SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

67
SECTP LANL GSFC UMD The Collisionless Diffusion The Collisionless Diffusion Region: Region: An Introduction An Introduction Michael Hesse NASA GSFC
  • date post

    15-Jan-2016
  • Category

    Documents

  • view

    216
  • download

    0

Transcript of SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

Page 1: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

The Collisionless Diffusion Region:The Collisionless Diffusion Region:An IntroductionAn Introduction

Michael Hesse

NASA GSFC

Page 2: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Overview:

Diffusion region basics

The (electron) diffusion region for anti-parallel reconnection

The (electron) diffusion region for guide-field reconnection

An avenue toward fast MHD reconnection without Hall terms

Acknowledgements: J. Birn, M. Kuznetsova, K. Schindler,M. Hoshino, J. Drake

Page 3: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Magnetic Reconnection: Dissipation Mechanism(How does it work?) 

time

DR

DR

DR

Conditions:IMPOSSIBLE (for species s) if

E

v s

B 0

Page 4: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Electric Field Equations  

E

v e

B

1

nee

�P e

me

e

v et

v e

v e

v i

B 1

nee

j

B 1

nee

�P e

me

e

v et

v e

v e

ye

yeyyyzxy

ey vv

t

v

e

m

y

P

z

P

x

P

enE

1

Electron eqn. of motion

At reconnection site

small, limited by me?important?

x

z

Page 5: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Results for anti-parallel reconnection:

Brief review

Page 6: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Magnetic field and ion-electron flow velocities

P. Pritchett

M. Hoshino

Page 7: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

  

F Bz

X

0

(x, z 0)dx

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 5 10 15 20 25 30 35 40

normal magnetic flux

mi/me = 9mi/me = 25mi/me = 64mi/me = 100

i t

evolution electron-mass independent!

Normal Magnetic Flux:

=> Local electron physics adjusts to permit large scale evolution

Page 8: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

mi/me=9, i t = 18

mi/me=100, i t = 16

Compare extremes along dashed lines

- ion quantities- electron quantities

Page 9: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

-> Ion scale features approx invariant.

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0 5 10 15 20 25

Bz magnetic field

Bz(9)Bz(100)

shifted x

-1.0 100

-5.0 10 -1

0.0 100

5.0 10-1

1.0 100

0 5 10 15 20 25

ion v x

vix(9)vix(100)

shifted x

Large (ion) Scale Features

Page 10: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Small (electron) Scale Features

-6.0 100

-4.0 100

-2.0 100

0.0 100

2.0 100

4.0 100

6.0 100

0 5 10 15 20 25

electron v x

vex(9)vex(100)

vex(

9)

shifted x

Page 11: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

-6.0 10 -2

-4.0 10 -2

-2.0 10 -2

0.0 100

2.0 10-2

4.0 10-2

6.0 10-2

0 5 10 15 20 25

Pxye

pxye(9)pxye(100)

shifted x

Pressure Tensor

x

vpP x

zxy

~

Page 12: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

xyeP

yzeP

Page 13: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

10.0<x< 11.0 -0.5<z< 0.5

0.076

-0.739

-1.555

-2.370

-3.185

-4.000

log f

-0.4

0.2

0.0

0.4

-0.2

uy

-0.4 -0.2 0.0 0.2 0.4ux

Sample Electron Distribution (Pxye)

Thermal inertia (nongyrotropic pressure)-based dissipationseems key to anti-parallel reconnection

Page 14: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

4/1

22 )/(

2

zBe

Tm

x

eez

E 2meTe vx'

[Biskamp and Schindler, 1971]

Can be explained by trapping scale:

=> Estimate of reconnection electric field

[Hesse et al., 1999][Kuznetsova et al., 2000]

“bounce motion” [Horiuchi and Sato, 1996]

Page 15: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

realistic electron massRicci et al.

3D – no LHD, kink, …Zeiler et al.

Page 16: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

But, some questions remain…

Sausage mode,Buechner et al.

Kink, LHD,Ozaki et al. Ion sound mode…

Page 17: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

…and other limitations, such as

-Finite (small) system size-Finite (small) ion/electron mass ratio-Finite (small) speed of light-Periodicity

…there is work to be done!

Page 18: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

What changes in the presence of guide field?

if guide field strong enoughelectrons are magnetizedno bounce orbitsno nongyrotropic pressures(?)bulk inertia dominant(?)

Method: Theory and PIC simulations

Page 19: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Simulation Setup

- 1-D “Harris” Equilibrium, Lx= 2Lz= 25.6 c/pi

- Flux function: A = -ln cosh(z/) - normal magnetic field perturbation (X type, 2.5% of lobe field) - 0, 40, 80% guide field - Sheet Full-Width = c/pi

- Ti/Te = 5

- mi/me=256

- 100x106 particles - 800x800 grid

Results averaged over 60 plasma periods

Page 20: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Page 21: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

By

P. Pritchett

Change of symmetry

Page 22: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Parallel electric field it=16

…also analytic theory by Drake et al.

Page 23: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Electric Field Equations  

E

v e

B

1

nee

�P e

me

e

v et

v e

v e

v i

B 1

nee

j

B 1

nee

�P e

me

e

v et

v e

v e

ye

yeyyyzxy

ey vv

t

v

e

m

y

P

z

P

x

P

enEE

1

ll

Electron eqn. of motion

At reconnection site

small, limited by me?important?

x

z

Page 24: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Magnitude of Bulk Acceleration Contribution

Time derivative of (negative) electron velocity in y direction:

-3

-2

-1

0

1

2

0

5

10

15

0 5 10 15 20 25 30

d/dt vey_max vey_max

time

Page 25: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Pxye

Pyze

Page 26: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

-(vezBx-vexBz)

-me(ve.grad vey)/e

z

P

x

P

enyzexye

e

1

Page 27: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Electron Distribution Functions

F(vx,vy) F(vx,vz) F(vy,vz)

vx

vy

vx

vz

vy

vz

Page 28: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

..pressure tensor nearly(?) gyrotropic

BBB

pppeg

engege

2

||

1P

PPP

But:0|

2

||

2

||

yyyeg BB

B

pp

B

ppBB

P

if Bx, Bz=0

-> nongyrotropy important. How to estimate?

Page 29: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

QPPPPPP

T

eee

Teeeeee

e BBm

evvv

t

Scaling the pressure tensor evolution equation

P

L

vP Pe

L

Q

Assume

ijii

e

PP

vL

/,1

ignore heat flux…

Page 30: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

y

xzzeyye

ey

e

zzexye B

BPP

z

vPP

y

zxxeyye

ey

e

xxeyze B

BPP

x

vPP

Hesse, Kuznetsova, Hoshino, 2001

Pressure tensor approximations

Page 31: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Electron Pressure Tensors

from simulation approximation

Pxye Pxye

Pyze Pyze

critical difference at reconnection site!

Page 32: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

-0.4 -0.2 0 0.2 0.4

Pyze

at x=13.15, t=16

z coll. skin depth

Page 33: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

z

Q

B

BPP

x

vP

z

Q

x

Q

B

BPP

x

vPP

xyze

ey

zxxeyye

ey

e

xxe

xyzexxye

ey

zxxeyye

ey

e

xxeyze

1

1

QxxyeQxyze

Pyza approximation

Page 34: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

ss fudm ))()((3 vuvuvuQ�

0

][

][

][

)(

rsisjkrrjks

rsjsikrriks

rsksijrrijs

srs

s

jl

likl

il

ljkl

kl

lijl

lijkkijlkjiljiklijklll

ijk

BQBQ

BQBQ

BQBQ

m

e

vx

Qvx

Qvx

Q

vQvvPvvPvvPx

Qt

Heat Flux Tensor Time Evolution

lots of work

Page 35: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

022

)2(

xxxzzxxxyxyzzxyye

yl

lxxl

xl

lyxl

xl

lxyl

lxyxxxylyxxlll

BQBQBQBQm

e

vx

Qvx

Qvx

Q

vQvvPvvPx

22 5.05.0

1xyzyxxzxxyyxxx

yxyz vPvvP

zvPvvP

xQ

x

vvPvvP

xQ x

y

yxxyxxx

yxyz

)(

1

Approximations for Qxyze

neglect ;0t

Assume near gyrotropy, By>>Bx, Bz

Leading order, Pii>>Pjk

x,y,x component:

Page 36: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

-0.4 -0.2 0 0.2 0.4

Q xyze and approximation, x=13.15

Q xyze

Q xyze approximation

z

Approximations for Qxyze

From simulation:

Approximation:

Ok in center, differencedue to 4-tensor?

Page 37: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

21

2

2

21

2

2

020

02

1

1||

11~|~|

L

cE

L

cvB

ne

mvB

Lx

vv

e

mE

pe

convection

pe

ze

ezyz

einertial

x

vvP

zB

BPP

x

vPP x

y

yxx

ey

zxxeyye

ey

e

xxeyze

1

22

2

222

2

2

2

2

||11

|~|

11~

11|~|

L

rE

mn

P

LE

z

vvP

zenx

vvP

zenE

Linertial

eey

xxinertial

z

y

yxx

ee

x

y

yxx

eepressure

Scaling of diffusion region

=> 2 Scale lengths: Collisionless skin depthElectron Larmor radius in guide field

Page 38: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Physical Mechanism:

Larmor orbit interacts with “anti-parallel” B components

Page 39: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

3D Modeling

M. Scholer et al.: Formation of“2D” channel

J. Drake et al.: Buneman modes,electron holes, anomalous resistivity

Page 40: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

P. Pritchett: inertia important

Page 41: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

…and other limitations, such as

-Finite (small) system size-Finite (small) ion/electron mass ratio-Finite (small) speed of light-Periodicity

…there is work to be done!

Page 42: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Results from GEM reconnection challenge:

•Hall effect (dispersive waves) speeds up reconnection rate

•Reconnection rate otherwise independent on model

•MHD models with simple resistivity show only slow reconnection rates

Question:

Are Hall effects the only way to include fast reconnection in MHDmodels?

Page 43: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Approach:

•Hall effect result of ion-electron scale separation

•Eliminate scale separation by- Choosing equal ion and electron mass- Choosing equal ion and electron temperatures

•Simple and cheap…, includes ion and “electron” kinetic physics

•“Small” GEM runs with and without guide field

•“Large” runs, with and without guide field

Page 44: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

GEM-size run, no By

Page 45: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.4

0.8

1.2

1.6

2

2.4

0 5 10 15 20 25 30

small, no By

reconnection E recflux

time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30

mi/me=256

rec. E

recflux/0.0

time

GEM-size run, no By

me=1 me=1/256

Page 46: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

GEM-size run, By=0.8

Page 47: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

GEM-size run, By=0.8

0

0.05

0.1

0.15

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30

typical

d flux/dt

recflux

time

0

0.05

0.1

0.15

0.2

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30

typical

rec. E recflux

time

me=1 me=1/256

Page 48: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

large run, By=0.

Page 49: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

large run, By=0.8

Page 50: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

large run, By=0.

0

0.05

0.1

0.15

0.2

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60

typical

rec. E recflux

time

2

3

4

5

6

7

8

9

10

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60

typical

recflux reconnection E

time

large run, By=0.8

Reconnection rates similar to GEM problem

Page 51: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

initial By=0.8 initial By=0.

By, both large runs, t=40

no quadrupole or quadrupolar modulation!

Page 52: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

large run, By=0., t=40

Pxye

Pyze

vix

jiy

Page 53: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

large run, By=0.8, t=40

Pxye

Pyze

vix

jiy

Page 54: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Electric Field Equations  

E

v e

B

1

nee

�P e

me

e

v et

v e

v e

v i

B 1

nee

j

B 1

nee

�P e

me

e

v et

v e

v e

Electron eqn. of motion

x

z

Approximate representation in MHD:

ii

i Pen

BvE�

1

Page 55: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Additional slides

Page 56: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Pxye Pyze

jyi jye By

A tour of the reconnection region…

Page 57: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Mass Dependence of Electron Diffusion Region:Simulation Setup

- 1-D “Harris” Equilibrium, Lx= 2Lz= 25.6 c/pi

- Flux function: A = -ln cosh(z/) - normal magnetic field perturbation (X type, 5% of lobe field) - Sheet Full-Width = c/pi

- Te/Ti = 0.2 - me/mi=1/9-1/100

- pe/ce=5

- 50x106 particles - 800x400 grid

Page 58: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

0

0.5

1

1.5

2

2.5

3

0

0.05

0.1

0.15

-5 0 5 10 15 20 25 30 35

typical

recflux d flux/dt

time

mi=me, By=1

rate slightly reduced due to higher plasma mass

Page 59: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Additional Material

Page 60: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Pyze

18.028

25.0

35.0

1~

1|

1

E

E

z

P

enenE yz

eye

ey P

Magnitude of Pressure Tensor Contribution

ne

Page 61: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Particle Picture: Straight Acceleration and Thermalization

Question: Are electrons transiently accelerated while crossingthe diffusion region, or is some of the energy thermalized?

Approach: Integrate 104 electron orbits in vicinity of reconnection region

Relevance: straight acceleration ->

thermalization ->e

e

eyee

en

ve

m

P

v

1

Page 62: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

-0.5

0

0.5

1

1.5

2

-12 -10 -8 -6 -4 -2 0 2

kinetic energy change as function of delta y

delta Ek

y = -2.5605e-05 - 0.17785x R= 0.98882

delta y

-0.5

0

0.5

1

1.5

2

-12 -10 -8 -6 -4 -2 0 2

delta y-component of kinetic energy vs. delta y

delta Eyk

y = -0.027939 - 0.16877x R= 0.9873

delta y

yE

yE

ykin

kin

67.1

78.1

,

Approximately 6% of energyis thermalized

y

kin

Ee

Ey

Page 63: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

13.15 13.2 13.25 13.3 13.35 13.4 13.45

orbit( 6293): x-z plane

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.05

0.1

0.15

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

orbit( 6293): Ekin y and x-z

Ekin_y

Ekin_xz

time

x-z energization

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

13.15 13.2 13.25 13.3 13.35 13.4 13.45

orbit( 6293): z-x acceleration phase

z

x

Page 64: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Contours of Poloidal Magnetic Field

Scale length related to electron Larmor radius

Page 65: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Vmax= 0.65

Vmax= 2.8

Page 66: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

Scaling the pressure tensor evolution equation

0T

eee

Teeeeee BB

m

evvv

PPPPP

zxy

,

0

yzyxxyyzxzx

xzyzxxxyxxxyyzxzyxxxxye

PPPP

vPvPvPvPvPPv

xy component

near reconnection site:

ijii

zxy

PP

BBB

,

Page 67: SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.

SECTP LANL GSFC UMD

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30

magnetic flux normal to current sheet

recflux/0.0recflux/0.4recflux/0.8

time

Reconnection faster for smaller guide fields