Section 8.4 Plane Curves and Parametric Equations

16
Section 8.4 Plane Curves and Parametric Equations Suppose that x and y are both given as functions of a third variable t (called a parameter) by the equations x = f (t), y = g(t) (called parametric equations). Each value of t determines a point (x, y), which we can plot in a coordinate plane. As t varies, the point (x, y)=(f (t),g(t)) varies and traces out a curve C, which we call a parametric curve. EXAMPLE: Sketch and identify the curve defined by the parametric equations x = cos t, y = sin t 0 t 2π Solution: If we plot points, it appears that the curve is a circle (see the figure below and page 6). We can confirm this impression by eliminating t. If fact, we have x 2 + y 2 = cos 2 t + sin 2 t =1 Thus the point (x, y) moves on a unit circle x 2 + y 2 =1 . EXAMPLE: Sketch and identify the curve defined by the parametric equations x = sin 2t, y = cos 2t 0 t 2π 1

Transcript of Section 8.4 Plane Curves and Parametric Equations

Page 1: Section 8.4 Plane Curves and Parametric Equations

Section 8.4 Plane Curves and Parametric Equations

Suppose that x and y are both given as functions of a third variable t (called a parameter) by theequations

x = f(t), y = g(t)

(called parametric equations). Each value of t determines a point (x, y), which we can plot in acoordinate plane. As t varies, the point (x, y) = (f(t), g(t)) varies and traces out a curve C, which we calla parametric curve.

EXAMPLE: Sketch and identify the curve defined by the parametric equations

x = cos t, y = sin t 0 ≤ t ≤ 2π

Solution: If we plot points, it appears that the curve is a circle (see the figure below and page 6). We canconfirm this impression by eliminating t. If fact, we have

x2 + y2 = cos2 t+ sin2 t = 1

Thus the point (x, y) moves on a unit circle x2 + y2 = 1 .

EXAMPLE: Sketch and identify the curve defined by the parametric equations

x = sin 2t, y = cos 2t 0 ≤ t ≤ 2π

1

Page 2: Section 8.4 Plane Curves and Parametric Equations

EXAMPLE: Sketch and identify the curve defined by the parametric equations

x = sin 2t, y = cos 2t 0 ≤ t ≤ 2π

Solution: If we plot points, it appears that the curve is a circle (see the Figure below). We can confirmthis impression by eliminating t. If fact, we have

x2 + y2 = sin2 2t+ cos2 2t = 1

Thus the point (x, y) moves on a unit circle x2 + y2 = 1 .

EXAMPLE: Sketch and identify the curve defined by the parametric equations

x = 5 cos t, y = 2 sin t 0 ≤ t ≤ 2π

Solution: If we plot points, it appears that the curve is an ellipse (see page 8). We can confirm thisimpression by eliminating t. If fact, we have

x2

25+

y2

4=

(x

5

)2

+(y

2

)2

= cos2 t+ sin2 t = 1

Thus the point (x, y) moves on an ellipsex2

25+

y2

4= 1 .

-4 -2 2 4

-2

-1

1

2

x=5cosHtL, y=2sinHtL, 0<t<12Pi�6

EXAMPLE: Sketch and identify the curve defined by the parametric equations

x = t cos t, y = t sin t t > 0

2

Page 3: Section 8.4 Plane Curves and Parametric Equations

EXAMPLE: Sketch and identify the curve defined by the parametric equations

x = t cos t, y = t sin t t > 0

Solution: If we plot points, it appears that the curve is a spiral (see page 9). We can confirm this impressionby the following algebraic manipulations:

x2 + y2 = (t cos t)2 + (t sin t)2 = t2 sin2 t+ t2 cos2 t = t2(sin2 t+ cos2 t) = t2 =⇒ x2 + y2 = t2

To eliminate t completely, we observe that

y

x=

t sin t

t cos t=

sin t

cos t= tan t =⇒ t = arctan

(y

x

)

Substituting this into x2 + y2 = t2, we get x2 + y2 = arctan2

(y

x

)

.

-10 -5 5 10

-10

-5

5

10

x=t cosHtL, y=t sinHtL, 0<t<12Pi�4

EXAMPLE: Sketch and identify the curve defined by the parametric equations

x = t2 + t, y = 2t− 1

3

Page 4: Section 8.4 Plane Curves and Parametric Equations

EXAMPLE: Sketch and identify the curve defined by the parametric equations

x = t2 + t, y = 2t− 1

Solution: If we plot points, it appears that the curve is a parabola (see page 10). We can confirm thisimpression by eliminating t. If fact, we have

y = 2t− 1 =⇒ t =y + 1

2=⇒ x = t2 + t =

(

y + 1

2

)2

+y + 1

2=

1

4y2 + y +

3

4

Thus the point (x, y) moves on a parabola x =1

4y2 + y +

3

4.

0.5 1.0 1.5 2.0 2.5

-5

-4

-3

-2

-1

1

2

x=t^2+t, y=2t-1, -2<t<-2+12�4

EXAMPLE: Sketch and identify the curve defined by the parametric equations

x = sin2 t, y = 2 cos t

Solution: If we plot points, it appears that the curve is a restricted parabola (see page 11). We can confirmthis impression by eliminating t. If fact, we have

y = 2 cos t =⇒ y2 = 4 cos2 t =⇒ 4x+ y2 = 4 sin2 t+ 4 cos2 t = 4 =⇒ x = 1−y2

4

We also note that 0 ≤ x ≤ 1 and −2 ≤ y ≤ 2. Thus the point (x, y) moves on the restricted parabola

x = 1−y2

4.

0.40.60.81.01.2

-2

-1

1

2

x=sin^2HtL, y=2cosHtL, 0<t<12Pi�6

4

Page 5: Section 8.4 Plane Curves and Parametric Equations

The Cycloid

EXAMPLE: The curve traced out by a point P on the circumference of a circle as the circle rolls along astraight line is called a cycloid (see the Figure below). If the circle has radius r and rolls along the x-axisand if one position of P is the origin, find parametric equations for the cycloid.

Solution: We choose as parameter the angle of rotation θ of the circle (θ = 0 when P is at the origin).Suppose the circle has rotated through θ radians. Because the circle has been in contact with the line, wesee from the Figure below that the distance it has rolled from the origin is

|OT | = arc PT = rθ

Therefore, the center of the circle is C(rθ, r). Let the coordinates of P be (x, y). Then from the Figureabove we see that

x = |OT | − |PQ| = rθ − r sin θ = r(θ − sin θ)

y = |TC| − |QC| = r − r cos θ = r(1− cos θ)

Therefore, parametric equations of the cycloid are

x = r(θ − sin θ), y = r(1− cos θ) θ ∈ R (1)

One arch of the cycloid comes from one rotation of the circle and so is described by 0 ≤ θ ≤ 2π. AlthoughEquations 1 were derived from the Figure above, which illustrates the case where 0 < θ < π/2, it can beseen that these equations are still valid for other values of θ.

Although it is possible to eliminate the parameter θ from Equations 1, the resulting Cartesian equation inx and y is very complicated and not as convenient to work with as the parametric equations:

x

r+ 2π

1

2−

x

πr

− 1

= cos−1

(

1−y

r

)

− 2

2y

r−(y

r

)2

5

Page 6: Section 8.4 Plane Curves and Parametric Equations

Unit Circle

Parametric equations:x = cos t, y = sin t

where t = kπ/6, k = 0, . . . , 12.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=cosHtL, y=sin HtL, 0<t<1Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=cosHtL, y=sin HtL, 0<t<2Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=cosHtL, y=sin HtL, 0<t<3Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=cosHtL, y=sin HtL, 0<t<4Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=cosHtL, y=sin HtL, 0<t<5Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=cosHtL, y=sin HtL, 0<t<6Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=cosHtL, y=sin HtL, 0<t<7Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=cosHtL, y=sin HtL, 0<t<8Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=cosHtL, y=sin HtL, 0<t<9Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=cosHtL, y=sin HtL, 0<t<10Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=cosHtL, y=sin HtL, 0<t<11Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=cosHtL, y=sin HtL, 0<t<12Pi�6

6

Page 7: Section 8.4 Plane Curves and Parametric Equations

Unit Circle

Parametric equations:x = sin t, y = cos t

where t = kπ/6, k = 0, . . . , 12.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=sinHtL, y=cosHtL, 0<t<1Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=sinHtL, y=cosHtL, 0<t<2Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=sinHtL, y=cosHtL, 0<t<3Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=sinHtL, y=cosHtL, 0<t<4Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=sinHtL, y=cosHtL, 0<t<5Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=sinHtL, y=cosHtL, 0<t<6Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=sinHtL, y=cosHtL, 0<t<7Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=sinHtL, y=cosHtL, 0<t<8Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=sinHtL, y=cosHtL, 0<t<9Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=sinHtL, y=cosHtL, 0<t<10Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=sinHtL, y=cosHtL, 0<t<11Pi�6

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x=sinHtL, y=cosHtL, 0<t<12Pi�6

7

Page 8: Section 8.4 Plane Curves and Parametric Equations

Ellipse

Parametric equations:x = 5 cos t, y = 2 sin t

where t = kπ/6, k = 0, . . . , 12.

-4 -2 2 4

-2

-1

1

2

x=5cosHtL, y=2sinHtL, 0<t<1Pi�6

-4 -2 2 4

-2

-1

1

2

x=5cosHtL, y=2sinHtL, 0<t<2Pi�6

-4 -2 2 4

-2

-1

1

2

x=5cosHtL, y=2sinHtL, 0<t<3Pi�6

-4 -2 2 4

-2

-1

1

2

x=5cosHtL, y=2sinHtL, 0<t<4Pi�6

-4 -2 2 4

-2

-1

1

2

x=5cosHtL, y=2sinHtL, 0<t<5Pi�6

-4 -2 2 4

-2

-1

1

2

x=5cosHtL, y=2sinHtL, 0<t<6Pi�6

-4 -2 2 4

-2

-1

1

2

x=5cosHtL, y=2sinHtL, 0<t<7Pi�6

-4 -2 2 4

-2

-1

1

2

x=5cosHtL, y=2sinHtL, 0<t<8Pi�6

-4 -2 2 4

-2

-1

1

2

x=5cosHtL, y=2sinHtL, 0<t<9Pi�6

-4 -2 2 4

-2

-1

1

2

x=5cosHtL, y=2sinHtL, 0<t<10Pi�6

-4 -2 2 4

-2

-1

1

2

x=5cosHtL, y=2sinHtL, 0<t<11Pi�6

-4 -2 2 4

-2

-1

1

2

x=5cosHtL, y=2sinHtL, 0<t<12Pi�6

8

Page 9: Section 8.4 Plane Curves and Parametric Equations

Spiral

Parametric equations:x = t cos t, y = t sin t

where t = kπ/4, k = 0, . . . , 12.

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

x=t cosHtL, y=t sinHtL, 0<t<1Pi�4

-2 -1 1 2

-2

-1

1

2

x=t cosHtL, y=t sinHtL, 0<t<2Pi�4

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

x=t cosHtL, y=t sinHtL, 0<t<3Pi�4

-4 -2 2 4

-4

-2

2

4

x=t cosHtL, y=t sinHtL, 0<t<4Pi�4

-4 -2 2 4

-4

-2

2

4

x=t cosHtL, y=t sinHtL, 0<t<5Pi�4

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

x=t cosHtL, y=t sinHtL, 0<t<6Pi�4

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

x=t cosHtL, y=t sinHtL, 0<t<7Pi�4

-5 5

-5

5

x=t cosHtL, y=t sinHtL, 0<t<8Pi�4

-5 5

-5

5

x=t cosHtL, y=t sinHtL, 0<t<9Pi�4

-10 -5 5 10

-10

-5

5

10

x=t cosHtL, y=t sinHtL, 0<t<10Pi�4

-10 -5 5 10

-10

-5

5

10

x=t cosHtL, y=t sinHtL, 0<t<11Pi�4

-10 -5 5 10

-10

-5

5

10

x=t cosHtL, y=t sinHtL, 0<t<12Pi�4

9

Page 10: Section 8.4 Plane Curves and Parametric Equations

Parabola

Parametric equations:x = t2 + t, y = 2t− 1

where t = −2 + k/4, k = 0, . . . , 12.

0.5 1.0 1.5 2.0 2.5

-5

-4

-3

-2

-1

1

2

x=t^2+t, y=2t-1, -2<t<-2+1�4

0.5 1.0 1.5 2.0 2.5

-5

-4

-3

-2

-1

1

2

x=t^2+t, y=2t-1, -2<t<-2+2�4

0.5 1.0 1.5 2.0 2.5

-5

-4

-3

-2

-1

1

2

x=t^2+t, y=2t-1, -2<t<-2+3�4

0.5 1.0 1.5 2.0 2.5

-5

-4

-3

-2

-1

1

2

x=t^2+t, y=2t-1, -2<t<-2+4�4

0.5 1.0 1.5 2.0 2.5

-5

-4

-3

-2

-1

1

2

x=t^2+t, y=2t-1, -2<t<-2+5�4

0.5 1.0 1.5 2.0 2.5

-5

-4

-3

-2

-1

1

2

x=t^2+t, y=2t-1, -2<t<-2+6�4

0.5 1.0 1.5 2.0 2.5

-5

-4

-3

-2

-1

1

2

x=t^2+t, y=2t-1, -2<t<-2+7�4

0.5 1.0 1.5 2.0 2.5

-5

-4

-3

-2

-1

1

2

x=t^2+t, y=2t-1, -2<t<-2+8�4

0.5 1.0 1.5 2.0 2.5

-5

-4

-3

-2

-1

1

2

x=t^2+t, y=2t-1, -2<t<-2+9�4

0.5 1.0 1.5 2.0 2.5

-5

-4

-3

-2

-1

1

2

x=t^2+t, y=2t-1, -2<t<-2+10�4

0.5 1.0 1.5 2.0 2.5

-5

-4

-3

-2

-1

1

2

x=t^2+t, y=2t-1, -2<t<-2+11�4

0.5 1.0 1.5 2.0 2.5

-5

-4

-3

-2

-1

1

2

x=t^2+t, y=2t-1, -2<t<-2+12�4

10

Page 11: Section 8.4 Plane Curves and Parametric Equations

Restricted Parabola

Parametric equations:x = sin2 t, y = 2 cos t

where t = kπ/6, k = 0, . . . , 12.

0.40.60.81.01.2

-2

-1

1

2

x=sin^2HtL, y=2cosHtL, 0<t<1Pi�6

0.40.60.81.01.2

-2

-1

1

2

x=sin^2HtL, y=2cosHtL, 0<t<2Pi�6

0.40.60.81.01.2

-2

-1

1

2

x=sin^2HtL, y=2cosHtL, 0<t<3Pi�6

0.40.60.81.01.2

-2

-1

1

2

x=sin^2HtL, y=2cosHtL, 0<t<4Pi�6

0.40.60.81.01.2

-2

-1

1

2

x=sin^2HtL, y=2cosHtL, 0<t<5Pi�6

0.40.60.81.01.2

-2

-1

1

2

x=sin^2HtL, y=2cosHtL, 0<t<6Pi�6

0.40.60.81.01.2

-2

-1

1

2

x=sin^2HtL, y=2cosHtL, 0<t<7Pi�6

0.40.60.81.01.2

-2

-1

1

2

x=sin^2HtL, y=2cosHtL, 0<t<8Pi�6

0.40.60.81.01.2

-2

-1

1

2

x=sin^2HtL, y=2cosHtL, 0<t<9Pi�6

0.40.60.81.01.2

-2

-1

1

2

x=sin^2HtL, y=2cosHtL, 0<t<10Pi�6

0.40.60.81.01.2

-2

-1

1

2

x=sin^2HtL, y=2cosHtL, 0<t<11Pi�6

0.40.60.81.01.2

-2

-1

1

2

x=sin^2HtL, y=2cosHtL, 0<t<12Pi�6

11

Page 12: Section 8.4 Plane Curves and Parametric Equations

Butterfly Curve

Parametric equations:

x = sin t

[

ecos t − 2 cos(4t) + sin5

(

t

12

)]

, y = cos t

[

ecos t − 2 cos(4t) + sin5

(

t

12

)]

where t = kπ/6, k = 0, . . . , 12.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

12

Page 13: Section 8.4 Plane Curves and Parametric Equations

Butterfly Curve

Parametric equations:

x = sin t

[

ecos t − 2 cos(4t) + sin5

(

t

12

)]

, y = cos t

[

ecos t − 2 cos(4t) + sin5

(

t

12

)]

where t = kπ/2, k = 0, . . . , 12.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

13

Page 14: Section 8.4 Plane Curves and Parametric Equations

Parametric Curve

Parametric equations:x = t+ 2 sin 2t, y = t+ 2 cos 5t

where t = −2π + kπ/3, k = 0, . . . , 12.

-6 -4 -2 2 4 6

-5

5

x=t+2sinH2tL,y=t+2cosH5tL, -2Pi<t<-2Pi+1Pi�3

-6 -4 -2 2 4 6

-5

5

x=t+2sinH2tL,y=t+2cosH5tL, -2Pi<t<-2Pi+2Pi�3

-6 -4 -2 2 4 6

-5

5

x=t+2sinH2tL,y=t+2cosH5tL, -2Pi<t<-2Pi+3Pi�3

-6 -4 -2 2 4 6

-5

5

x=t+2sinH2tL,y=t+2cosH5tL, -2Pi<t<-2Pi+4Pi�3

-6 -4 -2 2 4 6

-5

5

x=t+2sinH2tL,y=t+2cosH5tL, -2Pi<t<-2Pi+5Pi�3

-6 -4 -2 2 4 6

-5

5

x=t+2sinH2tL,y=t+2cosH5tL, -2Pi<t<-2Pi+6Pi�3

-6 -4 -2 2 4 6

-5

5

x=t+2sinH2tL,y=t+2cosH5tL, -2Pi<t<-2Pi+7Pi�3

-6 -4 -2 2 4 6

-5

5

x=t+2sinH2tL,y=t+2cosH5tL, -2Pi<t<-2Pi+8Pi�3

-6 -4 -2 2 4 6

-5

5

x=t+2sinH2tL,y=t+2cosH5tL, -2Pi<t<-2Pi+9Pi�3

-6 -4 -2 2 4 6

-5

5

x=t+2sinH2tL,y=t+2cosH5tL, -2Pi<t<-2Pi+10Pi�3

-6 -4 -2 2 4 6

-5

5

x=t+2sinH2tL,y=t+2cosH5tL, -2Pi<t<-2Pi+11Pi�3

-6 -4 -2 2 4 6

-5

5

x=t+2sinH2tL,y=t+2cosH5tL, -2Pi<t<-2Pi+12Pi�3

14

Page 15: Section 8.4 Plane Curves and Parametric Equations

Parametric Curves

Parametric equations:x = 1.5 cos t− cos kt, y = 1.5 sin t− sin kt

where k = 1, . . . , 20.

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH1tL, y=1.5sinHtL-sinH1tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH2tL, y=1.5sinHtL-sinH2tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH3tL, y=1.5sinHtL-sinH3tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH4tL, y=1.5sinHtL-sinH4tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH5tL, y=1.5sinHtL-sinH5tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH6tL, y=1.5sinHtL-sinH6tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH7tL, y=1.5sinHtL-sinH7tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH8tL, y=1.5sinHtL-sinH8tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH9tL, y=1.5sinHtL-sinH9tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH10tL, y=1.5sinHtL-sinH10tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH11tL, y=1.5sinHtL-sinH11tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH12tL, y=1.5sinHtL-sinH12tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH13tL, y=1.5sinHtL-sinH13tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH14tL, y=1.5sinHtL-sinH14tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH15tL, y=1.5sinHtL-sinH15tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH16tL, y=1.5sinHtL-sinH16tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH17tL, y=1.5sinHtL-sinH17tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH18tL, y=1.5sinHtL-sinH18tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH19tL, y=1.5sinHtL-sinH19tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH20tL, y=1.5sinHtL-sinH20tL

15

Page 16: Section 8.4 Plane Curves and Parametric Equations

Parametric Curves

Parametric equations:x = 1.5 cos t− cos 5t, y = 1.5 sin t− sin kt

where k = 1, . . . , 20.

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH5tL, y=1.5sin HtL-sin H1tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH5tL, y=1.5sin HtL-sin H2tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH5tL, y=1.5sin HtL-sin H3tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH5tL, y=1.5sin HtL-sin H4tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH5tL, y=1.5sin HtL-sin H5tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH5tL, y=1.5sin HtL-sin H6tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH5tL, y=1.5sin HtL-sin H7tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH5tL, y=1.5sin HtL-sin H8tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH5tL, y=1.5sin HtL-sin H9tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH5tL, y=1.5sin HtL-sin H10tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH5tL, y=1.5sin HtL-sin H11tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH5tL, y=1.5sin HtL-sin H12tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH5tL, y=1.5sin HtL-sin H13tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH5tL, y=1.5sin HtL-sin H14tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH5tL, y=1.5sin HtL-sin H15tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH5tL, y=1.5sin HtL-sin H16tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH5tL, y=1.5sin HtL-sin H17tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH5tL, y=1.5sin HtL-sin H18tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH5tL, y=1.5sin HtL-sin H19tL

-2 -1 1 2

-2

-1

1

2

x=1.5cosHtL-cosH5tL, y=1.5sin HtL-sin H20tL

16