Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A...

52
Security of Smart Grids: A Cyber‐Physical Perspec:ve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon 1 TexPoint fonts used in EMF. CyLab Silicon Valley Briefing March 25, 2011

Transcript of Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A...

Page 1: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Security of Smart Grids: A Cyber‐Physical Perspec:ve �

Bruno Sinopoli Assistant Professor 

Department of ECE Carnegie Mellon �

1

TexPoint fonts used in EMF.

CyLab Silicon Valley Briefing March 25, 2011

Page 2: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

The smart grid 

Page 3: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

From a smart grid to a smarter grid

•  Integration of

3

Page 4: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Is it a worthwhile effort?

•  Pros –  Efficiency –  Safety –  Green –  Competitiveness

•  Cons –  Cost –  Complexity –  Vulnerability

4

Page 5: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

What are Cyber‐Physical Systems? 

Computing

Control Communication Cyber Physical

Page 6: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

6

Cyber vs Cyber‐Physical Security 

•  Key goals of informa;on security: –  Confiden;ality: aAacker cannot read data packets. –  Integrity: aAacker cannot modify data packets. –  Availability: data packets are available for es;ma;on and control purpose. 

–  Etc.. •  Key goal of CPS security: 

–  Guaranteeing reliable system opera;on 

•  Cyber security is a tool not a goal 

Page 7: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Goal/Scope of the attack in CPS •  Disrupt operations, e.g. destabilize the

system (e.g. Stuxnet) •  Reduce system’s performance •  Financial gain •  Context

– Cyber warfare – Commercial advantage – Criminal intent

7

Page 8: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Types of CPS Attacks/ Remediation

•  Attacks –  Cyber range of attacks –  Physical Attacks –  Insider attacks

•  Remediation –  Detection/isolation –  Guarantee continuity of operation –  Graceful degradation –  Service restoration

8

Page 9: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Today’s talk: provide some insights via case studies

•  System definition – Focus on control systems

•  Attacks on sensors – Analysis of Sensor Replay attacks – Analysis of Integrity attacks on sensors

•  Examples •  Conclusion

9

Page 10: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

System model�

•  We model the underlying physical system as a linear ;me‐invariant system: 

•  Sensors are used to monitor the system: 

•  Each element in      represents the reading of a certain sensor at ;me    . �

10

xk+1 = Axk + wk

yk = Cxk + vk

yk

k

Page 11: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Illustra:ve Example�

•  We consider a vehicle moving along the - axis.

•  Two sensors are used to measure position and velocity respectively.

11

x

xk+1 = xk + wk,1,

xk+1 = xk + xk + wk,2

yk,1 = xk + vk,1,

yk,2 = xk + vk,2.

x

Page 12: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

12

Kalman Filter and LQG controller 

Page 13: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Failure Detector �

•  A failure detector is used to detect abnormality in the system, which triggers an alarm based on the following condi;on: 

where 

and the func;on     is con;nuous. 

13

gk > threshold

gk = g(yk, xk, . . . , yk!T , xk!T ),

g

Page 14: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Failure Detector �

•  For example,       for a chi‐square detector takes the following form: 

where  

and        is the covariance of      . 

14

gk

zk = yk ! CAxk!1,

P zk

gk = zTk P!1zk

Page 15: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

15

Replay AJack Model (Allerton conf. ‘09) 

•  The aAacker can –  Record and modify the sensors’ readings  –  Inject malicious control input 

•  Replay AAack –  Record sufficient number of       without adding control inputs. 

–  Inject malicious control input to the system and replay the previous  .    . We denote the replayed measurements to be       . 

•  When replay begins, there is no informa;on from the systems to the controller. As a result, the controller cannot guarantee any close‐loop control performance. The only chance is to detect the replay. 

yk

yk

yk

y!k

Page 16: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Our Abstract

16

Page 17: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

16 months later…

17

Page 18: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

18

System Diagram 

Page 19: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

19

Simula:on •  Suppose the aAacker records from ;me –T and replay 

begins at ;me 0. 

•  For some systems, the Chi2 detector cannot dis;nguish system under replay and system without replay. 

Page 20: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

20

Detec:on of Replay AJack �

•  Manipula;ng equa;ons: 

•  If          converges to 0 very fast, then there is no way to dis;nguish the compromised system and healthy system. Ak

Page 21: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

21

Counter Measure 

•  Replay is feasible because the op;mal es;mator and controller are determinis;c 

•  If we add random control input to the system: –  If the system responds to this input, then there is no replay 

–  If not, then there is a replay –  Random control inputs act like ;me stamps –  Cost: The controller is not op;mal any more 

Page 22: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

22

Counter Measure 

•  Let control input to be 

 where        is the op;mal control input,       is an i.i.d. Gaussian random control input with zero mean and covariance of     . can be seen as an authen;ca;on signal  

•  The increase in control cost is given by 

uk = u!k + !uk,

u!k !uk

Q

trace!(U + BT SB)Q

"

!uk

Page 23: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

23

Counter Measure 

•  Innova;on with random input: 

Page 24: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

24

New System Diagram

Page 25: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

25

Simula:on Result 

•  One dimensional system, single sensor: 

•  Parameters: –  R = 0.1, Q = 1 –  W = U =1 

–  Detector window size 5, false alarm rate 5% 

xk+1 = xk + uk + wk,

yk = xk + vk.

Page 26: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

26 Detec;on Rate of Different Random Signal Strength 

10 11 12 13 14 15 16 17 18 19 200

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time(k)

De

tec

tio

n R

ate

Page 27: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Chemical Plant (A + C → D)

Objectives: Maintain production rate by controlling valves Minimize operating cost (function of purge loss of A and C)

Restrictions:

Page 28: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Regular vs. Secure controller

Time for detection = 25 ms

Page 29: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Integrity AJack strategy�

•  The aAacker has full knowledge of the system’s model. 

•  The aAacker can change the readings of a subset of sensors. 

•  The goals of the aAacker are: –  To affect the system’s opera;ons;  –  Not being detected. 

29

y!k = Cx!

k + vk + !yak

Page 30: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Ques:ons�

•  Can the aAacker successfully destabilize the system?�

•  If not what is the extent of the perturba;on that the aAacker can inflict to the system? 

30

Page 31: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Integrity AJack Model 

•  An aAack sequence      is defined as an infinite sequence of the aAacker’s input  

•  The innova;on is defined as 

•  An aAack sequence     is call              feasible if the following condi;ons hold from ;me 0 to ;me T: 

31

Yya0 , ya

1 , . . .

zk = yk ! CAxk, z!k = y!

k ! CAx!k

Y (T, !)

12(z!k ! zk)TP"1(z!k ! zk)T " !

Page 32: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Reachable Set 

•  Define es;ma;on error as: 

•  Define the bias introduced by the aAacker as: 

•  The     reachable region is defined as: 

•  The reachable region is defined as: 

32

k

!ek = e!k ! ek.

Rk = {x ! Rn : x = !ek(Y), and Y is (k, 1) feasible}.

R =!!

k=1

Rk.

ek = xk ! xk, e!k = x!

k ! x!k

Page 33: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Which sensors should I aJack/protect?�

•  To check the resilience of control system, one can find all the unstable eigenvector of A and compute Cv. 

•  If Cv is sparse, then the aAacker only need to compromise a few sensors to launch an aAack along the direc;on v. 

•  To improve the resilience, the defender could add redundant sensors to measure every unstable mode. 

33

The reachable region R is unbounded if and only if A has an unstable eigen-value and the corresponding eigenvector v satisfies:

1. Cv ! span(!).

2. v is reachable for dynamic system "ek+1 = (A"KCA)"ek "K!yak+1.

Page 34: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Resilient systems allow only a finite reachable set �

•  In general compu;ng the reachable set is very hard, since the number of inequali;es needed to describe the set quickly explodes.  

•  As a result, we use ellipsoids to approximate the reachable region. 

34

Page 35: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Illustra:ve Example�

•  We consider a car moving along the - axis.

•  Two sensors are used to measure position and velocity respectively.

•  We assume that . 35

x

Q = R = I2

xk+1 = xk + wk,1,

xk+1 = xk + xk + wk,2

yk,1 = xk + vk,1,

yk,2 = xk + vk,2.

Page 36: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Posi:on sensor is compromised 

36

Page 37: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Simula:on Result: Compromising the Posi:on Sensor�

37

Page 38: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Velocity Sensor is compromised�

38

Page 39: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

An applica:on: Electricity Market pricing�

•  The price of electricity is determined by the state es;ma;on , i.e. genera;on, power flow over transmission and load of the power grid.  

•  If an aAacker was able to compromise some sensors, then it could introduce a bias in the state es;ma;on accordingly. 

•  Eventually, over a finite ;me‐horizon, the aAacker will affect the pricing to his advantage and make a profit. �

39

Page 40: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Day‐Ahead Forward Market and Virtual Bidding�

•  The Regional Transmission Organiza;on (RTO) computes the nodal price based on the predicted load. 

•  The price is published usually 36 hours before actual opera;on. 

•  A market par;cipant could buy/sell virtual power at loca;on j in the day‐ahead market, and is obliged to sell/buy the same amount of power at the same loca;on in the real ;me market.   �

40

Page 41: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Ex‐Post Market (Real Time Market)�

•  A transmission line is posi;vely congested if                       . It is nega;vely congested if                       . 

•  In the real market, the RTO tries to solve the following minimiza;on problem:        �

41

Fl > Fmaxl

Fl < Fminl

minimize!Pgi

I!

i=1

Ci!Pgi

subject toI!

i=1

!Pgi = 0

!Pgmini ! !Pgi ! !Pgmax

i "i = 1, ..., I

!Fl ! 0 "l # cl+

!Fl $ 0 "l # cl!,

Page 42: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Ex‐Post Market (Real‐Time Market)�

•  The Lagrangian of the above minimiza;on problem is defined as �

42

L =I!

i=1

Ci(!Pgi + P g(i))! !I!

i=1

!Pgi

+I!

i=1

µi,max(!Pgi !!Pgmaxi )

+I!

i=1

µi,min(!Pgmini !!Pgi)

+!

l!cl+

"l!Fl +!

l!cl!

#l(!!Fl).

Page 43: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Ex‐Post Market (Real Time Market)�

•  The nodal price at point j is given by 

43

!j = ! +L!

l=1

("l ! #l)$Fl

$Ldj.

Page 44: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Profitability 

•  The nodal loca;onal marginal price (LMP) difference is caused by conges;ons in the transmission line. 

•  Given two node     and     , depending on the power distribu;on matrix,  we could classify the transmission lines into three categories: 

•  If no line in        (      ) is posi;vely(nega;vely) congested, then the price at      will be greater than the price at    . 

j1 j2

L!, L0, L+.

j1L!L+

j2

Page 45: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Profitability 

•  The aAacker first buy/sell at the day ahead market at loca;on       and       ,     units of virtual power, with price                    . Assume that  

•  In the Ex‐post market, sell/buy at the same loca;on, with price             . 

•  Manipula;ng the state es;ma;on to ensure: 

•  The total profit is

!DA1 < !DA

2 .

!1 > !2.

!(!DA

2 ! !DA1 ) + (!1 ! !2)

"" p.

!DA1 , !DA

2

j1 j2 p

!1, !2

Page 46: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Attacker’s strategy

46

Page 47: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Profitability Gaithersburg ($/MWh) Pittsburgh ($/MWh)

Day Ahead Market Buy at 25 Sell at 30 Ex-Post Market without the Attack

Sell at 20 Buy at 26

Ex-Post Market under the Attack

Sell at 24 Buy at 23

•  Without the attack, the attacker could lose 1$/MWh. •  With the attack, the attacker gains 6 $/MWh.

Page 48: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Conclusion 

•  Security of cyber‐physical systems is of paramount importance 

•  Security needs to be integrated with system theory/knowledge 

•  A science of security for CPS systems needs to be developed 

•  Small aAacks that run “under the radar” can have serious consequences 

48

Page 49: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Thank You!�

49

Page 50: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Simulation Result�

50

Page 51: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Simulation Result�

51

Page 52: Security of Smart Grids: A Cyber‐Physical Perspecve · Security of Smart Grids: A Cyber‐Physical Perspecve Bruno Sinopoli Assistant Professor Department of ECE Carnegie Mellon

Simulation Result�

52