SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS...

257
SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson Cambridge University Press, 1989 You will find the lecture notes at http://www.shef.ac.uk/~robertus/kul/ 1

Transcript of SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS...

Page 1: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

SECTION C: SOLITONS

Course text: Solitons: an introduction

P.G. Drazin & R.S. Johnson

Cambridge University Press, 1989

You will find the lecture notes at

http://www.shef.ac.uk/~robertus/kul/

1

Page 2: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Outline of the course

1. Introduction

2. Waves of permanent form

3. Scattering & inverse scattering

4. The inverse scattering transform for the KdV equation

5. Conservation Laws

6. The Lax method

2

Page 3: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

1. Introduction

Linear PDEs

Consider the PDE

Lu = 0

where L = L(∂/∂x, ∂/∂t) and u = u(x, t).

3

Page 4: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

If L is linear, i.e. if

L(au+ bw) = aLu+ bLw (1)

∀ constants a and b, and ∀ ‘well behaved’ functions u and w, then

Lu = 0 & Lw = 0 =⇒ L(au+ bw) = 0 (3)

4

Page 5: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

i.e. if u and w are solutions of

Lv = 0 (5)

then so is any linear combination of u and w.

This is called the superposition principle

5

Page 6: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Example: the wave equation

Take

L =∂2

∂t2− c2 ∂

2

∂x2(6)

We have that if

u(x, t) = f(x− ct) + g(x+ ct) (8)

for f, g ∈ C2(−∞,∞), then

Lu = 0 ∀x, t (9)

6

Page 7: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

If u(x, 0) = F (x) and ut(x, 0) = G(x) then

u(x, t) =1

2[F (x− ct) + F (x+ ct)] +

1

2c

∫ x+ct

x−ct

G(ξ)dξ (11)

is the unique solution to Lu = 0 with the given initial conditions.

This is called D’Alambert solution.

7

Page 8: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

-5 -2.5 2.5 5 7.5 10

0.2

0.4

0.6

0.8

1

(a)

-5 -2.5 2.5 5 7.5 10

0.2

0.4

0.6

0.8

1

(b)

Figure 1: The D’Alambert solution f(x − ct) of the wave equation

at two different times

8

Page 9: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Consider f(x− ct) and g(x+ ct) separately. They obey the equation

ut + cux and ut − cux.

respectively.

This follows from the identity

L =∂2

∂t2− c2 ∂

2

∂x2≡(

∂t± c ∂

∂x

)(

∂t∓ c ∂

∂x

)

(13)

9

Page 10: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Normal modes

Suppose that D(i∂/∂t,−i∂/∂x) is a linear operator and

Du = 0. (14)

Then try (i.e. guess that there exists) a solution of the form

u(x, t) = aei(kx−ωt)

for constant wavenumber k and frequency ω.

u(x, t) represents a sinusoidal wave of length 2π/k, period 2π/ω

and phase velocity c = ω/k.

10

Page 11: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

A solution of a linear equation depending exponentially on time

is called normal mode

Because D(i∂/∂t,−i∂/∂x) is linear, if u(x, t) is a normal mode

D(i∂/∂t,−i∂/∂x)u = D(i(iω),−i(ik))u = 0, (15)

which implies

D(ω, k) = 0.

This is called dispersion relation.

11

Page 12: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Example: the wave equation

Consider again the wave equation

Du ≡ ∂2u

∂t2− c2 ∂

2u

∂x2= 0. (16)

Try u ∝ ei(kx−ωt)

(−iω)2u− c2(ik)2u = 0 (17)

that is

D(ω, k) = c2k2 − ω2 = 0 (18)

ω = ±ck. (19)

±c is called phase velocity of mode.

12

Page 13: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

If the phase velocity is not constant different modes travel at

different velocities and eventually the wave (packet) disperses.

The simplest dispersive equation is

ut + ux + uxxx = 0.

Let us try u ∝ ei(kx−ωt), then

D(ω, k) = −iω + ik + (ik)3 = 0 (20)

ω = k − k3 (21)

c = 1− k2 ≤ 1. (22)

Note that long waves (small k) travel faster.

13

Page 14: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

If we add even derivatives to ut + ux, ω = f(k) is a complex

function of k, and the wave dissipates.

Consider

ut + ux − uxx = 0,

then by trying u ∝ ei(kx−ωt)

D(ω, k) = −iω + ik − (ik)2 = 0 (23)

ω = k − ik2 (24)

u(x, t) = e−k2t+ik(x−t) (25)

The above wave decays exponentially.

14

Page 15: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

An initial value problem

Suppose that

D(i∂/∂t,−i∂/∂x)u = 0 (26)

is a linear PDE of first order in ∂/∂t and u(x, 0) is given.

Let us take the Fourier transform of u(x, 0):

a(k) =1

∫ ∞

−∞u(x, 0)e−ikxdx (27)

and

u(x, 0) =1

∫ ∞

−∞a(k)eikxdk (28)

15

Page 16: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Suppose that

D(ω, k) = 0 =⇒ ω = f(k). (29)

Then it may be verified that

u(x, t) =

∫ ∞

−∞a(k)ei[kx−f(k)t]dk. (31)

16

Page 17: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Wave packet and group velocity

A localized solution which is the superposition of waves of ap-

proximately the same length is called a wave packet.

The components have in general slightly different phase velocity

c = ω/k, and therefore spread, i.e. disperse.

17

Page 18: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

It can be shown that asymptotically the wave packet moves with

the group velocity, which is defined by

cg =dω

dk. (33)

It can be shown that any localized disturbance after a long time

propagates at the group velocities, rather than phase velocities of

its components. So physical properties, like energy, have velocity

cg not c. It turns out that in general cg ≤ c.

18

Page 19: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Example

Consider the following expression:

a cos(k1x− ω1t) + a cos(k2x− ω2t)

= 2a cos

[

1

2(k2 − k1)x−

1

2(ω2 − ω1t)

]

× cos

[

1

2(k2 + k1)x−

1

2(ω2 + ω1) t

]

∼ 2a cos

[

1

2(k2 − k1) (x− cgt)

]

cos [k1 (x− ct)]

= A(ǫx, ǫt) cos(k1x− ω1t) as k2 → k1.

(34)

Here A(ǫx, ǫt) = 2a cos [ǫ (x− cgt)], ǫ = (k2 − k1)/2 is small and

cg = limk2→k1

ω2 − ω1

k2 − k1and c =

ω1

k1=ω2

k2. (35)

19

Page 20: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

10 20 30 40

-1.5

-1

-0.5

0.5

1

1.5

2

Figure 2: The ‘wave packet’ (34).

20

Page 21: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The method of characteristics and nonlinear waves

Consider again the equation ux+cut = 0 . Then

u(x, t) = constant ∀t (36)

on curves with equation dx/dt = c in the (x, t)-plane, because

du

dt= ut +

dx

dtux = ut + cux = 0. (37)

21

Page 22: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Using this property, solution to ux+cut = 0 can be easily

constructed.

If

u(x, 0) = f(x) (38)

for differentiable f , then

u(x, t) = f(x− ct).

22

Page 23: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Now consider the nonlinear equation

ux + c(u)ut = 0.

Generalizing the previous ideas, u(x, t) is constant on curves given

by the equation

dx

dt= c(u), x(t) = c(u)t+ constant. (39)

If furthermore u(x, 0) = f(x), the solution is given implicitly by

u(x, t) = f (x− c(u)t).

23

Page 24: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

If c(u) increases with u, then the greater u is the faster the

velocity dx/dt so that an initial solution will steep, and may go

on to break.

The solution may be continued beyond breaking by invoking

some additional hypothesis.

24

Page 25: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Example

A simple example of nonlinear equation which can have

multivalued solution is

ux + (1 + u)ut = 0.

Using the method of characteristics, we have that the general

solution is

u(x, t) = f (x− (1 + u) t),

where f is an arbitrary function.

25

Page 26: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Example

Now, consider

ux + uut = 0.

If u(x, 0) = cosπx, then

u(x, t) = cos [π (x− ut)] (40)

gives u(x, t) implicitly.

Where do shocks occur?

26

Page 27: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

By differentiating u(x, t) = cos [π (x− ut)] w.r.t. x we have

ux = −π (1− uxt) sin [π (x− ut)] (41)

ux 1− πt sin [π (x− ut)] = −π sin [π (x− ut)] . (42)

Shocks occur when ux =∞, which implies

tπ sin [π (x− ut)] = 1.

The first shock occurs when

t = 1/π and x− ut = 1/2 + 2n for n = 0,±1,±2, . . .

i.e. where u = 0, x = 1/2 + 2n.

27

Page 28: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

We may have nonlinearity and dissipation, e.g.

ut + (1 + u)ux − uxx = 0

or nonlinearity and dispersion,

ut + (1 + u)ux + uxxx = 0

Let us consider the transformations

1 + u→ u, αu, t→ βt, x→ γx (43)

for the equation in the blue box

28

Page 29: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

we obtain

ut +αβ

γuux +

β

γ3uxxx = 0. (44)

Choosing (for example) α = −6, β = γ = 1 yields

ut−6uux+uxxx = 0.

This is known as Korteweg-de Vries (KdV) equation.

29

Page 30: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The discovery of Solitary waves.

Figure 3: The diagram of Russel’s experiment to generate solitary

waves

Figure 4: Parameters used in the description of solitary waves

30

Page 31: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

• J. Scott Russel (1834):

c2 = g(h+ a) (45)

• Boussinesq (1871), Rayleigh (1876):

ζ(x, t) = a sech2 [β (x− ct− x0)] . (46)

• Korteweg & de Vries (1895):

Derived the equation for long weekly nonlinear water waves

∂ζ

∂t=

3

2

( g

h

)1/2(

2

3ǫ∂ζ

∂χ+ ζ

∂ζ

∂χ+

1

3σ∂3ζ

∂χ3

)

(47)

31

Page 32: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The function ζ(χ) = a sech2 (βχ) is a solution to the previous

equation provided

a = 4σβ2 and ǫ = −2σβ2. (48)

The coordinate χ is defined as

χ = x− (gh)1/2(

1− ǫ

h

)

t. (49)

Finally, the solitary wave solution becomes

ζ(x, t) = a sech2

[

1

2

(a

σ

)1/2

x− (gh)1/2(

1 +a

2h

)

t

]

. (51)

c ∼ (gh)1/2(

1 +a

2h

)

(52)

32

Page 33: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Def.: A solitary wave solution of a PDE

N

(

∂t,∂

∂x

)

u = 0 (55)

is a travelling wave solution of the form

u(x, t) = f(x− ct) = f(ξ) (56)

where c is constant and f(ξ)→ 0 as ξ → ±∞.

33

Page 34: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Discovery of Solitons

34

Page 35: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

• Fermi, Pasta and Ulam (1955). Working on a numerical model

of phonons in an anharmonic lattice. No equipartition of

energy among the modes.

• Kruskal and Zabusky (1965).

They considered the following equation

ut + uux + δ2uxxx = 0

35

Page 36: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

They considered periodic boundary conditions

u(x, 0) = cosπx for 0 < x ≤ 2 (57)

u(x+ 2, t) = u(x, t) (58)

ux(x+ 2, t) = ux(x, t) (59)

uxx(x+ 2, t) = uxx(x, t) (60)

δ = 0 · 022. (61)

36

Page 37: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Figure 5: The solution of the periodic boundary-value problem for

the KdV equation

37

Page 38: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Defining properties of solitons

• A nonlinear wave of permanent form.

• Localized.

• May interact strongly with other soliton and yet retain its

identity.

Def.: A soliton is a solitary wave which asymptotically pre-

serves its shape and velocity upon nonlinear interaction with

other solitary waves, or more generally with another (arbitrary)

localized disturbance.

38

Page 39: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Applications

Consider a linear wave motion with dispersion. The dispersion

relation will have the form

ω(k) = kc(k2). (62)

As k → 0ω

k∼ c0 − λk2, λ > 0. (63)

Such dispersion relation is obtained by the equation

ut + c0ux + λuxxx = 0

39

Page 40: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Wave propagation in a classical continuum ⇒ the time evolution is

given by the material derivative:

D

Dt=

∂t+ u

(

∂x

)

. (64)

The balance of nonlinearity and dispersion gives

ut + c0ux + α(uux + λuxxx) = 0, α small.

Thus we have

uτ + uuξ + λuξξξ = 0; ξ = x− c0t, τ = αt. (65)

This KdV equation is valid if x− c0t = O(1), t = O(α−1) as α→ 0.

40

Page 41: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Def.: The KdV equation is the characteristic equation govern-

ing weekly nonlinear waves whose phase speed attains a simple

maximum for wave of infinite length.

• Long weekly nonlinear water waves;

• gravity waves in a stratified fluid;

• waves in a rotating atmosphere;

• ion-acustic fluid in a plasma;

• pressure waves in a liquid-gas bubble mixture.

• Examples of other nonlinear equations with a wide application:

non linear Schrodinger equation and sine-Gordon equation.

41

Page 42: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

2. Waves of permanent form

Travelling waves

Consider the nonlinear PDE

N

(

∂t,∂

∂x

)

u = 0. (66)

Then guess that

u(x, t) = f(ξ), ξ = x− ct

for some constant c.

NB Solution of this type do not always exist.

42

Page 43: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Solitary waves

Consider the KdV equation

ut − 6uux + uxxx = 0.

We try a solution of the form

u(x, t) = f(ξ) (67)

and we ask for

f, f ′, f ′′ → 0, as ξ → ±∞

43

Page 44: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Substituting f(ξ) in the KdV equation yields

−cf ′ − 6ff ′ + f ′′′ = 0. (68)

By integrating we have

−cf − 3f2 + f ′′ = A (69)

−cff ′ − 3f2f ′ + f ′f ′′ = Af ′ (70)

−1

2cf2 − f3 +

1

2(f ′)

2= Af +B (71)

44

Page 45: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The condition

f, f ′, f ′′ → 0, as ξ → ±∞

implies

A = B = 0. (72)

Therefore, we have

(f ′)2

= f2(2f + c)

45

Page 46: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

ξ =

dfdf =

df

f ′= ±

df

f (2f + c)1/2(73)

Now we make the substitution

f = −1

2c sech2 Θ, (74)

then we obtain

df = −2f tanhΘdΘ. (75)

46

Page 47: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Finally, the integral becomes

ξ = ±∫

2f tanhΘ

f(

−c sech2 Θ + c)1/2

dΘ = ± 2

c1/2Θ+const. if c > 0. (76)

f(ξ) = −1

2c sech2

[

1

2c1/2 (x− ct− x0)

]

(78)

for aribatrary x0 and c ≥ 0.

47

Page 48: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

General waves of permanent form

We have found that

1

2(f ′)

2= f3 +

1

2cf2 + Af +B = F (f) (80)

Or equivalently

f ′ = ±√

2F (f)

48

Page 49: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Qualitative properties of f

• For real solution f , F (f) ≥ 0;

• f ′ changes its sign only at a zero, f1, of F (f);

• f(ξ) increase or decreases monotonically untill F (f) = 0.

49

Page 50: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

-3 -2 -1 1 2 3f

-15

-10

-5

5

10

15

F

Figure 6: F (f) with three simple zeros (cnoidal or periodic wave).

50

Page 51: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Behaviour of f(ξ) in a neighbourhood of the zeros of F (f)

(i) If f1 is a simple zero, then

(f ′)2

= 2(f − f1)F ′(f1) +O[

(f − f1)2]

. (81)

If we differentiate both sides w.r.t. ξ we get

2f ′f ′′ = 2f ′F ′(f1) +O[f ′(f − f1)] (82)

f ′′ = F ′(f1) +O[(f − f1)]. (83)

Therefore f ′′(ξ1) = F ′(f1). Since f ′(ξ1) = 0

f(ξ) = f1 +1

2(ξ − ξ1)2 F ′(f1) +O[(ξ − ξ1)3] (85)

51

Page 52: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

(ii) If f1 is a double zero, then

(f ′)2 = (f − f1)2F ′′(f1) +O[(f − f1)3]. (86)

This equation can be solved only if F (f1)′′ > 0. This time we

obtain

f(ξ)− f1 ∼ α exp[

±ξ (F ′′(f1))1/2]

as ξ → ∓∞ (88)

The solution extends from −∞ to ∞ and can have only one peak.

52

Page 53: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

(iii) If f1 is a triple zero, then f1 = −c/6, A = 3(c/6)2 and

B = (c/6)3. Then we have

f ′ = ±√

2(

f +c

6

)3/2

(89)

ξ = ±∫

df√

2(

f + c6

)3/2. (90)

Finally, we obtain

f(ξ) = − c6

+2

(ξ − β), (92)

where β is a constant of integration. This solution al ways diverges

at ξ = β.

53

Page 54: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

54

Page 55: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

• In the cases (a), (d), (e), (f) the solution is always un-

bounded.

• In case (b), F (f) has a double zero at f1 and a simple

zero at f3. f(ξ) has a simple minimum at f3 and attains

its maximum f1 exponentially as ξ → ±∞. This is the

solitary wave.

55

Page 56: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

• In case (c), F (f) has simple zeros at f3, f2, so f has a

simple maximum at f2 and a simple minimum at f3 with

motion of period

dξ = 2

∫ f3

f2

dfdf = 2

∫ f3

f2

df√

2F (f). (94)

These periodic solution are called cnoidal waves, because

they can be expressed in terms of the Jacobian of the elliptic

function cn (when F is the cubic of the KdV equation).

56

Page 57: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Consider

f ′′ = −dV/df

for a given ‘potential’ function V (f), where f ′ = df/dξ. By writing

f ′′ =df ′

dff ′ (95)

and integrating w.r.t. f the equation in the red box we obtain

1

2(f ′)

2= E − V (f) = F (f) (97)

For some constant of integration (energy) E.

57

Page 58: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

General features of f(ξ)

• There exist a periodic solution if F (f) is positive between

two simple zero.

• There exist solitary-wave solutions if F (f) is positive be-

tween a simple zero and a double zero of F (f).

• If F (f) is positive between two double zeros, f1 and f2,

then f(ξ) → f1 as ξ → ±∞ and f(ξ) → f2 as ξ → ∓∞.

These solutions are called kink or topological solitons

(sine-Gordon equation).

58

Page 59: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Example

Consider the sine-Gordon equation

utt − uxx + sinu = 0

Look for a solution of the form u = f(ξ), where ξ = x− ct for some

given constant c.

59

Page 60: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Substituting f(ξ) in the sine-Gordon equation yields

c2f ′′ − f ′′ + sin f = 0. (98)

By using the identity f ′′ = f ′df ′/df we obtain

(c2 − 1)d[

12 (f ′)2

]

df+ sin f = 0. (99)

Integration with respect to f gives

(c2 − 1)1

2(f ′)2 − cos f = const. (100)

(c2 − 1)1

2(f ′)2 −

(

1− 2 sin2 f

2

)

= const. (101)

(c2 − 1)1

2(f ′)2 + 2 sin2 f

2= A (102)

For some arbitrary constant A.

60

Page 61: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

In our previous notation we have

1

2(f ′)2 = F (f) =

2 sin2 12f −A

1− c2 . (104)

Let us set A = 0

F (f) > 0 only if 0 < c2 < 1

61

Page 62: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

-15 -10 -5 5 10 15f

1

2

3

4

F

Figure 7: F (f) against f for the sine-Gordon equation with A = 0

and c2 = 1/2.

62

Page 63: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Now we have

F ′(f) =2 sin f

2 cos f2

1− c2 (105)

F ′′(f) =cos2 f

2 − sin2 f2

1− c2 =cos f

1− c2 . (106)

F (f) = 0, at f = 2πm, m = ±1,±2, . . . (110)

F ′(2πm) = 0 (111)

F ′′(2πm) =1

1− c2 6= 0 (112)

All the zeros are double. The solutions are kinks.

63

Page 64: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Now, let us make the substitution

v = tan

(

1

4f

)

. (113)

Differentiating w.r.t. ξ yields

v′ =1

4f ′ sec2

(

1

4f

)

= ±1

2

sin(

12f)

√1− c2

sec2

(

1

4f

)

= ±sin(

f4

)

cos(

f4

)

√1− c2

sec2

(

1

4f

)

= ± v√1− c2

.

(114)

64

Page 65: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Finally, we have

f(ξ) = 4 arctan

± exp

[

± (ξ − ξ0)√1− c2

]

(117)

or

f(ξ) = 4 arctan

∓ exp

[

± (ξ − ξ0)√1− c2

]

(118)

If both signs are the same, we have a positive kink, if they differ

we have a negative kink (antikink)

65

Page 66: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

-3 -2 -1 1 2 3X

1

2

3

4

5

6

f

(a) A kink

-3 -2 -1 1 2 3X

1

2

3

4

5

6

f

(b) An antikink

Figure 8: Kink and antikink of the sine-Gordon equation with A = 0

and c2 = 1/2

66

Page 67: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Consider the following solution of the sine-Gordon equation:

tan

(

1

4u

)

=c sinh

[

x√1−c2

]

cosh[

ct√1−c2

] , 0 < c2 < 1 (120)

Let us set a = 1/√

1− c2 and v = tan (f/4).

67

Page 68: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

We have

v ∼ ceax − e−ax

e−act∼ c

(

ea(x+ct) − e−a(x−ct))

, t→ −∞. (121)

This implies

v ∼

cea(x+ct) if x > −ctcea(x+ct) − ce−a(x−ct) if ct < x < −ct−ce−a(x−ct) if x < ct

, t→ −∞. (122)

68

Page 69: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Similarly, we have

v ∼ ceax − e−ax

eact∼ c

(

ea(x−ct) − e−a(x+ct))

, t→∞. (123)

This implies

v ∼

cea(x−ct) if x > ct

cea(x−ct) − ce−a(x+ct) if −ct < x < ct

−ce−a(x+ct) if x < −ct, t→∞. (124)

69

Page 70: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

-15 -10 -5 5 10 15

-1.5

-1

-0.5

0.5

1

1.5

(a) The solution (120) as t →

−∞

-15 -10 -5 5 10 15

-1.5

-1

-0.5

0.5

1

1.5

(b) The solution (120) as t →

Figure 9: The solution (120) of the sine-Gordon equation as t→ −∞and as t→∞.

70

Page 71: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Example

The Gardner equation

ut − 6uux + uxxx = 12δu2ux.

We look for a solution of form u(x, t) = f(ξ), where ξ = x− ct. We

then go through exactly the same procedure as for the KdV

equation.

71

Page 72: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

We have

−cf ′ − 6ff ′ + f ′′′ − 12δf2f ′ = 0 (125)

−cf − 3f2 + f ′′ − 4δf3 = A (126)

−cff ′ − 3f2f ′ + f ′f ′′ − 4δf3f ′ = Af ′ (127)

−1

2cf2 − f3 +

1

2(f ′)

2+ δf4 = Af +B (128)

1

2(f ′)

2= δf4+f3+

1

2cf2+Af+B = F (f) (130)

72

Page 73: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

-3 -2 -1 1 2 3

5

10

15

20

25

(a) One kink solution

-2 -1 1 2

-2

2

4

6

8

(b) One periodic solution

-3 -2 -1 1 2 3

-5

5

10

15

20

(c) Soliton solutions

-3 -2 -1 1 2 3

-5

5

10

15

20

(d) Soliton solution

Figure 10: Positive δ

73

Page 74: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

-3 -2 -1 1 2 3

-6

-4

-2

2

4

(a) Soliton solution

-2 -1 1 2

-8

-6

-4

-2

2

(b) Periodic solution

-3 -2 -1 1 2 3

-25

-20

-15

-10

-5

(c) No physical solution

-3 -2 -1 1 2 3

-20

-15

-10

-5

5

(d) Periodic solution

Figure 11: Negative δ

74

Page 75: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

3.1 The Scattering Problem

Consider the KdV equation

ut − 6uux + uxxx = 0.

We are looking for a general procedure to integrate this equation.

Let us introduce the Miura transformation

u = v2 + vx

75

Page 76: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Direct substitution leads to

2vvt + vxt − 6(v2 + vx)(2vvx + vxx)

+ 6vxvxx + 2vvxxx + vxxxx = 0, (1)

which can be rearranged to give

(

2v +∂

∂x

)

(vt − 6v2vx + vxxx) = 0. (2)

The equation

vt − 6v2vx + vxxx = 0

is called modified KdV equation or mKdV.

76

Page 77: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The Miura transformation

u = v2 + vx (3)

is also known as Riccati equation for v, and can be linearized by

the substitution v = ψx/ψ:

ψxx − uψ = 0. (5)

77

Page 78: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

We now observe that the KdV equation is Galilean invariant ,

i.e.

u→ λ+ u(x+ 6λt, t), −∞ < λ <∞. (6)

The equation for ψ now becomes

ψxx + (λ− u)ψ = 0, −∞ < x <∞ (8)

This is the time-independent Scrodinger equation. The

eigenvalue problem defined by the parameter λ is the scattering

problem (or Sturm-Liouville problem).

78

Page 79: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

u(x, 0)scattering−−−−−−→ S(0)

KdV

y

ytime evolution

u(x, t)inverse←−−−−−−

scatteringS(t)

The diagram of the inverse scattering for the KdV equation.

79

Page 80: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Example

Consider the equation

ut + ux + uxxx = 0.

Suppose we are given the initial-value problem u(x, 0) = f(x).

Then

f(x) =

∫ ∞

−∞A(k)eikxdk and A(k) =

1

∫ ∞

−∞f(x)e−ikxdx. (9)

Here A(k) plays the role of the

‘scattering data’.

80

Page 81: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Now, the dispersion relation for the previous equation is

ω(k) = k − k3.

Therefore the solution to our linear PDE is

u(x, t) =

∫ ∞

−∞A(k)ei(kx−ω(k)t)dk. (11)

81

Page 82: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Use of the Fourier transform to solve linear PDE

1. Initial-value problem u(x, 0) = f(x);

2. apply the Fourier transform to f(x) to determine the ‘scat-

tering data’ A(k);

3. time evolution of the scattering data given by A(k)e−iω(k)t;

4. reconstruct u(x, t) by applying the inverse Fourier trans-

form to A(k)e−iω(k)t.

82

Page 83: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

u(x, 0)F.T.−−−−→ A(k)

PDE

y

ytime evolution

u(x, t)inverse←−−−−F.T.

A(k)e−iω(k)t

Diagram of the use of the Fourier transform to solve linear PDEs

83

Page 84: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

In order that appropriate solutions exist we shall require

∫ ∞

−∞|u(x)| dx <∞, (12)

∫ ∞

−∞(1 + |x|) |u(x)| dx <∞ (13)

and∫ ∞

−∞|ψ(x)|2 dx <∞. (14)

We shall also assume ψ and ψx to be continuous.

84

Page 85: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

λ is called eigenvalue and ψ(x;λ) the relative eigenfunction.

The operator

L =∂2

∂x2− u (15)

is linear. The eigenvalue problem can be written Lψ = −λψ.

The function space H, ψ ∈ H is an infinite dimensional linear space

also called Hilbert space. The scalar product (ψ, φ) of ψ, φ ∈ H is

defined by

(ψ, φ) =

∫ ∞

−∞ψ(x)φ∗(x)dx (16)

85

Page 86: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Because u is integrable, u→ 0 as x→ ±∞. Therefore

ψxx ∼ −λψ, x→ ±∞ (17)

If λ is negative

ψ(x) ∼

αe(−λ)1/2x as x→ −∞βe−(−λ)1/2x as x→∞.

(18)

The λ with this property are discrete. This constitute the dis-

crete spectrum.

86

Page 87: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

If λ is positive the ‘eigenfunctions’ are asymptotically a linear

combination of e±iλ1/2x.

This is the continuum spectrum.

The ‘eigenfunctions’ e±iλ1/2x are not square-integrable!

ψ(x) =1√2π

∫ ∞

−∞a(k)eikxdk, (19)

where λ1/2 = k.

87

Page 88: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

• Discrete spectrum: κn = (−λn)1/2 and κ1 < κ2, . . . < κN .

ψn is characterized by

ψn(x) ∼ cn exp(−κnx), x→∞. (22)

Furthermore∫∞−∞ |ψn|2 dx = 1.

• Continuum spectrum. We shall consider eigenfunctions of

the type

ψ(x; k) ∼

e−ikx + beikx as x→∞ae−ikx as x→ −∞.

(23)

88

Page 89: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

-4 -2 2 4x

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

u

Incident wave

Reflected wave

Transmitted wave

Figure 1: Schematic representation of incident, reflected and trans-

mitted wave

89

Page 90: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

It can be shown that

• If u(x) ≥ 0, −∞ < x <∞ there is no discrete spectrum;

• if u(x) ≤ 0, −∞ < x < ∞ and u(x) → 0 ‘sufficiently

rapidly’, then there is only a finite number of discrete eigen-

values;

• |a|2 + |b|2 = 1 (in quantum mechanics this is the conserva-

tion of probability).

90

Page 91: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Consider two different discrete eigenfunctions (for the same u):

ψ′′m − (κ2

m + u)ψm = 0, ψ′′n − (κ2

n + u)ψn = 0. (24)

Therefore, we have

(κ2n − κ2

m)ψnψm = ψmψ′′n − ψnψ

′′m =

d

dxW (ψm, ψn), (25)

where W (ψm, ψn) is the Wronskian of ψm, ψn. By integrating we

have

[W (ψm, ψn)]∞−∞ = (κ2n − κ2

m)

∫ ∞

−∞ψmψndx. (26)

This implies∫∞−∞ ψmψndx = 0. That is, ψm and ψn are

orthogonal .

91

Page 92: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Example

Wave in an inhomogeneous medium

One-dimensional propagation of sound or light in an

inhomogeneous medium is governed by

∇2φ− 1

c2(x)

∂2φ

∂t2= 0. (28)

We then insert in the above equation a normal mode

φ(x, t) = ψ(x)ei(ly+mz−ωt). (29)

92

Page 93: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

This yields to

d2ψ

dx2− (l2 +m2)ψ(x) = −ω

2

c2ψ(x). (30)

We then define

λ = −(

l2 +m2)

, u(x) = − ω2

c2(x). (31)

Therefore (30) becomes

ψ′′ + (λ− u(x))ψ(x) = 0. (32)

93

Page 94: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

If now

c(x)→ c∞ as x→∞, (33)

we coud redefine

λ =ω2

c2∞−(

l2 +m2)

, u(x) = ω2

(

1

c2∞− 1

c2(x)

)

. (34)

Then we have that

u(x)→ 0 as x→∞. (35)

94

Page 95: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Example

The δ function potential

Consider

u(x) = −V δ(x),

where δ(x) is Dirac’s delta function.

Integrating once the Sturm-Liouville equation

ψxx + (λ− u)ψ = 0, −∞ < x <∞ (36)

yields

95

Page 96: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

ψ′(ǫ)− ψ′(−ǫ) = −∫ ǫ

−ǫ

(V δ(x) + λ)ψ(x)dx

= −V ψ(0)− λ∫ ǫ

−ǫ

ψ(x)dx.

(37)

Finally, as ǫ→ 0 we have

limǫ→0

(ψ′(ǫ)− ψ′(−ǫ)) = −V ψ(0). (39)

ψ′ is discontinuous at the origin.

96

Page 97: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

For x > 0 and x < 0, ψ obeys the free particle equation

ψ′′ + λψ = 0. (40)

Since the eigenfunctions must be square-integrable, we have

ψn(x) =

cn exp (−κnx) if x ≥ 0,

dn exp (κnx) if x < 0.(42)

97

Page 98: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

By continuity at x = 0, cn = dn. Then, the normalization condition

leads to

∫ 0

−∞|cn|2 exp(2κnx)dx+

∫ ∞

0

|cn|2 exp(−2κnx)dx =

|cn|2κn

= 1.

Therefore, up to an arbitrary phase, we have

cn =√κn (44)

98

Page 99: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

We can now find the only discrete eigenvalue:

limǫ→0

(ψ′(ǫ)− ψ′(−ǫ)) = −2cnκn limǫ→0

exp(−κnǫ) = −V cn, (45)

cn =√κn.

Finally, we have

κn =V

2(47)

or equivalently λ1 = −V 2/4.

99

Page 100: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Continuum spectrum

We have that λ > 0. Consider a wave of unit amplitude incident

from the left:

ψ(x) =

e−ikx + beikx if x > 0

ae−ikx if x < 0as x→∞, (49)

Since ψ is continuous, we have

a = 1 + b (50)

100

Page 101: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Using again

limǫ→0

(ψ′(ǫ)− ψ′(−ǫ)) (51)

yields

−ik + ibk − (−aik) = −V (1 + b). (52)

Finally, we obtain

b(k) = − V

V + 2ik. (54)

101

Page 102: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The transmission coefficient a is then equal to

a(k) = 1 + b(k) =2ik

V + 2ik. (55)

Note that

|b(k)|2 + |a(k)|2 =V 2

V 2 + 4k2+

4k2

V 2 + 4k2= 1. (57)

102

Page 103: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Example: u(x) = −2 sech2 x.

If u(x) = −2 sech2 x then it may be verified that

λ1 = −1, ψ1(x) ∝ sechx (59)

This is the only eigenfunction (N=1).

103

Page 104: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

To normalize, let us set ψ1(x) = a sechx:

∫ ∞

−∞|a|2 sech2 xdx = |a|2 [tanhx]∞−∞ = 2 |a|2 . (60)

Therefore, up to a phase factor, we have a = 1/√

2 It can

also be shown that

a(k) =ik − 1

ik + 1, b(k) = 0 ∀k (62)

u(x) = −2 sech2 x is a reflectionless potential.

104

Page 105: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Example: u(x) = −6 sech2 x.

If u(x) = −6 sech2 x, it can be shown that N = 2 and

λ1 = −1, ψ1(x) =

3

2tanhx sechx (66)

λ2 = −4, ψ2(x) =

√3

2sech2 x, (67)

b(k) = 0 ∀k (68)

105

Page 106: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Example: u(x) = −V sech2 x

The Sturm-Liouville equation is now

ψ′′ + (λ+ V sech2 x)ψ = 0 (70)

In order to solve this equation we make the substitution

y = tanhx, −1 < y < 1 for −∞ < x <∞.

106

Page 107: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Therefore, we have

d

dx= sech2 x

d

dy= (1− y2)

d

dy(71)

and so

(1− y2)d

dy

[

(

1− y2) d

dy

]

+[

λ+ V(

1− y2)]

ψ = 0. (72)

or

d

dy

[

(

1− y2) d

dy

]

+

[

V +λ

(1− y2)

]

ψ = 0. (74)

This is the associated Legendre equation.

107

Page 108: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Discrete spectrum

First, suppose that V = N(N + 1) .

If λ = −κ2(< 0), the bound solutions occur when

κn = n, n = 1, 2, . . .N. (75)

The eigenfunctions are proportional to the associated Legendre

functions PnN (y), where

PnN (y) = (−1)n

(

1− y2)n/2 dn

dynPN (y) (76)

and

PN (y) =(−1)N

N !2N

dN

dyN

(

1− y2)N

, (77)

PN (y) being the Legendre polynomial of degree N .

108

Page 109: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Continuum spectrum

If λ = k2(> 0) we look for solutions which behaves like

ψ(x; k) ∼

e−ikx + b(k)eikx as x→∞a(k)e−ikx as x→ −∞.

(78)

For x→ −∞ these are given by

ψ(x; k) = a(k)2ik(sechx)−ikF (a, b; c; (1 + y)/2). (80)

109

Page 110: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

F (α, β, ; γ; z) is the hypergeometric function, which is defined by

the series

F (α, β; γ; z) = 1+

∞∑

k=1

α(α+ 1) . . . (α+ n− 1)β(β + 1) . . . (β + n− 1)

γ(γ + 1) . . . (γ + n− 1)n!zn (82)

In our case

a =1

2− ik +

(

V +1

4

)

(83)

b =1

2− ik −

(

V +1

4

)

(84)

c = 1− ik (85)

110

Page 111: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

It is fairly easy to show that

ψ(x; k) ∼ a(k)e−ikx as x→ −∞. (86)

It can also be shown that

ψ(x; k) ∼ aΓ(c)Γ(a+ b− c)Γ(a)Γ(b)

e−ikx

+aΓ(c)Γ(c− a− b)Γ(c− a)Γ(c− b)

eikx as x→∞.

(87)

111

Page 112: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Comparing the previous expressions with (78) yields

a(k) =Γ(a)Γ(b)

Γ(c)Γ(a+ b− c)and b(k) =

a(k)Γ(c)Γ(c− a− b)Γ(c− a)Γ(c− b)

We now want to show that b(k) = 0, i.e. this potential is

reflectionless.

112

Page 113: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

We need the identity

Γ

(

1

2− z)

Γ

(

1

2+ z

)

cosπz. (88)

Hence observe that

Γ(c− a)Γ(c− b) (89)

= Γ

[

1

2−(

V +1

4

)1/2]

Γ

[

1

2+

(

V +1

4

)1/2]

(90)

= π/ cos

[

π

(

V +1

4

)1/2]

(91)

113

Page 114: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

It follows that b(k) = 0 if

(

V +1

4

)1/2

= N +1

2(92)

or equivalently

V = N(N + 1). (94)

114

Page 115: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The case V 6= N(N + 1)

The two coefficients a(k) and b(k) have poles where Γ(a) and Γ(b)

have poles.

This happens at b = −m, m = 0, 1, . . . or

k = i

[

(

V +1

4

)1/2

−(

m+1

2

)

]

. (96)

115

Page 116: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

There is a finite number of discrete eigenvalues if

(

V +1

4

)1/2

>1

2i.e. V > 0. (98)

Their number is

[

(

V +1

4

)1/2

− 1

2

]

+ 1 (100)

where [z] denotes the integral part of z ( the greatest integer ≤ z).

116

Page 117: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The eigenvalues are given by

κm =

(

V +1

4

)1/2

−(

m+1

2

)

= µ (102)

The eigenfunctions are the associated Legendre functions

Pµν (y), where ν is a solution of the equation

V = ν(ν + 1). (103)

117

Page 118: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

3.2 The Inverse Scattering Problem

We have seen how from the KdV equation

ut − 6uux + uxxx = 0 (104)

we can get to the Schrodinger equation

ψxx + (λ− u)ψ = 0, −∞ < x <∞ (105)

via the Miura transformation

u = v2 + vx (106)

and the substitution v = ψx/ψ

118

Page 119: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Suppose that we are given u(x) and

ψ′′ + (λ− u)ψ = 0, −∞ < x <∞ (107)

The direct scattering problem is to deduce the scattering data, i.e.

The eigenfunctions and eigenvalues

λm = −κ2m, ψm(x) m = 1, 2, . . . , N (108)

transmission and reflection coefficients

a(k) and b(k) ∀λ = k2. (109)

The inverse scattering problem is to deduce u(x) from the scat-

tering data .

119

Page 120: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The Marchenko equation

Gelfand & Levitan (1951) solved the inverse scattering problem

by use of Fourier transform (with deep and difficult arguments).

Their solution was simplified by Marchenko.

Let us consider the wave equation

φxx − φzz = 0. (111)

120

Page 121: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

We then express φ(x, z) in term of its Fourier transform:

φ(x, z) =1

∫ ∞

−∞ψ(x; k)e−ikzdk (112)

and

ψ(x; k) =

∫ ∞

−∞φ(x, z)eikzdz (113)

Substituting the above integral into the wave equation yields

ψxx + k2ψ = 0. (115)

121

Page 122: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Further, let us suppose that we are interested in a solution ψ of the

previous equation such that

ψ ∼ eikx, x→∞. (117)

This is obtained by setting

φ(x, z) = δ(x− z) +K(x, z), (118)

where K(x, z) = 0 if z < x, and obeys the classical wave equation.

122

Page 123: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

By taking the Fourier transform of (118) we have

ψ(x; k) = eikx+

∫ ∞

x

K(x, z)eikzdz (120)

The above wavefunction has the correct asymptotic value.

NB Note that∫ ∞

−∞δ(x− z)eikz = eikx and

1

∫ ∞

−∞eik(x−z) = δ(x− z) (121)

123

Page 124: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Which equation will K(x, z) if we slightly modify (115) to

ψ′′ + (k2 − u)ψ = 0? (123)

The boundary conditions are always

ψ(x; k) = eikx +

∫ ∞

x

K(x, z)eikzdz (124)

K(x, z) = 0 if z < x and

ψ ∼ eikx, x→∞. (125)

124

Page 125: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

It can be shown that

Kxx(x, z)−Kzz(x, z)− u(x)K(x, z) = 0 for z > x (126)

and

u(x) = −2dK

dx= −2 Kx(x, x) +Kz(x, x) (128)

with the condition

K(x, z), Kz(x, z)→ 0 as z →∞. (129)

Here K(x) = K(x, x).

125

Page 126: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The equation which one then tries to invert is

ψ = ψ∗ + b(k)ψ. (131)

with

ψ(x; k) = eikx +

∫ ∞

x

K(x, z)eikzdz. (132)

ψ has the right asymptotic limit:

ψ(x; k) ∼ e−ikx + b(k)eikx as x→∞. (133)

126

Page 127: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

K(x, z) can be found by solving the integral equation

K(x, z)+F (x+z)+

∫ ∞

x

K(x, y)F (y+z)dy = 0 z > x > −∞,(135)

where K(x, z) = 0 if z < x.

The above equation is the Marchenko equation, is a linear

Fredholm integral equation.

127

Page 128: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The function F (X) is defined by

F (X) =N∑

n=1

c2n exp (−κnX) +1

∫ ∞

−∞b(k)eikXdk (137)

where b(k) is the reflection coefficient, κ2n = −λn and cn are the

normalization coefficients

ψn(x) ∼ cn exp(−κnx), x→∞ (138)

or

cn = limx→∞

[ψn(x) exp(κnx)] (139)

128

Page 129: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Inverse scattering problem: summary

Consider the Scrodinger equation

ψ′′ + (λ− u(x))ψ = 0. (140)

Suppose we want to find u(x) and are given the scattering data

ψn(x), λn = −κ2n, n = 1, . . . , N (142)

for the discrete spectrum and the reflection coefficient b(k)

for the continuum spectrum.

129

Page 130: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

u(x) = −2dK

dx= −2 Kx(x, x) +Kz(x, x) (144)

with K(x, z), Kz(x, z)→ 0 as z →∞ and K(x, z) = 0 if z < x.

Moreover K(x, z) satisfies the Marchenko equation

K(x, z)+F (x+z)+

∫ ∞

x

K(x, y)F (y+z)dy = 0 z > x > −∞,(146)

130

Page 131: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Furthermore,

F (X) =N∑

n=1

c2n exp (−κnX) +1

∫ ∞

−∞b(k)eikXdk (148)

where cn are the coefficients

ψn(x) ∼ cn exp(−κnx), x→∞ (149)

or

cn = limx→∞

[ψn(x) exp(κnx)] . (150)

131

Page 132: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Solution of the Marchenko equation

It can be solved by iteration:

K1(x, z) =

−F (x+ z) if z > x

0 if z < x(151)

and

K2(x, z) = −F (x+ z) +

∫ ∞

−∞K1(x, y)F (y + z)dy (152)

K3(x, z) = −F (x+ z) +

∫ ∞

−∞K2(x, y)F (y + z)dy. (153)

It can be shown that Kn(x, z)→ K(x, z).

This is the Neumann series

132

Page 133: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Now, suppose that F (x+ z) is a separable function, i.e.

F (x+ z) =N∑

n=1

Xn(x)Zn(z). (155)

The Marchenko equation can therefore be written as

K(x, z)+

N∑

n=1

Xn(x)Zn(z)+

N∑

n=1

Zn(z)

∫ ∞

x

K(x, y)Xn(y)dy = 0

(157)

133

Page 134: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The solution therefore must take the form

K(x, z) =N∑

n=1

Ln(x)Zn(z). (159)

Upon this substitution for K(x, z) we obtain

134

Page 135: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

N∑

n=1

Ln(x)Zn(z) +

N∑

n=1

Xn(x)Zn(z)

+N∑

n=1

Zn(z)N∑

m=1

Lm(x)

∫ ∞

−∞Zm(y)Xn(y)dy = 0. (160)

In order for the equation to be identically zero in the variables x

and z, each term in the external sum must be identically zero.

Ln(x) +Xn(x) +

N∑

m=1

Lm(x)

∫ ∞

−∞Zm(y)Xn(y)dy = 0. (162)

135

Page 136: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Reflectionless potentials

Suppose that b(k) = 0 and we have only two discrete eigenvalues

(N = 2):

ψ1(x) ∼ c1 exp (−κ1x) , ψ2 ∼ c2 exp (−κ2x) as x→∞,(2)

κ1 6= κ2.

Then, we obtain

F (X) = c21 exp(−κ1X) + c22 exp(−κ2X). (3)

136

Page 137: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The Marchenko equation then becomes

K(x, z) + c21 exp [−κ1(x+ z)] + c22 exp [−κ2(x+ z)]

+

∫ ∞

x

K(x, y)

c21 exp [−κ1(y + z)] + c22 exp [−κ2(y + z)]

dy = 0

(4)

F (X) is obviously separable, therefore we set

K(x, z) = L1(x) exp (−κ1z) + L2(x) exp (−κ2z) , (6)

i.e. Xn(x) = c2n exp(−κnx) and Zn(z) = exp(−κnz)

137

Page 138: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

It follows that L1(x) and L2(x) must satisfy

L1 + c21 exp(−κ1x)

+ c21

L1

∫ ∞

x

exp (−2κ1y) dy + L2

∫ ∞

x

exp [−(κ1 + κ2)y] dy

= 0

L2 + c22 exp(−κ2x)

+c22

L1

∫ ∞

x

exp [−(κ1 + κ2)y] dy + L2

∫ ∞

x

exp (−2κ2y) dy

= 0.

(8)

138

Page 139: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

After having evaluated the integrals the system becomes

Ln+c2n exp(−κnx)+c2n

2∑

m=1

Lm exp [−(κm + κn)x]

κm + κn= 0, n = 1, 2.

(10)

The above system can be written as AL+B = 0, where

L = (L1, L2) and

Bn = c2n exp(−κnx) (11)

139

Page 140: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The matrix A is a square matrix with elements

Amn = δmn + c2mexp [−(κm + κn)x]

κm + κn, (13)

where δmn is the Kronecker delta.

The solution for L is therefore

L = −A−1B. (14)

Moreover, K(x, x) = ETL where En = exp(−κnx).

140

Page 141: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

We now note that

d

dxAmn = −c2m exp [−(κm + κn)x] = −BmEn. (15)

Therefore, we obtain

K(x, x) =N∑

m=1

EmLm = −N∑

m,n=1

Em

(

A−1)

mnBn

= Tr

(

A−1 dA

dx

)

.

(17)

141

Page 142: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Now, for the 2× 2 case if

A =

a b

c d

, (18)

then

A−1 =1

ad− bc

d −b−c a

(19)

142

Page 143: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

After trivial algebra we obtain

A−1 dA

dx=

1

ad− bc

a′d− bc′ · · ·· · · −cb′ + ad′

. (20)

Finally, we have

Tr

(

A−1 dA

dx

)

=1

ad− bc (a′d+ d′a− b′c− bc′)

=1

detA

d detA

dx=

d

dxlog detA. (22)

143

Page 144: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

We can now evaluate u(x)

u(x) = −2dK

dx= −2

d2

dx2log detA. (24)

In the case with just two discrete eigenvalues, we have

detA =

[

1 +c212k1

exp(−2κ1x)

] [

1 +c222k2

exp(−2κ2x)

]

− c21c22

(κ1 + κ2)2 exp [−2(κ1 + κ2)x] . (25)

144

Page 145: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

If we set c2 = 0, we then obtain

u(x) = − 4κ1c21 exp(−2κ1x)

[

1 +c2

1

2κ1

exp(−2κ1x)]2

= −2κ21 sech2 [κ1x+ x0] ,

(27)

where exp(x0) = (2κ1)1/2/c1. If κ1 = 1 and c1 =

√2, then we

recover

u(x) = −2 sech2 x. (28)

145

Page 146: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Reflection coefficient with one pole

Suppose the scattering data are given by

b(k) = − β

β + ikand ψ(x) ∼ β1/2e−βx as x→∞ (30)

where β > 0. b(k) has a simple pole at k = iβ, therefore there is one

discrete eigenvalue which is κ1 = β and c1 = β1/2. We then have

F (X) = βe−βX − β

∫ ∞

−∞

eikX

β + ikdk. (31)

146

Page 147: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The integral can be calculated easily using Cauchy’s residue

theorem:∫ ∞

−∞

eikX

β + ikdk = 2πe−βX , X > 0 (32)

and∫ ∞

−∞

eikX

β + ikdk = 0 X < 0. (33)

F (X) becomes simply

F (X) = βe−βXH(−X), (35)

where H(−X) is the Heaviside step function.

147

Page 148: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Figure 1: The contour of the integral (32) in the complex plain..

148

Page 149: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

From the Marchenko equation

K(x, z)+F (x+z)+

∫ ∞

x

K(x, y)F (y+z)dy = 0 z > x > −∞, (36)

it follows that

K(x, z) = 0 for x+ z > 0. (37)

The Marchenko equation now becomes, for x+ z < 0,

K(x, z) + βe−β(x+z) + β

∫ −z

x

K(x, y)e−β(y+z)dy = 0 (39)

149

Page 150: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Integrating by parts (on remembering that F (y + z) = 0 for

y + z > 0) yields

K(x, z) + βe−β(x+z) +K(x, x)e−β(x+z) −K(x,−z)

+

∫ −z

x

Ky(x, y)e−β(y+z)dy = 0. (40)

The solution is

K(x, z) = −β.

150

Page 151: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Finally, we have

K(x, z) = −βH(−x− z) and so K(x, x) = −βH(−2x).

The required potential is therefore

u(x) = 2βd

dxH(−2x) = −2βδ(x). (42)

It coincides with the previous example by setting β = V/2.

151

Page 152: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

4. The initial-value problem for the KdV equation

Recapitulation

The potential function u(x) for the Sturm-Liouville

equation

ψ′′ + (λ− u(x))ψ = 0, −∞ < x <∞ (44)

can be reconstructed from the scattering data.

152

Page 153: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Scattering data:

• Discrete spectrum (λ < 0):

ψn(x), λn = −κ2n, n = 1, . . . , N (48)

ψn(x) ∼ cn exp(−κnx) as x→∞. (49)

• Continuum spectrum (λ > 0):

ψ(x; k) ∼

e−ikx + b(k)eikx as x→∞a(k)e−ikx as x→ −∞.

(50)

k = λ1/2, a(k) and b(k) are the transmission and reflection

coefficients respectively: |b(k)|2 + |a(k)|2 = 1.

153

Page 154: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Then we showed that

u(x) = −2dK(x, x)

dx, (52)

where K(x, z) is the solution to the Marchenko equation

K(x, z)+F (x+z)+

∫ ∞

x

K(x, y)F (y+z)dy = 0 z > x > −∞, (53)

K(x, z) = 0 if z < x. Moreover, F (X) is defined by

F (X) =N∑

n=1

c2n exp (−κnX) +1

∫ ∞

−∞b(k)eikXdk. (54)

154

Page 155: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Inverse scattering and the KdV equation

Consider the

ut − 6uux + uxxx = 0.

Introducing the Miura transformation

u = v2 + vx,

the KdV equation becomes

(

2v +∂

∂x

)

(vt − 6v2vx + vxxx) = 0. (55)

155

Page 156: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

By making the substitution v = ψx/ψ and by applying the

transformation

u→ λ+ u(x+ 6λt, t), −∞ < λ <∞. (56)

the Miura transformation becomes

ψxx + (λ− u(x, t))ψ = 0, −∞ < x <∞. (57)

ψ(x; t), and therefore also λ(t), depend parametrically on time

because v(x, t) is a solution of the mKdV equation (55) and

therefore u(x, t) of the KdV equation.

156

Page 157: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Inverse scattering transform for the KdV equation

1. Initial-value problem u(x, 0) = f(x);

2. solve the scattering problem with potential f(x), and de-

termine the scattering data S(0) (cn(0), κn(0) and b(k; 0))

at t = 0;

3. determine the time evolution of the scattering data S(t);

4. reconstruct u(x, t) solving the inverse scattering problem

for S(t).

157

Page 158: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

u(x, 0)scattering−−−−−−→ S(0)

KdV

y

ytime evolution

u(x, t)inverse←−−−−−−

scatteringS(t)

The diagram of the inverse scattering for the KdV equation.

158

Page 159: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Time evolution of the scattering data

We begin once again from the Sturm-Liouville problem for ψ(x; t):

ψxx + (λ− u(x, t))ψ = 0, −∞ < x <∞. (58)

We then differentiate the above equation w.r.t. x,

ψxxx − uxψ + (λ− u)ψx = 0, (59)

and w.r.t. t,

ψxxt + (λt − ut)ψ + (λ− u)ψt = 0. (60)

Here u(x, t) satisfies the KdV equation.

159

Page 160: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

It is now convenient to define

R(x, t) = ψt + uxψ − 2(u+ 2λ)ψx. (62)

We now construct the identity

∂x(ψxR − ψRx) = ψxx (ψt + uxψ − 2uψx − 4λψx)

− ψ(ψxxt + uxxxψ − 3uxψxx − 2uψxxx − 4λψxxx). (63)

The next step consists of eliminating ψxxt and ψxxx using

equations (59) and (60).

160

Page 161: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

This leads to

∂x(ψxR − ψRx) = ψxx (ψt − 2uψx − 4λψx)−ψ (uxxxψ − 4uxψxx)

− ψ (uψt − λψt − λtψ + utψ) + ψ (2u+ 4λ) (uxψ − λψx + uψx) .

(64)

We now use the Schrodinger equation

ψxx + (λ− u(x, t))ψ = 0 (65)

to simplify (64).

161

Page 162: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

This yields

∂x(ψxR − ψRx) = ψ2 (λt − ut + 6uux − uxxx) . (66)

Finally, since u(x, t) satisfies the KdV equation, we have

∂x(ψxR − ψRx) = λtψ

2. (68)

This equation can now be used to obtain the time evolution of

the scattering data.

162

Page 163: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The discrete spectrum

We now choose λ = −κ2n and ψ = ψn, n = 1, . . .N . By integrating

the equation

∂x(ψnxRn − ψnRnx) = −(κn)2tψ

2n (69)

w.r.t. x, we have

[ψnxRn − ψnRnx]∞−∞ = −(κn)2t

∫ ∞

−∞ψ2

n(x)dx = −(κn)2t . (70)

Now the L.H.S. is zero, therefore

(κn)2t = 0 or κn = constant.

163

Page 164: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

We now want to determine the time evaluation of cn.

Integrating (69) w.r.t. x gives

ψnxRn − ψnRnx = gn(t), (71)

where gn(t) are arbitrary functions of t. But

Rn, ψn → 0 as |x| → ∞. (72)

Therefore gn(t) = 0 ∀n, t.

164

Page 165: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

We now integrate again

ψnxRn − ψnRnx (73)

and obtain (using integration by parts)

Rn/ψn = hn(t), (74)

where hn(t) (n = 1, 2, . . . , N) are arbitrary functions too.

By multiplying (74) by ψ2n, we obtain

ψn(ψnt + uxψn − 2uψnx + 4κ2nψnx) = hnψ

2n (75)

or, using ψnxx − (κ2n + u(x, t))ψn = 0

1

2(ψn)2t +

(

uψ2n − 2ψ2

nx + 4κ2nψ

2n

)

x= hnψ

2n. (76)

165

Page 166: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

We now integrate (76) w.r.t. x:

1

2

d

dt

(∫ ∞

−∞ψ2

ndx

)

= hn

∫ ∞

−∞ψ2

ndx (77)

This implies that hn(t) = 0 ∀n, t.

It follows that

Rn = ψnt + uxψn − 2(

u− 2κ2n

)

ψnx = 0.

This is the time-evolution equation for ψn(x; t).

166

Page 167: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The previous equation (red box) can be used to find the time

evolution of the cn(t).

We know that

u→ 0 and ψn(x; t) ∼ cn(t) exp(−κnx) as x→∞. (78)

This asymptotic behaviour inserted in the equation for ψn(x; t)

(red box) gives

dcndt− 4κ3

ncn = 0 or cn(t) = cn(0) exp(4κ3nt), (80)

where cn(0) are the normalization constants determined at t = 0.

167

Page 168: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The continuous spectrum

We start again from equation

∂x(ψxR − ψRx) = λtψ

2. (82)

By integrating w.r.t. x over R we obtain that

λt = 0 or λ = constant.

168

Page 169: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

By integrating once Eq. (82) gives

ψxR− ψRx = g(t; k),

where R is R evaluated in terms of ψ and g(t; k) is a function of

integration.

R is defined by

R(x, t) = ψt + uxψ − 2(u+ 2λ)ψx. (83)

For the continuous eigenfunctions we have

ψ(x; t, k) ∼ a(k; t)e−ikx as x→ −∞ (84)

169

Page 170: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Therefore, we have that

R(x, t; k) ∼(

da

dt+ 4ik3a

)

e−ikx, x→ −∞. (86)

As a consequence

ψxR− ψRx → 0, as x→ −∞. (87)

Thus g(t; k) = 0 for all t.

170

Page 171: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

By integrating (87) once more we have

R/ψ = h(t; k) or R = hψ. (88)

Now, using again

ψ(x; t, k) ∼ a(k; t)e−ikx as x→ −∞ (89)

we have that

da

dt+ 4ik3a = ha. (91)

171

Page 172: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The behaviour of R as x→∞ is given by

R(x, t; k) ∼ db

dteikx + 4ik3(e−ikx − eikx) as x→∞. (92)

where we have used

ψ ∼ e−ikx + b(k; t)eikx. (93)

Substituting (92) into R = hψ yields

db

dteikx + 4ik3(e−ikx − eikx) = h(e−ikx − eikx). (94)

172

Page 173: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Because eikx and e−ikx are linearly independent the above equation

impliesdb

dt− 4ik3b = hb and h(t; k) = 4ik3. (95)

Finally, we haveda

dt= 0 and

db

dt= 8ik3b (96)

whose solutions are

a(k; t) = a(k; 0) and b(k; t) = b(k; 0) exp(8ik3t).

173

Page 174: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Evolution of the scattering data: summary

• κn = constant, cn(t) = cn(0) exp(4κ3nt);

• b(k; t) = b(k; 0) exp(8ik3t).

174

Page 175: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Construction of the solution of the KdV equation:

summary

We want to integrate the KdV equation

ut − 6uux + uxxx = 0, t > 0, −∞ < x <∞,

with initial condition u(x, 0) = f(x).

175

Page 176: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Step 1: We solve the Sturm-Liouville equation

ψxx + (λ− u)ψ = 0, −∞ < x <∞.

with u(x, 0) = f(x).

i.e. We determine the discrete spectrum −κ2n, the normalization

constants cn(0), and the reflection coefficient b(k; 0).

176

Page 177: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Step 2: The time evolution of the scattering data is given by

• κn = constant;

• cn(t) = cn(0) exp(4κ3nt);

• b(k; t) = b(k; 0) exp(8ik3t).

177

Page 178: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Step 3: We now want to solve the Marchenko equation

K(x, z; t) +F (x+ z; t) +

∫ ∞

x

K(x, y; t)F (y+ z; t)dy = 0, (98)

with

F (X ; t) =N∑

n=1

cn(0)2 exp(

8κ3nt− κnX

)

+1

∫ ∞

−∞b(k; 0) exp(8ik3t+ ikX)dk (99)

178

Page 179: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Finally, the solution of the KdV equation can be expressed as

u(x, t) = − ∂

∂xK(x, t) and K(x, t) = K(x, x, t). (101)

We have reduced the solution of a nonlinear partial differen-

tial equation to that of solving two linear problems (a second

order ODE and an integral equation).

179

Page 180: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

4.1 Reflectionless potentials

Solitary wave

We obtain the solitary wave by posing a suitable initial-value

problem, without the assumption that the solution takes the form

of a steady progressing wave.

The initial profile is taken to be

u(x, 0) = −2 sech2 x.

180

Page 181: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The Sturm-Liouville equation at t = 0 is

ψxx +(

λ+ 2 sech2 x)

ψ = 0.

We have already studied this scattering problem. We have

b(k) = 0 and the discrete spectrum has only one eigenvalue

κ1 = 1 and ψ1(x) = 2−1/2 sechx.

Moreover, we have

ψ(x) ∼ 21/2e−x, x→∞, so c1(0) = 21/2 . (102)

181

Page 182: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Now we have c1(t) = 21/2e4t, and therefore

F (X ; t) = 2e8t−X .

The Marchenko equation now becomes

K(x, z; t)+2e8t−(x+z)+2

∫ ∞

x

K(x, y; t)e8t−(y+z)dy = 0. (104)

182

Page 183: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Since F (X ; t) is separable we can set K(x, z; t) = L(x, t)e−z.

Therefore, the equation for L(x, t) becomes

L+ 2e8t−x + 2Le8t

∫ ∞

x

e−2ydy = 0. (105)

The above equation can be solved directly to yield

L(x, t) = − −2e8t−x

1 + e8t−2x. (107)

183

Page 184: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The potential is then given by

u(x, t) = 2∂

∂x

(

2e8t−2x

1 + e8t−2x

)

= − 8e2x−8t

(1 + e2x−8t)2

= −2 sech2(x− 4t).

(109)

This is the solitary wave solution of amplitude −2 at speed of

propagation 4.

184

Page 185: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Two solitons solution

The initial profile is now taken to be

u(x, 0) = −6 sech2 x.

The Sturm-Liouville equation is now

ψxx +(

λ+ 6 sech2 x)

ψ = 0.

185

Page 186: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The discrete spectrum of this equation is given by

κ1 = 1 and κ2 = 2 (112)

ψ1(x) =

(

3

2

)

tanhx sechx and ψ2(x) =

√3

2sech2 x

(113)

The asymptotic behaviour of these solutions is given by

ψ(x) ∼√

6e−x, 2√

3e−2x as x→∞. (114)

186

Page 187: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Therefore, we have

c1(0) =√

6 c2(0) = 2√

3 (115)

c1(t) =√

6e4t c2(t) = 2√

3e32t (116)

This potential is reflectionless, therefore b(k; 0) = b(k; t) = 0.

The function F (X ; t) is now

F (X ; t) = 6e8t−X + 12e64t−2X . (118)

187

Page 188: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The Marchenko equation is therefore

K(x, z; t) + 6e8t−(x+z) + 12e64t−2(x+z)

+

∫ ∞

x

K(x, y; t)(

6e8t−(y+z) + 12e64t−2(y+z))

dy = 0 (119)

The solution K(x, z; t) must take the form

K(x, z; t) = L1(x, t)e−z + L2(x, t)e

−2z (120)

Inserting the above expression into (119) and collecting the

coefficients of e−z and e−2z, we obtain the pair of equations

188

Page 189: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

L1 + 6e8t−x + 6e8t

(

L1

∫ ∞

x

e−2ydy + L2

∫ ∞

x

e−3ydy

)

= 0

L2 + 12e64t−x + 12e64t

(

L1

∫ ∞

x

e−3ydy + L2

∫ ∞

x

e−4ydy

)

= 0

(122)

Evaluating the integrals yields

L1 + 6e8t−x + 3L1e8t−2x + 2L2e

8t−3x = 0 (123)

L2 + 12e64t−2x + 4L1e64t−3x + 3L2e

64t−4x = 0. (124)

189

Page 190: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The previous system can be easily solved to give

L1(x, t) = 6(

e72t−5x − e8t−x)

/D (125)

L2(x, t) = −12(

e64t−2x + e72t−4x)

/D, (126)

where D = 1 + 3e8t−2x + 3e64t−4x + e72t−6x.

The solution u(x, t) to the KdV equation then becomes

u(x, t) = −2∂

∂x

(

L1e−x + L2e

−2x)

= 12∂

∂x

[(

e8t−2x + e72t−6x − 2e64t−4x)]

/D

(127)

190

Page 191: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

After a little bit of manipulation it can be simplified to give

u(x, t) = −123 + 4 cosh (2x− 8t) + cosh (4x− 64t)

[3 cosh (x− 28t) + cosh (3x− 36t)]2. (129)

We now want to look at the behaviour of this

solution as t→ ±∞.

191

Page 192: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

We now set ξ = x− 16t, i.e. we follow a wave which moves at speed

16 (if it exists):

u(x, t) = −123 + 4 cosh (2ξ + 24t) + cosh (4ξ)

[3 cosh (ξ − 12t) + cosh (3ξ + 12t)]2 . (130)

Taking the limit as t→ ±∞ yields

u(x, t) ∼ −8 sech2(

2ξ ∓ 12 log 3

)

as t→ ±∞, ξ = x− 16t.

192

Page 193: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Similarly, by setting η = x− 4t

u(x, t) ∼ −2 sech2(

2η ± 12 log 3

)

as t→ ±∞, ξ = x− 4t.

The last two expression can be combined (the error terms are

asymptotically small) to give

u(x, t) ∼ −8 sech2

(

2ξ ∓ 1

2log 3

)

− 2 sech2

(

2η ± 1

2log 3

)

as t→ ±∞.

193

Page 194: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Figure 2: Time evolution of the two solitons solution

194

Page 195: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Figure 3: The paths of the wave crests of the two solitons

195

Page 196: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Comments

• As t→ −∞ the solution ha the form of two solitons, the taller

travelling faster;

• the taller catches the smaller, they coalesces, they form our

initial profile at t = 0 and then the taller moves away;

• as t→∞ we have two solitons again;

• trace of the nonlinear interaction: after the interaction the two

waves are phase shifted. The taller wave has moved forward,

the shorter backwards.

196

Page 197: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

N solitons solution

The initial profile is given by

u(x, 0) = −N(N + 1) sech2 x.

The Sturm-Liouville equation is now

ψxx +[

λ+N(N + 1) sech2 x]

ψ = 0.

197

Page 198: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The discrete spectrum of this equation is given by

κn = n, n = 1, . . .N (3)

ψn(x) ∝ PnN (tanhx) (4)

The discrete eigenfunction take the asymptotic form

ψn ∼ cne−nx as x→∞, (5)

where cn can be found using the normalization condition.

198

Page 199: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The time evolution of the normalization coefficients is given by

cn(t) = cn(0) exp(

4n3t)

(6)

The function F (X ; t) is now

F (X ; t) =N∑

n=1

cn(0)2 exp(

8n3t− nX)

. (8)

199

Page 200: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The Marchenko equation now becomes

K(x, z; t) +N∑

n=0

cn(0)2 exp[

8n3 − n(x+ z)]

+

∫ ∞

x

K(x, y; t)

N∑

n=1

c2n(0) exp[

8n3t− n(y + z)]

dy = 0. (9)

The solution for K(x, z; t) must now take the form

K(x, z; t) =N∑

n=1

Ln(x, t)e−nx. (10)

200

Page 201: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Inserting K(x, z; t) into (9) and collecting the coefficients of enz the

integral equation is replaced by an algebraic system:

AL+B = 0.

L and B are the column vectors with elements Ln and

Bn = cn(0)2 exp(

8n3t− nx)

(11)

201

Page 202: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The N ×N matrix A has elements

Amn = δmn +c2m(0)

m+ nexp

[

8m3t− (m+ n)x]

. (13)

We now from the inverse scattering theory of reflectionless

potentials that

u(x, t) = −2∂2

∂x2log detA. (15)

202

Page 203: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The asymptotic form of the solution can be determined by setting

ξn = x− 4κ2nt = x− 4n2t (16)

and then taking the limit t→ ±∞. For fixed ξn we have

u(x, t) ∼ −2n2 sech2[

n(

x− 4n2t)

∓ xn

]

, t→ ±∞. (18)

203

Page 204: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The phase xn is given by

exp(2xn) =∏

m=1m6=n

n−mm+m

sgn(n−m)

n = 1, 2, . . . , N (19)

We can combine the previous asymptotic solutions to obtain

u(x, t) ∼ −2∑N

n=1 n2 sech2

[

n(

x− 4n2t)

∓ xn

]

, t→ ±∞.

We can combine these solutions as if the equation were linear

because the error that we make in doing so is exponentially small

as t→ ±∞.

204

Page 205: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Figure 1: The three solitons solution with u(x, 0) = −12 sech2 x. (a)

t = 0; (b) t = 0.05; (c) t = 0.2. −u is plotted against x

205

Page 206: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

4.2 General description of the solution

When b(k) 6= 0 the Marchenko equation cannot be solved for

K(x, z; t) in closed form.

In general the function F (X ; t) is

F (X ; t) =N∑

n=1

cn(0)2 exp(

8κ3nt− κnX

)

+1

∫ ∞

−∞b(k; 0) exp(8ik3t+ ikX)dk. (20)

We now consider the contribution to the solution K(x, z; t) of the

integral in the above expression.

206

Page 207: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The integral

I(X ; t) =1

∫ ∞

−∞b(k; 0) exp(8ik3t+ ikX)dk. (21)

is of the type

I(t) =

∫ ∞

−∞f(k)eiφ(k)tdk, φ(k) ∈ R (23)

The leading order behaviour of this integral as t→∞ can be

determined using the stationary phase approximation.

207

Page 208: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The main contribution as t→∞ comes from where φ(k) is

stationary and

I(t) ∼ 2Γ(

1n

)

(n!)1/n

n[

t∣

∣φ(n)(c)∣

]1/nf(c)eitφ(c)±iπ/(2n), t→∞. (25)

Here φ(n)(c) is the first non zero derivative at the stationary point

c, and we use the factor eiπ/(2n) if φ(n)(c) > 0 and the factor

e−iπ/(2n) if φ(n)(c) < 0.

208

Page 209: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Therefore, our integral becomes

I(X ; t) ∼ Γ (1/3) eiπ/6

π

2

3b(0; 0)t−1/3, t→∞ (26)

Let consider for a moment an initial condition u(x, 0) with no

discrete spectrum (e.g. positive δ-function or positive sech2 profile.)

F (x, z; t) and therefore K(x, z; t) are of order O(t−1/3).

As a consequenceu(x, t) is of order O(t−1/3) too.

209

Page 210: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Therefore, as t→∞, the term −6uux in

ut − 6uux + uxxx = 0 (27)

is negligible and therefore, locally , we have

ut ∼ −uxxx, t→∞.

This is a linear equation whose dispersion relation is ω = −k3.

In the absence of the discrete spectrum u(x, t) behaves like a

wave packet propagating (almost) linearly to the left with group

velocity dω/dt = −3k2 and whose amplitude decays as t−1/3.

210

Page 211: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Figure 2: Solution to the Kdv equation with positive sech2 x initial

condition.

211

Page 212: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Now, let us consider a system whose initial condition has one

discrete eigenvalue and b(k) 6= 0 (for example a negative

δ-function).

Figure 3: Initial condition with a δ profile.

212

Page 213: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Example: negative sech2

Let us choose as initial condition

u(x, 0) = −4 sech4 x.

4 is not of the form N(N + 1), and therefore the reflection

coefficient b(k) is not zero.

The number of eigenvalues is given by

[

(

V +1

4

)1/2

− 1

2

]

+ 1. (28)

Therefore, we have two discrete eigenvalues.

213

Page 214: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Figure 4: Initial condition given by u(x, 0) = −4 sech4 x.

214

Page 215: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Recapitulation

• The solution u(x, t) evolves for t > 0 so that κn = const.,

cn(t) = cn(0) exp(4κ3nt) and b(k; t) = b(k; 0) exp(8ik3t).

• The solution separates into two parts as t→∞:

• (i) There is a precession of N solitary waves of depression.

Each wave has positive velocity which is proportional to its

amplitude. They are essentially nonlinear waves which in-

teract like solitons, changing only their phases. They are

associated with the discrete spectrum and with the sum∑N

n=1 cn(t) exp(−κnX) of F (X ; t) in the Marchenko equa-

tion. In the exceptional case of b(k, 0) = 0 ∀k, the preces-

sion of solitary waves is the complete solution as t→∞.

215

Page 216: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

• (ii) If b(k, 0) 6= 0 for some k, then there exists also an

oscillatory wave train as t → ∞. This train has u(x, t)

of both signs for each t. It is essentially linear,

i.e. ut ∼ −uxxx locally as t→∞. It propagates to the left

with group velocity cg = −3k2 < 0. The train is associated

with the continuous spectrum and the integral

1

∫ ∞

−∞b(k, t)eikXdk (30)

of F (X ; t) in the Marchenko equation.

216

Page 217: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

New definition of soliton

Def.: A soliton is that component of the solution of a nonlinear

evolution equation which depends only upon one constant

discrete eigenvalue of the underlying scattering problem as t→±∞

This definition clarifies what is meant by the ‘identity’ of the

soliton: it is that property which maintains the constancy of the

discrete eigenvalues.

217

Page 218: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

5. Conservation laws

Consider the equation of continuity of a compressible fluid,

∂ρ

∂t+∂(ρu)

∂x= 0, (32)

where ρ(x, t) is the density and u(x, t) is the x-velocity of the fluid.

The above equation expresses the conservation of mass of

fluid .

218

Page 219: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Now, suppose that ρu→ const. as |x| → ∞, and ρ and (ρu)x are

integrable.

The continuity equation implies that

d

dt

∫ ∞

−∞ρdx =

∫ ∞

−∞

∂ρ

∂tdx = −

∫ ∞

−∞

∂ (ρu)

∂xdx = − [ρu]∞−∞ = 0.

(33)

Therefore the integral

∫ ∞

−∞ρdx = constant (35)

represents the conservation of the total mass in the system.

219

Page 220: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Example

The conservation of electric charge is expressed by

∂ρ(x, t)

∂t+∇ · j = 0, (36)

where ρ(x, t) is the charge density and j is the density current.

It follows that

d

dt

∫∫∫

Ω

ρ(x, t)dx =

∫∫∫

Ω

∂ρ(x, t)

∂tdx

= −∫∫∫

Ω

∇ · j dx−∫∫

∂Ω

j · n dS = 0.

(37)

This implies that the total charge∫∫∫

Ω

ρ(x, t)dx = constant. (38)

220

Page 221: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

A general form of 1-dimensional conservation law is

∂T

∂t+∂X

∂x= 0, (40)

where T (x, t, u, ux, . . .) is the density and X(x, t, u, ux, . . .) is the

flux

N.B. They cannot depend on ut.

T and Xx are integrable and

X → constant as |x| → ∞. (41)

221

Page 222: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The conservation law implies

∫ ∞

−∞Tdx = constant. (43)

The integral of T is conserved, or is a constant of motion.

222

Page 223: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The KdV equation

Consider the KdV equation,

ut − 6uux + uxxx = 0.

It is already in the form of conservation law:

∂u

∂t+

∂x

(

uxx − 3u2)

= 0. (45)

223

Page 224: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The density and the flux are given respectively by

T (x, t) = u(x, t) (46a)

X(x, t) = uxx − 3u2. (46b)

Therefore, we have

∫ ∞

−∞u dx = constant. (48)

The above integral expresses the mass conservation.

224

Page 225: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

If we multiply the KdV equation by u we obtain another

conservation law

∂(

12u

2)

∂t+

∂x

(

uuxx −1

2u2

x − 2u3

)

= 0. (50)

Therefore we have

∫ ∞

−∞u2 dx = constant. (52)

The above integral expresses momentum conservation.

225

Page 226: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

We now construct the density for energy conservation.

Consider

3u2 × (KdV) + ux ×∂

∂x(KdV). (53)

This gives

3u2 (ut − 6uux + uxxx)+ux

(

uxt − 6u2x − 6uuxx + uxxxx

)

= 0, (54)

which can be written as

∂t

(

u3 +1

2u2

x

)

+∂

∂x

(

−9

2u4 + 3u2uxx − 6uu2

x + uxuxxx −1

2u2

xx

)

= 0. (55)

226

Page 227: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The previous expression is in a form of conservation law. Therefore,

we have

∫ ∞

−∞

(

u3 +1

2u2

x

)

dx = constant. (57)

This integral expresses the energy conservation for water waves.

227

Page 228: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

In the 1960s 8 more integral of motion for he KdV were found

by trial, ingenuity and error. What is their physical meaning?

Gardner found an infinity of conservation laws.

We introduce the Gardner transformation.

u = w + ǫ2w + ǫwx (59)

228

Page 229: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The KdV equation now becomes

ut − 6uux + uxxx = wt + ǫwxt + 2ǫ2wwt − 6(

w + ǫwx + ǫ2w2)

×(

wx + ǫwxx + 2ǫ2wwx

)

+ wxxx + ǫwxxxx + 2ǫ2(wwx)xx

=

(

1 + ǫ∂

∂x+ 2ǫ2w

)

[

wt − 6(

w + ǫ2w2)

wx + wxxx

]

. (60)

u is a solution of the KdV equation if w is a solution of

wt − 6(w + ǫ2w2)wx + wxxx = 0

NB The opposite is not necessarily true!

229

Page 230: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The previous equation can be rewritten as

∂w

∂t+

∂x

(

wxx − 3w2 − 2ǫ2w3)

(62)

and therefore

∫ ∞

−∞w dx = constant. (64)

230

Page 231: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

We now set

w(x, t; ǫ) ∼∞∑

n=0

ǫnwn(x, t), ǫ→ 0. (66)

This series is asymptotic and does not need to be convergent. Then

∫ ∞

−∞wn dx = constant, n = 0, 1, . . . (68)

231

Page 232: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

• We insert the asymptotic expansion for w in the Gardner

transformation;

• We equates coefficients of ǫn for each n = 0, 1, . . ..

∞∑

n=0

ǫnwn ∼ u− ǫ∞∑

n=0

ǫnwnx − ǫ2( ∞∑

n=0

ǫnwn

)2

(70)

232

Page 233: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

w0 = u; w1 = −w0x = −ux; w2 = −w1x − w20 = uxx − u2

w3 = −w2x − 2w0w1 = −(uxx − u2)x + 2uux;

w4 = −w3x − 2w0w2 − w21

= −

2uux − (uxx − u2)x

x− 2u(uxx − u2)− u2

x

. . .

(72)

233

Page 234: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The integrals of exact differentials (in x) are zero.

We have

w2m+1 =∂

∂x(something) . (73)

Therefore trivially∫ ∞

−∞w2m+1 dx = 0 (74)

All the non trivial constants of motion are given by

∫ ∞

−∞w2m dx = constant, m = 0, 1, . . . (76)

234

Page 235: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

w0, w2 and w4 are the constants of motions previously found:

∫ ∞

−∞w0 dx =

∫ ∞

−∞u dx = constant, (80)

∫ ∞

−∞w2 dx =

∫ ∞

−∞u2 dx = constant, (81)

∫ ∞

−∞w4 dx =

∫ ∞

−∞

(

u3 +1

2u2

x

)

dx = constant. (82)

235

Page 236: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

6. The Lax pair

Question: Is the KdV equation the only evolution equation

with the special properties that we have studied? (i.e. solution

by inverse scattering theory, constancy of the eigenvalues as-

sociated to the direct scattering problem and therefore simple

time-evolution of the scattering data.)

Lax (1968) found a reason underlying the fact that the eigenval-

ues of the scattering problem are constant while the solution of

the KdV equation evolves in a complicated way. The KdV equa-

tion does not stand alone in the class of evolution equations.

236

Page 237: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Suppose that we want to solve the initial value problem given by

ut = N(u)

with u(x, 0) = f(x) , with u ∈ Y (Y being some

appropriate function space) and N : Y → Y is a

operator independent of t but in general depending on u, x, and on

the derivatives of u w.r.t. x.

N need not be a partial differential operator.

237

Page 238: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

An Hilbert space H is a vector linear space (possibly infinite

dimensional), complete, i.e. each element ψ ∈ H can be ex-

pressed as

ψ =∞∑

n=1

cnφn, (84)

where cn are constants and φn is an appropriate basis. Hmust also be equipped with a scalar product (φ, ψ).

238

Page 239: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

A scalar product is a bilinear function H × H → C with the

following properties

(ψ, φ) = (φ, ψ)∗ (89)

(ψ, φ+ ξ) = (ψ, φ) + (ψ, ξ) (90)

(0, ψ) = 0 (91)

(ψ, ψ) ≥ 0, (ψ, ψ) = 0 iff ψ = 0. (92)

Def.: A linear operator L in H is self-adjoint if

(φ, Lψ) = (Lφ, ψ). All the eigenvalues of L are real.

239

Page 240: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Examples

(i) Any finite-dimensional vector space with the usual scalar

product is an Hilbert space. Linear operators are given by matrices.

(ii)The space of square-integrable functions in the interval [0, 2π),

L2([0, 2π)), is an Hilbert space. Each function f(x) can be

expanded in a Fourier series

f(x) =1

∞∑

n=−∞cne

inx. (93)

The scalar product is defined by

∫ 2π

0

g∗(x)f(x)dx. (94)

240

Page 241: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

In our case N(u) is the KdV equation

N(u) = 6uux − uxxx

We now suppose that the evolution equation can be expressed as

Lt = ML− LM ,

i.e. ut −N(u) = Lt + LM −ML = Lt + [L,M ] = 0.

M and L are linear operator acting on a Hilbert space H and

which may depend on u(x, t). We also assume that L is self-

adjoint.

241

Page 242: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

We now introduce the spectral equation

Lψ = λψ for t ≥ 0 and −∞ < x <∞.

Because L depends upon t, in general the eigenvalues λ(t) depend

upon t too.

By differentiating w.r.t. t the spectral equation, we have

Ltψ + Lψt = λtψ + λψt. (95)

242

Page 243: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

By using Lt = ML− LM the previous equation becomes

λtψ = (L− λ)ψt + (ML− LM)ψ

= (L− λ)ψt +Mλψ − LMψ

= (L− λ)(ψt −Mψ).

(96)

By taking the scalar product with ψ of the above expression, we

have

(ψ, ψ)λt = (ψ, (L− λ)(ψt −Mψ))

= (((L− λ)ψ, (ψt −Mψ))

= (0, (ψt −Mψ)) = 0.

(97)

(L− λ is self-adjoint.)

243

Page 244: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

It follows that λt = 0 and therefore

λ = constant.

From eq. (96) with λt = 0 it also follows that

(L− λ)(ψt −Mψ) = 0.

244

Page 245: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

(ψt −Mψ) is therefore an eigenvector of L with eigenvalue λ.

Therefore, we have

ψt −Mψ = α(t)ψ

where α(t) is a scalar function of t.

We now set

M ′ = M + α(t)I,

where I is the identity operator.

245

Page 246: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Since L commutes with α(t)I, from the equation Lt = ML−LM it

follows that

Lt = M ′L− LM ′.

We can therefore redefine M by using M ′: this will not alter

Lt = ML− LM (which is a representation of ut −N(u)).

We therefore have the time-evolution equation for ψ

ψt = Mψ.

246

Page 247: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

These results can be summarized in the following

Theorem: If the evolution equation

ut −N(u) = 0 (101)

can be expressed as the Lax equation

Lt + LM −ML = Lt + [L,M ] = 0 (102)

and if Lψ = λψ, then λt = 0 and ψ evolves according to

ψt = Mψ. (103)

247

Page 248: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

6.1 The Lax KdV hierarchy

We now want to apply the previous idea to the KdV equation,

therefore

N(u) = 6uux − uxxx

The problem is How to choose L and M ?

In our case the obvious choice for L is the Schrodinger operator

L = − ∂2

∂x2+ u(x, t) (105)

248

Page 249: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

It turns out that M must be a skew-symmetric operator

(φ,Mψ) = −(Mφ,ψ)

A natural choice is therefore to construct M from a suitable linear

combination of odd derivatives.

Consider the inner product (φ, ψ) =∫∞−∞ φψdx, then

(Mφ,ψ) =

∫ ∞

−∞

∂nφ

∂xnψdx = −

∫ ∞

−∞φ∂nψ

∂xndx = −(φ,Mψ). (106)

Moreover, Lt + [L,M ] must be a multiplicative operator.

249

Page 250: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Consider the simplest choice

M = c∂

∂x(108)

for c constant, then

[L,M ] = c

(

− ∂2

∂x2+ u(x, t)

)

∂x− c ∂

∂x

(

− ∂2

∂x2+ u(x, t)

)

= −cux

(109)

Note that if ∂/∂x and a(x) are two operators, their composition

the ∂/∂x[a(x)] applied to b(x) gives

∂x(a(x)b(x)) = axb+ abx (110)

250

Page 251: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

Finally, we have

Lt + [L,M ] = ut − cux.

The one-dimensional wave equation ut − cux has an

associated spectral problem with eigenvalues which are constant

of motion.

251

Page 252: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

We now choose M so that it involves at most a third-order

differential operator,

M = −α ∂3

∂x3+ U

∂x+

∂xU +A. (112)

Here α is a constant, U = U(x, t) and A = A(x, t).

After simple algebra, we have

[L,M ] = αuxxx − Uxxx −Axx − 2uxU

+ (3αuxx − 4Uxx − 2Ax)∂

∂x+ (3αux − 4Ux)

∂2

∂x2

(113)

252

Page 253: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

It follows that [L,M ] is a multiplicative operator if

U =3

4αu and A = A(t) (115)

The Lax equation now becomes

Lt + [L,M ] = ut −3

2αuux +

1

4αuxxx = 0. (117)

253

Page 254: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

For α = 4 we recover the KdV equation. The operator M now

becomes

M = −4∂3

∂x3+ 3u

∂x+ 3

∂xu+ A(t) (119)

and so the time-evolution equation for ψ is

ψt = −4ψxxx + 3uψx + 3 (uψ)x + Aψ. (120)

254

Page 255: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The previous equation can be recast, on using the Schrodinger

equation

ψxx + (λ− u)ψ = 0, (121)

as

ψt = 4 (λψ − uψ)x + 3uψx + 3 (uψ)x +Aψ

= 2 (u+ 2λ)ψx − uxψ +Aψ(122)

For A = 0, this is the time-evolution equation that we found

for the discrete eigenfunctions; with A = 4ik3 we have the cor-

responding equation for the equation for the continuous eigen-

functions.

255

Page 256: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The KdV equation is the second example in the Lax-formulation

framework with L being the Scrodinger operator. The proce-

dure adopted can be extended to higher-order nonlinear evolu-

tion equations.

Trial and error leads to

M = −α ∂2n+1

∂x2n+1+

n∑

m=1

(

Um∂2m−1

∂x2m−1+

∂2m−1

∂x2m−1Um

)

+A (124)

where α is a constant, Um = Um(x, t) and A = A(t).

256

Page 257: SECTION C: SOLITONS - University of Sheffield › kul › sectionB.pdf · SECTION C: SOLITONS Course text: Solitons: an introduction P.G. Drazin & R.S. Johnson ... Scattering & inverse

The restriction that [L,M ] must be a multiplicative operator

imposes n conditions on the n unknown function Um.

n = 1 gives the KdV equation. It can be shown that for n = 2 the

evolution equation is

ut +30u2ux− 20uxuxx− 10uuxxx +uxxxxx = 0. (126)

257