar Midas 12 Juli 2011

One Stop Solution for Building and General Structures

29

Modal Analysis

Eigen Vectors

Subspace IterationThis method is effectively used when performing eigenvalue analysis for a finite element system of a large scale (large matrix system) and commonly used among engineers.

LanczosTri-diagonal Matrix is used to perform eigenvalue analysis. This method is effectively used when performing eigenvalue analysis for lower modes.

Ritz VectorsUnlike the natural eigenvalue modes, load dependent Ritz vectors produce more reliable results in dynamic analyses with relatively fewer modes. The Ritz Vectors are generated reflecting the spatial distribution or the characteristics of thedynamic loading.

Modal AnalysisDynamics

30

Fiber Analysis

Seismic Design for New Buildings

Seismic Design for Existing Buildings

Base Isolators and Dampers

Mass

Damping

Modal Analysis

Fiber Analysis

Page 40: Seminar Midas 12 Juli 2011

One Stop Solution for Building and General Structures

31

Fiber Analysis

Fiber Cell Result PlottingSection division for Fiber Model definition

Kent & Park Model Menegotto-Pinto Model

Inelastic Material Properties (Stress-strain curve)

Fiber AnalysisDynamics

Thank You!Thank You!

One Stop Solution for Building and General Structuresnd General Structures

[email protected]://en.midasuser.com/

Page 41: Seminar Midas 12 Juli 2011

Session 2

Bridge Engineering

PELAKSANAAN SEMINAR & WORKSHOPInstitut Teknologi Bandung, July 12th, 2011 - July 15th, 2011

Page 42: Seminar Midas 12 Juli 2011
Page 43: Seminar Midas 12 Juli 2011

Contents

Page 44: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 1. Modeling Graphic User Interface

Bridging Your Innovations to RealitiesPart 1. Modeling

Various model display methods

View Control + Display Options

3D Perspective Wire Frame Shrink

Transparent Shell Elements Display of Elements / Loads / Boundaries

Page 45: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 1. Modeling

Effective Width Calculation

Concrete Box Sections

Bridging Your Innovations to RealitiesPart 1. Modeling

Reinforcing Steel

Concrete Box Sections

Display of longitudinal rebars input

Page 46: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 1. Modeling

Section Property Calculator (SPC)

User Defined Section

Bridging Your Innovations to RealitiesPart 1. Modeling

Creep/Shrinkage

Time Dependent Material Properties

Page 47: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 1. Modeling

Compressive Strength

Time Dependent Material Properties

Bridging Your Innovations to RealitiesPart 1. Modeling Bridge Model Wizards

Bridge Wizards

All Types of Cable Bridges> Suspension Bridge

> Cable Stay Bridge

All Types of Segmental Bridges > Balanced Cantilever Bridge

> Incremental Launching Method

> Movable Scaffolding System

> Full Shoring Method

Prestressed Girder, RC Slab, Box Culvert

Page 48: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 1. Modeling

Truss Model

Bridge Model Wizards

Bridging Your Innovations to RealitiesPart 1. Modeling

Cable Stayed Bridge

Bridge Model Wizards

Page 49: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 1. Modeling

Segmental Bridge Model Wizards – based on construction method

Bridge Model Wizards

Bridging Your Innovations to RealitiesPart 1. Modeling

RC Slab Bridge Wizard

Bridge Model Wizards

Page 50: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 1. Modeling

RC Frame / Box Culvert Wizards

Bridge Model Wizards

Bridging Your Innovations to RealitiesPart 1. Modeling Bridge Model Wizards

Grillage Model Wizard

Page 51: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 1. Modeling

3 separate data files merged into one combined model

Merge data files

Support Frame

Vessel 1

Vessels 2&32&3

l 1

upport Frame

Bridging Your Innovations to RealitiesPart 2. Analysis Analysis Capabilities

Analysis Capabilities

Construction Stage AnalysisMoving Load Analysis

> Influence Line & Influence SurfaceEigen Value AnalysisDynamic Analysis

> Response Spectrum > Time History

Large Displacement AnalysisP - Delta AnalysisBuckling Analysis

Thermal Stress AnalysisHeat of Hydration AnalysisNonlinear Analysis

> Material & Geometric Nonlinearity > Pushover & Fiber Model Analysis> Inelastic Time History Analysis> Boundary Nonlinear Analysis

Page 52: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 1. Modeling

Defining Live Loads

Live Load Analysis

Step 1

Select Live Load Code

Step 2

Define Traffic Line Laneor

Traffic Surface Lane

Step 3

Define Standard Vehicular Load or

User-defined Vehicular Load

Bridging Your Innovations to RealitiesPart 2. Analysis Live Load Analysis

Influence Line Results

Page 53: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 2. Analysis Live Load Analysis

Moving Load Tracer + Vehicle Load Conversion to Static Load

Bridging Your Innovations to RealitiesPart 1. Modeling

Transverse Analysis for Multi-Celled Box Sections

Transverse Analysis

Page 54: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 2. Analysis Construction Stage Analysis

Prestressed Concrete – Tendon Prestress Losses & Stress Limits

Bridging Your Innovations to RealitiesPart 2. Analysis Construction Stage Analysis

Balanced-Cantilever Bridge – Geometry (Camber) Control, Table and Graph

Page 55: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 2. Analysis Construction Stage Analysis

Cable-Stayed Bridge – Finding Unknown Load Factors for Optimization

Definition of Unknown Load Factors

Completed Structure Model

Bridging Your Innovations to RealitiesPart 2. Analysis Construction Stage Analysis

Cable-Stayed Bridge – Forward stage analysis

Displacements at the completed state[ Max. – 0.00043 ]

Displacements of forward stage analysis at the last stage using Lack of Fit Force

[ Max. – 0.000426 ]

Construction stage pretension force= Initial pretension force + Lack of Fit Force (additional tension required to install a cable)

Page 56: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 2. Analysis Cable Tuning

Cable-Stayed Bridge – Cable tuning for finer adjustments

Bridging Your Innovations to RealitiesPart 2. Analysis Dynamic Analysis

Time History Analysis – Displacement & Moment

Page 57: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 2. Analysis Dynamic Analysis

Time History Analysis – Shear vs Displacement Graph

Bridging Your Innovations to RealitiesPart 2. Analysis Nonlinear Analysis

Dynamic Boundary Nonlinear Analysis – Bearings & Isolatorsry Nonlinear Analysis – Bearings & Isolators

Page 58: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 2. Analysis Nonlinear Analysis

Dynamic Boundary Nonlinear Analysis – Bridge behavior with the base isolators

Bridging Your Innovations to RealitiesPart 2. Analysis Nonlinear Analysis

Pushover Analysis – Performance Based Seismic Design

Select Load or Displacement Control

Define Inelastic Hinge Properties

Pushover Analysis

Review Capacity of Structure

Performance Point by CSM

Evaluation of Structure to Resist Earthquake

Static Analysis and Member Design

Page 59: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 2. Analysis Nonlinear Analysis

Pushover Analysis – Capacity Curves

Yield Point

Maximum Capacity

Node 2

Node 3

Node 4

Node 5

Bridging Your Innovations to RealitiesPart 2. Analysis Nonlinear Analysis

Pushover Analysis – Evaluation of Structure by Design Spectrum

Performance Point

Page 60: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 1. Modeling

General Section Design

General Sections

Bridging Your Innovations to RealitiesPart 2. Analysis Nonlinear Analysis

Material Nonlinear Analysis

Truss

Element types

Plane Stress

Plane Strain

Axisymmetric

Solid

Tresca

Plastic Material Models

Von Mises

Mohr-Coulomb

Drucker-Prager

Isotropic

Hardening Models

Kinematic

Mixed

Page 61: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 2. Analysis Nonlinear Analysis

Nonlinear / Inelastic Time History Analysis

Kinematic Hardening Clough

Takeda Modified Taketa

Bridging Your Innovations to RealitiesPart 2. Analysis Nonlinear Analysis

Inelastic Time History Analysis results

0.27

0.23

0.16

0.28

Page 62: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 2. Analysis Nonlinear Analysis

Nonlinear dynamic analysis using Fiber Model

Bridging Your Innovations to RealitiesPart 2. Analysis Nonlinear Analysis

Nonlinear dynamic analysis using Fiber Model – Defining hysteretic model of concrete

Kent & Park Model Japan Concrete

Standard Specification Model

Japanese Roadway Specification Model

Trilinear Concrete Model

Page 63: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 2. Analysis Nonlinear Analysis

Nonlinear dynamic analysis using Fiber Model

Bridging Your Innovations to RealitiesPart 2. Analysis Heat of Hydration Analysis

Temperature Contour with / without Cooling Pipes

Without Cooling Pipes With Cooling Pipes

Page 64: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 2. Analysis Post-processing Features

Plate Moments – Cutting Diagrams

Bridging Your Innovations to RealitiesPart 2. Analysis Post-processing Features

Solid Stresses – Iso Surface

Page 65: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 3. Design PSC Design

PSC Design as per AASHTO LRFD08

Bridging Your Innovations to RealitiesPart 3. Design Bridge Load Rating Design

Bridge Load Rating Design as per AASHTO LRFR – Permit Vehicle & Moving Load Case

Lane 1

Lane 2

LaLL ne 1

Lane 2Permit Vehicle

Page 66: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesPart 3. Design Reinforced Concrete Design

Reinforced Concrete Design as per AASHTO LRFD – Design Report

Bridging Your Innovations to RealitiesPart 1. Modeling

Dynamic Report Generator

Dynamic Report Generator

y p

Page 67: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesProject Applications

[ Composite Girder Bridge ]

[ Arch Bridge ]

[ Post-tensioned Box Girder Bridge ]

[ Suspension Bridge ]

[ Cable-stayed Bridge ]

� Market Leader Worldwide

� Applied to Major Projects

Bridging Your Innovations to RealitiesProject Applications

Ironton-Russell Bridge

Overall bridge length 1,900 ft

Main span 950 ft

Tower height 519 ft

Location Crossing the Ohio River between Ironton and Russell

Function/usage Roadway Bridge

Designer Michael Baker, Jr., Inc.

Cost of construction $110 Million

Number of elements and element types used

Truss (Cable): 70Beam: 2088Shell: 2730

Type of analysis

Construction Stage Analysis with Time-Dependent EffectsUnknown Load Factor AnalysisEigenvalue AnalysisThermal AnalysisVehicle Load Optimization

Ironton-Russell Bridge

Overall

Main sp

Tower

Locatio

Functio

Design

Cost of

Numbeand eleused

Type o

Ironton Russell Bridge

Page 68: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesProject Applications Galena Creek Bridge

Overall bridge length 525 m

Main Span 210 m

Location Washoe County, Nevada

Function/usage Roadway Bridge

Modeled by Hilliard C. Bond, P.E. (of Parsons)

Number of elements and element types used

Beam: 400Tendon Profile: 10(lumped representative tendons)

Type of analysisConstruction Stage Analysis with Time-Dependent Effects

Vehicle Load Optimization

and element types used

Overall bridge length

Main Span

Location

Function/usage

Modeled by

Number of elements and element types use

Bridging Your Innovations to RealitiesProject Applications

Bang Hwa Bridge

Overall bridge length 2559 m

Location Seoul

Function/usage Roadway Bridge

Designer Sam An Engineering

Year of completion 2000

Cost of construction $ 0.2 Billion

Number of elements and element types used

Beam: 2603

Type of analysisEigen Value AnalysisResponse Spectrum AnalysisVehicle Load Optimization

Overall bri

Location

Function/u

Designer

Year of co

Cost of co

Number ofand elemeused

Type of an

Page 69: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesProject Applications

Kum Ga Bridge – 7 Spans of Extradosed bridge

Overall bridge length 795 m

Location Chung Ju

Function/usage Roadway Bridge

Designer Chung Suk Engineering

Number of elements and element types used

Truss (Cable): 144Beam: 644

Type of analysis

Construction Stage Analysis with Time-Dependent EffectsCable Tension OptimizationGeometric Nonlinear AnalysisVehicle Load Optimization

95 m

hung Ju

oadway

hung Su

uss (Caeam: 64

onstructth Timeable Teneometricehicle Lo

Overall bridge length 79

Location Ch

Function/usage Ro

Designer Ch

Number of elements and element types used

TruBe

TyTyTyTyTyTyTyTyyyTyTyTyTyyTyTyTyTyTyyTyTyyyyyyyyTyyyyyyyTyTTTyTyTyyyyyyyyyyyyyyyyyyyyyyyyTyTyTyTyTyTyyyyyyyyyyyypeppppepepepepepepepeeeeeeeeepepeppeppppepepeppepepepepepeepeepeppepepepeeepepppeeeeppeppeeeeepepppepeeeepppppepeeepppppeepppppeeeppppppepppppeeeppppppeppeeeepppppppepppppppppeeppppeppepppppeppppppppeppppeppppppppppppppppeeppppppppepppppppppppppppppppppp oooo o o o ooof f ana alysis

CowitCaGeVe

Bridging Your Innovations to RealitiesProject Applications

Overall bridge length 4420 m

Tower height 107 m

Location Incheon

Function/usage Roadway / Railway Bridge

Designer U Sin Corporation

Year of completion 2000

Cost of construction $ 0.9 Billion

Number of elements and element types used

Truss (Cable): 162Beam: 1930

Type of analysis

Response Spectrum AnalysisEigen Value AnalysisLarge Displacement AnalysisVehicle Load Optimization

Young Jong Bridge – World’s 1st 3D self-anchored suspension bridge

4420 m

10

all bridg

er heigh

tion

ction/usa

gner

of com

of cons

ber of eent type

of anal

Young Jong Bridge – World s 1st 3D self-ff anchored suspension

Overa

Towe

Locat

Func

Desig

Year

Cost

Numbeleme

TyType

g g g p

Page 70: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesProject Applications

Overall bridge length 1480 m

Main span 800 m

Tower height 230 m

Location Incheon

Function/usage Roadway Bridge

Designer Seoyeong Engineering and Chodai Co., Ltd

Year of completion 2009

Cost of construction $ 2.4 Billion

Number of elements and element types used

Truss (Cable): 176Beam: 1653

Type of analysis

Construction Stage Analysis with Time-Dependent EffectsCable Tension OptimizationGeometric Nonlinear AnalysisVehicle Load Optimization

Incheon 2nd Bridge – 5th Longest Cable Stayed Bridge

mbridge le

an

eight

n

n/usage

r

complet

construc

of elemtypes u

analysis

Incheon 2nd Bridge – 5th Longest Cable Stayed Bridge

Overall b

Main spa

Tower he

Location

Function

Designe

Year of c

Cost of c

Number element

TyTyyTyTTTTT pep of a

g g y g

Bridging Your Innovations to RealitiesProject Applications

Overall bridge length 1600 m

Main span 1018 m

Tower height 295 m

Location Between Tsing Yi and Kowloon City, Hong Kong, China

Function/usage Roadway Bridge

Designer Ove Arup & Partners

Cost of construction $355 Million

Number of elements and element types used

Truss (Cable): 224Beam: 1638

Type of analysis

Construction Stage Analysis with Time-Dependent EffectsCable Tension OptimizationGeometric Nonlinear AnalysisEigenvalue AnalysisThermal AnalysisBuckling Analysis

Stonecutters Bridge – 2nd Longest Cable Stayed Bridge

m

m

bridge l

an

eight

n

n/usage

er

constru

r of elemment typ

anananannaaaaaa ala ysi

Overall b

Main spa

Tower h

Location

Function

Designe

Cost of c

Number and elem

TyTyTyTyTyTyyyTyTyypepepepepepepepepepepeeeeeeppp ooooooooooooooooooooooo ooo offfffffff f f f ffff

Page 71: Seminar Midas 12 Juli 2011

Bridging Your Innovations to RealitiesProject Applications

Overall bridge length 8206 m

Main span 1088 m

Tower height 306 m

Location Crossing Yangtze River in China between Nantong and Changshu

Function/usage Roadway Bridge

DesignerJiangsu Province Communications Planning and Design Institute

Cost of construction $750 Million

Number of elements and element types used

Truss (Cable): 272Beam: 760

Type of analysis

Construction Stage Analysis with Time-Dependent EffectsCable Tension OptimizationGeometric Nonlinear AnalysisEigenvalue AnalysisThermal AnalysisBuckling Analysis

Sutong Bridge – Longest Cable Stayed Bridge

m

m

ge leng

ht

age

struction

elementt types

llysysis

Sutong Bridge – Longest Cable Stayed Bridge

Overall bridg

Main span

Tower heigh

Location

Function/us

Designer

Cost of cons

Number of eana d elementussuu ede

TyTyTyTyTyTyTyTyTyTyTyTyTyTTyTyypepepepepepepepe o o oof ffffff fffffffff fff ananaanananannnanananaaaaaaaaaaaaaaaaaa aaaaa

g g

Page 72: Seminar Midas 12 Juli 2011
Page 73: Seminar Midas 12 Juli 2011

1) This paper is presented in the Midas Seminar at ITB Bandung, 12 July 2011. 2) Director of PT. Partono Fondas Eng Consultant, Associate Professor of UI & Untar. 3) Structure Engineers of PT. Partono Fondas Eng Consultant. 

PENGGUNAAN MIDAS CIVIL PADA PERENCANAAN DAN CONSTRUCTION ENGINEERING UNTUK JEMBATAN BETON 1)

FX Supartono 2)

Sin Hok Taruna 3)

Darwin Chandra 3) Bong Yoki Tjung 3)

Jonathan Sandjaja 3)

ABSTRAK Makalah ini menyampaikan penggunaan software Midas Civil 2010 pada perencanaan dan construction engineering untuk beberapa jembatan beton di Indonesia. Tiga contoh aplikasi diberikan untuk jembatan beton tipe pelengkung ganda, jembatan beton tipe balance cantilever, dan jembatan beton tipe cable stayed. Contoh jembatan pertama dilakukan untuk perencanaan, contoh jembatan kedua untuk independent proof check, dan contoh jembatan ketiga dilakukan untuk construction engineering. Pada bagian akhir makalah, disampaikan kesan dari penggunaan software Midas Civil dalam mengerjakan analisis dan perencanaan jembatan tersebut di atas. KATA KUNCI: jembatan pelengkung, jembatan balance cantilever, jembatan cable stayed. ABSTRACT This paper presents the Midas Civil 2010 application on the design and construction engineering of various concrete bridges in Indonesia. Three application examples have been presented, i.e. for the multiple arch concrete bridge, balance cantilever concrete bridge, and cable stayed concrete bridge. The first example is concerning the design work; second example is for the independent proof checking work; while the third example has the purpose for construction engineering and deflection control during construction. Remarks are presented at the end of this paper as impressions in using this software for the bridge design and engineering works. KEY WORDS: arch bridge, balance cantilever bridge, cable stayed bridge. 1. PENDAHULUAN

Perencanaan jembatan harus didasarkan pada suatu prosedur yang memberikan jaminan kelayakan pada berbagai aspek, yaitu antara lain: a. Keamanan dan stabilitas struktur b. Kenyamanan bagi pengguna jembatan c. Ekonomis d. Durabilitas (keawetan dan kelayakan jangka panjang) e. Kemudahan pemeliharaan f. Estetika g. Dampak lingkungan pada tingkat yang wajar dan cenderung minimal.

Dari berbagai kriteria perencanaan tersebut di atas, kriteria “keamanan dan stabilitas struktur” menempati urutan pertama.

Page 74: Seminar Midas 12 Juli 2011

2  

Untuk struktur-struktur jembatan dengan bentuk geometris dan pola struktur yang rumit, yang biasanya disebut sebagai “jembatan tipe khusus”, perencanaan harus dilakukan dengan lebih mendalam yang ditinjau dari berbagai aspek, baik statik dan dinamik (pada kondisi struktur hiperstatik), maupun juga akibat beban-beban khusus seperti temperatur, rangkak dan susut beton, aero-dinamik, gempa dan lain sebagainya, yang pada umumnya merupakan beban-beban non-linier. Di samping masalah pembebanan yang rumit, “jembatan tipe khusus” seperti balance cantilever, cable stayed, perencanaannya tidak dapat hanya dilakukan pada kondisi “jembatan jadi”, melainkan juga harus memperhitungkan tahapan konstruksi (construction stage), yang rekam jejak tegangan dan deformasinya perlu dikombinasikan dengan kondisi tegangan dan deformasi setelah “jembatan jadi” akibat beban lalu lintas dan beban-beban khusus lainnya. Hal ini lebih diperumit lagi bahwa beban temperatur dan rangkak/susut beton sudah muncul pada construction stage. Semua kerumitan di atas mengakibatkan bahwa perencanaan jembatan-jembatan tipe khusus tersebut hampir tidak mungkin dilakukan secara manual lagi, sehingga diperlukan dukungan suatu software (program) yang canggih dan dapat dipercaya keandalannya. Midas Civil 2010 dipilih karena mempunyai berbagai fitur untuk analisis yang bisa menjawab kerumitan analisis struktur dengan proses input yang relatif mudah. Untuk jembatan berbentang panjang seperti jembatan cable stayed dan jembatan gantung, Midas Civil mempunyai pula wizard yang cukup canggih dalam membantu proses analisis dan perencanaan yang rumit dengan derajat ketidak-tentuan statik yang sangat tinggi. Di dalam makalah ini akan disampaikan tiga contoh aplikasi Midas Civil 2010 untuk: 1. Perencanaan jembatan beton tipe pelengkung di Teluk Balikpapan (optimasi

Kontraktor). 2. Proof checking jembatan beton tipe balance cantilever berbentang panjang di

Bekasi. 3. Construction engineering untuk jembatan beton tipe cable stayed di Manado.

2. JEMBATAN BETON TIPE PELENGKUNG GANDA 2.1. Gambaran Umum Jembatan ini merupakan jembatan beton tipe pelengkung ganda yang menunjang lantai kendaraan melalui kolom-kolom beton, dengan karakteristik geometris dan mutu beton sebagai berikut:

Panjang total jembatan : 430 meter Jumlah bentang : 3 bentang + 2 x setengah bentang (tepi) Jumlah jalur/lajur lalu lintas : 2 jalur x 1 lajur untuk 2 arah + lajur sepeda

motor untuk masing-masing arah Mutu beton : fc’ = 40 MPa Modulus elastisitas beton (E) : 'f4700 C = 29725 MPa Poisson ratio beton (ν) : 0,20

Page 75: Seminar Midas 12 Juli 2011

 

Modulus

Koefisien

geser beto

n muai pana

n (G)

as beton

: ( )ν+12E

: 11·10-6 /

Gam

bar 2

.1. Tam

pak mem

anjang

 jembatan pe

lengkung

 beton

 [satuan panjang: m

m] 

= 12385 M

/°C

MPa

Gam

bar 2

.2. Poton

gan melintang

 jembatan pe

lengkung

 beton

 [satuan panjang: m

m] 

Page 76: Seminar Midas 12 Juli 2011

4  

2.2. Modelisasi Midas Civil

Gambar. 2.3. Modelisasi struktur jembatan pelengkung dengan Midas Civil

Gambar. 2.4. Modelisasi hubungan deck jembatan dan kolom Struktur jembatan secara keseluruhan dimodelkan sebagai elemen-elemen hingga, di mana pilar (kolom) utama, kolom di atas pelengkung, balok pelengkung dan balok penghubung (cross beam) dimodelkan sebagai beton bertulang (reinforced concrete), sedangkan elemen dek jembatan dimodelkan sebagai beton prategang (prestressed concrete, PSC). Tulangan non-prategang maupun kabel prategang ikut dimodelkan (diikutsertakan dalam pemodelan). Tulangan non-prategang yang berupa tulangan lentur dan geser ikut dimodelkan pada setiap elemen beton bertulang (reinforced concrete) maupun pada beton prategang (prestressed concrete), sedangkan kabel prategang dimodelkan sebagai tendon-tendon pada dek jembatan dalam arah longitudinal dan transversal. Pada side span, hubungan antara kolom di atas pelengkung dan dek jembatan dibuat rigid (kaku). Sedangkan pada main span kami modelkan dengan menggunakan cross beam (balok penghubung) di antara kolom di atas pelengkung pada arah transversal. Selain itu terdapat elastomeric bearing yang menghubungkan kolom di atas pelengkung dengan dek jembatan. Elastomeric bearing tersebut dimodelkan sebagai pegas multi direction. Modelisasi side span dan main span dari struktur jembatan dapat dilihat pada gambar-gambar berikut ini.

Page 77: Seminar Midas 12 Juli 2011

 

G

Gamba

Gamba

Gambar 2.7

ar 2.5. Mode

r 2.6. Mode

7. Modelisas

elisasi side

elisasi main

si main spa

span yang

span deng

an dengan e

dibuat mon

an cross be

elastomeric

nolit

eam

bearing

Page 78: Seminar Midas 12 Juli 2011

6  

Moving load yang dimodelkan dalam perencanaan struktur ini dilakukan sesuai dengan standar AASHTO. Penentuan letak moving load untuk menghasilkan gaya dalam maksimum dapat secara otomatis ditentukan oleh Midas Civil 2010.

Gambar 2.8. Modelisasi beban truk

Gambar 2.9. Modelisasi BTR dan BGT

Page 79: Seminar Midas 12 Juli 2011

7  

2.3. Analisis Dinamika Struktur  

Analisis dinamik dilakukan khususnya untuk menganalisis respons struktur terhadap gempa. Dalam modelisasi struktur jembatan, elastomeric bearing dimodelkan dengan sistem multi direction movement. Di bawah ini adalah hasil analisis dinamik dengan menggunakan Midas Civil 2010, ditunjukkan dalam ragam getar Mode 1 sampai dengan Mode 8.

Gambar 2.10.a. Mode 1 Gambar 2.10.b. Mode 2 Gambar 2.10.c. Mode 3

Gambar 2.10.d. Mode 4

Page 80: Seminar Midas 12 Juli 2011

8  

Gambar 2.10.e. Mode 5

Gambar 2.10.f. Mode 6

Gambar 2.10.g. Mode 7

Gambar 2.10.h. Mode 8

Page 81: Seminar Midas 12 Juli 2011

 

2 Bd

2

2.4. Conto

Berdasarkadiperoleh di

G

2.4.1. Has

A

oh Hasil An

n hasil anagram tega

Ga

Gam

Gambar 2.13

il Teganga

Arah Longitu

Gambar

Gambar

nalisis Dek

nalisis denangan sebag

mbar 2.11.

mbar 2.12. P

3. Posisi teg

n pada Ko

udinal

r 2.14.a. Te

r 2.14.b. Te

Jembatan

ngan menggai berikut.

Potongan m

Potongan m

gangan yan

ndisi Trans

gangan kon

gangan kon

ggunakan

memanjang

melintang de

g dianalisis

sfer

ndisi transfe

ndisi transfe

program M

g jembatan

ek jembatan

s pada dek j

er pada pos

er pada pos

Midas Civi

n

jembatan

sisi 1

sisi 3

l 2010,

Page 82: Seminar Midas 12 Juli 2011

10  

Arah Transversal

Gambar 2.15.a. Tegangan kondisi transfer pada posisi 1

Gambar 2.15.b. Tegangan kondisi transfer pada posisi 3

2.4.2. Hasil Tegangan pada Kondisi Service

Arah Longitudinal

Gambar 2.16.a. Tegangan kondisi service pada posisi 1

Gambar 2.16.b. Tegangan kondisi service pada posisi 3

Arah Transversal

Gambar 2.17.a. Tegangan kondisi service pada posisi 1

Gambar 2.17.b. Tegangan kondisi service pada posisi 3

Page 83: Seminar Midas 12 Juli 2011

11  

2.5. Contoh Hasil Analisis Balok Pelengkung Hasil analisis pada balok pelengkung dapat dilihat pada calculation sheet di bawah ini:

Page 84: Seminar Midas 12 Juli 2011

12  

2.6. Contoh Hasil Analisis Pilar Utama Hasil analisis pada pilar (kolom) utama dapat dilihat pada calculation sheet di bawah ini:

Page 85: Seminar Midas 12 Juli 2011

13  

3. JEMBATAN BETON TIPE BALANCE CANTILEVER 3.1. Gambaran Umum Jembatan ini merupakan jembatan beton dengan metode konstruksi Balance Cantilever, dengan karakteristik geometris dan mutu beton sebagai berikut: Panjang total jembatan : 644 meter

Jumlah bentang : 12 bentang terdiri dari: 4 bentang untuk jembatan pendekat kiri (struktur I-girder) 3 bentang untuk jembatan utama (struktur Balance Cantilever) 5 bentang untuk jembatan pendekat kanan (struktur I-girder)

Panjang bentang utama : 130 meter

Jumlah jalur dan lajur lalu lintas : 2 jalur x 2 lajur untuk 2 arah Mutu beton (fc’) : 50 MPa (Girder)

40 MPa (Deck Slab) 35 MPa (Pier) 30 MPa (Abutment, Pile Cap, Bore Pile,

Parapet & Retaining Wall) Modulus elastisitas (E) : 'f4700 C

: 33234 MPa (Girder) 29725 MPa (Deck Slab) 27806 MPa (Pier) 25743 MPa (Abutment, Pile Cap, Bore Pile,

Parapet & Retaining Wall)

Poisson ratio beton (ν) : 0,20

Modulus geser (G) : ( )ν+12E

: 13848 MPa (Girder) 12386 MPa (Deck Slab) 11586 MPa (Pier) 10726 MPa (Abutment, Pile Cap, Bore Pile,

Parapet & Retaining Wall) Berat jenis : 25 kN/m3

Koefisien muai panas beton : 11·10-6 /°C Karena keterbatasan halaman, di dalam makalah ini hanya akan dijelaskan mengenai jembatan utama saja.

Page 86: Seminar Midas 12 Juli 2011

14  

800

4%4%

320

800

320

320

SSFB

160

Expa

nsion

Joint

SSFB

160

Expa

nsion

Joint

Neop

rene

Joint

Neop

rene

Joint

Gam

bar 3

.1. P

oton

gan

mem

anja

ng je

mba

tan

Page 87: Seminar Midas 12 Juli 2011

15  

3.2. Modelisasi Midas Civil

Gambar 3.2. Model 2D memanjang jembatan

Gambar. 3.3. Model 3D memanjang jembatan

Gambar 3.4. Model melintang gelagar box jembatan Karena struktur yang ditinjau menggunakan metode konstruksi Balance Cantilever, maka perlu dibuat tahapan-tahapan konstruksi (construction stage). Analisis tahapan konstruksi ini penting dalam menentukan perilaku rekam jejak tegangan dan deformasi setiap segmen jembatan dari masa konstruksi segmental hingga masa layan. Tanpa memperhitungkan tegangan dan deformasi struktur jembatan dari masa konstruksi, hasil akhir analisis struktur dapat menjadi sangat berbeda (salah). Dalam contoh ini, tahapan konstruksi telah dianalisis dengan menggunakan pemodelan seperti di bawah ini (tahapan ditampilkan di sini mulai Stage 2 setelah Stage 1 yang merupakan tahap konstruksi pilar tepi dan pilar tengah).

Gambar. 3.5.a. Stage 2 Jembatan Utama

Page 88: Seminar Midas 12 Juli 2011

16  

Gambar. 3.5.b. Stage 4 Jembatan Utama

Gambar. 3.5.c. Stage 7 Jembatan Utama

Gambar. 3.5.d. Stage 10 Jembatan Utama

Gambar. 3.5.e. Stage 13 Jembatan Utama

Gambar. 3.5.f. Stage 16 Jembatan Utama

Page 89: Seminar Midas 12 Juli 2011

17  

Gambar. 3.5.g. Stage 20 Jembatan Utama (jembatan jadi)

3.3. Analisis Dinamika Struktur Analisis dinamik yang ditampilkan di sini hanya meliputi analisis respons struktur terhadap gempa untuk Jembatan Utama, yang dapat dilihat pada 5 ragam getar di bawah ini.

Gambar 3.6.a. Mode 1

Gambar 3.6.b. Mode 2

Page 90: Seminar Midas 12 Juli 2011

18  

Gambar 3.6.c. Mode 3

Gambar 3.6.d. Mode 4

Gambar 3.6.e. Mode 5

3.4. Contoh Hasil Analisis Jembatan Utama  Analisis struktur dilakukan dengan menggunakan program Midas Civil 2010.

Gambar 3.7. Model memanjang jembatan

Page 91: Seminar Midas 12 Juli 2011

19  

Gambar 3.8. Potongan melintang gelagar box jembatan

Gambar 3.9. Posisi tegangan yang dianalisis pada box jembatan

• Kondisi tahapan kontruksi

Stage 19. Kondisi tegangan saat transfer prategang pada segmen sebelum closure.

Gambar 3.10.a. Tegangan saat transfer di posisi 1

Gambar 3.10.b. Tegangan saat transfer di posisi 3

Stage 20. Kondisi tegangan saat transfer prategang setelah closure.

Gambar 3.11.a. Tegangan saat transfer di posisi 1

Gambar 3.11.b. Tegangan saat transfer di posisi 3

Stage 21. Kondisi tegangan setelah terjadi susut dan rangkak selama 3 tahun.

Gambar 3.12.a. Tegangan di posisi 1

Gambar 3.12.b. Tegangan di posisi 3

Page 92: Seminar Midas 12 Juli 2011

20  

Gambar 3.12.c. Tegangan di posisi 1

Gambar 3.12.d. Tegangan di posisi 3

• Kondisi service

Gambar 3.13. Tegangan pada kondisi service di posisi 3

Page 93: Seminar Midas 12 Juli 2011

21  

• Kondisi ultimate

Gambar 3.14.a. Kapasitas momen lentur ultimate

Gambar 3.14.b. Kapasitas gaya geser ultimate

Page 94: Seminar Midas 12 Juli 2011

22  

3.5. Contoh Hasil Analisis Pilar Jembatan Utama Hasil analisis pada pilar utama dapat dilihat pada calculation sheet di bawah ini:

Page 95: Seminar Midas 12 Juli 2011

23  

4. JEMBATAN BETON TIPE CABLE STAYED 4.1. Gambaran Umum

Jembatan ini merupakan jembatan cable stayed dengan susunan bentang 30m + 36m + 36m + 120m + 120m + 30m, yang bentang utamanya (main bridge) menggunakan tipe box girder, dan dengan pylon tipe vase (vas bunga). Tinggi total pylon adalah 62,8m, dan elevasi tinggi dek jembatan adalah +47,0m.

Gambar 4.1. Modelisasi struktur jembatan cable stayed dengan Midas Civil

Karena lingkup pekerjaan kami di dalam pekerjaan ini adalah Construction Engineering & Deflection Control, jadi di dalam makalah ini kami hanya akan menyajikan pemodelan struktur jembatan dalam tahapan construction stage saja. 4.2. Pemodelan struktur dalam tahapan konstruksi

Di bawah ini adalah modelisasi struktur pada tahapan konstruksi berdasarkan gambar rencana struktur jembatan, mulai dari pylon sampai dengan closure pada dek jembatan. Namun karena keterbatasan halaman, tidak semua tahap konstruksi kami tampilkan di sini.

Gambar 4.2. Pengecoran Segmen 1 Gambar 4.3. Pengecoran Segmen 3

Page 96: Seminar Midas 12 Juli 2011

24  

Gambar 4.5. Pengecoran Segmen 4 Gambar 4.4. Pemasangan Temporary Tension Member antara segmen 2 dan 3

Gambar 4.7. Pengecoran Segmen 7 Gambar 4.6. Pengecoran Segmen 5

Gambar 4.9. Pengecoran Pier Table Gambar 4.8. Pengecoran Lower Cross Beam berikut dengan prestressing

Gambar 4.11. Pemasangan Temporary Compression Member (Strutting Member)

Gambar 4.10. Pengecoran Segmen 9

Page 97: Seminar Midas 12 Juli 2011

25  

Gambar 4.13. Pengecoran Segmen 13 Gambar 4.12. Pengecoran Segmen 11

Gambar 4.15. Pengecoran Middle Cross Beam dengan prestressing

Gambar 4.14. Pengecoran Segmen 15

Gambar 4.17. Pelepasan Tension & Strutting Member

Gambar 4.16. Pengecoran Upper Cross Beam

Page 98: Seminar Midas 12 Juli 2011

26  

Gambar 4.18. Pengecoran Approach Span 1 kiri

Gambar 4.19. Pengecoran Approach Span 2 kiri

Gambar 4.20. Pengecoran Approach Span 3 kiri dan Approach kanan

Page 99: Seminar Midas 12 Juli 2011

27  

Gambar 4.21. Pengecoran Segmen 1 dek jembatan

Gambar 4.22. Pemasangan dan penarikan Kabel 1

Gambar 4.23. Pengecoran Segmen 3 dek jembatan

Gambar 4.24. Pemasangan dan penarikan Kabel 6

Page 100: Seminar Midas 12 Juli 2011

28  

Gambar 4.25. Pemasangan dan penarikan Kabel 8

Gambar 4.26. Pengecoran Segmen 9 dek jembatan

Gambar 4.27. Pemasangan dan penarikan Kabel 10

Page 101: Seminar Midas 12 Juli 2011

29  

Gambar 4.28. Pemasangan dan penarikan Kabel 11

Gambar 4.29. Pengecoran Closure kiri dan Kanan

Gambar 4.30. Jembatan jadi dan pelepasan Traveler

Page 102: Seminar Midas 12 Juli 2011

30  

5. CATATAN AKHIR Dalam aplikasi Midas Civil 2010 untuk analisis, verifikasi, dan perencanaan struktur “jembatan tipe khusus” yang seperti disebutkan di atas, telah diperoleh beberapa kesan sebagai berikut:

Keunggulan:

Input data pemodelan struktur, penampang elemen, dan konfigurasi tendon prategang dapat dimodelkan di dalam gambar Autocad untuk selanjutnya dapat diimport ke dalam Midas Civil.

Salah satu cara input modelisasi Midas Civil berbasiskan bentuk tabel, sehingga dapat menggunakan Micosoft Excel sebagai lembar kerja yang kemudian diimport ke dalam pemodelan Midas Civil.

Dengan adanya fitur tree menu, input data pemodelan struktur yang telah dikerjakan dapat diperiksa kembali, sehingga pemodelan struktur dapat lebih terorganisir dan menghindari kemungkinan terjadi kesalahan di dalam pemodelan struktur.

Dengan adanya fitur moving load, beban kendaraan dapat dimodelkan sebagai beban bergerak sesuai dengan peraturan yang berlaku sehingga bisa diperoleh konfigurasi beban kendaraan yang paling maksimum.

Fitur construction stage Midas Civil telah memudahkan analisis pada tahap konstruksi, termasuk analisis pengaruh beban temperatur, susut dan rangkak beton selama masa konstruksi, yang dinilai penting dalam menentukan perilaku rekam jejak tegangan dan deformasi struktur jembatan hingga masa layan.

Keterbatasan (hanya sebatas pengalaman kami dalam menggunakan Midas Civil):

Tidak memiliki model elemen tipe shell. Tidak dapat menampilkan kontur tegangan secara kontinyu dalam suatu

penampang memanjang maupun melintang.

Namun demikian, secara umum dapat dicatat bahwa dengan adanya fitur structure wizard yang cukup banyak dan variatif, pemodelan struktur dengan menggunakan Midas Civil terasa cukup mudah dan nyaman, dengan hasil yang cukup reliable, khususnya untuk perencanaan dan verifikasi keandalan struktur jembatan, serta juga untuk construction engineering & deflection control struktur “jembatan tipe khusus” yang rumit.

DAFTAR PUSTAKA

1. Midas Civil On-line Manual. 2. Midas Civil Analysis Reference. 3. PT. Partono Fondas: Laporan Jembatan Pelengkung Teluk Balikpapan (Optimasi Kontraktor),

Januari 2011. 4. PT. Partono Fondas: Laporan Independent Proof Check Jembatan Balance Cantilever di

Bekasi, Mei 2011. 5. PT. Partono Fondas: Laporan Pendahuluan Construction Engineering & Deflection Control

Jembatan Cable Stayed di Manado, Oktober 2010.

Page 103: Seminar Midas 12 Juli 2011

Session 3

Geotechnical Engineering

PELAKSANAAN SEMINAR & WORKSHOPInstitut Teknologi Bandung, July 12th, 2011 - July 15th, 2011

Page 104: Seminar Midas 12 Juli 2011
Page 105: Seminar Midas 12 Juli 2011

2 / 80

Product OverviewAbout midas GTS

Application Areas

Why midas GTS?

Latest Enhancements

AnalysisAnalysis Types

Material Models & Element Library

System Equation Solver

Post-processing

ModellingGeometry Modelling

Mesh Generation

Modelling Wizard

QA & QC

Introduction to midas GTS

About midas GTSApplication AreasWhy midas GTS?

Latest Enhancements

Product Overview

Page 106: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System About midas GTS

4 / 80

Next Generation Solution for Geotechnical and Tunnel Engineeringmidas GTS is all-in-one FE analysis software dedicated to geotechnical engineering. midas GTS provides a new paradigm for intuitive modeling, superb analysis capabilities and speed, visualization of modeling and results, and practical summarization of results. Such unprecedented analysis environment will surely satisfy the needs of the demanding users.

About midas GTSApplication AreasWhy midas GTS?

Latest Enhancements

Product Overview

Page 107: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Application Areas

6 / 80

Geotechnical & Tunnel analysis System Application Areas

7 / 80

Page 108: Seminar Midas 12 Juli 2011

About midas GTSApplication AreasWhy midas GTS?

Latest Enhancements

Product Overview

Geotechnical & Tunnel analysis System Why midas GTS?

9 / 80

Page 109: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Why midas GTS?

10 / 80

Can complex 3D geometry models be considered?

Why midas G

CanC

Yes, all the essential modeling tools are available.

midas GTS offers Intuitive GUI Environment which allows for creation of complex geometry in the least amount of steps based on CAD formats.

Different element types (e.g. embedded truss, beam, plate, interface and solid elements) including structural elements can be composed in one model file.

Geotechnical & Tunnel analysis System Why midas GTS?

11 / 80

Can different pile diameters and pile group behavior be modeled and analyzed?

Why midas G

CanC

Yes, midas GTS can consider it using beam elements. Existence of super pile elements to model large scale piled raft foundation systems based on embedded element techniques and considering full soil structure interaction effects.

Page 110: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Why midas GTS?

12 / 80

Can complex 3D Soil-Structure Interaction (SSI) be simulated?

Why midas G

CanC

Yes, various types of interface elements for SSI are provided.Existence of various types of interface elements to simulate soil-structure interaction regardless of geometry complexity and interface position.

- Soil-pile friction captured by nonlinear interface behavior- Pile group interaction captured by full 3D modeling

Geotechnical & Tunnel analysis System Why midas GTS?

13 / 80

Can unconventional Tunnel Intersections be modeled?

Why midas G

CanC

Yes, tunnels with unconventional connection galleries can be modeled with the essential tools provided.All types of T-type/Y-type interconnections, curved tunnels, shaft-lateral-main tunnel connections, tunnel entrances, even subway stations can be easily modeled in detail.

Page 111: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Why midas GTS?

14 / 80

Can Shield TBM be modeled?

Why midas G

CanC

Yes, TBM modeling, considering excavation sequences, is available.

Automated and realistic construction stage definition for sequential activation and deactivation of excavation segments, structural parts, loads and boundary conditions.

Geotechnical & Tunnel analysis System Why midas GTS?

15 / 80

Is Staged Excavation supported in midas GTS?

Why midas G

Is SIs

Yes, midas GTS supports 3D excavation and dedicated tools.

Simulate 3D excavation in real time construction sequence Including dewatering procedure.

Structural support systems including anchors and diaphragm walls can be generated automatically.

Page 112: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Why midas GTS?

16 / 80

Can Groundwater Flow be considered in midas GTS?

Why midas G

CanC

Yes, various hydraulic boundary conditions are available to consider groundwater flow behavior.

Stress-seepage semi-coupled analysis & expanded application of Darcy’s law (saturated / unsaturated) are considered in midas GTS.

Furthermore, a detailed terrain geometry can be modeled based on built-in tool TGM (Terrain Geometry Maker) to incorporate digital maps into the model.

Geotechnical & Tunnel analysis System Why midas GTS?

17 / 80

Can Dynamic Analysis be performed in midas GTS?

Why midas G

CanC

Yes, 3D Dynamic Analysis is available with integrated seismic wave database.Dynamic analysis can be performed for 1D, 2D and 3D models including built in 1D and 2D equivalent linear dynamic analysis features.

Page 113: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Why midas GTS?

18 / 80

Does midas GTS support 64 bit O/S?

Why midas G

DoD

Yes, midas GTS supports 64-bit OS & multi-core parallel system.GTS offers a robust and advanced kernel - supporting 64-bit OS & multi-core parallel system in nonlinear, construction-stage and seepage analysis

Geotechnical & Tunnel analysis System Why midas GTS?

19 / 80

Are there any training programs or technical documents regarding midas GTS?

Why midas G

AreA

Yes, MIDAS provides FREE online seminars and training programs in addition to an extensive tutorial database. Both MIDAS and partner companies provide local events such as user conferences, seminars, and on-site training programs.

Page 114: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Why midas GTS?

20 / 80

How does MIDAS provide technical support?

Why midas G

HowH

There are over four branch offices and 24 partners world wide, including MIDAS Support & Development, who are qualified and ready to provide dedicated technical support via e-mail, phone and remote assistance.

About midas GTSApplication AreasWhy midas GTS?

Latest Enhancements

Product Overview

Page 115: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Latest Enhancements

22 / 80

Modified Mohr-Coulomb

� Soils vary greatly in composition and in mechanical properties. However, common features can be identified:– Plastic shear failure (cohesive-frictional behavior)– Increase of the bulk stiffness with depth, i.e. with compaction state– Stiff behaviour during unloading/reloading compared to primary

compaction or shear loading– Degradation of the shear stiffness during primary shear loading– Evolution from contractant to dilatant during primary shear loading

� Limitations of standard Mohr Coulomb model:– Accounts only for plastic shear failure– All other features are ignored

• MMC is applicable for sands, silts and clays

• MMC can be defined with Engineering input-parameters

Geotechnical & Tunnel analysis System Latest Enhancements

23 / 80

Permeable Elements to Consider Flow

Simulate the flow between two nodes and head boundary conditions

using elastic and rigid links

Page 116: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Latest Enhancements

24 / 80

Pile Element Interface

No Nodal Connectivity required between pile and soil

Pile and Tip created as separate mesh sets

Soil (solid)

Interface (line-to-solid)Pile (beam)

Geotechnical & Tunnel analysis System Latest Enhancements

25 / 80

Gauging Plate

Virtual 2D elements are extracted from 3D solids known as

Gauging Elements

Page 117: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Latest Enhancements

26 / 80

Gauging Plate

Tapered Beam Cross Sectional Properties

Geotechnical & Tunnel analysis System Latest Enhancements

27 / 80

Line Beam Load

Line Beam Load

Page 118: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Latest Enhancements

28 / 80

Beam End Release

Beam End Release

Geotechnical & Tunnel analysis System Latest Enhancements

29 / 80

2D Equivalent Linear (Dynamic)

2D Equivalent Linear (Dynamic))

Page 119: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Latest Enhancements

30 / 80

Convergence Report

Convergence Report

Analysis TypesMaterial Models & Element Library

System Equation SolverPost-processing

Analysis

Page 120: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Analysis Types

32 / 80

Analysis Capabilities

Geotechnical & Tunnel analysis System Analysis Types

33 / 80

Element Library

Line Type

• Truss / Embedded Truss

• Beam/Non-linear Beam

• Tension Only (Hook), Compression Only (Gap)

• Plot Only (Dummy for modelling)

Plane Type

• Plate (Shotcrete, Lining)

• Gauging Plates

• Geogrids

• Plane Stress

• Plane Strain

• Axisymmetry

• Plot Only

Solid Type

• Solid

Others

• Point Spring, Matrix Spring, Interface

• Elastic Link, Rigid Link

• 3D Pile Elements

• GTS provides linear and parabolic types for plate, plane stress and solid elements.

• In GTS, all elements can be created in 3 ways:(1) auto/map-mesh generation, mesh protrusion and mesh connection (2) manual creation in GUI and/or table (3) import mesh data from other programs

Page 121: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Analysis Types

34 / 80

Load & Boundary Conditions

Load

• Self Weight / Force / Moment

• Prescribed Displacement

• Pressure / Prestress

• Line / Element Beam Load

• Nodal / Element Temperature, Temperature Gradient

• Nodal Mass

• Response Spectrum Analysis Data (including Various Design Spectrum Data)

• Time History Analysis Data- Time Forcing Function (including 54 Earthquake Acceleration Records)- Ground Acceleration- Time Varying Static Load- Dynamic Nodal Load, Dynamic Surface Load- Time History Result Function

Pressure on Surface Pressure on Element-Face

Transfer to FE

Apply Load and Boundary Conditions at the geometry level or mesh

Geotechnical & Tunnel analysis System Analysis Types

35 / 80

Example of Dynamic Analysis

Dynamic effects of high-speed train

Page 122: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Analysis Types

36 / 80

Load & Boundary Conditions

Boundary Conditions• Support

• Nodal Head

• Nodal Flux, Surface Flux

• Seepage Boundary Function

• Unsaturated Property Function- Permeability FunctionGardner CoefficientsFrontal FunctionUser Defined Function

- Water Content Function: van Genuchten, User Defined

• Change Material

• Change B.C. Set

Unsaturated Property Function

All boundary conditions can be applied both to FE and geometry.

Plate End Release(Junction of Shotcrete)

Analysis TypesMaterial Models & Element Library

System Equation SolverPost-processing

Analysis

Page 123: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Material Models & Element Library

38 / 80

Material Models

Material Model Behavior

Simple

Elasto-Plastic

Elasto-Plastic

Elasto-Plastic, Softening, Hardening

Elasto-Plastic

Anisotropic Elastic

Hyperbolic, Nonlinear Elastic

Elasto-Plastic

Anisotropic Elasto-Anisotropic Plastic

Elasto-Plastic

Strain Softening

Elasto-Plastic, Frictional & Cohesive

Jardine Model

Elastic

User-coded Subroutine (Fortran)

GTS provides 16 material models as below :Su

bsu

rfac

e M

ater

ials

Geotechnical & Tunnel analysis System Material Models & Element Library

39 / 80

Modified Mohr-Coulomb Model

Non-linear elasticity followinga power law (Ohde-Janbu)

Stiff unloading/reloading(unloading test, Eur, power m)

Cap hardening plasticityfollowing an exponential law(similar to Modified Cam Clay)

Bulk stiffness increase with depthor with primary comp. loading(oedometer test, Eoed)

Drucker-Prager flow rulefollowing Rowe’s law

Contractant to dilatant shearing(dilation angles, ψu, ψcv)

Hardening MC plasticityfollowing Duncan-Chang law

Degradation of shear stiffness(triaxial test, E50)

Mohr-Coulomb plasticityPlastic shear failure (c, φModel componentSoil behaviour

Non-linear elasticity followinga power law (Ohde-Janbu)

Stiff unloading/reloading(unloading test, Eur, power m)

Cap hardening plasticityfollowing an exponential law(similar to Modified Cam Clay)

Bulk stiffness increase with depthor with primary comp. loading(oedometer test, Eoed)

Drucker-Prager flow rulefollowing Rowe’s law

Contractant to dilatant shearing(dilation angles cv)

Hardening MC plasticityfollowing Duncan-Chang law

Degradation of shear stiffness(triaxial test, E50)

Mohr-Coulomb plasticityPlastic shear failure (c )

Model componentSoil behaviour

Pressure dependent Shear strength (with soil dilatancy),irrecoverable compaction, and nonlinear elastic unloading.

Double hardening model: one yield surface for shear failureone yield surface for compaction

Page 124: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Material Models & Element Library

40 / 80

Modified Mohr-Coulomb Model

• Independent hardening surfaces

• Shear hardening bounded by failure line (ultimate friction angle)

• Elliptic cap, shape factor α = 2/9*(1+2KNC)/(1-KNC)

• Pressure shift for cohesion,

• Smooth surface in hydrostaticplane (no corners)

• sensitive to intermediateprincipal stress

• Best fit to MC plastic surface

Geotechnical & Tunnel analysis System Material Models & Element Library

41 / 80

Modified Mohr-Coulomb Model

Failure line

Axial strain, e

Shear stress, Ds Volumetric strain, ev

Axial strain, e

1-sinψu

2 sinψu

11-2 nur

� Friction angle variation to match Duncan & Chang’s law at ref. pressure

� Duncan & Chang’s hyperbolic law:

� Plastic flow rule followingRowe’s law:

���

����

��

aqqE

q

12 50

���

����

��

cv

cv

�����

sinsin1sinsin,0maxsin

uu

uucv ��

���sinsin1sinsinsin

��

with

Page 125: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Material Models & Element Library

42 / 80

Modified Mohr-Coulomb Model

Pressure Log(p)

Cap Hardening

� Variation of the preconsolidationpressure, pc, according to an exponential law:

���

����

� � vpcc

epp �

1exp 0ini

with � � ���

����

�� �� ref

ur

ref

refoed

ref

Ep

Epe01���

� �c

refrefoed C

epE 3.21 0

� For clays, note that:

� � � � � �s

refur

refur C

epE 10ln1213 0 � �

Geotechnical & Tunnel analysis System Material Models & Element Library

43 / 80

Modified Mohr-Coulomb Model

Tri-axial test for Sand using MMC model compared with experimental results and competitive software

First hydrostatic loading, then

axial load-increments only

0

50

100

150

200

250

300

350

-0.020-0.018-0.016-0.014-0.012-0.010-0.008-0.006-0.004-0.0020.000axial strain [-]

devi

ator

stre

ss [k

Pa]

Competition 100 Experiment 100 Competition 50 DIAGTS 100 DIAGTS 50

-0.001

0.001

0.003

0.005

0.007

0.009

-0.020-0.018-0.016-0.014-0.012-0.010-0.008-0.006-0.004-0.0020.000axial strain [-]

volu

me

stra

in [-

]

Competition100 Experiment Competition 50 DIAGTS100 DIAGTS50

Page 126: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Material Models & Element Library

44 / 80

Modified Mohr-Coulomb Model

Tri-axial test for Undrained Clay using MMC model compared with experimental results and competitive software

First hydrostatic loading, then

axial load-increments only

0

20

40

60

80

100

120

-0.100-0.080-0.060-0.040-0.0200.000axial strain [-]

devi

ator

stre

ss [k

Pa]

Experiment

DIAGTS 50 undrained

DIAGTS 100 undrained

DIAGTS 150 undrained

0

20

40

60

80

100

120

-160-140-120-100-80-60-40-200isotropic stress (p') [kPa]

devi

ator

stre

ss (q

) [kP

a]

Experiment

DIAGTS 50 undrained

DIAGTS 100 undrained

DIAGTS 150 undrained

Analysis TypesMaterial Models & Element Library

System Equation SolverPost-processing

Analysis

Page 127: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System System Equation Solver

46 / 80

Overview

GTS uses multi-frontal sparse Gaussian solver as a system equation solver.Multi-frontal sparse Gaussian solver is one of the fastest solvers in the iterative solving of large solid models in non-linear analysis.

GTS also provides two iterative solvers, PCG (Pre-conditioned Conjugate Gradient), GMRES (General Minimal Residual).

Pardiso, parallel direct sparse solver in Intel MKL, is a tuned math solver designed for high performance on homogeneous multicore machines for 32/64-bit systems.

"Parallel on SMPs. Automatic combination of iterative and direct solver algorithms to accelerate the solution process for very large three-dimensional systems." - PARADISO Solver Project

Thread Safe, High-Performance, Robust, Memory Efficiency

Geotechnical & Tunnel analysis System System Equation Solver

47 / 80

Simple Benchmark

Model AModel B

Model C

Model D

Solution Time of Multi-frontal Solver

Model A Model B Model C Model D

Element Type Plate Plate Solid Solid

No. of Elements 30,000 30,000 29,400 31,740

No. of DOFs 180,180 186,000 90,738 106,200

Solution Time [sec] 16 17 137 297

Page 128: Seminar Midas 12 Juli 2011

Analysis TypesMaterial Models & Element Library

System Equation SolverPost-processing

Analysis

Geotechnical & Tunnel analysis System Post-processing

49 / 80

Overview

Complete Support for Visualization and Interpretation

• Flexible User-control on Legends, Colors, Fonts, Magnification, etc.

• Multiple Plots, Graphs and Tables in Multiple Windows

• Deformed Shape Combined with Undeformed Shape (including Mode Shape)

• Local Plots defined by Geometrical Topology or User-selection

• Contour Plots and Animations (AVI)

• Iso-value Lines (2D) and Surfaces (3D)

• Clipping Planes and Slice Lines/Planes

• Partitioned Plots

• History Plots in Various Graphs and Animations (AVI)

• Result Values in MS-Excel compatible Tables

• Result Probe and Extraction

• Result Extraction for Construction Stage Analysis and Time History Analysis

• Screen-shots in WMF, BMP, PNG Picture Formats

• State-of-the-art Reports Generated by XML and HTML

Page 129: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Post-processing

50 / 80

Works Tree

Result Table

Result Graph

MS-Excel

Contour Plot

Overview

Geotechnical & Tunnel analysis System Post-processing

51 / 80

Overview

� Soil Stress Analysis

• Displacement• Force (Truss, Embedded Truss), Moment (2D Shorcrete)

• Reaction• Stress (Soil, Shotcrete, Rock Bolt)

- Total: Sxx, Syy, Szz, Sxy, Syz, Sxz- Effective: Sxx’, Syy’, Szz’, Sxy’, Syz’, Sxz’ - Principal Stresses (P1, P2, P3)- Pore Pressure- Mean Effective, Mean Total- Safety Factor- Yield Ratio

• Strain- Exx, Eyy, Ezz, Exy, Eyz, Exz- Principal Strains (E1, E2, E3)- Max Shear Strain- Deviatoric Strain- Volumetric Strain

� Seepage Analysis

• Velocity

• Pressure, Total Head• Head Gradient

• Flow

All results are outputted according to activated element types:

Page 130: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Post-processing

52 / 80

Contour Plot Types

Contour with Mesh Contour with Iso-line Contour with Mesh & Iso-line

Contour without Mesh Gradient Contour Gray Contour

Geotechnical & Tunnel analysis System Post-processing

53 / 80

Gradient Contour Animation (Example)

Page 131: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Post-processing

54 / 80

Contour with Deformation

Displacement Contour (Gradient Plot)with Deformed Shape

Front View

Side View

Undeformed Model

Geotechnical & Tunnel analysis System Post-processing

55 / 80

Contour with Deformation (Animation)

Consolidation Analysis

Page 132: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Post-processing

56 / 80

Iso-surface Plots

Multiple Iso-surfaces with Feature-Edge Multiple Iso-surfaces with Mesh

Geotechnical & Tunnel analysis System Post-processing

57 / 80

Clipping Plots

Original Plot

Multiple Clipping Planes

Page 133: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Post-processing

58 / 80

On-Curve Diagrams

2D On-Curve Graphs on Contour Plot

Fault Zone

3D On-Curve Graphs on Contour Plot

Front View

Geotechnical & Tunnel analysis System Post-processing

59 / 80

Seepage (Flow Path/Quantity)

Click Survey Position in Work WindowCalculates Flow Quantity

at Arbitrary PlaneDefined by Selected Nodes

Flow Path Flow Quantity

Page 134: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Post-processing

60 / 80

Result Extraction

Start Stage / Time

End Stage / Time

Stage / Output SetResult Type

Node / Element IDsMS-Excel compatible Table(Time & Nodal Pressure Head)

Graph (Time vs. Pressure Head)

Results can be extracted based on:

• Construction Stage• Time (Time History / Transient Seepage

Analysis)

• Coordinates (User-defined Coordinate Sys.)

Transient Seepage Result (Pressure Head)

Geotechnical & Tunnel analysis System Post-processing

61 / 80

Result Extraction

Location Stage

Result

3D Step Graph3D Step Graph

Page 135: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Post-processing

62 / 80

Settlement Profiles

Mesh & Displacement Contour

Settlement Profile (3D Plane, 2D Line)

Define Settlement Grids

Settlement (MS-Excel Compatible Table)

Geotechnical & Tunnel analysis System Post-processing

63 / 80

Probe & Result Tag

Flying View Flying View

Flying View

Page 136: Seminar Midas 12 Juli 2011

Geometry ModellingMesh GenerationModelling Wizard

Modelling

Geotechnical & Tunnel analysis System Geometry Modelling

65 / 80

Overview

• Advanced modelling functions can be used in surface & solid modelling.

Curve Surface Solid Advancedmodelling

• Tunnel Section• Line, Polyline• Arc, Circle• Polygon• B-Spline• Fillet, Chamfer• Trim, Extend• Intersect• Offset, Tangent• Break, Merge…

• Plane Patch• Coons Patch• NURBS Patch• Grid Patch• Vertex Patch• Fillet, Chamfer• Sew, Fuse• Trim, Divide• Extend• Imprint…

• Box, Wedge• Cylinder, Cone• Sphere, Torus• Trim, Divide• Embed• Boolean Op.(Fuse, Cut, …)

• Stitch Surfaces…

• Extrude• Revolve• Loft• Sweep• Fillet, Chamfer• Offset, Draft• Shelling• Local Prism• Check, Repair• Transformation …

Page 137: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Geometry Modelling

66 / 80

Data Exchange

Import (Geometry)

Export (Geometry)

Standards for Data Exchange

• STEP (STandard for the Exchange of Product Model Data)

• IGES (Initial Graphics Exchange Specification)

• STL (STereo Lithography) – De facto standard for RP

Neutral Format File � ASCII (American Standard Code for Information Interchange)

IGES Geometry

Generated Mesh

Geotechnical & Tunnel analysis System Geometry Modelling

67 / 80

TGM (Terrain Geometry Maker)

Specialized Module for Real Terrain Geometry

DXF Data TGM

GTSDigital Map

Page 138: Seminar Midas 12 Juli 2011

Geometry ModellingMesh GenerationModelling Wizard

Modelling

Geotechnical & Tunnel analysis System Mesh Generation

69 / 80

Overview

Auto Map Protrude Manipulation

• Solid• Surface• k-Curve Area• k-Face Volume• 4-Node Area…

• Create• Extract• Connection• Change Para.• Smooth• Divide• Check• Quality• Merge • Transform…

• Extrude• Revolve• Project• Fill• Sweep

• Geometry• Element• Node

Object

• Solid• Surface• Edge• Planar Area• 4-Curve Area• 2D � 3D

• Quadrilateral• Combined• Triangle

Type

Page 139: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Mesh Generation

70 / 80

Mesher Types

Geotechnical & Tunnel analysis System Mesh Generation

71 / 80

Quality Assurance & Checking Controls

Check & Verify

• Free Edges/Faces

• Check & Align ECS

Quality Assurance

• Aspect Ratio

• Skew Angle

• Taper (2D)

• Warpage (2D)

• Jacobian Ratio

• Twist

• Collapse (Tetra)Twisted Penta

Collapsed Tetra(Near Zero Volume) Mesh Quality Plot

Check Free Face(Unconnected Element Face)

Free Face

Page 140: Seminar Midas 12 Juli 2011

Geometry ModellingMesh GenerationModelling Wizard

Modelling

Geotechnical & Tunnel analysis System Modelling Wizard

73 / 80

Construction Stage Wizard

Simulate Selected Stages

ExcavationInitial & Embanking

Drag & Drop

Transient SeepageAnalysis Control

Load Distribution Factors

Tree Structure

Page 141: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Modelling Wizard

74 / 80

Construction Stage Wizard

GTS provides semi-automatic method for the definition of construction stages using name pattern (base name + suffix number).

Tree Structure• Mesh• Load• B.C.

ConstructionChart

Construction Stage Definitionbased on Naming Rule

Tunnel 002

Construction Stage Simulator

Geotechnical & Tunnel analysis System Modelling Wizard

75 / 80

Tunnel Wizard

GTS provides Tunnel modelling Wizard for simple and regular-type 3D tunnel models.Tunnel modelling Wizard automatically generates full analysis data, mesh, loads, boundary conditions and construction stages, from the user-defined parameters.Tunnel modelling Wizard also provides its own file I/O service to help users accelerate modelling works for similar models and build their own tunnel templates.

Tunnel modelling Wizard Generated Analysis Model (Mesh, LBC, CS, etc.)

Page 142: Seminar Midas 12 Juli 2011

Geotechnical & Tunnel analysis System Modelling Wizard

76 / 80

Tunnel Wizard

Complete Model Generated by Tunnel Wizard

Front View

Iso View

Core + S/C + R/B

Analysis Data

Result Summary

Geotechnical & Tunnel analysis System Modelling Wizard

77 / 80

Anchor Wizard

Automatically generates mesh sets using input data, from on dialog box, for material, section, angle, un-grouted length, & etc.

Page 143: Seminar Midas 12 Juli 2011

QA /QC

Geotechnical & Tunnel analysis System

79 / 80

QA/QC Internal Qa/Qc & Regression testing systems

• Comparison of elementary tests with experiments and competitive software

• Verification tests• 250 specific tests-in DIANA test-suite• 5000 regression tests for DIANA in tests-suite• Automatic testing of every update patch• Coverage analysis of source code• Functionality – combination coverage of test-suite

Page 144: Seminar Midas 12 Juli 2011

��������������������������������

�����

��������������������������� ������������������������������ �� � �� ���� �� ���� ����������������������������������������������������������������������������������������������� ������������������������������������������������������� ��������������������� ������������������������������������������������������� ���������������������������������������������� ��������������������������� ���������������������������

������������������������������������� ������� ��������������������������������������� ��!������"������#������������������� ��!������"������#����������$%����&�����������'(����������$%����&�����������'(������������������$������'���$��%���$�������$������'���$��%���$�������� ��)�����&����*���������� ��)�����&����*���������������+�������������,�����(-�.�(-��$������'/�$+�������������,�����(-�.�(-��$������'/�$������.��,������.��,�����������������01�����1�����1�����0�����)���2�����01�����1�����1�����0�����)���2���������������0�����������,��� �����(-�.�(-��$�����0�����������,��� �����(-�.�(-��$�

Page 145: Seminar Midas 12 Juli 2011

��%��$� ��%��$�

����0�������,������&�������&������������������������&��$�(��0�������,������&�������&������������������������&��$�(�

���'-�$�%���3��0��!���������&�������'-�$�%���3��0��!���������&����

�����������)����%�����!���)��������$�������0���,����������������)����%�����!���)��������$�������0���,��������

%�����!���)������&���)����&��������������!�%�����!���)������&���)����&��������������!�

�������!���$%���������������,�������������!��,��������������!���$%���������������,�������������!��,��������

��������$���0���4��������������������%���������������������$���0���4��������������������%�������������

����!����,�������������������������!����,���������������������

��%��$� ��%��$�

��

�5&�3����������,���������������������3��5&�3����������,���������������������3��

�0���������$�������,���)����&������������0���������$�������,���)����&�����������

����������

�#���!�%�������������)����$�������#���!�%�������������)����$�������

�������������������)����������1������������������������������)����������1�����������

���������&��$��0��������%���$������!�����������&��$��0��������%���$������!��

Page 146: Seminar Midas 12 Juli 2011

�� ���������������� ����������������

��������������������

Page 147: Seminar Midas 12 Juli 2011

��������������������

��������������������

Page 148: Seminar Midas 12 Juli 2011

��������������������

����$��������$����

Page 149: Seminar Midas 12 Juli 2011

����������������������

2�����2�����

����������������

��)��������,��� �������,����� ��)��������,��� �������,�����

Page 150: Seminar Midas 12 Juli 2011

��������$����2������������$����2������

��������2�)�������������2�)�����

#���!�� 5���/#���!�� 5���/

��������� ��������

����� �������������

���� ���� ����

����

�� � � �� �� ����

����

����(-.(- �� ������ ���� �!����"���#��

$% �$$ &��% &�$%

����(-.(- �� ������ ���� �!����"�'(��)�#��

*� �%$ &�+% &�*%

��������2�)������&�������3�%������)��'678

3��0�����3��0���������5$)��,�$����'9(�$���)�0

Page 151: Seminar Midas 12 Juli 2011

��������2�)�������������2�)�����

#���!�� 5���/#���!�� 5���/

����� ���)��������� ����� ���)���������

#���!� ���)�,9:#���!� ���)�,9:

Page 152: Seminar Midas 12 Juli 2011

������&��0�$%�&������������������&��0�$%�&������������

��)����$�����&��������������)����$�����&������������

����� ���)��������� ����� ���)���������

;5���� ���<-'';5���� ���<-''

Page 153: Seminar Midas 12 Juli 2011

����� ���)��������� ����� ���)���������

;5���� ���<-'';5���� ���<-''

����� ���)��������� ����� ���)���������

;5���� ���<-'';5���� ���<-''

Page 154: Seminar Midas 12 Juli 2011

�����������������������5����� ������������3���0�����������)������)������5����� ������������3���0�����������)������)������

��)��������0���))���)����%��0��&����������)���9��)��������0���))���)����%��0��&����������)���9������� ���)�����������)����������%������������%�������� ���)�����������)����������%������������%��

�����!���$��)�����%����0�����������&&��������3���������!���$��)�����%����0�����������&&��������3����

%����������%��������0�����������%��3����)����%����������%��������0�����������%��3����)����

3�����0�����93�����0�����9�+��$������$�����������������1������+��$������$�����������������1������

�$)��,�$����&������������!�)��������������)�����1��$)��,�$����&������������!�)��������������)�����1�

����0��������3�������������)������)�������)����//=1�����0��������3�������������)������)�������)����//=1�

3��0��0����$�������%������!�)������������1����������3��0��0����$�������%������!�)������������1����������

����������%����*-1<=�����������%����*-1<=�

2���������2���������

��0���������$��������&������,����������0���������$��������&������,���������������������������������

�#���!�*�����&�3����)��!��$$������%��#���!�*�����&�3����)��!��$$������%�������&���)��%��$����,��!��&��������������&���)��%��$����,��!��&������������)����$�������������$%���������&����)����$�������������$%���������&�!��,����������������$�������!��,����������������$�������

Page 155: Seminar Midas 12 Juli 2011
Page 156: Seminar Midas 12 Juli 2011

Copyright Since 1989 MIDAS Information Technology Co., Ltd. All rights reserved.e-mail I [email protected]

Advanced Finite Element Solutions for Civil EngineersPELAKSANAAN SEMINAR MIDAS