SEDIMENTARY ZEOLITE DEPOSITS OF THE UPPER...

21
SEDIMENTARY ZEOLITE DEPOSITS OF THE UPPER MATANUSKA VALLEY, ALASKA SPECIAL REPORT 8 Prepared by 1). B. IIawkins in cooperation with the Alaska Division of Geological & Geophysical Surveys DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS COLLEGE. ALASKA 1973

Transcript of SEDIMENTARY ZEOLITE DEPOSITS OF THE UPPER...

SEDIMENTARY ZEOLITE DEPOSITS OF THE UPPER MATANUSKA VALLEY, ALASKA

SPECIAL REPORT 8

Prepared by 1). B. IIawkins in cooperation with the Alaska Division o f Geological & Geophysical Surveys

DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS

COLLEGE. ALASKA 1973

STATE OF ALASKA William A. Egan, Governor

DEPARTMENT OF NATURAL RESOURCES Charles F. Herbert, Commissioner

DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS Donald C. Hartman, State Geologist

CONTENTS

Page

Abstract ............................................................................................................................................................ 1 Introduction ................................................................................................................................................. 1

Purpose ......................................................................................................................................................... 1 Acknowledgement ..................................................................................................................................... 1 Background ................................................................................................................................................ 1 This study ...................... .. ....................................................................................................................... 2

Search strategy ..................................................................................................................................... 2 Geology of the Upper Matanuska Valley ................................................................................................ 2 Sarrlpling ................................................................................................................................................... 2

Laboratory studies .............................. .. .................................................................................................. 2 X-ray diffraction ................................................................................................................................. 2

................................................................................................ ..................... Field test for zeolites .. 9 ................................................................................... Ion-exchange and gas-sorption rneasurernents 9

..................................................................................................... ..................... Petrographic study .. 9 Discussion ..................................................................................................................................................... 9

.................................... ................................................................ Distribution and genesis of zeolites .... 9 Economic potential of zeolite deposits ................... ... ..................................................................... 11 Field test for zeolites ...................... ... ............................................................................................ 14

Conclusion ..................................................................................................................................................... 14 References .................................................................................................................................................... 15 Appendix ...................................................................................................................................................... 15

Selected references frorn (:herriical Abstracts on the use and properties of certain natural zeolites

ILLUSTRATIONS

Plate I . Location of areas studied. sample localities and simplified geologic maps of Sheep Mountain. Horn Mountain and Goober Lake areas ................................ (In pocket)

FIGURE 1 . Venn diagram showing general conditions necessary for sedimentary zeolite formation and preservation ................................................................................................. 5

2 . Cross section frorn Goober Lake north to Horn Mountain showing .......................................................................................................... probable zeolite zonation 10

........................................................................ 3 . Possible P-l' fields for low-grade mineral facies 12

TABLES Page

TABLE 1. Sample number, hand specimen description and mineralogy of samples .............................................................................................. as determined by x-ray diffraction 4

2. Results of chemical test for the presence of zeolites .................................................................... 13

.................................................... 3. Results of zeolite evaluation, Worcester Polytechnic Institute 14

SEDIMENTARY ZEOLITE DEPOSITS OF THE UPPER MATANUSKA VALLEY, ALASKA

by I ) . H . [IAWKINS

econornic signiticanct. t'xiht ~n th t*\ icinity o t 1 lorn & l o ~ ~ n t ; t i ~ ~ ;111(1

Sheep Mortntain in t h r 111)pt~r M:itanusk:~ l ; t l l t~y ' l ' l~t. ~ ~ ~ o r t l t s n ~ t t . dt.l)osit in particular t~c,;trs t ~ ~ r t h r r \ t l~ t lv .

%eolitization in tllc. ;trc*;i ih tl~c, rc8511lt 01 t)rlr~al di;tgcl~c.\ih alltl low-yradr rc>gitr~lal 11lc.ta111orl)h15111 At the. t i ~ ~ ~ t h ot /~o l i t c ' tonnat ion, tc.n~prr;tturt.s ;tnd sa1111itir.s wtkrt. l(~\vt*r in tht* 1lor11 Mol~n ta in erck:c, wht.rt. tlt.l)osits of ~ ~ l o r t l c . t ~ ~ t t . ; I I I ( I ht.111;111clit(. wr r t a t o rn l rd , t h a ~ ~ for tht. I: tr~~~lor~tttc. t l t . l)o\~t\ 111 Sht-cy) M o ~ ~ n t a i r ~ .

A chemical tit.ltl test tor thc. I)rt.\c.rlcc. 01 /tbol~tct.; w a s r10t ef tect ivc in tiistinyuishing xeolitizc.tl t r o ~ ~ ~ ~ ~ ~ ~ - z t . o l ~ t i z t . t l rock5 i r ~ the area.

INTRODUCTION

PURPOSE

The purpose of this study was t o investigate thv type and extent of zeolitization in the rocks of the Talkeetna and Matanrlska forrriations of the r1I)per Matanuska Valley, arid to cteter~nine if zeolite deposits of possible econorriic significance were present. See Plate 1, for the location of the area studied.

ACKNOWLEDGEMENT

In this work, I an1 particrilarly indebted to Arthur M. Grantz of the U . S. Geological Survey who freely shared his special knowledge of the zeolite occurrence in the upper Matanuska Valley with me, and in particular for bringing to rny attention the tuffs of the Horn Mountain area (see Plate 1). I also wish to thank Professor Leonard Sand of Worcester Polytechnic Institute, who, as a professional courtesy, evaluated several of the zeolite sarnples for me. I also wish to thank nly colleague, Dr. Donald Grybeck for his helpful criticism of this report. Finally, I wish to thank Mr. Williarri Fackler. Dr. Thomas E. Smith, Dr. 'l'honias Mowatt and Namok Veach of the Alaska State Ilivision of Geological and Geophysical Surveys for the funding and analytical support of this work.

BACKGROUND

Zeolites are hydrous alumino-silicate minerals strtlcturally related to the feldspars and containing alkali or alkaline-earth ions. 'l'he zeolites are unique in that the alu~nino-silicate framework is so constructed that large channelways and cavities are present within the structure. The alkali and alkaline-earth cations and water molecules which occupy strrictural positions within these channels and cavities are readily replaceable by other ions or ~riolecules. Because the channels have unique aperhire dimensions. only ions and molecules of the appropriate size can enter the structure. Because of these properties, zeolites serve as ion exchangers, gas sorbents, and ~rlolecular sieves to name a few applications. The references at the end of this report and especially those listed in Appendix 1 indicate the uses to which zeolites are put.

In the (Inited States, rnost of the uses are filled by synthetic zeolites. l 'he natural zeolites are extensively used in other countries; in Japan for exarriple, the exploitation of natural zeolites is a 11111lti-million dollar industry.

Zeolites for~nerly were thought to be rather rare rriinerals occurring as vug fillings in volcanic rocks. It was not until the mid 1950's to early 1960's that zeolites were shown to be very common sedimentary minerals often formed as the result of the alteration of vitric tuffs in saline-lake environments. The numerous large deposits of sedimentary zeolites in the conterminous United States were formed in this manner (Shepard, 1971; Papke, 1972). The zeolite deposits of Japan however, tornled as a result of the interaction of marine waters on volcanic materials (Utada, 1971). 'I'he zeolites respond quite readily to changes in temperature and pressure as a result of burial. These changes produce characteristic suites of zeolites and other minerals which have come to be recognized as the zeolite facies of metamorphism (Coombs, 1970). Because the zeolites are relatively unstable, over a sufficiently long period of time, they rriay alter to more stable minerals such as the

feldspars. Zeolite deposits are thus confined to relatively young yocks. 'l'hc conditions for the formation and preservation ot the sedimentary zeolites are:

1. Reactive parent rriatcrial, tL.g., vitric: tuffs;

2. Fluids of the appropriate chetnical composition, t'.g., saline-lake water; 7 7 . 3. 1 inie sufficient for the forrnation of zeolites but not so lorrg that the zeolites fornied have t ~ e e o transforn~ed to nrore stable rt~irlerals, r . ~ . , Mesozoic to present. T h e s e c o n d i t i o n s a r e s h o w n schernatically in Venn diagrarn forrri in Figure 1.

THIS STUIIY

SBAK<:f I S'I'KA'I'BGY

In searching for zeolite deposits of potc.ntial econornic importance in Alaska, the zeolite deposits of Japan, fornied by alteration of volcanic rocks in a rriarine environn~ent, serve as an excellent guide. The rnodel offered by the zeolite deposits of the conterminous llnited States is not applicable to Alaska because r~nlike the western llnited States, Alaska did not have extensive 'l'ertiary lake basins in which volcanic detritus was deposited. Using the conditions of F i g ~ ~ r e 1 as a guide, attention was directed to the 'l'alkeetna forn~ation in the upper Matanuska Valley. A literature search pertaining to the area revealed that zeolites had long been known to be present in this area (<;apps, 1927; Gratitz, 1%). Parenthetically, using the sarr~e rnodel Madonna (1973) has discovered two ~~reviously unreported zeolite deposits in Alaska, one of which is of potential econonlic significance..

<:EOL<XY OF 'I'HE UPPER MAI'ANCISKA VAI,L,BY

'l'he geology of thc area strrdied has t>t~cr~ tlescribtd 1)y ( :a~)p\ i 1927) alld I I I O I . ~ ~ rc.cc,ntly t)). (ira11tz (1965). ' l ' l r t , gc~)log! 01 tlrcn gl l)st1111 deposits 011 Sl l tq) J1o1111t:iitr hiis t ) r t ~ clcscrit)c*(l IJ\ P:ckh:irt (1951).

'I'IIC, 1)rt,s(~1t st~~cl!, \ i i i h l i ~ t r i t ( ~ e l to ~n\ , (~st ig; i t l~~g zcolitizatiolr i r ~ t l l c , lo\\ cbr J ~~rasstc* 'I';ilkc,ct~r;t forr~l:itior~ ancl 1owc.r 1111its of tlicx I I I ) I ) ( ~ I ( : ~ ( ~ t a ~ ' t . o t ~ \ Matarlr~ska t o r - I I I ~ ~ ~ O I I . 111 tlic. ;trcl;i stt~tlic~l, t11c. 'l'alkt.r.tn:i iorl~latiol~ co~rs~hts of ~)rir~riir!~ ;in(/

reworked volcanic ejecta and lavas of andesitic and basaltic cotr~position; ~ilostly rnarine, partly non- marine. 'I'he formation consists of thick units of rnarine pyroclastic sandstorle, siltstone arid claystone (coarse and fine-grained, water-laid tuffs). 'l'he rocks o f the 'I'alkeetna fortnation are cornriionly sotnewhat altered to chlorite, clay minerals, zeolites and albite. At Sheep Mountain and vicinity strong hydrotherrrial activity has produced greenstonc.

'l'he Mata~ir~ska forrnation consists of claystones, siltsto~ies, shales atlrl sandstones with litnestone cor~cretions and lentils. Prisrilatic shells of the pelecypod Inocerumt~s are present in sorne units. Hasal units consist o f pebbly epiclastic volcanic sandstone with marine fossils, liniestone concretions and wood fragirients (Grantz, 1965).

Samples of fist-sized dirnerisior~s were collectetl rnainly froll~ nrlrncrous o ~ ~ t c r o p s of the 'I'alkeetna torrriation at three areas in the upper Matanuska Valley. '1'0 a lesser extent orrtcrops of volcanic sandstones of the Matanuska fortnation were sampled as well. (See Plate 1 for the location of the sample areas). Plate 1 shows the localities fro111 which samples were collected. In sampling these areas particular attention was paid to sarriple vesicl~lar volcanics, vein tilaterial and tuffs, as these rrlaterials are likely to contain zeolites.

As can be seen in Plate I , the Sheep Mountain area was ~rlost extensively sampled, primarily because of the accessibility of the area and because no inforrnation was available a priori to suggest that zeolitization in the Horn Mountain and Goober Lake areas was any different fro111 that expected at Sheep Mountain.

LABORATORY STUDIES

X-KAY I~lI;FKA<~'I'ION

I'ortions ot the satnples collected were ground in air iig~itc. trrortar, mixed with distilled water to form a slrrl-I.) ;irlti sl)l-t.ad 0 1 1 a glass ~rlicroscopt. slidt,. X- rii\ tl if t r a c t i o~~ i)attc.rr~s of tht,sc- slides \tcxre obta~rlt.cl ~rsiug Ni filterecl (: ( I Kci ratliatio~~ k i t a scar1 s l ) ( x , k ( i ot tu.0 ilegr(~rh trio-theta per r ~ ~ i r ~ r r t t . . L)iftr:ic~t~ol~ I)c':iks ovt'r t l i r ' :iirg~ll:ir ratrgca I)t>t\\.ct.ri 1o11r el(~grcc~s to tort). clcsgrc~t~s t\to-thcbta were rtac.oldt.cl. 'I'hc. a--ray dittructiolr patterns ot thc ~a1111) lc~swt~r t~ c o ~ ~ ~ l ) a r t ~ l with i-1.d) (iiffractiol~

SEL)IMEN7L'AHY ZEOLITE 1)EPOSITS O F '['HE LIPPER MA'I'ANUSKA V.4LLEY. ALASKA 3

Vitric Tuffs

FIGURE 1 . Venn diagralrl showing gt.r~c.r;il conditions necessary tor sc.dirrle~ltary zeolite formation and preservation.

4 SPECIAL REPORT 6

TABLE 1 . Sample number, hand-specimen description and mineralogy o f samples as determined by X-ray diffraction See Figures 3 , 4 , and 5 for the localities from which these samples were taken.

Massive, volcanic

Volcanic breccia

Water-laid tutt

Altered volcanic breccia

Fine-rained volcanic sandstone

Massive volcanic

Water-laid tuff(?)

Massive volcanic

Vein filling in rrlassive volcanic

Fractured, vein bearing volcanic

Fractured, vein bearing volcanic

Massive volcanic

Uense, volcano-clastic

Claystone

Vein bearing, fractured volcanic

Veln tdl~ng troni tractnred volcanlc

Water-lald tutt

Veln heanng tractr~rzd volcanic

Massive volcanic

Vein-bearing tnt t

Vein-bearing, tractured tuft

Fracture, vein-bearing siltstone

Altered claystone

Vein filling

Altered pebbly breccia

Vein-bearing, massive volcanic

Vein-bearing, massive volcanic

Mineralogy (zeolites are indicated in bold faced type)

Quartz, feldspar, chltlrite

quart.^, laurnontite, chloritc

Quartz, laurnontite

Quartz, laumontite, teldspar

Quartz, laurnontite, chlorite

Quartz, laurnontite, chlorite, teldspar

Quartz, laumontite, chlorite, teldspar

Calcite, laumontite, chlorite

Calcite, chlorite, teldspar

Quartz, laumontite, tel(lsl)ar

Quartz, chlorite, teldspar

Quartz, laurnontite, telc1sl)ar

Quartz, chlorite, teldspar

Quart?, Iaunlontite, calcite, chloritr,, feldspar

QuarV~, laurnontite, tc,lclvpar

Quartz, chloritc, rl,itlote(?)

Quart./.. laumontite, chlorite, calcite,, teldspar

Chlorite, teldspar

Quartz, laurnontite, chlorite, calcittb

Laumontite, chloritt., telds1)ar

Quartz, laurnontite, chlorite, datolite

Quartz, kaolinite, calcite

Quartz, calcite

Quartz, kaolinite, calcite, teldspar

Calcite, unidentified major phase

Quartz, laurnontite, calcite, teldspar

SKI)IMEK71'AHY %EOI, I I 'E I I E P O S I I ' S OF I ' H E Ill 'PEH \IA1',4KLISKA \'ALI,EY. A1,ASKA

'l 'ahlr 1. - Continued

Siltstonr

.l'lltt

28 '1'11tt

29 '1'11tt

C't,in tillir~g, altc,retl volcanic

Vtsin tilling, altt.rc.ti volcanic

Greenstone

<;onglorneratt,

Vein-bearing tracturcatl volcanic

llydrotherr~lally altered tracturrd volcanic

Vein-bearing tractnrcd volcanic

Volcanic sandstone

(:oarse volcanic santlstont.

Vein-bear in^ tractured volcanic

'l'lltt

Greenstone

53 \'olcanic sandstone

Volcanic sandstone

Hydrotherlnally altered rnassive volcanic

(zeolites are indicated in hold faced type)

Quartz, calcitr. k;collnitt.

Quartz, laumontite, chloritca

Quartz, laumontite. tc,l(lsl)ar

Qrl:~rtz, laumontite, tc,l(lsl):tr

Quartz, laumontite. teldsl)ar

Qnartz, Iaumontite, kaolrrr(;+), cal(.itc., teldsl)ar

Quartz. Iaumontite, chloritc.

Quartz, chlorite, teldspar, calcite

Qlrar.{, kaolinite, teldsl):~r

Quartz, laumontite. chloritc, trlclsl)a~

Quartz, chlorite, tcltly)ar

Quartz, calcitr. c-hlorite, tcltlspar

c~y~~s11111

quart^., laumontite, chloritts, gypsrlr~~

Gypsurn, laumontite, chloritts

( : ~ ~ ) S I I I I I , chlorite

Epidote, calcite.

Q ~ ~ a r t z , laurnontite

Qllartz, chlorite, t.pitlotc,

Quartz, teldspar

Laumontite, chlorite, trlclsl)ar

Qnartz. laumontite, tt.ldspar, kaolinite

Qdal . t~ . laumontite, teldspar

Quartz, laumontite, telclspar

Quartz, laumontite, chlorite, tt.ldspar

Quartz, Iaumontite, chlnritt,, feldspar

Quartz. laumontite, teltlsl)ar, chlorite

Prehnite

Quartz, laumontite, chlorite, teldspar

Quartz, chlorite

quart.^, chloritc.

SPECIAL REPORII' 6

Table 1. - Continued

Saniplcb Mineralogy Descriptic~n

Number (zeolites are indicated in bold faced type)

54c Hed-brown soil, trorn n~assive volcanic Quartz, chlorite, calcite

55 (;onglomeratic peenstone Quartz, laumontite, teldspar, k:colinitr.

Vein-bearing fractured volcanic

Claystont.

Quartz, laumontite

Sericite

58 Vesicular volcanic Quartz, laumontite

59 'I'uffaceous sandstone Quartz, laumontite

Volcanic gouge with zeolite(?) porphyroblasts

Quartz, laumontite, teldspar

61 Coarse volcanic sandstone Laumontite, chlorite, tt5lclspar

62 Clayey gouge Quartz, laurnontite, chlorite

Vesicular volcanic with zeolite(?) vrlg fillings

'I'nff and purnice

Quartz, laurnontite, teldspar

Quartz, laumontite, chlorite, teldqpar

a5 Massive volcanic Quartz, laumontite, chlorite

Massive volcanic

Tutt

Quartz, laurnontite, chlorite, t e lds~a r

Prehnite

Wd Vesicular volcanic Chlorite, epidote

68b Vesicular volcanic Quartz, chlorite, epidote

6Ya Massive volcanic Quartz, chlorite

Vesicular volcanic with zeolite(?) vug fillings

Quartz sericite rock

Massive andesite(?)

Hydrotherrnally altered andesite(?) with nlarcasite blehs

'ruff, float

Vesicular, volcanic float, with quartz(?) vug fillings

Vein-bearing fractured volcanic

Vesicular volcanic float, with zeolite(?) vug fillings

Massive andesite(?) float

Tuft. float

Volcanic conglomerate

Wairakite(?), chlorite

Quartz, sericite, chlorite, feldspar

Chlorite, feldspar

Quartz, chlorite, sericite

Quartz, epidote

Quartz, chlorite, feldspar

Quartz, laumontite

Wairakite(?), laumontite

Quartz, laumontite, chlorite, feldspar

Quartz, chlorite

Quartz, laumontite, feldspar

kliner:~log\ (zeolites are indicated in hold faced t v ~ ~ e )

72b Massivr. volca~r~c, Qnartz, laumontite, tttldspar

73 Vein-t)c.;tring t ~ ~ t l Quartz, laumontite, chlorite, tc~lclsl~ar

74a Massivcs volcarl~c Quartz, laumontite, rhloritc, tcaltlsl)ar

74h Massivca volc:cn~c Gypsurrr, chlorite

C;ypsun~

Quartz, laumontite

76 Massivtb volc:~rric Quartz, chlorite, tt~1clsl)ar

Kaolinitt., wairakite(?), laumontite, teldsy~ar

7Ha (;yl)siterol~s rock ant1 clay (;ypsu111. clriartz, teltlsl);~r

7% t'r~rnice Gypsunr, epidote

79 Vesicr~lar hasalt, with zcbolitt. vug tillirrgs Laumontite, chlorite, cy)itlotr

XO Vcin clriartz with rnalachitt. a ~ ~ t l chalcol)yritc~ Quartz, chalcopyrite

8 l a Vesicular volcanic wlth zcaolitc vug tilhngs Laumontite

81b Vein ant1 tug tilling troll1 ~rl;lssive volcanic Laumontite

81c Vein a ~ ~ t l vug tilling trol~l ~~lass ive volcanic Laumontite

82 Vesicrilar volcanic with zcolite v r ~ g tillings Laumontite

'l'lltt

'l'lltt

Massive volcanic, tloat

\/esicular volcanic

Vrin tilling trorn r~iassive volcanic

Massive volcanic

Greenstone

Massive volcanic

hlassive volcanic

Volcanic sandstone, tloat

Tutt

'l'nff, float

Quartz

Quark, laumontite, chlorite

Quartz, laumontite, chlorite, teldspar

Quartz, prehnite

Quartz, Inurnonite, chlorite, teldspar. calcite

Laumontite, chlorite, teldspar

Chlorite, epidote, feldspar

Quartz, laumontite, chlorite

Wairakite(?), sericite, kaolinite, quartz

Quartz, prehnite, chlorite

Quartz, laumontite, chlorite

Quartz , Inurnonite, chlorite

8 SPECIAL REPORT 6

Tab le 1. - Continued

Sarnl~le 1)escription

Nurnber

94 P rec~~ i fa t e on strearri cobble

Vesicular volcanic

Massive volcanic

Massive volcanic

'l'ut f

'rut t

I'utt

I'ut t

'l'uf t

Pumice tutt

LMassive volcanic

I'utt

Tutt

Vein-bearing tractrlred volcanic

Vesicular volcanic

'l'utt

Massive volcanic

I'ebbly volcanic sandstone

Volcanic sandstone

Volcanic sandstone

'l'ntt, tloat

'l'ut t

. l '~~tf with zeolitt, veinlets

I ' l l t t

Vug tilling, vesicular andesite(?)

'l'utt.

'l'utt

'l'utt, float

'l'utt, tloat

Volcanic sandstone

Volcanic sandstonc

Vein-bearing volcanic sandstone

Pebbly volcanic sandstone

Mineralogy (zeolites are indicated in bold faced type)

Amorphous to x-rays

Quartz, laumontite, chlorite, teldspar

Laumontite, wairakite(?), chloritr teldspar

Quartz, laumontite

Quartz, wairakite(?), chlorittb, teldspar

Quartz, laumontite, chlorite

Quart-/, laumontite, chlorite, teldspar

Quart7, laumontite, chlor~te, feldspar

Quartz, laumontite, chlorite, feldspar

Quartz, laurnontite, chlorite, teldspar

Quartz, laumontite, chlorite, feldspar

Quartz, laumontite

Quartz, laumontite, chlorite, teldspar

Qnartz, laumontite, chlorite, feldspar

Feldspar, chlorite

Quart/, laumontite, chlorite, feldspar

Quartz, laumontite

Mordenite

Mordenite

Mordenite

Mordenite

Laumontite

Heulandite

Mordenite

Heulandite

Heulandite

Mordenite

Qnartz, laumontite, chlorite, feldspar

Quartz, laumontite, teldspar

Quartz, chlorite, feldspar

Quartz, feldspar

Quartz, calcite, possible wairakite(P)

Quartz, chlorite

SE1)IMEN'I'AHY ZKO1,l'l'k: I)F:l'OS1'1'S O C ' TI1E I'I'I'HH hlA'1'.4hLrSK.4 \'AI,Lk:Y, ALASKA 9

patterns of a nuniber of zeolites and cortrnlon rock forming minerals to determine the gross mineralogy of the sarr~ples.

Those samples which contained zeolites of the heulandite-clinoptilolitc group were heated following the method given in Alietti (1972) to distinguish between heulandite and clinoptilolite. The results of the x-ray diffraction and heat- treatment studies are give11 in 'l'able 1.

FIKLI) I'RS'I' F o K ZBOI.L'I'b:s

Helfferich (1964) suggested a si1111)le cher~lical test for the presence of zeolites. 'l'his test dcl)encls upon the ion-exclusion prol,ertirs of zcolitcs arid :I

hydrolysis reaction which is rlltirr~ately 111arlifested as a pronor~nced increase in 1111 of thcb test solrltion. According to Ilelfferich, pt1 values of 9 to 11 artx indicative of the presence of zeolites.

As recorrlnlended by I lelffcrich, tthtra brltyl arnrr~onirlrt~ bromide s,)lutior~s wcrrl rlst~i t o Itwen interference with the test 11). the layer silicates. Measurernents of pI1 wttrc carriccl out using a cornbination rl~icroelectrodt~ ~ i ~ l c l a Hrck~r~an Model N 1)fl Meter. 'l'he resrllts ot this test arcb shown in 'l'ablt. 2.

I 0 N - E X <: 11 A N (: K .4 N I ) (; A S - S 0 H P 'I' 1 0 N Mb:AbllHb;51KN'l'S

Following the, x-ray diftractior~ ;trlalysis, torlr zeolite-bearing sarr~l,les wtbrc sent t o l'rof . L,c.oriard Sand of LVorct.ster l'olytrchnic lnstitr~tc~ (\1'.i'.1.) for evaluatiori of their ~OII-c*xchangc, ; I I I ~ gas sorl)tive 1)rol)ertics. 'l'he rrsrllts of these a11al)~se.s are shown in 'I'ablc : 3 , ~ I ~ O I I ~ with tho~t ' tor 3

synthetic sodiu~ri r~lorclenitc for corlrl)arison. Also shown in 'l'able3 are the resrllts of a heat-of-\~~tti11g test which serves as the basis tor a ~)rol)osed rlrw field test for zeolites (.Crlltaz, Keisling and Sarld. 1973).

PK.I'HO<:HAPHI(: S'I'UI)Y

Thin sections were ~)re~)aret l of the sarrll)lcs sent to W.P.I. to deterrninc. the ~rrode of occurrcncc of the zeolites in these sarrlplcs. 7 1 ' i ~ ~ ~ c did not 1)errrlit a more extensivc I)etrogral)hic strlcly. 'l'hc resrrlts o f this study are l)rc.ser~ted and discl~sst.tl i r r the following section or1 the rrioclr~ ot occrlrrcrlc*c of zeolites.

DISCUSSION

I)IS.I'HIBIJ'L‘ION ANI) GENESIS OF ZEOLITES

Fro111 Table 1, it is evident that many of the sarriples collected are zeolite hearing. Most of the sa r~~ples collected f r o ~ n the Sheep Mountain area contained laurriontite or its dehydration product, lconhardite. Lau~nontite (leonhardite) occurs in vugs anti veins in fractured rrlassive volcanics and as an alteration proclrlct of vitric tuffs.

A few S;IIlll)leS fr()I1l the Sheel) Mountain area contained an nnalcirtle-group rnineral tentatively identified as wainkite(?). It was not possible to distinguish brtwcer~ the sodiun~ zeolite analcime

its calci,ll~l analog wairakite by means of x-ray ditfraction. A thin sectiorl of this ~riaterial (sample $98) revealed a r~lass ot weakly birefringent fine grained zcolittl as an alteration I)rod~lct of the felsic f l ~ ) r l l ~ d rrrass of an andesite(?). l'he birefringence of this rrlaterial, I~ltls the calcir~rrl rich nature of this rock and the, zeolites and other rninerals in the area srlggests that wairakite rather than analcime is ,)resent. A Irlrlch Illore tletailed stlldy involving ruirleral separation, chertlical analysis and detailed I)etrogral)hic and x-ray diffraction studies is needed before this zeolite can be identified 11nr1cluivocally.

l 'he layer silicate prehnite, a corllrnon associate of calcic zeolites, was detected in several samples frOIl l Sheel, MountaiI1. NO purnpellyite was Observed. (:hlorite was a nearly mineral in the saII1l,~es frOrli Sheep Mountain.

In to the zeolite assemblage at Sheep MOrlntain, the sarrlples frorIl the Horn Mollntain

(see figure 4) bore the zeolites Inordenite and herllanditc, ~ , ~ ~ n l o n t i t ~ was present in one sample of tuff frOIIl Albert (:reek. Neither prehnite nor wairakite were in these samples.

1, the 1 1 ~ ) ~ ~ ~ ~ ~ t ~ i ~ area, mordenite occurs as an alteration product of the volcanic sandstones of the Matanr~ska forniation (samples 111, 112a and 112b) and replacing glassy shards in the fine- grained vitric tuffs at the head of Albert Creek (samples 113, 116 and 119).

Ileulandite is present as thin, tabrllar crystals in veins in an altered siliceous volcanic in Albert Creek (sample 115) and as large (1-2 cm) foliate aggregates in v ~ g fillings of the massive volcanics of Horn Mountain (sample 117). Heulandite also occurs in an altered tuff, where it appears to have formed at the expense of the glass (sample 118).

I < 17 M i l e s > 1

M o r d e n i t e - H e u l a n d i t e Zone

? - - - Syncline M o u n t a i n

Laurnonti t e - ~ a i r a k i te (? ) Zone

Horn Mounta in Sheep Mounta in G o o b e r L a k e V: LC E

(eas t end ) E > - 6000' r P Ir: z " ?

sea level 2

FIGURE 2. Cross section fro111 near Goober Lake north to Ilorn Mountain showing probable zeolite zonation. See Plate 1 for areal relations and lithology. Cross section greatly si~liplifiecl fro111 section C-C' of Grantz (1965).

SE1)IkIEIC'I'AHY %EOI.I'I'k: I>h~POSI'I'S OF '1'11b: I T I ' P K I i XIA.I'ANI'SKA \'AI,LKY. ALASKA 11

Laumontite occurs in an altered tuff (sa~nple 114) on Albert Creek. This laumontized tuff appears similar to those of the Sheep Mountain area.

l'he sarnples from the Goober Lake arr,a (See Plate 1) are for the most part anzeolitized. One sample (1%) may contain an analcinie-like zeolite, however.

The zeolite distribution of the areas sarrlplcd is shown schematically in cross section in Figwe 2.

The different zeolite assemblages at liorn Mountain and Sheep Mountain are indicativr of different conditions that prevailed at the time of zeolite forrnation. As shown in Figure 3. the mordenite-heulandite assemblage is typical of low temperatures and low partial-pressures of water (P ). Laumontite and lal~r~iontite-prehnite arc characteristic of higher ~~ressrlre-teni1)eratrlre conditions. l'he irriportant variable in these zeolittl stability relations is the chernical potential of water as Zen (1960) has shown. The rnore hytlrous heulandite (CaAliSi 18 .6H20) and rnordenitr (CaA12Si,00.a .7H20) asserriblage is stable under a higher chemical potential of water than art. the less hydrous zeolites laurnontite (CaAl2Si4O .41120) and wairakite (<:aA 12Si40, 2kI &I) . 'l'he chernical potential of water rilay be varied (A) by altering the partial pressure of water on the systt,~ti; or ( H ) by varying the salinity of the aclrieorls fluid. Increasing salinity of intr:~ stratal waters at tle.pth has thc .;arnrx effect as increasing ter~ipcratrlre iri pror~rotirig :I zo1:ation fro111 rrlore hydrorrs to 1c.s~ hytlrous phases.

From the discrrssion above, the zeolites of the Horn Mountain area forrried under lower temperature or salinity conditions than did those of the Sheep Mountain area. Sea-water reactions contemporaneous with tht. cooling of the submarine volcanics of the l'alkeetna forrnation could have contributed to the zeolitization of these rocks. However, because the zeolitization extends to the basal volcanic sands of the Matanuska formation, it is 111ore likely that reactions involving burial diagenesis and regional metarnorphisni are the cause of zeolitization. The zonation discussed above suggests that the volcanics and volcanic sands at Horn Mountain and vicinity were not as deeply buried as were the volcanics at Sheep Mountain.

Zeolitization of the Sheep Morrntain area does not appear to be related to the intrusive that has so obviously hydrothermally altered the area (see greenstone area, Plate 1). Neither the laurnontite nor prehnite, nor wairakite(?) distributions bear any obvious relation to the intrusive.

R(:ONOMIC YOI'ENI'IAI. OF ZEOLITE DEPOSITS

l 'he rriorclenite-bearing tuffs in the vicinity of klorr~ Mountain niay be of econolriic importance

(Plate 1). Although the tuff from which the rnordenite bearing samples was obtained appears to form an extensive series of outcrops along the low ridge to the north of Albert Creek, it is emphasized that neither the extent nor grade of these tuffs is known at present.

As shown in 'I'able 3, the rnordenite-bearing tuff saniple has a slrlfrlr dioxide sorptive capacity approaching that of the synthetic rnordenite. It also cxhibits a reasonat)ly high cation exchange capacity, and the highest surface area of the sarnples s~lbrriitted although rnuch less than that of the synth~tic rnordenitc. These properties and the location of this deposit near the coal fields of the ripper Matanuska Valley, the agricultural lands of the lower Matanuska Valley, the oil fields of the Cook Inlet art.a, and the po~)ulation center of Anchorage suggest stlveral potential uses: (A)sulfur dioxide sorbent in coal-fired power plants; (B) sorhcnt for the storage of natural gas from Cook Inlet (Mrrnson ant1 Clifton, 1971); ((;) catalysts or catalytic carriers tor the hydrocracking of petroleurn; (1)) conditioner for agricultural soils (Alaska State Ilivision Geol, and Geophys. Surveys, 1973); (E) ion exchange ~riediurti for various waste disposal operations including the treatment of rtiunicipal stawagc ant1 the deconta~nination of radioactivv wastes fro111 future nuclear power plants. It is stressed that these applications are highly speculative and depend upon determining the extent and grade of the mordenite deposits, determining the usefulness of the tuff for different applications and then establishing a market for this material for particular applications.

'l'he larl~rrontite tuffs of Sheep Mountain, while extensive. arc probably not as economically irnportant as the rtiordenite tuff. Laurnontite does not have thc chemical stability of mordenite, nor does it have the c~tafytic properties of the higher silica zeolite. However, the laumontized tuff may have important agricrrltural uses and should not be ignored.

'l'he heulanditc bearing tuff at the head of Albert <:reek should be investigatetl further. [Ieulandite, and particularly the higher silica variety clinoptilolite , have inlportant industrial applicability (Slieppard, 1971b). 'I'he occurrence of heulandite as v r~g fillings is not economically inil)ortant.

SPECIAL HEPOH'I' 6

4 r Lawsonite-Albite - Chlorite

3 - m L

O 0 0 - .-

= 2 - E .- % I Heulandit.

1 - \

~ i q . r * r i r \ a t 1 0 I z w i k r \

Mordenite +y$y d. I

100 200 400

Temperature OC

FIGURE 3. Possible P-'I' fields for low-grade n~ineral facies. Arrows represent facirs series as follours: (1) tligh presslirc, low teniperatlire; (2) Intermediate; (3) Low Ilressllre iriternirdiate; (4) Lowest pressure. Diagrarn frorri Coon~bs (1970).

SE1)IMENI'AHY ZEOLI'I'E 1)EPOSITS OF 'I'IIE LTPPEH MA'L'ANCJSKA VALLEY, ALASKA 13

TABLE 2. Results o f chemical field test (Helfferich, 1964) for the presence o f zeolites.

I)orr~inant Mineralogy (zeolites are indicated in bold faced type) Final pH

1 Quartz, trldsl)ar, chlorite 10.4

59 Quartz, laumontite 10.5

Xla Laumontitr 10.3

Xlc

IKi

Laumontite

I'rc~hr~itc~

1 1 1 Mordenite 11.0

Mordenite

Mordenite

Mordenite

1,aumontite

Heulandite

Mordenite

I18 Heulandite 10.5

125 (:hloritc., quartz, feldspar 9.0

SPE<:I.41. HEPOHI ' f i

'I'ABLL 3. H C J S W ~ ~ S of zeolite evuluutiorr, Worcester Polytechilic Ii~stitute.

The wairakite (?) occurrence on Sheep Mountain is probably not econo~nic, because of the properties ot this zeolite and the sporadic distribution.

'I'he ~rlethod of establishing mining rights tor zeolites on Federal lands has recently been established. l 'hc Bureau of Land Management indicates that 7eolite deposits are subject to the sodium-potassium leasing law (Papke, 1972).

FIELD TEST FOH ZEOLITES

The results of the field test evaluation shown in

Table 2 indicate that this test is inappropriate for the zeolite samples studied here. The failure of this test to distinguish zeolitized fro111 unzeolitized samples, as shown by the broad range o f 111 1 values, is apparently due to the interferericc~ of layer silicates on this test.

A new field test for zeolites has just been proposed by Culfaz, Keisling and Sand (1973). 'l'his test was performed on the four samples submitted to W.P.I. for evaluation, the results of which are shown in column 4 of 'l'able 3. According to the authors, values o f &l' in the range 8 to 20°C are indicative of an intermediate to high-grade zeolite deposit depending upon the zeolite variety present. Values of A?' greater than 20" C are indicative of a high grade chabazite deposit. Note that the mordenite tuff had a ~ l ' value of 13.03OC: closely approaching that of the synthetic rriordenite and suggestive of a high-grade deposit. No other

evaluation of this test was ~riade in the present study. It is suggested that this rnethod be ir~vcstigated further.

CONCLUSIONS

Zeolite deposits of possible economic significance exist in the upper Matanuska Valley. The mordenite-bearing tuffs at the head of Albert Creek at the east end of Horn Mountain probably have the greatest economic potential. The heulandite-bearing tuffs in this sarne area and the laurnontized tuffs at Sheep Mountain may also be valuable for certain applications. The extent, grade and rriarket value of these deposits must be determined.

Zeolitization of the Sheep Mountain-Horn Mountain area is the result of burial diagenesis and regional rnctamorphisni. 'I'he zeolites of the Horn Mountain area forrlied under conditions of lower temperature and salinity than did those of the Sheep Mountain area. The volcanics of the Sheep Mountain area rnay have experienced a greater depth-of-burial than did the sediments and volcanics of the Iiorn Mountain area. Zeolitization of the Sheep Mountain area does not appear to be related to the Sheep Mountain intrusive.

A published field test for zeolites is subject to interference from layer silicates and is inapplicable to the zeolitized rocks of the area studied. A proposed new field test may be applicable and should be investigated.

SEl)IMENrI'AHY ZEOLI'I'E DEI'OSITS O F THE LIPPER MA'I'ANIISKA VALLEY. ALASKA 15

REFERENCES

Alaska State Division of Geological and Geophysical Surveys (1973) Ladd Mountain zeolite deposits could bring agricultural boom; Mines B1111.. XXII (5) p. 5.

Alietti, A. (1972) I'olyrnorphisrn and crystal chemistry of heulandites and clinoptilolites; Arn. Min. 57, 11. 1448- 1462.

( h p p s , S.R. (1927) Geology o t the upper h.latanr~ska Valley, Alaska; I1.S. Geol. Sr~rvey 811ll. 791.

(;oorl~bs, 1l.S. (1970) Present status of the zeolite facics; in l'rc.11ri11ts of the Sec. Intn'l. (:onf. on Molecr~lar Sicvc. Zeolites, L\orctlster Polytt,chnic Institute, 1). 556-566.

(:l~lfaz, A., <:.A. Kcisling and I,.B. Sand (1973) A field test for ~nolccular sievr zeolites. A~ri. Min. In Press.

Eckhart, H.11. ( 1951) Gypsiterous c1c1)osits on Sheep Mountain, Ala~ka ; C1.S. C;eol. Survey Hull. 989(:.

(:rantz, A.M. (196.5) Geologic and cross sections of the Nelchina Area, south central Alaska; I1.S. (ieol. Survey Ope11 Filt. Heport.

lielfterich, 1;. (1964) A sirliplc identification reaction lor zeolitt.~ (rnolec~ilar sieves); Ani. Min. 49, 1). 1753- 1754.

Madonna, J .A. (1973) Zc.olite occtlrrences in Alaska; unpublished M.S. thrsis, Geology I l e p a r t ~ ~ ~ e n t , Clni- vcrsity of Alaska, Fairbanks, Alaska.

MII I IS~I I , H.A. and H.A. <:lifton, Jr . (1971) Natural gas storage with zeolites; I1.S. Rur. Mines, 'l'ech. Prog. Kept. 38.

IJapke. K.(;. (1972) b;rio~~ite and other associated zeo- lites in Nthvada; Nevada Hur. Mines and Ccol. Hull. 79.

Sheppard, H.A. (197la) Z~1i tc . s in sedimentary depos- its of the LJnited States - a review; in Gor~ld, H.F., ed., Molt.cr~lar Sieve Zeolites - I : Ani. (:heni. Soc., Advances in (:her~iistry, ser. 101, I ) . 279-310.

Shellpard, H . A . (1971b) (;linoptilolite of j)ossible ec- ~ I I ~ I I I I C . valuta 111 s t ~ I i ~ ~ ~ c r ~ t ; ~ r \ ~ de1)osit\ of the conttSr- I I I ~ I I ~ I I S I '~~i tc . t l Statt.5; 1 ' 5 . C;t~)l. Sllr\.. t + r ~ l l . 1:1:?2-B.

I ' tada, h l . (1971) %t.ol~tct zor~irtg ot tile h e o g t * ~ ~ t ' [ ) !TO-

cal;~stic rocks 111 J ; I ~ ) : I I ~ , Scie.~~tific, I)al)r.r$ of t l~r ( :01- Icgca ot ( : t f i~ i t~a l b;clr~c,iitio~~, I 'r~iverx~ty ot 'l'oky.o. 21, I ) . 189-221.

Zen, E-an (1961) The zeolite facies; an interpretation; Am. J . Sci. 259, p . 401-409.

Appendix I

Selected references frorn Chemical Abstracts on the use and properties of natural zeolites, particularly mor- tlenite, clinoptilolite-heulandite and lanrnontite.

Ion-Exchange

Lenzi, C;, and A. Pozzuoli (1969) "Behavior of some natural zeolites as a function of the absorption of cesium and strontiuni in radioactive solutions with low activity." Hend. Accad. Soc. Fis. Nat., Naples, 36 1). 235-W9. (;A 74-66414.

Mercer, H.M.'., L.L. A n ~ e s and <:.J. 'l'ouhill (1968) "Am- ~ r ~ o n i a rc~r~ova l fro111 waste water by selective iorl-ex- change." Amer. (:hem. So. Div. Water and Air Waste (:herri. Gen. Pap. 8 ( I ) , p . 97-102. CA 71-116- 3228.

McDaniel, C.V. and P.K. Maher (1971) "Aqueous cation exchange with crystalline alumina-silicate zeolites." Fr. Patent 1,542,754. CA 71-95327

Sherry, I1.S. (1969) "Ion-exchange properties of zeo- lites." Ion Exchg. 2 p. 89-13 , C A 70-61456.

Harrer, H.M., H. Papadopoulos and L.V.(:. Rees (1967) "Exchange of sodiriin in clinoptilolite by organic cat- ions." J . Inog. Nncl. Cherri. 29 (8) p. 2047-63. CA 67- W 2 8 b .

Elia, V., N. Caraniazza and E . 1)rioli (1967) "Electro- chemical behavior o f inorganic ion-exchange mem- branes, 11. Effect of Grain Size." Ric. Sci. 37 (5) 413-17. CA 67-121815ni.

Horr~anlschuk, F I . , J .K. Miettinen and P. Kivalo (1968) "Laumontite - a natural ion-exchange mineral with high selectivity for cesium." Suornen Kemistilehti, B, 39 (10) 193-5. (:A 66-14336.

Peterson, Il.L., F. l-Ielfferich and G.C. Blytas (1965) "Sorptior~ autl iorl-caxchangc i r ~ sedimentary zeo- lites." J . I'hyh. ( :e~rir~. Solid5 26 ($5) 1). 835-48. <;A 6:3-%420b.

b'yftt. W.S. (1951) "ho te ~ I I I~usc. c*xch;tnge ill New Zea- 1:trld l a~~r i~o~r t i t t . and natrolite." h e w Zcaland J. Sci. 'l't~chnol. X H , h o . 5, 1). 28-9. (:A 45-1043Hc.

Gas Sorption

I'orii, K., M. Asaka i u ~ d 11. k'arnazaki (1Yti9) "Gas chro~~~atograph) ' with natural rr~ordcr~itc, ns colur~ir~ packing." Kogyo Kagakr~ Zasahi 72 (:I) 661-4. (:.4 71-108684 - 685.

Harrer, H.M. and I>.b:.U. Var~ghan (1969) "Sorption and diffr~sion o t rarc gascas on herllandite and stil- t~i tc ." Srlrf. Sci., 14 (1) 1). 77-92. (:A 70-99930h.

Sr~zuki, P'., a r ~ d h. 'l'akahashi (1969) "Atisorption prop- erties ot clinoptilolitt,, 111. I'tfect ot acid treatrr~ent and gas-chrorriatogra1)hic study ." Yan~agata I la igr~kr~ Kiyo, Kogakr~ LO (2), 1). 439-48. (:A 74-1290337.

Harrrr, H.h,l. and B. (:or~ghl:ir~ (1967) " l r ~ t l ~ ~ c n c c s of crystal strr~cture on zcolitic C : O 2 1. Isothern~s and selc.ctivity." Mol. Sicves, Pap. Conf. 1). Z3-41. <;A 70-62030.

Hykov, \ ' . ' I ' . , An. Kirginitsov, A . V . Luk'yarriov and N. E. Scherbatyuk (1964) "Adsorption o f stearn on natu- ral zt~olites." Materialy Uses. Soreshch. 1). Fl'seolita~ri., 2nd Leningrad. 1,. 360-5. (:A 65-30:fif.

Sar~leshin~a, J . (19330) "Sorp t io~~ of gases by r~iinerals. 11. Laurnontitr." Brill. (:helr~. Soc. Japan, 5, 11. :303- 10. (:A 25-2079:I.

Klopp, C;., J . Gorog, J . Krolyo, 'I'. Mandy, G. Siposs (1970) "l>rying organic liclr~ids." Ger. Pat. 1,272,293. (:A 70-1 1319g.

Klol)l), C:., (1964) "Absolutization of organic solvents with clinoptilolite." l l~ rng . Pat. 152,353. (:A 64-538d.

hlolecular Sieves

Harrcr. 1t.M. and H. (:oughlan (1967) "Molecular sievtbs derived fro111 clinoptilolite t)y progressive rerr~oval of trarrie\vork change: (:haracterization by sorption of carbon dioxide and krypton." Mol. Sieves Pap. Cor~t . , Soc. < ; h e ~ r ~ . Ind. Lond. 1,. 141-8. (:A 70-61441.

I'iguzova, 1,. 1. (1966) "Properties and use of sornc highly siliceous natural rr~olecular-sieve type zeo- litcs." Prir. Sorbenty. Sb. 1)okl. Sess. Nauch. Sov. Sin., 7 zr~ch l'rirnen. Adsorbentor. Akad. Nauk. SSSH., Vladivostok. 1). 166-88. (:A 70-23100.

Harrrr. H . M . (1968) "Some asl)ects of molecular sieve sciencc a r ~ d technology." (:hem. Ind. (London) 36, 1). 12033-13. (:A 69-99692111.

Santl, L.H. (1966) "Natural and synthetic zeolites tor industrial rrse." Kcon. Ckol. Mass. Proc. Cont. IJniv. Mass. 1). 191-8 . CA 68-70689j.

Branrier, 0. and S. C;r~eller (1966) "Indr~strial uses of rliolecr~lar sieves." Fettc., Seiten, Anstrichirr~., 68 (9) , 1) . 7:s-40. CA 66-30412.

Hnrrer, 1l.k.l. anti h1.B. Makki (1964) "Molecrrlar scxivc sorbents trorri clir~o~)tilolite." (:an. J . Cherri. 42 (6) p. 1481-7. (;A 61-2516a.

Hliznakov, C.. I (;olr~t)ova. N. I>ir~lov (1963) "Molec~~l;ir sieve t i e of sorlle 13rllgarian zeolites." (iodishnik. Sofiskcya. C!niv., "KL. Okhridski," Khirn. P'ak. 57, 1). 121-32. (:A 63-10724e.

Catalysts

Yar l~ar~~oto , N. (1%8) "Zeolite catalyst in the petro- 1eur11 indrlstry." Nendo Kagakrr. 8 (3-4) p. 1-9. CA 7 1 -93x3 I .

(1967) "General purpose support catalyst." Neth. Appl. 6,610,598. (:A 67-15337~.

Papp. J . (1967) "<:atalysts ant1 (:arriers." tlrlng. Pat. 153,556. (:A 67-5594:I.

Papp, J . (1971) " I ly t l ro~~~ethy la t io~ i o t toluene on clin- optilolite." J . (:atal. 2.3 (2) 1). 168-82. (:A 75-117833.

For~chr,r, LV.1) , Jr . (1971) "Waxlike hydrocarbon con- versior~ using clinol)tilolite catalysts." U.S. Pat. 3,565,788. <;A 74-1 140fi7p.

Sato, M., S. 0tarr11 (1970) "l>is~)rol~ortionation o f tolrienc." Ger. Offell. 1,813,251. (:A 72-66579~.

C;~CTI, N.Y. and P.13. Weisz (1967) "Molecular engineer- ing of' so1ncb shapt. selt.ctive catalysts." Chern. Eng. Prog. SYIIII). Ser. 63 ('73) 1). 86-9. (:A 67-76578~.

Beneficiation

Whitternorc, O.J . , J r . (1971) "Mordenite Pellets". U. S. Patent 3,445,184. (;A 71-23334s.

Studer, Il.1'. (1968) "Separation of particles of dif- ferent wettability." U.S. Patent 3,349,999. CA 68- 14574.

W.H. Grace and (A). (1967) "Shaped zeolites." Pr. Pa- tent 1,466,594. C:A 67-55729h.

SE1)IMEN'I'AHY XEOLI'I'E I)EPOSIr1'S O F I ' t lE CIPPEH MA'I'ALLISKA \'ALLEY. ALASKA 17

Kiovsky, J.H. and W.J. Perreault, Jr. (1972) "Purifi- cation of zeolite ores." Ckr. Offen. 2,052,KM. (:A 75-13122.5~.

Dentifrice

Kato, K.N. Nagata, Y . Sakai, M. Shiha and M. Onishi (1969) "Zeolite as polishing agent for clentitricc. 1. (cheniical) Properties o f Zeolite." lwatc 1)aigakii Nogakuhu Hokoku, 3, 23-55. (:.4 7:3-101946a.

Ceramic Blocks

Ookawa, Y. and Y . Motoki (1969) "Manrlfacturing lightweight ceralriic blocks ancl bricks." Japan Pat. 69 23,817. (;A 7 2 - 2 3 3 .

Pesticide Stabilizer

tlelfenberger, t i . (1969) "71'hiol)hoq)hati~ pesticidc.~." P'r. I'at. 1,559,169. <:A 72-255.3.

Filtration

Shinohara, O., <:. Arriita~ni (1971) "Filtration through unglazed porcelain filter rriade of zeolite.;." Kogyo Yosuii 149, p. 36-49. (:A 75-50737.

Soil Conditioner

Analysis of Zeolites

Haftka. F.G. (1967) "X-ray spectrographic analysis ot transition elements in zeolites after wet decom- position." Fresenias 7,. Anal. Chern. 23 (5) 1). 321- 8. (:A 67-11:)489t.

Vainshtein, S.M., E.Y. (Jienka, H.A. Lipkind, A.T. Slep- neva (LN7) "General rnethod for evaluating the (pal- ity of synthetic zeolites." l ' r . Vses. Nauch. Issted. Inst. Perarab. Netti., 10, p. 32-50. (:A 69-8-0S87j.

Yates, D.J.(:. (1968) "Surface area of zeolites as deter- mined by physical absorption and x-ray crystallog- raphy." (;an. J . (:herri. 46 ( lo ) , 1). 1695-701. CA 69- 22322h.

Korthnrp, M.A. (1941) "IIo~rle laboratory test tor the identification of zeolites and related silicates." Hocks ancl Minerals 16, 1). 275-9. CA 3-6899 7.

Precipitation in Radiators

Lchedev, L..M., L.M. (;orakhova (1968) "Hecent rniner- alization in technical structures of Pauzhetka . City (Karnchatka)." Ilokl. Akad. Nar~k. SSSH. 182 (6), 1). 13%-401. (;A 70-40551.

Shear Strength

tlsn, S.(:., S.'I'. Want and ' l ' . l I . Lin. ( lW7) "Eftccts o t soil conditioners oli 'l'aiwan soils. I . Effects ot zeo- lites on physiocherriical [>ropertii.s of soils." nun^ Yeh Yen Chiu. 16 (L) 1). 50-57. (:A M-10.1218.

Hiecker, H.E. and '1'.1'. Hooney (1968) "Shear strength ant1 weakening of zeolitized tuft from Nevada Test Sitc,.p Am, 52(7/8), 1174-8, (;A ~ - 4 9 6 1 ~ .