Self-Consistent Sources and Conservation Laws for Nonlinear ......Self-Consistent Sources and...

11
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2013, Article ID 598570, 10 pages http://dx.doi.org/10.1155/2013/598570 Research Article Self-Consistent Sources and Conservation Laws for Nonlinear Integrable Couplings of the Li Soliton Hierarchy Han-yu Wei 1,2 and Tie-cheng Xia 1 1 Department of Mathematics, Shanghai University, Shanghai 200444, China 2 Department of Mathematics and Information Science, Zhoukou Normal University, Zhoukou 466001, China Correspondence should be addressed to Han-yu Wei; [email protected] Received 24 November 2012; Accepted 24 January 2013 Academic Editor: Changbum Chun Copyright Β© 2013 H.-y. Wei and T.-c. Xia. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. New explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Li soliton hierarchy are obtained. en, the nonlinear integrable couplings of Li soliton hierarchy with self-consistent sources are established. Finally, we present the infinitely many conservation laws for the nonlinear integrable coupling of Li soliton hierarchy. 1. Introduction Soliton theory has achieved great success during the last decades, it is being applied to many fields. e diversity and complexity of soliton theory enables investigators to do research from different views, such as binary nonlinearization of soliton hierarchy [1] and BΒ¨ acklund transformations of soliton systems from symmetry constraints [2]. Recently, with the development of integrable systems, integrable couplings have attracted much attention. Inte- grable couplings [3, 4] are coupled systems of integrable equations, which have been introduced when we study of Virasoro symmetric algebras. It is an important topic to look for integrable couplings because integrable couplings have much richer mathematical structures and better physical meanings. In recent years, many methods of searching for integrable couplings have been developed [5–13], but all the integrable couplings obtained are linear for the V = (V 1 ,..., V ) . As for how to generate nonlinear integrable couplings, Ma proposed a general scheme [14]. Suppose that an integrable system = () (1) has a Lax pair and , which belong to semisimple matrix Lie algebras. Introduce an enlarged spectral matrix = ( ) = [ () 0 (V) () + (V) ] (2) from a zero curvature representation βˆ’ +[ , ] = 0, (3) where = ( ) = [ () 0 ( ) () + ( ) ], (4) then we can give rise to βˆ’ + [, ] = 0, , βˆ’ , + [, ] + [ , ] + [ , ] = 0. (5) is is an integrable coupling of (1), and it is a nonlinear integrable coupling because the commutator [ , ] can generate nonlinear terms. Soliton equation with self-consistent sources (SESCS) [15–22] is an important part in soliton theory. Physically,

Transcript of Self-Consistent Sources and Conservation Laws for Nonlinear ......Self-Consistent Sources and...

  • Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2013, Article ID 598570, 10 pageshttp://dx.doi.org/10.1155/2013/598570

    Research ArticleSelf-Consistent Sources and Conservation Laws for NonlinearIntegrable Couplings of the Li Soliton Hierarchy

    Han-yu Wei1,2 and Tie-cheng Xia1

    1 Department of Mathematics, Shanghai University, Shanghai 200444, China2Department of Mathematics and Information Science, Zhoukou Normal University, Zhoukou 466001, China

    Correspondence should be addressed to Han-yu Wei; [email protected]

    Received 24 November 2012; Accepted 24 January 2013

    Academic Editor: Changbum Chun

    Copyright Β© 2013 H.-y. Wei and T.-c. Xia. This is an open access article distributed under the Creative Commons AttributionLicense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properlycited.

    New explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Li soliton hierarchy are obtained.Then, the nonlinear integrable couplings of Li soliton hierarchy with self-consistent sources are established. Finally, we present theinfinitely many conservation laws for the nonlinear integrable coupling of Li soliton hierarchy.

    1. Introduction

    Soliton theory has achieved great success during the lastdecades, it is being applied to many fields. The diversityand complexity of soliton theory enables investigators to doresearch fromdifferent views, such as binary nonlinearizationof soliton hierarchy [1] and Bäcklund transformations ofsoliton systems from symmetry constraints [2].

    Recently, with the development of integrable systems,integrable couplings have attracted much attention. Inte-grable couplings [3, 4] are coupled systems of integrableequations, which have been introduced when we study ofVirasoro symmetric algebras. It is an important topic tolook for integrable couplings because integrable couplingshavemuch richermathematical structures and better physicalmeanings. In recent years, many methods of searching forintegrable couplings have been developed [5–13], but allthe integrable couplings obtained are linear for the V =(V1, . . . , V

    π‘š)

    𝑇. As for how to generate nonlinear integrablecouplings, Ma proposed a general scheme [14]. Suppose thatan integrable system

    𝑒𝑑= 𝐾 (𝑒) (1)

    has a Lax pair π‘ˆ and 𝑉, which belong to semisimple matrixLie algebras. Introduce an enlarged spectral matrix

    π‘ˆ = π‘ˆ (𝑒) = [

    π‘ˆ (𝑒) 0

    π‘ˆπ‘Ž(V) π‘ˆ (𝑒) + π‘ˆ

    π‘Ž(V)] (2)

    from a zero curvature representation

    π‘ˆπ‘‘βˆ’ 𝑉π‘₯+ [π‘ˆ,𝑉] = 0, (3)

    where

    𝑉 = 𝑉 (𝑒) = [

    𝑉 (𝑒) 0

    π‘‰π‘Ž(𝑒) 𝑉 (𝑒) + 𝑉

    π‘Ž(𝑒)

    ] , (4)

    then we can give rise to

    π‘ˆπ‘‘βˆ’ 𝑉π‘₯+ [π‘ˆ,𝑉] = 0,

    π‘ˆπ‘Ž,π‘‘βˆ’ π‘‰π‘Ž,π‘₯+ [π‘ˆ,𝑉

    π‘Ž] + [π‘ˆ

    π‘Ž, 𝑉] + [π‘ˆ

    π‘Ž, π‘‰π‘Ž] = 0.

    (5)

    This is an integrable coupling of (1), and it is a nonlinearintegrable coupling because the commutator [π‘ˆ

    π‘Ž, π‘‰π‘Ž] can

    generate nonlinear terms.Soliton equation with self-consistent sources (SESCS)

    [15–22] is an important part in soliton theory. Physically,

  • 2 Abstract and Applied Analysis

    the sources may result in solitary waves with a nonconstantvelocity and therefore lead to a variety of dynamics of physicalmodels. For applications, these kinds of systems are usuallyused to describe interactions between different solitary wavesand are relevant to some problems of hydrodynamics, solidstate physics, plasma physics, and so forth. How to obtain anintegrable coupling of the SESCS is an interesting topic; inthis paper, we will use new formula [23] presented by us togeneralize soliton hierarchy with self-consistent sources.

    The conservation laws play an important role in dis-cussing the integrability for soliton hierarchy. An infinitenumber of conservation laws for KdV equation was firstdiscovered by Miura et al. [24]. The direct constructionmethod of multipliers for the conservation laws was pre-sented [25], the Lagrangian approach for evolution equa-tions was considered in [26], Wang and Xia established theinfinitely many conservation laws for the integrable super𝐺-𝐽 hierarchy [27], and the infinite conservation laws of thegeneralized quasilinear hyperbolic equations were derived in[28]. Comparatively, the less nonlinear integrable couplingsof the soliton equations have been considered for theirconservation laws.

    This paper is organized as follows. In Section 2, a kind ofexplicit Lie algebras with the forms of blocks is introducedto generate nonlinear integrable couplings of Li solitonhierarchy. In Section 3, a new nonlinear integrable couplingof Li soliton hierarchy with self-consistent sources is derived.In Section 4, we obtain the conservation laws for the non-linear integrable couplings of Li hierarchy. Finally, someconclusions are given.

    2. Lie Algebras for Constructing NonlinearIntegrable Couplings of Li Soliton Hierarchy

    Tu [29] presented a base of the Li algebra sl(2) as follows:

    𝐺1= span {𝑒

    1, 𝑒2, 𝑒3} , (6)

    where

    𝑒1= (

    1 0

    0 βˆ’1

    ) , 𝑒2= (

    0 1

    1 0

    ) , 𝑒3= (

    0 1

    βˆ’1 0

    ) , (7)

    which have the commutative relations

    [𝑒1, 𝑒2] = 2𝑒

    2, [𝑒

    1, 𝑒3] = βˆ’2𝑒

    3, [𝑒

    2, 𝑒3] = 𝑒1. (8)

    Let us introduce a Lie algebra with matrix blocks by using𝐺1in order to get nonlinear couplings of soliton hierarchy as

    follows:

    𝐺 = span {𝑔1, . . . , 𝑔

    6} , (9)

    where

    𝑔1= (

    𝑒10

    0 𝑒1

    ) , 𝑔2= (

    𝑒20

    0 𝑒2

    ) ,

    𝑔3= (

    𝑒30

    0 𝑒3

    ) , 𝑔4= (

    0 0

    𝑒1𝑒1

    ) ,

    𝑔5= (

    0 0

    𝑒2𝑒2

    ) , 𝑔6= (

    0 0

    𝑒3𝑒3

    ) .

    (10)

    Define a commutator as follows:

    [π‘Ž, 𝑏] = π‘Žπ‘ βˆ’ π‘π‘Ž, π‘Ž, 𝑏 ∈ 𝐺. (11)

    A direct verification exhibits that

    [𝑔1, 𝑔2] = 2𝑔

    3, [𝑔

    1, 𝑔3] = 2𝑔

    2,

    [𝑔2, 𝑔3] = βˆ’2𝑔

    1, [𝑔

    1, 𝑔5] = 2𝑔

    6,

    [𝑔1, 𝑔6] = 2𝑔

    5, [𝑔

    2, 𝑔4] = βˆ’2𝑔

    6,

    [𝑔2, 𝑔6] = βˆ’2𝑔

    4,

    [𝑔3, 𝑔4] = βˆ’2𝑔

    5, [𝑔

    3, 𝑔5] = 2𝑔

    4,

    [𝑔4, 𝑔5] = 2𝑔

    6, [𝑔

    4, 𝑔6] = 2𝑔

    5,

    [𝑔5, 𝑔6] = βˆ’2𝑔

    4, [𝑔

    1, 𝑔4] = [𝑔

    3, 𝑔6] = 0.

    (12)

    Set

    ̃𝐺1= span {𝑔

    1, 𝑔2, 𝑔3} ,

    ̃𝐺2= span {𝑔

    4, 𝑔5, 𝑔6} , (13)

    then we find that

    𝐺 =̃𝐺1βŠ•ΜƒπΊ2,

    ̃𝐺1β‰… 𝐺1, [

    ̃𝐺1,̃𝐺2] βŠ†ΜƒπΊ2, (14)

    and̃𝐺1and̃𝐺

    2are all simple Lie subalgebras.

    While we use Lie algebras to generate integrable hierar-chies of evolution equations, we actually employ their loopalgebras ̃𝐺 = 𝐺 βŠ— 𝐢(πœ†, πœ†βˆ’1) to establish Lax pairs, where𝐢(πœ†, πœ†

    βˆ’1) represents a set of Laurent ploynomials in πœ† and 𝐺

    is a Lie algebra. Based on this, we give the loop algebras of (9)as follows:

    ̃𝐺 = span {𝑔

    1(𝑛) , . . . , 𝑔

    6(𝑛)} , (15)

    where𝑔𝑖(𝑛) = 𝑔

    π‘–πœ†

    𝑛, [𝑔𝑖(π‘š), 𝑔

    𝑗(𝑛)] = [𝑔

    𝑖, 𝑔𝑗]πœ†

    π‘š+𝑛, 1 ≀ 𝑖, 𝑗 ≀ 6,π‘š, 𝑛 ∈ 𝑍.

    We consider an auxiliary linear problem as follows:

    (

    πœ‘1

    πœ‘2

    πœ‘3

    πœ‘4

    )

    π‘₯

    = π‘ˆ (𝑒, πœ†)(

    πœ‘1

    πœ‘2

    πœ‘3

    πœ‘4

    ),

    π‘ˆ (𝑒, πœ†) = 𝑅1+

    6

    βˆ‘

    𝑖=1

    𝑒𝑖𝑔𝑖(πœ†) ,

    (

    πœ‘1

    πœ‘2

    πœ‘3

    πœ‘4

    )

    𝑑𝑛

    = 𝑉𝑛(𝑒, πœ†)(

    πœ‘1

    πœ‘2

    πœ‘3

    πœ‘4

    ),

    (16)

    where 𝑒 = (𝑒1, . . . , 𝑒

    𝑠)

    𝑇, π‘ˆπ‘›= 𝑅1+ 𝑒1𝑔1+ β‹… β‹… β‹… + 𝑒

    6𝑔6, 𝑅1is a

    pseudoregular element, 𝑒𝑖(𝑛, 𝑑) = 𝑒

    𝑖(𝑖 = 1, 2, . . . , 6), and πœ‘

    𝑖=

    πœ‘(π‘₯, 𝑑) are field variables defined on π‘₯ ∈ 𝑅, 𝑑 ∈ 𝑅, 𝑔𝑖(πœ†) ∈

    ̃𝐺.

    The compatibility of (16) gives rise to thewell-known zerocurvature equation

    π‘ˆπ‘‘βˆ’ 𝑉π‘₯+ [π‘ˆ,𝑉] = 0, πœ†π‘‘

    = 0. (17)

  • Abstract and Applied Analysis 3

    The general scheme of searching for the consistent 𝑉𝑛,

    and generating a hierarchy of zero curvature equations wasproposed in [30]. Solving the following equation:

    𝑉π‘₯= [π‘ˆ,𝑉] ,

    𝑉 =

    ∞

    βˆ‘

    𝑛=0

    π‘‰π‘›πœ†

    βˆ’π‘›

    = (

    π‘Ž 𝑏 + 𝑐 0 0

    𝑏 βˆ’ 𝑐 βˆ’π‘Ž 0 0

    𝑒 𝑓 + 𝑔 π‘Ž + 𝑒 𝑏 + 𝑐 + 𝑓 + 𝑔

    𝑓 βˆ’ 𝑔 βˆ’π‘’ 𝑏 βˆ’ 𝑐 + 𝑓 βˆ’ 𝑔 βˆ’ (π‘Ž + 𝑒)

    ) ,

    (18)

    then we sesrch for π‘›βˆˆΜƒπΊ, the new 𝑉

    𝑛can be constructed by

    𝑉𝑛=

    𝑛

    βˆ‘

    π‘š=0

    π‘‰π‘š(𝑒) πœ†

    π‘›βˆ’π‘š+ 𝑛(𝑒, πœ†) . (19)

    Solving zero curvature (17), we could get evolution equationas follows:

    𝑒𝑑= 𝐾(𝑒, 𝑒

    π‘₯, . . . ,

    πœ•

    𝑝𝑒

    πœ•π‘₯

    𝑝) . (20)

    Now, we consider Li soliton hierarchy [31]. In order to setup nonlinear integrable couplings of the Li soliton hierarchywith self-consistent sources, we first consider the followingmatrix spectral problem:

    πœ‘π‘₯= π‘ˆ (𝑒, πœ†) πœ‘,

    π‘ˆ (𝑒, πœ†) = βˆ’ 𝑔1(1) + V𝑔

    1(0) + 𝑒𝑔

    2(0) + V𝑔

    3(0)

    βˆ’ 𝑔4(1) + 𝑝

    2𝑔4(0) + 𝑝

    1𝑔5(0) + 𝑝

    2𝑔6(0) ,

    (21)

    that is,

    π‘ˆ (𝑒, πœ†)

    = (

    βˆ’πœ† + V 𝑒 + V 0 0

    𝑒 βˆ’ V πœ† βˆ’ V 0 0

    βˆ’πœ† + 𝑝2𝑝1+ 𝑝2βˆ’2πœ† + V + 𝑝

    2𝑒 + V + 𝑝

    1+ 𝑝2

    𝑝1βˆ’ 𝑝2πœ† βˆ’ 𝑝2𝑒 βˆ’ V + 𝑝

    1βˆ’ 𝑝2

    2πœ† βˆ’ V βˆ’ 𝑝2

    )

    = (

    π‘ˆ1

    0

    π‘ˆ0π‘ˆ1+ π‘ˆ0

    ) ,

    (22)

    where πœ† is a spectral parameter and π‘ˆ1satisfies πœ‘

    π‘₯= π‘ˆ1πœ‘

    which is matrix spectral problem of the Li soliton hierarchy[31].

    To establish the nonlinear integrable coupling system ofthe Li soliton hierarchy, the adjoint equation 𝑉

    π‘₯= [π‘ˆ,𝑉] of

    the spectral problem (21) is firstly solved, we assume that asolution 𝑉 is given by the following:

    𝑉 = (

    π‘Ž 𝑏 + 𝑐 0 0

    𝑏 βˆ’ 𝑐 βˆ’π‘Ž 0 0

    𝑒 𝑓 + 𝑔 π‘Ž + 𝑒 𝑏 + 𝑐 + 𝑓 + 𝑔

    𝑓 βˆ’ 𝑔 βˆ’π‘’ 𝑏 βˆ’ 𝑐 + 𝑓 βˆ’ 𝑔 βˆ’ (π‘Ž + 𝑒)

    )

    =

    ∞

    βˆ‘

    𝑛=0

    π‘‰π‘›πœ†

    βˆ’π‘›

    =

    ∞

    βˆ‘

    𝑛=0

    Γ—(

    π‘Žπ‘› 𝑏𝑛 + 𝑐𝑛 0 0

    𝑏𝑛 βˆ’ 𝑐𝑛 βˆ’π‘Žπ‘› 0 0

    𝑒𝑛 𝑓𝑛 + 𝑔𝑛 π‘Žπ‘› + 𝑒𝑛 𝑏𝑛 + 𝑐𝑛 + 𝑓𝑛 + 𝑔𝑛

    𝑓𝑛 βˆ’ 𝑔𝑛 βˆ’π‘’π‘› 𝑏𝑛 βˆ’ 𝑐𝑛 + 𝑓𝑛 βˆ’ 𝑔𝑛 βˆ’ (π‘Žπ‘› + 𝑒𝑛)

    )πœ†

    βˆ’π‘›.

    (23)Therefore, the condition (18) becomes the following recursionrelation:

    π‘Žπ‘›,π‘₯= 2Vπ‘π‘›βˆ’ 2𝑒𝑐𝑛,

    𝑏𝑛,π‘₯= βˆ’2𝑐

    𝑛+1+ 2Vπ‘π‘›βˆ’ 2Vπ‘Žπ‘›,

    𝑐𝑛,π‘₯= βˆ’2𝑏

    𝑛+1+ 2Vπ‘π‘›βˆ’ 2π‘’π‘Ž

    𝑛,

    𝑒𝑛,π‘₯= βˆ’ 2𝑒𝑔

    𝑛+ 2V𝑓

    π‘›βˆ’ 2𝑝1𝑐𝑛

    + 2𝑝2π‘π‘›βˆ’ 2𝑝1𝑔𝑛+ 2𝑝2𝑓𝑛,

    𝑓𝑛,π‘₯= βˆ’ 2𝑔

    𝑛+1+ 2V𝑔

    π‘›βˆ’ 2V𝑒𝑛

    + 2𝑝2π‘π‘›βˆ’ 2𝑝2π‘Žπ‘›+ 2𝑝2π‘”π‘›βˆ’ 2𝑝2𝑒𝑛,

    𝑔𝑛,π‘₯= βˆ’ 2𝑓

    𝑛+1+ 2V𝑓

    π‘›βˆ’ 2𝑒𝑒𝑛+ 2𝑝2𝑏𝑛

    βˆ’ 2𝑝1π‘Žπ‘›+ 2𝑝2π‘“π‘›βˆ’ 2𝑝1𝑒𝑛.

    (24)

    Choose the initial dataπ‘Ž0= 𝑒0= 𝛽, 𝑏

    0= 𝑐0= 𝑓0= 𝑔0= 0, (25)

    we see that all sets of functions π‘Žπ‘›, 𝑏𝑛, 𝑐𝑛, 𝑒𝑛, 𝑓𝑛, and 𝑔

    𝑛are

    uniquely determined. In particular, the first few sets are asfollows:

    π‘Ž1= 0, 𝑏

    1= βˆ’π‘’π›½, 𝑐

    1= βˆ’V𝛽, 𝑒

    1= 0,

    𝑓1= βˆ’π‘1𝛽, 𝑔

    1= βˆ’π‘2𝛽, π‘Ž

    2=

    1

    2

    (V2βˆ’ 𝑒

    2) ,

    𝑏2= (

    1

    2

    Vπ‘₯βˆ’ 𝑒V)𝛽, 𝑐

    2= (

    1

    2

    𝑒π‘₯βˆ’ V2)𝛽,

    𝑒2= (

    1

    2

    V𝑝2βˆ’

    1

    2

    𝑒𝑝1+

    1

    4

    𝑒

    2βˆ’

    1

    4

    V2βˆ’

    1

    4

    𝑝

    2

    1+

    1

    4

    𝑝

    2

    2)𝛽,

  • 4 Abstract and Applied Analysis

    𝑓2= (

    1

    4

    𝑝2,π‘₯βˆ’

    1

    4

    Vπ‘₯+

    1

    2

    𝑒V βˆ’1

    2

    V𝑝1βˆ’

    1

    2

    𝑒𝑝2βˆ’

    1

    2

    𝑝1𝑝2)𝛽,

    𝑔2= (

    1

    4

    𝑝1,π‘₯βˆ’

    1

    4

    𝑒π‘₯+

    1

    2

    V2βˆ’

    1

    2

    𝑝

    2

    2βˆ’ V𝑝2)𝛽, . . . .

    (26)

    Considering

    𝑉𝑛= 𝑉 +

    𝑛,

    𝑛

    =(

    βˆ’ (π‘Žπ‘› βˆ’ 𝑐𝑛) 0 0 0

    0 π‘Žπ‘› βˆ’ 𝑐𝑛 0 0

    βˆ’ (𝑒𝑛 βˆ’ 𝑔𝑛) 0 βˆ’ (π‘Žπ‘› βˆ’ 𝑐𝑛) βˆ’ (𝑒𝑛 βˆ’ 𝑔𝑛)

    0 𝑒𝑛 βˆ’ 𝑔𝑛 0 π‘Žπ‘› βˆ’ 𝑐𝑛 + 𝑒𝑛 βˆ’ 𝑔𝑛

    ).

    (27)

    From the zero curvature equation π‘ˆπ‘‘βˆ’ 𝑉π‘₯+ [π‘ˆ,𝑉] = 0, we

    obtain the nonlinear integrable coupling system

    𝑒𝑑𝑛

    = 𝐾𝑛= (

    𝑒

    V

    𝑝1

    𝑝2

    )

    𝑑𝑛

    = (

    𝑏𝑛,π‘₯

    βˆ’(π‘Žπ‘›βˆ’ 𝑐𝑛)π‘₯

    𝑓𝑛,π‘₯

    βˆ’(π‘’π‘›βˆ’ 𝑔𝑛)

    π‘₯

    )

    = 𝐽(

    𝑏𝑛

    π‘Žπ‘›βˆ’ 𝑐𝑛

    𝑓𝑛

    π‘’π‘›βˆ’ 𝑔𝑛

    ) = 𝐽𝐿

    𝑛(

    0

    𝛽

    0

    𝛽

    ) , 𝑛 β‰₯ 0,

    (28)

    with theHamiltonian operator 𝐽 and the hereditary recursionoperator 𝐿, respectively, as follows:

    𝐽 = (

    πœ• 0 0 0

    0 βˆ’πœ• 0 0

    0 0 πœ• 0

    0 0 0 βˆ’πœ•

    ) ,

    𝐿 =(

    0

    1

    2

    πœ• βˆ’ 𝑒 0 0

    πœ•

    βˆ’1π‘’πœ• +

    1

    2

    πœ• πœ•

    βˆ’1Vπœ• + V 0 0

    0 𝑀1

    0 𝑀2

    𝑀3

    𝑀4

    𝑀5𝑀6

    ),

    (29)

    where

    𝑀1= βˆ’

    1

    4

    πœ• βˆ’

    1

    2

    𝑝1+

    1

    2

    𝑒,

    𝑀2=

    1

    4

    πœ• βˆ’

    1

    2

    𝑝1βˆ’

    1

    2

    𝑒,

    𝑀3= βˆ’

    1

    2

    πœ•

    βˆ’1𝑒 βˆ’

    1

    2

    πœ•

    βˆ’1𝑝1βˆ’ πœ•

    βˆ’1𝑝1πœ• βˆ’

    1

    4

    πœ•,

    𝑀4= βˆ’

    1

    2

    πœ•

    βˆ’1Vπœ• +

    1

    2

    πœ•

    βˆ’1𝑝2πœ• + πœ•

    βˆ’1𝑝2𝑒 βˆ’

    1

    2

    V +1

    2

    𝑝2,

    𝑀5=

    1

    2

    πœ•

    βˆ’1π‘’πœ• +

    1

    2

    πœ•

    βˆ’1𝑝1πœ• +

    1

    4

    πœ•,

    𝑀6= βˆ’ 2πœ•

    βˆ’1𝑒V βˆ’

    3

    2

    πœ•

    βˆ’1𝑝1V +

    1

    2

    πœ•

    βˆ’1Vπœ•

    +

    1

    2

    πœ•

    βˆ’1𝑝2πœ• βˆ’

    1

    2

    V +1

    2

    𝑝2.

    (30)

    Obviously, when 𝑝1= 𝑝2= 0 in (28), the above results

    become Li soliton hierarchy. So, we can say that (28) isintegrable coupling of the Li soliton hierarchy.

    Taking 𝑛 = 2, we get that the nonlinear integrablecouplings of Li soliton hierarchy are as follows:

    𝑒𝑑2

    = (βˆ’

    1

    2

    Vπ‘₯π‘₯βˆ’ 𝑒π‘₯V βˆ’ 𝑒V

    π‘₯)𝛽,

    V𝑑2

    = (

    1

    2

    𝑒π‘₯π‘₯βˆ’ 3VVπ‘₯+ 𝑒𝑒π‘₯)𝛽,

    𝑝1,𝑑2

    = (

    1

    4

    𝑝2,π‘₯βˆ’

    1

    4

    Vπ‘₯+

    1

    2

    𝑒V βˆ’1

    2

    V𝑝1

    βˆ’

    1

    2

    𝑒𝑝2βˆ’

    1

    2

    𝑝1𝑝2)

    π‘₯

    𝛽,

    𝑝2,𝑑2

    = (

    1

    4

    𝑝1,π‘₯βˆ’

    1

    4

    𝑒π‘₯+

    1

    2

    V2βˆ’

    3

    4

    𝑝

    2

    2βˆ’

    3

    2

    V𝑝2

    +

    1

    2

    𝑒𝑝1βˆ’

    1

    4

    𝑒

    2+

    1

    4

    V2+

    1

    4

    𝑝

    2

    1)

    π‘₯

    𝛽.

    (31)

    So, we can say that the system in (28) with 𝑛 β‰₯ 2provides a hierarchy of nonlinear integrable couplings for theLi hierarchy of the soliton equation.

    3. Self-Consistent Sources for the NonlinearIntegrable Couplings of Li Soliton Hierarchy

    According to (16), now we consider a new auxiliary linearproblem. For 𝑁 distinct πœ†

    𝑗, 𝑗 = 1, 2, . . . , 𝑁 and the systems

    of (16) become in the following form:

    (

    πœ‘1𝑗

    πœ‘2𝑗

    πœ‘3𝑗

    πœ‘4𝑗

    )

    π‘₯

    = π‘ˆ (𝑒, πœ†π‘—)(

    πœ‘1𝑗

    πœ‘2𝑗

    πœ‘3𝑗

    πœ‘4𝑗

    )

    =

    6

    βˆ‘

    𝑖=1

    𝑒𝑖𝑔𝑖(πœ†)(

    πœ‘1𝑗

    πœ‘2𝑗

    πœ‘3𝑗

    πœ‘4𝑗

    ), 𝑗 = 1, . . . , 𝑁,

  • Abstract and Applied Analysis 5

    (

    πœ‘1𝑗

    πœ‘2𝑗

    πœ‘3𝑗

    πœ‘4𝑗

    )

    𝑑𝑛

    = 𝑉𝑛(𝑒, πœ†π‘—)(

    πœ‘1𝑗

    πœ‘2𝑗

    πœ‘3𝑗

    πœ‘4𝑗

    )

    = [

    𝑛

    βˆ‘

    π‘š=0

    π‘‰π‘š(𝑒) πœ†

    π‘›βˆ’π‘š

    𝑗+ Δ𝑛(𝑒, πœ†π‘—)]

    Γ—(

    πœ‘1𝑗

    πœ‘2𝑗

    πœ‘3𝑗

    πœ‘4𝑗

    ), 𝑗 = 1, . . . , 𝑁.

    (32)

    Based on the result in [32], we show that the followingequation

    π›Ώπ»π‘˜

    𝛿𝑒

    +

    𝑁

    βˆ‘

    𝑗=1

    𝛼𝑗

    π›Ώπœ†π‘—

    𝛿𝑒

    = 0 (33)

    holds true, where 𝛼𝑗is a constant. From (32), we may know

    that

    π›Ώπœ†π‘—

    𝛿𝑒𝑖

    = 𝛼𝑗Tr(Ξ¨

    𝑗

    πœ•π‘ˆ (𝑒, πœ†π‘—)

    πœ•π‘’π‘–

    )

    = 𝛼𝑗Tr (Ψ𝑗𝑔𝑖(πœ†π‘—)) , 𝑖 = 1, 2,

    (34)

    where Tr denotes the trace of a matrix and

    Ψ𝑗= (

    πœ™1π‘—πœ™2𝑗

    βˆ’πœ™

    2

    1π‘—πœ™3π‘—πœ™4𝑗

    βˆ’πœ™

    2

    3𝑗

    πœ™

    2

    2π‘—βˆ’πœ™1π‘—πœ™2𝑗

    πœ™

    2

    4π‘—βˆ’πœ™3π‘—πœ™4𝑗

    0 0 πœ™1π‘—πœ™2𝑗

    βˆ’πœ™

    2

    1𝑗

    0 0 πœ™

    2

    2π‘—βˆ’πœ™1π‘—πœ™2𝑗

    ),

    𝑗 = 1, . . . , 𝑁.

    (35)

    For 𝑖 = 3, 4 we define that

    π›Ώπœ†π‘—

    𝛿𝑒𝑖

    = 𝛽𝑗Tr(Ξ¨

    𝑗𝐴

    πœ•π‘ˆ0(𝑒, πœ†π‘—)

    πœ•π‘’π‘–

    ) , (36)

    where

    π‘ˆ = (

    π‘ˆ1

    0

    π‘ˆ0π‘ˆ1+ π‘ˆ0

    ) ,

    Ψ𝑗𝐴= (

    πœ™3π‘—πœ™4𝑗

    βˆ’πœ™

    2

    3𝑗

    πœ™

    2

    4π‘—βˆ’πœ™3π‘—πœ™4𝑗

    ) ,

    (37)

    and 𝛽𝑗is a constant.

    According to (34) and (36), we obtain a kind of nonlinearintegrable couplings with self-consistent sources as follows:

    𝑒𝑑𝑛

    = 𝐽

    𝛿𝐻𝑛+1

    𝛿𝑒𝑖

    + 𝐽

    𝑁

    βˆ‘

    𝑗=1

    𝛼𝑗

    π›Ώπœ†π‘—

    𝛿𝑒

    = 𝐽𝐿

    𝑛𝛿𝐻1

    𝛿𝑒𝑖

    + 𝐽

    𝑁

    βˆ‘

    𝑗=1

    𝛼𝑗

    π›Ώπœ†π‘—

    𝛿𝑒

    , 𝑛 = 1, 2, . . . .

    (38)

    Therefore, according to formulas (34) and (36), we have thefollowing results by direct computations:

    𝑁

    βˆ‘

    𝑗=1

    π›Ώπœ†π‘—

    𝛿𝑒

    =

    𝑁

    βˆ‘

    𝑗=1

    (

    (

    (

    (

    (

    (

    (

    (

    (

    π›Ώπœ†π‘—

    𝛿𝑒

    π›Ώπœ†π‘—

    𝛿V

    π›Ώπœ†π‘—

    𝛿𝑝1

    π›Ώπœ†π‘—

    𝛿𝑝1

    )

    )

    )

    )

    )

    )

    )

    )

    )

    =(

    2(⟨Φ2, Ξ¦2⟩ βˆ’ ⟨Φ

    1, Φ1⟩)

    2 (⟨Φ1, Φ1⟩ + ⟨Φ

    2, Φ2⟩ + 2 ⟨Φ

    1, Φ2⟩)

    ⟨Φ4, Ξ¦4⟩ βˆ’ ⟨Φ

    3, Φ3⟩

    ⟨Φ3, Φ3⟩ + ⟨Φ

    4, Φ4⟩ + 2 ⟨Φ

    3, Φ4⟩

    ) ,

    (39)

    by taking 𝛼𝑗= 1 and 𝛽

    𝑗= 1 in formulas (34) and (36).

    Therefore, we have nonlinear integrable coupling system ofthe Li equations hierarchy with self-consistent sources asfollows:

    𝑒𝑑𝑛

    = 𝐾𝑛

    = (

    𝑒

    V

    𝑝1

    𝑝2

    )

    𝑑𝑛

    = 𝐽𝐿

    𝑛(

    0

    𝛽

    0

    𝛽

    )

    + 𝐽(

    2 (⟨Φ2, Ξ¦2⟩ βˆ’ ⟨Φ

    1, Φ1⟩)

    2 (⟨Φ1, Φ1⟩ + ⟨Φ

    2, Φ2⟩ + 2 ⟨Φ

    1, Φ2⟩)

    ⟨Φ4, Ξ¦4⟩ βˆ’ ⟨Φ

    3, Φ3⟩

    ⟨Φ3, Φ3⟩ + ⟨Φ

    4, Φ4⟩ + 2 ⟨Φ

    3, Φ4⟩

    )

    = 𝐽𝐿

    𝑛(

    0

    𝛽

    0

    𝛽

    ) + 𝐽

    (

    (

    (

    (

    (

    (

    (

    (

    (

    (

    (

    2

    𝑁

    βˆ‘

    𝑗=1

    (πœ‘

    2

    2π‘—βˆ’ πœ‘

    2

    1𝑗)

    2

    𝑁

    βˆ‘

    𝑗=1

    (πœ‘

    2

    1𝑗+ πœ‘

    2

    2𝑗+ 2πœ‘1π‘—πœ‘2𝑗)

    𝑁

    βˆ‘

    𝑗=1

    (πœ‘

    2

    4π‘—βˆ’ πœ‘

    2

    3𝑗)

    𝑁

    βˆ‘

    𝑗=1

    (πœ‘

    2

    3𝑗+ πœ‘

    2

    4𝑗+ 2πœ‘3π‘—πœ‘4𝑗)

    )

    )

    )

    )

    )

    )

    )

    )

    )

    )

    )

    ,

    (40)

  • 6 Abstract and Applied Analysis

    with

    πœ‘1𝑗,π‘₯= (βˆ’πœ† + V) πœ‘

    1𝑗+ (𝑒 + V) πœ‘

    2𝑗,

    πœ‘2𝑗,π‘₯= (𝑒 βˆ’ V) πœ‘

    1𝑗+ (πœ† βˆ’ V) πœ‘

    2𝑗,

    πœ‘3𝑗,π‘₯= (βˆ’πœ† + 𝑝

    2) πœ‘1𝑗+ (𝑝1+ 𝑝2) πœ‘2𝑗

    + (βˆ’2πœ† + V + 𝑝2) πœ‘3𝑗+ (𝑒 + V + 𝑝

    1+ 𝑝2) πœ‘4𝑗,

    πœ‘4𝑗,π‘₯= (𝑝1βˆ’ 𝑝2) πœ‘1𝑗+ (πœ† βˆ’ 𝑝

    2) πœ‘2𝑗

    + (𝑒 βˆ’ V + 𝑝1βˆ’ 𝑝2) πœ‘3𝑗

    + (2πœ† βˆ’ V βˆ’ 𝑝2) πœ‘4𝑗, 𝑗 = 1, . . . , 𝑁,

    (41)

    where Φ𝑖= (πœ‘π‘–1, . . . , πœ‘

    𝑖𝑁), 𝑖 = 1, 2, 3, 4, and βŸ¨β‹…, β‹…βŸ© is the

    standard inner product in 𝑅𝑁.When 𝑛 = 2 and 𝛽 = 2, we obtain nonlinear integrable

    couplings of Li hierarchy with self-consistent sources

    𝑒𝑑2

    = βˆ’

    1

    2

    Vπ‘₯π‘₯βˆ’ 𝑒π‘₯V βˆ’ 𝑒V

    π‘₯+ 2πœ•

    𝑁

    βˆ‘

    𝑗=1

    (πœ‘

    2

    2π‘—βˆ’ πœ‘

    2

    1𝑗) ,

    V𝑑2

    =

    1

    2

    𝑒π‘₯π‘₯βˆ’ 3VVπ‘₯+ 𝑒𝑒π‘₯

    βˆ’ 2πœ•

    𝑁

    βˆ‘

    𝑗=1

    (πœ‘

    2

    1𝑗+ πœ‘

    2

    2𝑗+ 2πœ‘1π‘—πœ‘2𝑗) ,

    𝑝1𝑑2

    = (

    1

    4

    𝑝2,π‘₯βˆ’

    1

    4

    Vπ‘₯+

    1

    2

    𝑒V βˆ’1

    2

    V𝑝1βˆ’

    1

    2

    𝑒𝑝2

    βˆ’

    1

    2

    𝑝1𝑝2)

    π‘₯

    + πœ•

    𝑁

    βˆ‘

    𝑗=1

    (πœ‘

    2

    4π‘—βˆ’ πœ‘

    2

    3𝑗) ,

    𝑝2𝑑2

    = (

    1

    4

    𝑝1,π‘₯βˆ’

    1

    4

    𝑒π‘₯+

    1

    2

    V2βˆ’

    3

    4

    𝑝

    2

    2βˆ’

    3

    2

    V𝑝2+

    1

    2

    𝑒𝑝1

    βˆ’

    1

    4

    𝑒

    2+

    1

    4

    V2+

    1

    4

    𝑝

    2

    1)

    π‘₯

    βˆ’ πœ•

    𝑁

    βˆ‘

    𝑗=1

    (πœ‘

    2

    3𝑗+ πœ‘

    2

    4𝑗+ 2πœ‘3π‘—πœ‘4𝑗) ,

    (42)

    with

    πœ‘1𝑗,π‘₯= (βˆ’πœ† + V) πœ‘

    1𝑗+ (𝑒 + V) πœ‘

    2𝑗,

    πœ‘2𝑗,π‘₯= (𝑒 βˆ’ V) πœ‘

    1𝑗+ (πœ† βˆ’ V) πœ‘

    2𝑗,

    πœ‘3𝑗,π‘₯= (βˆ’πœ† + 𝑝

    2) πœ‘1𝑗+ (𝑝1+ 𝑝2) πœ‘2𝑗

    + (βˆ’2πœ† + V + 𝑝2) πœ‘3𝑗+ (𝑒 + V + 𝑝

    1+ 𝑝2) πœ‘4𝑗,

    πœ‘4𝑗,π‘₯= (𝑝1βˆ’ 𝑝2) πœ‘1𝑗+ (πœ† βˆ’ 𝑝

    2) πœ‘2𝑗

    + (𝑒 βˆ’ V + 𝑝1βˆ’ 𝑝2) πœ‘3𝑗

    + (2πœ† βˆ’ V βˆ’ 𝑝2) πœ‘4𝑗, 𝑗 = 1, . . . , 𝑁.

    (43)

    4. Conservation Laws for the NonlinearIntegrable Couplings of Li Soliton Hierarchy

    In what follows, we will construct conservation laws for thenonlinear integrable couplings of the Li hierarchy. For thecoupled spectral problem of Li hierarchy

    π‘ˆ (𝑒, πœ†)

    = (

    βˆ’πœ† + V 𝑒 + V 0 0

    𝑒 βˆ’ V πœ† βˆ’ V 0 0

    βˆ’πœ† + 𝑝2𝑝1+ 𝑝2βˆ’2πœ† + V + 𝑝

    2𝑒 + V + 𝑝

    1+ 𝑝2

    𝑝1βˆ’ 𝑝2πœ† + βˆ’π‘

    2𝑒 βˆ’ V + 𝑝

    1βˆ’ 𝑝2

    2πœ† βˆ’ V βˆ’ 𝑝2

    ),

    (44)

    we introduce the variables

    𝑀 =

    πœ‘2

    πœ‘1

    , 𝑁 =

    πœ‘3

    πœ‘1

    , 𝐾 =

    πœ‘4

    πœ‘1

    . (45)

    From (44), we have

    𝑀π‘₯= 𝑒 βˆ’ V + 2πœ†π‘€ βˆ’ 2Vπ‘€βˆ’ (𝑒 + V)𝑀

    2,

    𝑁π‘₯= βˆ’ πœ† + 𝑝

    2βˆ’ πœ†π‘ + (𝑝

    1+ 𝑝2)𝑀

    + 𝑝2𝑁 + (𝑒 + V + 𝑝

    1+ 𝑝2)𝐾 βˆ’ (𝑒 + V)𝑁𝑀,

    𝐾π‘₯= 𝑝1βˆ’ 𝑝2+ 3πœ†πΎ + πœ†π‘€ βˆ’ 𝑝

    2𝑀

    βˆ’ (2V + 𝑝2)𝐾 + (𝑒 βˆ’ V + 𝑝

    1βˆ’ 𝑝2)𝑁 βˆ’ (𝑒 + V) 𝐾𝑀.

    (46)

    We expand𝑀,𝑁, and𝐾 in powers of πœ† as follows:

    𝑀 =

    ∞

    βˆ‘

    𝑗=1

    π‘šπ‘—πœ†

    βˆ’π‘—, 𝑁 =

    ∞

    βˆ‘

    𝑗=1

    π‘›π‘—πœ†

    βˆ’π‘—,

    𝐾 =

    ∞

    βˆ‘

    𝑗=1

    π‘˜π‘—πœ†

    βˆ’π‘—.

    (47)

  • Abstract and Applied Analysis 7

    Substituting (47) into (46) and comparing the coefficients ofthe same power of πœ†, we obtain the following:

    π‘š1=

    1

    2

    (V βˆ’ 𝑒) , 𝑛1= 𝑝2,

    π‘˜1=

    1

    3

    (𝑝2βˆ’ 𝑝1) +

    1

    6

    (𝑒 βˆ’ V) ,

    π‘š2=

    1

    4

    (V βˆ’ 𝑒)π‘₯+

    1

    2

    (V2βˆ’ 𝑒V) ,

    𝑛2= βˆ’π‘2,π‘₯βˆ’

    1

    3

    𝑝

    2

    1βˆ’

    2

    3

    𝑒𝑝1+

    2

    3

    V𝑝2+

    4

    3

    𝑝

    2

    2+

    1

    6

    𝑒

    2βˆ’

    1

    6

    V2,

    π‘˜2=

    5

    36

    (𝑒 βˆ’ V)π‘₯+

    1

    9

    (𝑝2βˆ’ 𝑝1)

    π‘₯βˆ’

    5

    18

    V2+

    5

    18

    𝑒V

    +

    2

    3

    V𝑝2βˆ’

    4

    9

    𝑒𝑝2+

    4

    9

    𝑝

    2

    2βˆ’

    4

    9

    𝑝1𝑝2βˆ’

    2

    9

    V𝑝1,

    π‘š3=

    1

    8

    (V βˆ’ 𝑒)π‘₯π‘₯+

    1

    8

    𝑒

    3βˆ’

    1

    8

    𝑒

    2V +

    3

    4

    VVπ‘₯

    βˆ’

    1

    2

    V𝑒π‘₯βˆ’

    1

    4

    𝑒Vπ‘₯+

    5

    8

    V3βˆ’

    5

    8

    𝑒V2,

    𝑛3= 𝑝2,π‘₯π‘₯+

    5

    9

    (𝑝1𝑒)

    π‘₯βˆ’

    5

    9

    (𝑝2V)π‘₯βˆ’

    32

    9

    𝑝2𝑝2,π‘₯βˆ’

    7

    36

    𝑒𝑒π‘₯

    +

    7

    36

    VVπ‘₯+

    5

    9

    𝑝1𝑝1,π‘₯+

    1

    9

    𝑝1Vπ‘₯βˆ’

    1

    9

    𝑝2𝑒π‘₯βˆ’

    5

    36

    𝑒Vπ‘₯

    +

    1

    9

    𝑒𝑝2,π‘₯+

    5

    36

    V𝑒π‘₯βˆ’

    1

    9

    V𝑝1,π‘₯+

    1

    9

    𝑝1𝑝2,π‘₯βˆ’

    1

    9

    𝑝2𝑝1,π‘₯

    βˆ’

    4

    9

    𝑝1𝑒V +

    11

    9

    𝑝2V2βˆ’

    14

    9

    𝑒𝑝1𝑝2+

    16

    9

    V𝑝2

    2

    +

    16

    9

    𝑝

    3

    2βˆ’

    7

    9

    𝑝2𝑒

    2βˆ’

    7

    9

    𝑝2𝑝

    2

    1+

    5

    18

    V𝑒2βˆ’

    5

    18

    V3βˆ’

    2

    9

    V𝑝2

    1,

    π‘˜3=

    19

    216

    (𝑒 βˆ’ V)π‘₯π‘₯+

    1

    27

    (𝑝2βˆ’ 𝑝1)

    π‘₯π‘₯+

    5

    54

    (𝑒 βˆ’ V)π‘₯

    βˆ’

    47

    108

    VVπ‘₯+

    7

    27

    V𝑒π‘₯+

    19

    108

    𝑒Vπ‘₯βˆ’

    4

    27

    V𝑝2,π‘₯

    +

    7

    27

    𝑝2Vπ‘₯+

    5

    27

    𝑒𝑝2,π‘₯βˆ’

    5

    27

    𝑝2𝑒π‘₯βˆ’

    5

    27

    𝑝2𝑝1,π‘₯

    +

    5

    27

    𝑝1𝑝2,π‘₯βˆ’

    2

    27

    𝑝1Vπ‘₯βˆ’

    4

    27

    V𝑝1,π‘₯βˆ’

    103

    216

    V3

    +

    101

    216

    𝑒V2+

    1

    8

    V𝑒2+

    7

    18

    𝑝2V2βˆ’

    16

    27

    𝑝2𝑒V

    βˆ’

    19

    54

    𝑝2V2+

    32

    27

    V𝑝2

    2βˆ’

    16

    27

    𝑝1𝑝2V βˆ’

    4

    27

    𝑝1V2

    βˆ’

    16

    27

    𝑒𝑝

    2

    2+

    16

    27

    𝑝

    3

    2βˆ’

    16

    27

    𝑝1𝑝

    2

    2+

    2

    9

    𝑝1𝑒

    2

    +

    1

    18

    𝑒V2+

    1

    3

    𝑒𝑝

    2

    1+

    1

    9

    𝑝

    3

    1βˆ’

    2

    9

    𝑒V𝑝1βˆ’

    2

    9

    𝑒𝑝1𝑝2

    βˆ’

    1

    9

    V𝑝2

    1βˆ’

    1

    9

    𝑝2𝑝

    2

    1βˆ’

    1

    8

    𝑒

    3, . . . ,

    (48)

    and a recursion formula forπ‘šπ‘—, 𝑛𝑗, and π‘˜

    𝑗as follows:

    π‘šπ‘—+1=

    1

    2

    π‘šπ‘—,π‘₯+ Vπ‘šπ‘—+

    1

    2

    (𝑒 + V)

    π‘—βˆ’1

    βˆ‘

    𝑙=1

    π‘šπ‘™π‘šπ‘—βˆ’π‘™,

    𝑛𝑗+1= βˆ’ 𝑛

    𝑗,π‘₯+ (𝑝1+ 𝑝2)π‘šπ‘—+ 𝑝2𝑛𝑗

    + (𝑒 + V + 𝑝1+ 𝑝2) π‘˜π‘—βˆ’ (𝑒 + V)

    π‘—βˆ’1

    βˆ‘

    𝑙=1

    π‘šπ‘™π‘›π‘—βˆ’π‘™,

    π‘˜π‘—+1=

    1

    3

    π‘˜π‘—,π‘₯βˆ’

    1

    6

    π‘šπ‘—,π‘₯βˆ’

    1

    3

    Vπ‘šπ‘—+

    1

    3

    𝑝2π‘šπ‘—

    +

    1

    3

    (2V + 𝑝2) π‘˜π‘—βˆ’

    1

    3

    (𝑒 βˆ’ V + 𝑝1βˆ’ 𝑝2) 𝑛𝑗

    βˆ’

    1

    6

    (𝑒 + V)

    π‘—βˆ’1

    βˆ‘

    𝑙=1

    π‘šπ‘™π‘šπ‘—βˆ’π‘™+

    1

    3

    (𝑒 + V)

    π‘—βˆ’1

    βˆ‘

    𝑙=1

    π‘šπ‘™π‘˜π‘—βˆ’π‘™.

    (49)

    Because of

    πœ•

    πœ•π‘‘

    [βˆ’πœ† + V + (𝑒 + V)𝑀] =πœ•

    πœ•π‘₯

    [π‘Ž + (𝑏 + 𝑐)𝑀] ,

    πœ•

    πœ•π‘‘

    [βˆ’πœ† + 𝑝2+ (𝑝1+ 𝑝2)𝑀 + (βˆ’2πœ† + V + 𝑝

    2)𝑁

    + (𝑒 + V + 𝑝1+ 𝑝2)𝐾]

    =

    πœ•

    πœ•π‘₯

    [𝑒 + (𝑓 + 𝑔)𝑀 + (π‘Ž + 𝑒)𝑁

    + (𝑏 + 𝑐 + 𝑓 + 𝑔)𝐾] ,

    (50)

    where

    π‘Ž = πœ‰0πœ†

    2+ πœ‰1πœ† +

    1

    2

    πœ‰0(V2βˆ’ 𝑒

    2) ,

    𝑏 = βˆ’πœ‰0π‘’πœ† + πœ‰

    0(βˆ’π‘’V +

    1

    2

    Vπ‘₯) βˆ’ πœ‰1𝑒,

    𝑐 = βˆ’πœ‰0Vπœ† + πœ‰

    0(βˆ’V2+

    1

    2

    𝑒π‘₯) βˆ’ πœ‰1V,

    𝑒 = πœ‰0πœ†

    2+ πœ‰1πœ†

    + πœ‰0(

    1

    2

    V𝑝2βˆ’

    1

    2

    𝑒𝑝1+

    1

    4

    𝑒

    2βˆ’

    1

    4

    V2βˆ’

    1

    4

    𝑝

    2

    1+

    1

    4

    𝑝

    2

    2) ,

    𝑓 = βˆ’ πœ‰0𝑝1πœ† + πœ‰0(

    1

    4

    𝑝2,π‘₯βˆ’

    1

    4

    Vπ‘₯+

    1

    2

    𝑒V βˆ’1

    2

    V𝑝1

    βˆ’

    1

    2

    𝑒𝑝2βˆ’

    1

    2

    𝑝1𝑝2) βˆ’ πœ‰1𝑝1,

    𝑔 = βˆ’ πœ‰0𝑝2πœ† + πœ‰0(

    1

    4

    𝑝1,π‘₯βˆ’

    1

    4

    𝑒π‘₯+

    1

    2

    V2

    βˆ’

    1

    2

    𝑝

    2

    2βˆ’ V𝑝2) βˆ’ πœ‰1𝑝2.

    (51)

  • 8 Abstract and Applied Analysis

    Assume that

    𝜎 = βˆ’πœ† + V + (𝑒 + V)𝑀,

    πœƒ = π‘Ž + (𝑏 + 𝑐)𝑀,

    𝜌 = βˆ’ πœ† + 𝑝2+ (𝑝1+ 𝑝2)𝑀 + (βˆ’2πœ† + V + 𝑝

    2)𝑁

    + (𝑒 + V + 𝑝1+ 𝑝2)𝐾,

    𝛿 = 𝑒 + (𝑓 + 𝑔)𝑀 + (π‘Ž + 𝑒)𝑁 + (𝑏 + 𝑐 + 𝑓 + 𝑔)𝐾.

    (52)

    Then, (50) can be written as πœŽπ‘‘= πœƒπ‘₯and 𝜌

    𝑑= 𝛿π‘₯, which are

    the right form of conservation laws. We expand 𝜎, πœƒ, 𝜌, and 𝛿as series in powers of πœ† with the coefficients, which are calledconserved densities and currents, respectively:

    𝜎 = βˆ’πœ† + V + (𝑒 + V)

    ∞

    βˆ‘

    𝑗=1

    πœŽπ‘—πœ†

    βˆ’π‘—,

    πœƒ = πœ‰0πœ†

    2+ πœ‰1πœ† +

    ∞

    βˆ‘

    𝑗=1

    πœƒπ‘—πœ†

    βˆ’π‘—,

    𝜌 = βˆ’πœ† + 𝑝2+

    ∞

    βˆ‘

    𝑗=1

    πœŒπ‘—πœ†

    βˆ’π‘—,

    𝛿 = πœ‰0πœ†

    2+ πœ‰1πœ† +

    ∞

    βˆ‘

    𝑗=1

    π›Ώπ‘—πœ†

    βˆ’π‘—,

    (53)

    where πœ‰0and πœ‰

    1are constants of integration. The first

    conserved densities and currents are read as follows:

    𝜎1=

    1

    2

    (V2βˆ’ 𝑒

    2) ,

    πœƒ1= πœ‰0(

    1

    2

    𝑒𝑒π‘₯βˆ’

    3

    4

    𝑒Vπ‘₯βˆ’

    3

    4

    VVπ‘₯) βˆ’

    1

    2

    πœ‰1(V2βˆ’ 𝑒

    2) ,

    𝜌1=

    1

    2

    𝑒𝑝1+

    1

    3

    V𝑝2βˆ’

    4

    3

    𝑝

    2

    2βˆ’

    1

    6

    𝑒

    2

    +

    1

    6

    V2+

    1

    3

    𝑝

    2

    1+

    1

    6

    𝑒𝑝1+ 2𝑝2,π‘₯,

    𝛿1= πœ‰0(2𝑝2,π‘₯π‘₯+

    1

    36

    𝑝1Vπ‘₯+

    41

    36

    𝑝1𝑒π‘₯βˆ’

    41

    36

    𝑝2Vπ‘₯

    βˆ’

    1

    36

    𝑝2𝑒π‘₯βˆ’

    41

    36

    V𝑝2,π‘₯βˆ’

    1

    36

    V𝑝1,π‘₯

    +

    13

    36

    VVπ‘₯βˆ’

    1

    36

    V𝑒π‘₯+

    1

    36

    𝑒𝑝2,π‘₯

    +

    41

    36

    𝑒𝑝1,π‘₯βˆ’

    13

    36

    𝑒𝑒π‘₯βˆ’

    257

    36

    𝑝2𝑝2,π‘₯

    +

    41

    36

    𝑝1𝑝1,π‘₯+

    1

    36

    𝑝1𝑝2,π‘₯

    βˆ’

    1

    36

    𝑝2𝑝1,π‘₯+

    47

    36

    𝑝2V2βˆ’

    1

    18

    V𝑒2

    +

    11

    36

    V𝑝1𝑝2+

    55

    18

    V𝑝2

    2βˆ’

    43

    36

    𝑝2𝑒

    2

    βˆ’

    53

    18

    𝑒𝑝1𝑝2+

    93

    36

    𝑝

    3

    2

    βˆ’

    3

    4

    𝑝2𝑝

    2

    1βˆ’

    1

    18

    V𝑝2

    1βˆ’

    4

    9

    V𝑝2

    2

    βˆ’

    1

    9

    𝑒V𝑝1βˆ’

    4

    9

    𝑝1𝑝

    2

    2

    +

    1

    18

    V3+

    1

    36

    𝑒Vπ‘₯)

    + πœ‰1(βˆ’2𝑝2,π‘₯+ V𝑝1βˆ’

    5

    3

    𝑒𝑝1+

    5

    3

    V𝑝2βˆ’ 𝑒𝑝2

    +

    7

    3

    𝑝

    2

    2+

    1

    6

    𝑒

    2βˆ’

    1

    6

    V2βˆ’

    1

    3

    𝑝

    2

    1) , . . . .

    (54)

    The recursion relations for πœŽπ‘—, πœƒπ‘—, πœŒπ‘—, and 𝛿

    𝑗are as follows:

    πœŽπ‘—= (𝑒 + V)π‘š

    𝑗,

    πœƒπ‘—= βˆ’ πœ‰

    0(𝑒 + V)π‘š

    𝑗+1+ πœ‰0(

    1

    2

    𝑒π‘₯+

    1

    2

    Vπ‘₯βˆ’ 𝑒V βˆ’ V

    2)π‘šπ‘—

    βˆ’ πœ‰1(𝑒 + V)π‘š

    𝑗,

    πœŒπ‘—= (𝑝1+ 𝑝2)π‘šπ‘—βˆ’ 2𝑛𝑗+1+ (V + 𝑝

    2) 𝑛𝑗

    + (𝑒 + V + 𝑝1+ 𝑝2) π‘˜π‘—,

    𝛿𝑗= πœ‰0[ βˆ’ (𝑝

    1+ 𝑝2)π‘šπ‘—+1

    + (

    1

    4

    𝑝2,π‘₯+

    1

    4

    𝑝1,π‘₯βˆ’

    1

    4

    Vπ‘₯

    βˆ’

    1

    4

    𝑒π‘₯+

    1

    2

    𝑒V βˆ’1

    2

    V𝑝1

    βˆ’

    1

    2

    𝑒𝑝2βˆ’

    1

    2

    𝑝1𝑝2+

    1

    2

    V2

    βˆ’

    1

    2

    𝑝

    2

    2βˆ’ 𝑝2V)π‘šπ‘—

    + 2𝑛𝑗+2+ (

    1

    2

    V2βˆ’

    1

    2

    𝑒

    2+

    1

    2

    V𝑝2

    βˆ’

    1

    2

    𝑒𝑝1+

    1

    4

    𝑒

    2

    +

    1

    4

    𝑝

    2

    2βˆ’

    1

    4

    V2βˆ’

    1

    4

    𝑝

    2

    1) 𝑛𝑗

    βˆ’ (𝑒 + V + 𝑝1+ 𝑝2) π‘˜π‘—+1

  • Abstract and Applied Analysis 9

    + (

    1

    4

    𝑒π‘₯+

    1

    4

    Vπ‘₯+

    1

    4

    𝑝1,π‘₯+

    1

    4

    𝑝2,π‘₯βˆ’

    1

    2

    𝑒V

    βˆ’

    1

    2

    V2βˆ’

    1

    2

    V𝑝1βˆ’

    1

    2

    𝑒𝑝2

    βˆ’

    1

    2

    𝑝1𝑝2βˆ’

    1

    2

    𝑝

    2

    2βˆ’ V𝑝2)]

    + πœ‰1[2𝑛𝑗+1βˆ’ (𝑝1+ 𝑝2)π‘šπ‘—

    βˆ’ (𝑒 + V + 𝑝1+ 𝑝2) π‘˜π‘—] ,

    (55)

    whereπ‘šπ‘—, 𝑛𝑗, and π‘˜

    𝑗can be calculated from (49).The infinite

    conservation laws of nonlinear integrable couplings (37) canbe easily obtained in (45)–(55), respectively.

    5. Conclusions

    In this paper, a new explicit Lie algebra was introduced, anda new nonlinear integrable couplings of Li soliton hierarchywith self-consistent sources was worked out. Then, theconservation laws of Li soliton hierarchy were also obtained.The method can be used to other soliton hierarchy with self-consistent sources. In the near future, we will investigateexact solutions of nonlinear integrable couplings of solitonequations with self-consistent sources which are derived byusing our method.

    Acknowledgments

    The study is supported by the National Natural ScienceFoundation of China (Grant nos. 11271008, 61072147, and1071159 ), the Shanghai Leading Academic Discipline Project(Grant no. J50101), and the Shanghai University LeadingAcademic Discipline Project (A. 13-0101-12-004).

    References

    [1] W. X.Ma, B. Fuchssteiner, andW.Oevel, β€œA 3Γ—3matrix spectralproblem for AKNS hierarchy and its binary nonlinearization,”Physica A, vol. 233, no. 1-2, pp. 331–354, 1996.

    [2] W.-X. Ma and X. Geng, β€œBäcklund transformations of solitonsystems from symmetry constraints,” in CRM Proceedings andLecture Notes, vol. 29, no. 3, pp. 313–323, 2001.

    [3] W. X. Ma and B. Fuchssteiner, β€œIntegrable theory of theperturbation equations,” Chaos, Solitons and Fractals, vol. 7, no.8, pp. 1227–1250, 1996.

    [4] W.-X. Ma, β€œIntegrable couplings of soliton equations by per-turbations. I. A general theory and application to the KdVhierarchy,”Methods and Applications of Analysis, vol. 7, no. 1, pp.21–56, 2000.

    [5] T. C. Xia, G. L. Zhang, and E. G. Fan, β€œNew integrable couplingsof generalized Kaup-Newell hierarchy and its hamiltonianstructures,” Communications in Theoretical Physics, vol. 56, no.1, pp. 1–4, 2011.

    [6] Y. Zhang and H. Zhang, β€œA direct method for integrablecouplings of TDhierarchy,” Journal ofMathematical Physics, vol.43, no. 1, pp. 466–472, 2002.

    [7] W.-X. Ma, X.-X. Xu, and Y. Zhang, β€œSemi-direct sums of Liealgebras and continuous integrable couplings,” Physics LettersA, vol. 351, no. 3, pp. 125–130, 2006.

    [8] G. C. Wu, β€œNew trends in the variational iteration method,”Communications in Fractional Calculus, vol. 2, no. 2, pp. 59–75,2011.

    [9] J. Fujioka, β€œLagrangian structure andHamiltonian conservationin fractional optical solitons,” Communications in FractionalCalculus, vol. 1, no. 1, pp. 1–14, 2010.

    [10] F. Guo and Y. Zhang, β€œThe integrable coupling of the AKNShierarchy and its Hamiltonian structure,” Chaos, Solitons andFractals, vol. 32, no. 5, pp. 1898–1902, 2007.

    [11] H. Jafari, N. Kadkhoda, and C. M. Khalique, β€œExact solutionsof πœ‘4 equation using lie symmetry approach along with thesimplest equation and Exp-function methods,” Abstract andApplied Analysis, vol. 2012, Article ID 350287, 2012.

    [12] W.-X. Ma, β€œVariational identities and applications to Hamilto-nian structures of soliton equations,”Nonlinear Analysis, vol. 71,no. 12, pp. e1716–e1726, 2009.

    [13] W. X. Ma, J. H. Meng, and H. Q. Zhang, β€œIntegrable couplings,variational identities and Hamiltonian formulations,” in Pro-ceedings of the 6th International Federation of Nonlinear AnalystsConference, pp. 1–17, 2012.

    [14] W.-X. Ma, β€œNonlinear continuous integrable Hamiltonian cou-plings,” Applied Mathematics and Computation, vol. 217, no. 17,pp. 7238–7244, 2011.

    [15] D. J. Kaup, β€œIntegrable ponderomotive system: cavitons aresolitons,” Physical Review Letters, vol. 59, no. 18, pp. 2063–2066,1987.

    [16] M. Nakazawa, E. Yamada, and H. Kubota, β€œCoexistence ofself-induced transparency soliton and nonlinear Schrödingersoliton,” Physical Review Letters, vol. 66, no. 20, pp. 2625–2628,1991.

    [17] F. J. Yu and L. Li, β€œNon-isospectral integrable couplingsof Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy with self-consistent sources,” Chinese Physics B, vol. 17, no. 11, pp. 3965–3973, 2008.

    [18] T. Xiao and Y. Zeng, β€œThe quasiclassical limit of the symmetryconstraint of the KP hierarchy and the dispersionless KPhierarchy with self-consistent sources,” Journal of NonlinearMathematical Physics, vol. 13, no. 2, pp. 193–204, 2006.

    [19] H.-Y. Wang, X.-B. Hu, and H.-W. Tam, β€œConstruction ofπ‘ž-discrete two-dimensional Toda lattice equation with self-consistent sources,” Journal of Nonlinear Mathematical Physics,vol. 14, no. 2, pp. 258–268, 2007.

    [20] Y.-P. Sun and H.-W. Tam, β€œNew type of nonisospectral KPequation with self-consistent sources and its bilinear Bäcklundtransformation,” Journal of NonlinearMathematical Physics, vol.18, no. 2, pp. 323–336, 2011.

    [21] S. F. Deng, β€œMultisoliton solutions for the isospectral and non-isospectral BKP equation with self-consistent sources,” ChinesePhysics Letters, vol. 25, no. 7, pp. 2331–2334, 2008.

    [22] S.-f. Deng, β€œThe multisoliton solutions for the nonisospectralmKPI equation with self-consistent sources,” Physics Letters A,vol. 372, no. 4, pp. 460–464, 2008.

    [23] T. C. Xia, β€œTwo new integrable couplings of the soliton hierar-chies with self-consistent sources,”Chinese Physics B, vol. 19, no.10, Article ID 100303, pp. 1–8, 2010.

    [24] R. M. Miura, C. S. Gardner, and M. D. Kruskal, β€œKorteweg-de Vries equation and generalizations. II. Existence of conser-vation laws and constants of motion,” Journal of MathematicalPhysics, vol. 9, no. 8, pp. 1204–1209, 1968.

  • 10 Abstract and Applied Analysis

    [25] S. C. Anco and G. Bluman, β€œDirect construction method forconservation laws of partial differential equations. II. Generaltreatment,”European Journal of AppliedMathematics, vol. 13, no.5, pp. 567–585, 2002.

    [26] N. H. Ibragimov and T. Kolsrud, β€œLagrangian approach to evo-lution equations: symmetries and conservation laws,”NonlinearDynamics, vol. 36, no. 1, pp. 29–40, 2004.

    [27] H. Wang and T.-C. Xia, β€œConservation laws for a super G-J hierarchy with self-consistent sources,” Communications inNonlinear Science and Numerical Simulation, vol. 17, no. 2, pp.566–572, 2012.

    [28] M. Nadjafikhah, R. Bakhshandeh Chamazkoti, and F. Ahangari,β€œPotential symmetries and conservation laws for generalizedquasilinear hyperbolic equations,” Applied Mathematics andMechanics, vol. 32, no. 12, pp. 1607–1614, 2011.

    [29] G. Z. Tu, β€œOn Liouville integrability of zero-curvature equationsand the Yang hierarchy,” Journal of Physics A, vol. 22, no. 13, pp.2375–2392, 1989.

    [30] G. Z. Tu, β€œThe trace identity, a powerful tool for constructingthe Hamiltonian structure of integrable systems,” Journal ofMathematical Physics, vol. 30, no. 2, pp. 330–338, 1989.

    [31] Y.-S. Li, β€œThe reductions of the Darboux transformation andsome solutions of the soliton equations,” Journal of Physics A,vol. 29, no. 14, pp. 4187–4195, 1996.

    [32] G. Z. Tu, β€œAn extension of a theorem on gradients of conserveddensities of integrable systems,” Northeastern MathematicalJournal, vol. 6, no. 1, pp. 28–32, 1990.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of